Science.gov

Sample records for engine components latest

  1. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  2. Stirling engines. (Latest citations from the COMPENDEX database). Published Search

    SciTech Connect

    Not Available

    1992-12-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  3. Automotive engineering. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning various aspects of engineering as related to foreign and domestic automobiles. Topics include design, suspension systems, bodies, exhaust components, transmissions, chassis, collision research, human factors engineering, and fuel economy. (Contains a minimum of 198 citations and includes a subject term index and title list.)

  4. Stirling engines. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines are briefly evaluated. (Contains 250 citations and includes a subject term index and title list.)

  5. New engine and advanced component design

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the proceedings on new engine and advance component design. Topics covered include: development of low emission high performance four valve engines, the effect of engine build options on powerplant inertias, silicon nitride turbocharger rotor for high performance automotive engines and development of Toyota reflex Burn (TRB) system in DI diesel.

  6. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  7. Small Engine Component Technology (SECT)

    NASA Technical Reports Server (NTRS)

    Early, M.; Dawson, R.; Zeiner, P.; Turk, M.; Benn, K.

    1986-01-01

    A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000.

  8. MAN B&W`s latest HFO marine auxiliary engine

    SciTech Connect

    Kunberger, K.

    1996-09-01

    The ability to operate marine auxiliary generator sets on heavy fuel oil (HFO) provides the advantages of using a single fuel source onboard ships for all engine power, but also requires attention directed to engine maintenance, reliability and emissions. MAN B&W Diesel in Holeby, Denmark, has a world reputation and substantial market share for HFO burning auxiliary engines above 500 kW. Offering a guaranteed 20000 operating hours before major overhaul on its HFO auxiliary gen-sets, the company has promoted the unifuel concept for ship propulsion and auxiliary power plants for many years. Based on this experience, a new generation of small HFO burning diesels has been designed. Low operating and maintenance costs, low initial cost, heavy fuel capabilities with unrestricted load profile, high reliability at long maintenance intervals and low emmisions were the main design targets. The design, specifications, and performance of these engines are discussed in this article.

  9. Futuristic concepts in engines and components

    SciTech Connect

    1995-12-31

    This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

  10. Improved components for engine fuel savings

    NASA Technical Reports Server (NTRS)

    Antl, R. J.; Mcaulay, J. E.

    1980-01-01

    NASA programs for developing fuel saving technology include the Engine Component Improvement Project for short term improvements in existing air engines. The Performance Improvement section is to define component technologies for improving fuel efficiency for CF6, JT9D and JT8D turbofan engines. Sixteen concepts were developed and nine were tested while four are already in use by airlines. If all sixteen concepts are successfully introduced the gain will be fuel savings of more than 6 billion gallons over the lifetime of the engines. The improvements include modifications in fans, mounts, exhaust nozzles, turbine clearance and turbine blades.

  11. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  12. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Recyclable automobiles. (Latest citations from Engineered Materials Abstracts). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  14. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  16. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  17. Probe samples components of rocket engine exhaust

    NASA Technical Reports Server (NTRS)

    Schumacher, P. E.

    1965-01-01

    Water-cooled, cantilevered probe samples the exhaust plume of rocket engines to recover particles for examination. The probe withstands the stresses of a rocket exhaust plume environment for a sufficient period to obtain a useful sample of the exhaust components.

  18. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  19. Components of the Solar Thermal Propulsion Engine

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  20. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  1. Performance Engineering Technology for Scientific Component Software

    SciTech Connect

    Malony, Allen D.

    2007-05-08

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  2. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  3. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-05-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  5. Automotive engineering. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning various aspects of engineering as related to foreign and domestic automobiles. Topics include design, suspension systems, bodies, exhaust components, transmissions, chassis, collision research, human factors engineering, and fuel economy. (Contains a minimum of 211 citations and includes a subject term index and title list.)

  6. Turbine engine component with cooling passages

    DOEpatents

    Arrell, Douglas J.; James, Allister W.

    2012-01-17

    A component for use in a turbine engine including a first member and a second member associated with the first member. The second member includes a plurality of connecting elements extending therefrom. The connecting elements include securing portions at ends thereof that are received in corresponding cavities formed in the first member to attach the second member to the first member. The connecting elements are constructed to space apart a first surface of the second member from a first surface of the first member such that at least one cooling passage is formed between adjacent connecting elements and the first surface of the second member and the first surface of the first member.

  7. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  8. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    A cooperative government-industry effort, the Energy Efficient Engine Project, to develop the advanced technology base for future commercial development of a new generation of more fuel conservative turbofan engines for airline use is described. Engine configurations that are dependent upon technology advances in each major engine component are defined and current design and development of the advanced components are included.

  9. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  10. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.

  11. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  12. 14 CFR 33.53 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.53 Section 33.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.53 Engine system...

  13. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  14. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.

  15. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  16. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  17. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine system and component tests. 33.91 Section 33.91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.91 Engine system...

  18. EADS-ST's Latest Bipropellant 10N Thruster and 400 N Engine: The Fully European Solution

    NASA Astrophysics Data System (ADS)

    Fick, M.; Dreer, T.; Gotzig, U.; Schulte, G.; Bachmann, J.; Lagier, F.; Benoit, E.

    2004-10-01

    Increasing restrictions, complications and bureaucratic hurdles for obtaining export licenses from the US government for American components to be used on certain projects and for certain launch sites or end customers, required the development of new or upgraded European flow control valves to guarantee an independent and unrestricted marketing of EADS-ST's orbital propulsion products to commercial customers worldwide. The development and qualification of the European flow control valves for EADS-ST's 10 N bipropellant thruster and 400 N bipropellant engine is highlighted, together with verification tests and the qualification programs at engine level. The 400 N engine under qualification with the new valves is an enhanced version with an increased area ratio of the nozzle.

  19. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  20. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Larkin, T. R.

    1986-01-01

    The objective of this study is to identify high payoff technologies for year 2000 small gas turbine engines, and to provide a technology plan to guide research and technology efforts toward revolutionizing the small gas turbine technology base. The goal is to define the required technology to provide a 30 percent reduction in mission fuel burned, to reduce direct operating costs by at least 10 percent, and to provide increased reliability and durability of the gas turbine propulsion system. The baseline established to evaluate the year 2000 technology base was an 8-passenger commercial tilt-rotor aircraft powered by a current technology gas turbine engine. Three basic engine cycles were studied: the simple cycle engine, a waste heat recovery cycle, and a wave rotor engine cycle. For the simple cycle engine, two general arrangements were considered: the traditional concentric spool arrangement and a nonconcentric spool arrangement. Both a regenerative and a recuperative cycle were studied for the waste heat recovery cycle.

  1. Component test program for variable-cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Whitlow, J. B.; Stitt, L. E.

    1976-01-01

    Variable cycle engine (VCE) concepts for a supersonic cruise aircraft were studied. These VCE concepts incorporate unique critical components and flow path arrangements that provide good performance at both supersonic and subsonic cruise and appear to be economically and environmentally viable. Certain technologies were identified as critical to the successful development of these engine concepts and require considerable development and testing. The feasibility and readiness of the most critical VCE technologies, was assessed, a VCE component test program was initiated. The variable stream control engine (VSCE) component test program, tested and evaluated an efficient low emission duct burner and a quiet coannular ejector nozzle at the rear of a rematched F100 engine.

  2. Effect of Individual Component Life Distribution on Engine Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.

    2003-01-01

    The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.

  3. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  4. Powder Injection Molding of Ceramic Engine Components for Transportation

    NASA Astrophysics Data System (ADS)

    Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar

    2012-03-01

    Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.

  5. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    1997-12-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Automotive component recycling. (Latest citations from Materials Business file). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the recycling of metallic and non-metallic automotive components. Methods and equipment for recovering metal, plastic, and composite materials are discussed. Applications of the recovered materials are reviewed, as well. (Contains 264 citations and includes a subject term index and title list.)

  7. Pulse detonation engines and components thereof

    NASA Technical Reports Server (NTRS)

    Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)

    2009-01-01

    A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.

  8. Advanced component technologies for energy-efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1980-01-01

    The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.

  9. Two stroke engines. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the operating characteristics, performance, and applications of two-stroke cycle internal combustion engines. Topics include fuel injection, lubrication, and exhaust systems as well as emission control. Marine, motorcycle, and diesel engines are included. Factors contributing to engine noise are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Two stroke engines. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the operating characteristics, performance, and applications of two-stroke cycle internal combustion engines. Topics include fuel injection, lubrication, and exhaust systems as well as emission control. Marine, motorcycle, and diesel engines are included. Factors contributing to engine noise are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  11. Two stroke engines. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning the operating characteristics, performance, and applications of two-stroke cycle internal combustion engines. Topics include fuel injection, lubrication, and exhaust systems as well as emission control. Marine, motorcycle, and diesel engines are included. Factors contributing to engine noise are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  12. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  13. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  14. Two stroke engines. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the operating characteristics, performance, and applications of two-stroke cycle internal combustion engines. Topics include fuel injection, lubrication, and exhaust systems as well as emission control. Marine, motorcycle, and diesel engines are included. Factors contributing to engine noise are also discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Steam engines. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations of selected patents concerning steam engines. The patents detail water spray injecter system, internal combustion, reaction chamber, valveless bi-chamber, multicylinder, steam recovery and recompression, sound simulator, oscillating, and rotary steam engines. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Engine component improvement program: Performance improvement. [fuel consumption

    NASA Technical Reports Server (NTRS)

    Mcaulay, J. E.

    1979-01-01

    Fuel consumption of commercial aircraft is considered. Fuel saving and retention components for new production and retrofit of JT9D, JT8D, and CF6 engines are reviewed. The manner in which the performance improvement concepts were selected for development and a summary of the current status of each of the 16 selected concepts are discussed.

  17. Energy efficient engine. Volume 1: Component development and integration program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.

  18. Energy efficient engine fan component detailed design report

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Michael, C. J.

    1981-01-01

    The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.

  19. NASA GSFC Mechanical Engineering Latest Inputs for Verification Standards (GEVS) Updates

    NASA Technical Reports Server (NTRS)

    Kaufman, Daniel

    2003-01-01

    This viewgraph presentation provides information on quality control standards in mechanical engineering. The presentation addresses safety, structural loads, nonmetallic composite structural elements, bonded structural joints, externally induced shock, random vibration, acoustic tests, and mechanical function.

  20. Engine performance. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning performance of various type of engines. Topics include stirling, turbine, pulse-jet, 2-cycle, diesel, 4-cycle, turbo, and hydrogen engines. Methods for improving performance, including microprocessor controlled electronics, are referenced. Fuel injectors manufactured to specification are also referenced. Performance testing under high or low temperatures are studied. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  1. Engine performance. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning performance of various type of engines. Topics include stirling, turbine, pulse-jet, 2-cycle, diesel, 4-cycle, turbo, and hydrogen engines. Methods for improving performance, including microprocessor controlled electronics, are referenced. Fuel injectors manufactured to specification are also referenced. Performance testing under high or low temperatures are studied. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Effects of fuel properties on white smoke emission from the latest heavy-duty DI diesel engine

    SciTech Connect

    Tahara, Yoshihiro; Akasaka, Yukio

    1995-12-31

    The effects of fuel properties on white smoke emission from the latest DI diesel engine were investigated with a new type of white smoke meter. The new smoke meter could distinguish fuel effects on smoke much more than the conventional PHS meter. The repeatability of the smoke meter was better than that of the PHS meter. Cetane number was the dominant factor for smoke emission. Distillation temperature and composition also affected emission. A nitrate type cetane improver was effective for reducing emission. White smoke was analyzed with GC and HPLC and compounds in white smoke from low cetane number fuel were found almost the same as in fuel. But those from high cetane number fuel consisted of compounds in fuel and many combustion products.

  3. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    PubMed

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  4. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.

    2004-01-01

    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  5. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    This presentation consists of viewgraph which review the test program and the results of the tests for the Gas Generator (GG) component for the Fastrac Engine. Included are pictures of the Fastrac (MC-1) Engine and the GG, diagrams of the flight configuration, and schematics of the LOX, and the RP-1 systems and the injector assembly. The normal operating parameters are reviewed, as are the test instrumentation. Also shown are graphs of the hot gas temperature, and the test temperature profiles. The results are summarized.

  6. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The objective of the Energy Efficient Engine Component Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines. Minimum goals have been set for a 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct operating cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight propulsion system) relative to the JT9D-7A reference engine. The Energy Efficienct Engine features a twin spool, direct drive, mixed flow exhaust configuration, utilizing an integrated engine nacelle structure. A short, stiff, high rotor and a single stage high pressure turbine are among the major enhancements in providing for both performance retention and major reductions in maintenance and direct operating costs. Improved clearance control in the high pressure compressor and turbines, and advanced single crystal materials in turbine blades and vanes are among the major features providing performance improvement. Highlights of work accomplished and programs modifications and deletions are presented.

  7. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1999-01-01

    This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.

  8. Powder processing of nitrides by hot isostatic pressing. (Latest citations from Engineered Materials abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the use of hot isostatic pressing to process metal nitrides. Citations discuss the fabrication of components for internal combustion, advanced heat, and gas turbine engines. Ceramic matrix composites are considered. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  9. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  10. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  11. Reciprocating seals: Lubrication and wear resistance. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning theoretical and practical analyses of reciprocating seal wear and lubrication. Topics include behavior, friction coefficient, cylinder wear, lubrication film thickness, friction forces, design innovations, lubricating oil viscosity, and wear modeling relative to reciprocating seal frictional wear and lifetime optimization. Applications in piston ring lubrication, internal combustion engines, and vehicle suspension systems are considered. (Contains 250 citations and includes a subject term index and title list.)

  12. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  13. An overview of the Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.; Wintucky, W. T.; Niedzwiecki, R. W.

    1986-01-01

    The objectives of the joint NASA/Army SECT Studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.

  14. Windmill design, development, construction, and performance. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the design, development, construction, and performance of windmills and associated systems, subsystems, and components. Both aerodynamic and structural performance characteristics are discussed. Included are references to siting characteristics, power production and windmill efficiency, and specific system descriptions. (Contains 250 citations and includes a subject term index and title list.)

  15. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  16. Latest Progress of Fault Detection and Localization in Complex Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi

    2014-01-01

    In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.

  17. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  18. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  19. Application of Additively Manufactured Components in Rocket Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve

    2015-01-01

    The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.

  20. Design for robustness of unique, multi-component engineering systems

    NASA Astrophysics Data System (ADS)

    Shelton, Kenneth A.

    2007-12-01

    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the

  1. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  2. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  3. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  4. Computational fluid dynamic design of rocket engine pump components

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  5. Design for robustness of unique, multi-component engineering systems

    NASA Astrophysics Data System (ADS)

    Shelton, Kenneth A.

    2007-12-01

    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the

  6. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1998-01-01

    A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behavior level where primitive variables with their respective scatters are used to describe that behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.

  7. Damage Tolerance and Reliability of Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1999-01-01

    A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behaviour level where primitive variables with their respective scatters are used to describe the behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster, products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.

  8. Status of the Boeing Dish Engine Critical Component Project

    SciTech Connect

    Brau, H.W.; Diver, R.B.; Nelving, H.; Stone, K.W.

    1999-01-08

    The Boeing Company's Dish Engine Critical Component (DECC) project started in April of 1998. It is a continuation of a solar energy program started by McDonnell Douglas (now Boeing) and United Stirling of Sweden in the mid 1980s. The overall objectives, schedule, and status of this project are presented in this paper. The hardware test configuration, hardware background, operation, and test plans are also discussed. A summary is given of the test data, which includes the daily power performance, generated energy, working-gas usage, mirror reflectivity, solar insolation, on-sun track time, generating time, and system availability. The system performance based upon the present test data is compared to test data from the 1984/88 McDonnell Douglas/United Stirling AB/Southem California Edison test program. The test data shows that the present power, energy, and mirror performance is comparable to when the hardware was first manufactured 14 years ago.

  9. [Component and System Level of the FASTRAC Engine

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary activities of Lee & Associates during the period 7/20/99 to 12/31/99 as specified in the referenced Purchase Order has been in direct support of the Advanced Space Technology Program OfFice's Core Propulsion Project. An independent review to assess the program readiness to conduct component and system level testing of the FASTRAC Engine and to proceed into Fabrication has been provided. This was accomplished through the identification of program weaknesses and potential failure areas and where applicable recommended solutions were suggested to the Program Office that would mitigate technical and program risk. The approach taken to satisfy the objectives has been for the contractor to provide a team of experts with relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. The team participated in Test Planning, Test Readiness Reviews for system testing at Stennis Space Center, Anomaly Resolution Reviews, an Operations Audit, and data analysis. This approach worked well in satisfying the objectives and providing the Project Office with valuable information in real time and through monthly reports. During the month of December 1999 the primary effort involved the participation in anomaly resolution and the detailed review of the data from the final H3 and H4 test series performed on the FASTRAC engine in the b-2 Horizontal Test Facility at Stennis. The more significant findings and recommendations from this review are presented in this report.

  10. Component improvement of free-piston Stirling engine key technology for space power

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1988-01-01

    The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.

  11. Study on the variable cycle engine modeling techniques based on the component method

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan

    2016-01-01

    Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.

  12. Spectral Separation of the Turbofan Engine Coherent Combustion Noise Component

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine (Honeywell TECH977) were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. While adjusting the time delay to maximize the coherence and minimize the cross spectrum phase angle variation with frequency, the discovery was made that for the 130 microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Since the 0 to 200 Hz band signal took more time to travel the same distance, it is slower than the 200 to 400 Hz band signal. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to hot spots interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise.

  13. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  14. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards.

  15. Handbook of data on selected engine components for solar thermal applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A data base on developed and commercially available power conversion system components for Rankine and Brayton cycle engines, which have potential application to solar thermal power-generating systems is presented. The status of the Stirling engine is discussed.

  16. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    SciTech Connect

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  17. Analysis of new diesel engine and component design

    SciTech Connect

    1995-12-31

    Contents of this book include: A root cause investigation of cylinder heat cracking in large diesel engine standby power generators; Predictive analysis of lube oil consumption for a diesel engine; Development of a new engine piston incorporating heat pipe cooling technology; Development of new torsional vibration rubber damper of compression type; Novel approach to reduce the time from concept-to-finished piston; and more.

  18. Impact of broad-specification fuels on future jet aircraft. [engine components and performance

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1978-01-01

    The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.

  19. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines,...

  20. Applications and developments in new engine design and components

    SciTech Connect

    1995-12-31

    This publication discusses a wide variety of new technology areas that are being developed primarily for the gasoline-fueled internal combustion engine. Contents include: Analysis of cylinder bore distortion during engine operation; Hybrid linear/nonlinear method for exhaust noise prediction; Powertrain systems definition process; Observations concerning current motor vehicle emissions; Practical use of two piston ring set for gasoline engine; Parametric design of helical intake ports; Stress analysis and design optimization of carbon piston; Effect of piston top ring design on oil consumption.

  1. Methods of Si based ceramic components volatilization control in a gas turbine engine

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  2. Tracking and Control of Gas Turbine Engine Component Damage/Life

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  3. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  4. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  5. Full scale technology demonstration of a modern counterrotating unducted fan engine concept: Component test

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The UDF trademark (Unducted Fan) engine is a new aircraft engine concept based on an ungeared, counterrotating, unducted, ultra-high-bypass turbofan configuration. This engine is being developed to provide a high thrust-to-weight ratio powerplant with exceptional fuel efficiency for subsonic aircraft application. This report covers the testing of pertinent components of this engine such as the fan blades, control and actuation system, turbine blades and spools, seals, and mixer frame.

  6. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected to a maximum operating temperature and an internal pressure of 5 p.s.i., and each pressurized hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use...

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  8. Acoustic noise reduction for vehicle engines. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations of selected patents concerning methods, devices, and materials to reduce acoustic noise in vehicle engines. Vehicles covered include automobiles, railway locomotives, agricultural tractors, and aircraft. Internal combustion, diesel, and gas turbine engines are covered. (Contains a minimum of 188 citations and includes a subject term index and title list.)

  9. Seal Technology Development for Advanced Component for Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    2008-01-01

    Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.

  10. Small Engine Component Technology (SECT) study. Program report

    NASA Technical Reports Server (NTRS)

    Almodovar, E.; Exley, T.; Kaehler, H.; Schneider, W.

    1986-01-01

    The study was conducted to identify high payoff technologies for year 2000 small gas turbine applications and to provide a technology plan for guiding future research and technology efforts. A regenerative cycle turboprop engine was selected for a 19 passenger commuter aircraft application. A series of engines incorporating eight levels of advanced technologies were studied and their impact on aircraft performance was evaluated. The study indicated a potential reduction in fuel burn of 38.3 percent. At $1.00 per gallon fuel price, a potential DOC benefit of 12.5 percent would be achieved. At $2.00 per gallon, the potential DOC benefit would increase to 17.0 percent. Four advanced technologies are recommended and appropriate research and technology programs were established to reach the year 2000 goals.

  11. Impact design methods for ceramic components in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Song, J.; Cuccio, J.; Kington, H.

    1991-01-01

    Methods currently under development to design ceramic turbine components with improved impact resistance are presented. Two different modes of impact damage are identified and characterized, i.e., structural damage and local damage. The entire computation is incorporated into the EPIC computer code. Model capability is demonstrated by simulating instrumented plate impact and particle impact tests.

  12. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  13. Component Cost Reduction by Value Engineering: A Case Study

    NASA Astrophysics Data System (ADS)

    Kalluri, Vinayak; Kodali, Rambabu

    2016-06-01

    The concept value engineering (VE) acts to increase the value of a product through the improvement in existent functions without increasing their costs. In other words, VE is a function oriented, systematic team approach study to provide value in a product, system or service. The authors systematically explore VE through the six step framework proposed by SAVE and a case study is presented to address the concern of reduction in cost without compromising the function of a hydraulic steering cylinder through the aforementioned VE framework.

  14. The JT8D and JT9D engine component improvement: Performance improvement program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1982-01-01

    The NASA sponsored Engine Component Improvement - Performance Improvement Program at Pratt & Whitney Aircraft advanced the state of the art of thermal barrier coatings and ceramic seal systems, demonstrated the practicality of an advanced turbine clearance control system and an advanced fan design in the JT9D engine, and demonstrated the advantages of modern cooling, sealing, and aerodynamic designs in the high pressure turbine and compressor of the JT8D engine. Several of these improvements are already in airline service in JT8D and JT9D engines, and others will enter service soon in advanced models of these engines. In addition, the technology advances are being transferred to completely new engine configurations, the PW2037 engine and the NASA sponsored Energy Efficient Engine.

  15. Time-dependent reliability analysis of ceramic engine components

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    1993-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing either the power or Paris law relations. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating proof testing and fatigue parameter estimation are given.

  16. Crankshaft and component adequacy: Update of analysis and testing developed for nuclear standby engines

    SciTech Connect

    Not Available

    1987-01-01

    This book contains eight selections. Some of the topics are: reliability improvement of diesels in nuclear standby applications, diesel engine crankshaft torsional vibrations, pendulum dampers, transportation fatalities,and diesel component life predictions.

  17. Genetic engineering of plants for improved crop production. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of genetic engineering to improve crop production. Genetic alterations of plants to provide insect protection, herbicide resistance, disease resistance, improved quality, and higher yield are discussed. Methods used to develop environmentally tolerant crops that are able to withstand extremes of temperature, reduced water consumption, and reduced fertilizer requirements are examined. Genetic engineering of microorganisms that are beneficial to plants is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  18. The use of programmable logic controllers (PLC) for rocket engine component testing

    NASA Technical Reports Server (NTRS)

    Nail, William; Scheuermann, Patrick; Witcher, Kern

    1991-01-01

    Application of PLCs to the rocket engine component testing at a new Stennis Space Center Component Test Facility is suggested as an alternative to dedicated specialized computers. The PLC systems are characterized by rugged design, intuitive software, fault tolerance, flexibility, multiple end device options, networking capability, and built-in diagnostics. A distributed PLC-based system is projected to be used for testing LH2/LOx turbopumps required for the ALS/NLS rocket engines.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  20. Development of wear resistant ceramic coatings for diesel engine components

    SciTech Connect

    Haselkorn, M.H. )

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  1. Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering

    NASA Astrophysics Data System (ADS)

    Filiatrault, Andre; Sullivan, Timothy

    2014-08-01

    With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major

  2. Weaving multi-layer fabrics for reinforcement of engineering components

    NASA Technical Reports Server (NTRS)

    Hill, B. J.; Mcilhagger, R.; Mclaughlin, P.

    1993-01-01

    The performance of interlinked, multi-layer fabrics and near net shape preforms for engineering applications, woven on a 48 shaft dobby loom using glass, aramid, and carbon continuous filament yarns is assessed. The interlinking was formed using the warp yarns. Two basic types of structure were used. The first used a single warp beam and hence each of the warp yarns followed a similar path to form four layer interlinked reinforcements and preforms. In the second two warp beams were used, one for the interlinking yarns which pass from the top to the bottom layer through-the-thickness of the fabric and vice versa, and the other to provide 'straight' yarns in the body of the structure to carry the axial loading. Fabrics up to 15mm in thickness were constructed with varying amounts of through-the-thickness reinforcement. Tapered T and I sections were also woven, with the shaping produced by progressive removal of ends during construction. These fabrics and preforms were impregnated with resin and cured to form composite samples for testing. Using these two basic types of construction, the influence of reinforcement construction and the proportion and type of interlinking yarn on the performance of the composite was assessed.

  3. Tracing Fuel Component Carbon in the Emissions from Diesel Engines

    SciTech Connect

    Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

    2002-10-14

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  4. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  5. Development and testing of CMC components for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1991-01-01

    Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.

  6. Stationary Engineers Apprenticeship. Related Training Modules. 10.1-10.5 Machine Components.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of five learning modules on machine components is one of 20 such packets developed for apprenticeship training for stationary engineers. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, statement…

  7. High energy white beam x-ray diffraction studies of residual strains in engineering components

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Vorster, W.; Jun, T. S.; Song, X.; Golshan, M.; Laundy, D.; Walsh, M. J.; Korsunsky, A. M.

    2008-09-01

    In order to predict the durability of engineering components and improve performance, it is mandatory to understand residual stresses. The last decade has witnessed a significant increase of residual stress evaluation using diffraction of penetrating radiation, such as neutrons or high energy X-rays. They provide a powerful non-destructive method for determining the level of residual stresses in engineering components through precise characterisation of interplanar crystal lattice spacing. The unique non-destructive nature of these measurement techniques is particularly beneficial in the context of engineering design, since it allows the evaluation of a variety of structural and deformational parameters inside real components without material removal, or at worst with minimal interference. However, while most real engineering components have complex shape and are often large in size, leading to measurement and interpretation difficulties, since experimental facilities usually have limited space for mounting the sample, limited sample travel range, limited loading capacity of the sample positioning system, etc. Consequently, samples often have to be sectioned, requiring appropriate corrections on measured data; or facilities must be improved. Our research group has contributed to the development of engineering applications of high-energy X-ray diffraction methods for residual stress evaluation, both at synchrotron sources and in the lab setting, including multiple detector setup, large engineering component manipulation and measurement at the UK Synchrotron Radiation Source (SRS Daresbury), and in our lab at Oxford. A nickel base superalloy combustion casing and a large MIG welded Al alloy plate were successfully studied.

  8. Analysis of ram-jet engine performance including effects of component changes

    NASA Technical Reports Server (NTRS)

    Weber, Richard J; Luidens, Roger W

    1956-01-01

    Calculated design-point performance of ram-jet engines using JP-4 fuel is presented for a wide range of engine total-temperature ratios and combustion-chamber-inlet Mach numbers for flight numbers from 1.5 to 4.0. The results include engine thrust, drag, fuel consumption, and area ratios. Data are also presented to illustrate the sensitivity of the results to variations in the assumed component parameters. A brief comparison is included between fixed-and variable-geometry engines.

  9. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  10. Energy efficient engine low-pressure compressor component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Michael, C. J.; Halle, J. E.

    1981-01-01

    The aerodynamic and mechanical design description of the low pressure compressor component of the Energy Efficient Engine were used. The component was designed to meet the requirements of the Flight Propulsion System while maintaining a low cost approach in providing a low pressure compressor design for the Integrated Core/Low Spool test required in the Energy Efficient Engine Program. The resulting low pressure compressor component design meets or exceeds all design goals with the exception of surge margin. In addition, the expense of hardware fabrication for the Integrated Core/Low Spool test has been minimized through the use of existing minor part hardware.

  11. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  12. Aircraft gas-turbine engines: Noise reduction and vibration control. (Latest citations from Information Services in Mechanical Engineering data base). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning the design and analysis of aircraft gas turbine engines with respect to noise and vibration control. Included are studies regarding the measurement and reduction of noise at its source, within the aircraft, and on the ground. Inlet, nozzle and core aerodynamic studies are cited. Propfan, turbofan, turboprop engines, and applications in short take-off and landing (STOL) aircraft are included. (Contains a minimum of 202 citations and includes a subject term index and title list.)

  13. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  14. Test results of the RS-44 integrated component evaluator liquid oxygen/hydrogen rocket engine

    NASA Astrophysics Data System (ADS)

    Sutton, R. F.; Lariviere, B. W.

    1993-10-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  15. Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Lariviere, B. W.

    1993-01-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  16. The development and testing of ceramic components in piston engines. Final report

    SciTech Connect

    McEntire, B.J.; Willis, R.W.; Southam, R.E.

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  17. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect

    Voldrich, W.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  18. 75 FR 6636 - Foreign-Trade Zone 77-Memphis, TN Application for Subzone Cummins, Inc. (Engine Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... internal-combustion engine parts warehousing and distribution facility of Cummins, Inc. (Cummins), located... distribution of foreign and domestic-origin internal combustion engine (diesel and CNG) parts and components... for distribution include internal engine components, blocks, cylinder heads and related...

  19. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall...

  20. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall...

  1. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall...

  2. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall...

  3. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall...

  4. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    SciTech Connect

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-03-21

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures.

  5. An analysis of air-turborocket engine performance including effects of component changes

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W; Weber, Richard J

    1956-01-01

    An analytical study of the air-turborocket engine is presented, showing both full-power operation over a range of flight speeds and part-power operation at several supersonic speeds. Engine weight, drag, and area variations are calculated in addition to the internal thrust coefficient and specific impulse. Tehe effects of changes in the component designs and efficiencies are indicated. Maximum specific impulse (including nacelle drag and using gasoline - nitric acid propellants) at Mach 2.3 is 1500 lb/(lb/sec). The performance is compared with that of a typical turbojet engine.

  6. Hypersonic research engine/aerothermodynamic integration model, experimental results. Volume 1: Mach 6 component integration

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.

  7. Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report

    SciTech Connect

    1995-10-09

    Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

  8. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  9. 75 FR 77904 - In the Matter of Certain Turbomachinery Blades, Engines and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION In the Matter of Certain Turbomachinery Blades, Engines and Components Thereof; Notice of... individuals are advised that information on this matter can be obtained by contacting the Commission's...

  10. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  11. Modular Engine Noise Component Prediction System (MCP) Technical Description and Assessment Document

    NASA Technical Reports Server (NTRS)

    Herkes, William H.; Reed, David H.

    2005-01-01

    This report describes an empirical prediction procedure for turbofan engine noise. The procedure generates predicted noise levels for several noise components, including inlet- and aft-radiated fan noise, and jet-mixing noise. This report discusses the noise source mechanisms, the development of the prediction procedures, and the assessment of the accuracy of these predictions. Finally, some recommendations for future work are presented.

  12. An engineering approach for the application of textile composites to a structural component

    NASA Technical Reports Server (NTRS)

    Baldwin, Jack W.; Gracias, Brian K.; Clark, Steven R.

    1993-01-01

    An engineering approach for the application of textile composites to a structural component is addressed. The main objective is to improve impact resistance of composite blades by using some form of 3-D reinforcement. Project goals, results, and conclusions are discussed.

  13. Experience with integrally-cast compressor and turbine components for a small, low-cost, expendable-type turbojet engine

    NASA Technical Reports Server (NTRS)

    Dengler, R. P.

    1975-01-01

    Experiences with integrally-cast compressor and turbine components during fabrication and testing of four engine assemblies of a small (29 cm (11 1/2 in.) maximum diameter) experimental turbojet engine design for an expendable application are discussed. Various operations such as metal removal, welding, and re-shaping of these components were performed in preparation of full-scale engine tests. Engines with these components were operated for a total of 157 hours at engine speeds as high as 38,000 rpm and at turbine inlet temperatures as high as 1256 K (1800 F).

  14. Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme

    NASA Technical Reports Server (NTRS)

    Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong

    2011-01-01

    A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred

  15. Advanced Diesel Engine Component Development Program, final report - tasks 4-14

    SciTech Connect

    Kaushal, T.S.; Weber, K.E.

    1994-11-01

    The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

  16. Application of differential similarity to finding nondimensional groups important in tests of cooled engine components

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1977-01-01

    The method of differential similarity is applied to the partial differential equations and boundary conditions which govern the temperature, velocity, and pressure fields in the flowing gases and the solid stationary components in air-cooled engines. This procedure yields the nondimensional groups which must have the same value in both the test rig and the engine to produce similarity between the test results and the engine performance. These results guide the experimentalist in the design and selection of test equipment that properly scales quantities to actual engine conditions. They also provide a firm fundamental foundation for substantiation of previous similarity analyses which employed heuristic, physical reasoning arguments to arrive at the nondimensional groups.

  17. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  18. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  19. Further two-dimensional code development for Stirling space engine components

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1990-01-01

    The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.

  20. Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage

    NASA Technical Reports Server (NTRS)

    Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.

    1980-01-01

    Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.

  1. Laser engineered net shaping (LENS) for the repair and modification of NWC metal components.

    SciTech Connect

    Atwood, Clinton J.; Smugeresky, John E. (Sandia National Labs, Livermore,CA); Gill, David Dennis

    2006-11-01

    Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) is a layer additive manufacturing process that creates fully dense metal components using a laser, metal powder, and a computer solid model. This process has previously been utilized in research settings to create metal components and new material alloys. The ''Qualification of LENS for the Repair and Modification of Metal NWC Components'' project team has completed a Technology Investment project to investigate the use of LENS for repair of high rigor components. The team submitted components from four NWC sites for repair or modification using the LENS process. These components were then evaluated for their compatibility to high rigor weapons applications. The repairs included hole filling, replacement of weld lips, addition of step joints, and repair of surface flaws and gouges. The parts were evaluated for mechanical properties, corrosion resistance, weldability, and hydrogen compatibility. This document is a record of the LENS processing of each of these component types and includes process parameters, build strategies, and lessons learned. Through this project, the LENS process was shown to successfully repair or modify metal NWC components.

  2. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions

    SciTech Connect

    Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

    2010-01-11

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  3. Energy efficient engine: Low-pressure turbine subsonic cascade component development and integration program

    NASA Technical Reports Server (NTRS)

    Sharma, O. P.; Kopper, F. C.; Knudsen, L. K.; Yustinich, J. B.

    1982-01-01

    A subsonic cascade test program was conducted to provide technical data for optimizing the blade and vane airfoil designs for the Energy Efficient Engine Low-Pressure Turbine component. The program consisted of three parts. The first involved an evaluation of the low-chamber inlet guide vane. The second, was an evaluation of two candidate aerodynamic loading philosophies for the fourth blade root section. The third part consisted of an evaluation of three candidate airfoil geometries for the fourth blade mean section. The performance of each candidate airfoil was evaluated in a linear cascade configuration. The overall results of this study indicate that the aft-loaded airfoil designs resulted in lower losses which substantiated Pratt & Whitney Aircraft's design philosophy for the Energy Efficient Engine low-pressure turbine component.

  4. An investigation of enhanced capability thermal barrier coating systems for diesel engine components

    NASA Technical Reports Server (NTRS)

    Holtzman, R. L.; Layne, J. L.; Schechter, B.

    1984-01-01

    Material systems and processes for the development of effective and durable thermal barriers for heavy duty diesel engines were investigated. Seven coating systems were evaluated for thermal conductivity, erosion resistance, corrosion/oxidation resistance, and thermal shock resistance. An advanced coating system based on plasma sprayed particle yttria stabilized zirconia (PS/HYSZ) was judged superior in these tests. The measured thermal conductivity of the selected coating was 0.893 W/m C at 371 C. The PS/HYSZ coating system was applied to the piston crown, fire deck and valves of a single cylinder low heat rejection diesel engine. The coated engine components were tested for 24 hr at power levels from 0.83 MPa to 1.17 MPa brake mean effective pressure. The component coatings survived the engine tests with a minimum of distress. The measured fire deck temperatures decreased 86 C (155 F) on the intake side and 42 C (75 F) on the exhaust side with the coating applied.

  5. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  6. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  7. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  8. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  9. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  10. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    NASA Astrophysics Data System (ADS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-06-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable.

  11. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  12. The Development of Engineering Tomography for Monolithic and Composite Materials and Components

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1997-01-01

    The research accomplishments under this grant were very extensive in the areas of the development of engineering tomography for monolithic and composite materials and components. Computed tomography was used on graphite composite pins and bushings to find porosity, cracks, and delaminations. It supported the following two programs: Reusable Launch Vehicle (RLV) and Southern Research institute (SRI). Did research using CT and radiography on Nickel based Superalloy dogbones and found density variations and gas shrinkage porosity. Did extensive radiography and CT of PMC composite flywheels and found delamination and non-uniform fiber distribution. This grant supported the Attitude Control Energy Storage Experiment (ACESE) program. Found broken fibers and cracks of outer stainless steel fibers using both radiographic and CT techniques on Pratt and Whitney fuel lines; Supported the Pratt & Whitney and Aging Aircraft engines program. Grant research helped identify and corroborate thickness variations and density differences in a silicon nitride "ROTH" tube using computed tomography.

  13. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  14. Building community partnerships to implement the new Science and Engineering component of the NGSS

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership

  15. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  16. Simulation of Crack Propagation in Engine Rotating Components Under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1999-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability for a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  17. CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application

    NASA Technical Reports Server (NTRS)

    Cheplak, Matthew L.

    2004-01-01

    The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow

  18. Novel Framework for Reduced Order Modeling of Aero-engine Components

    NASA Astrophysics Data System (ADS)

    Safi, Ali

    The present study focuses on the popular dynamic reduction methods used in design of complex assemblies (millions of Degrees of Freedom) where numerous iterations are involved to achieve the final design. Aerospace manufacturers such as Rolls Royce and Pratt & Whitney are actively seeking techniques that reduce computational time while maintaining accuracy of the models. This involves modal analysis of components with complex geometries to determine the dynamic behavior due to non-linearity and complicated loading conditions. In such a case the sub-structuring and dynamic reduction techniques prove to be an efficient tool to reduce design cycle time. The components whose designs are finalized can be dynamically reduced to mass and stiffness matrices at the boundary nodes in the assembly. These matrices conserve the dynamics of the component in the assembly, and thus avoid repeated calculations during the analysis runs for design modification of other components. This thesis presents a novel framework in terms of modeling and meshing of any complex structure, in this case an aero-engine casing. In this study the affect of meshing techniques on the run time are highlighted. The modal analysis is carried out using an extremely fine mesh to ensure all minor details in the structure are captured correctly in the Finite Element (FE) model. This is used as the reference model, to compare against the results of the reduced model. The study also shows the conditions/criteria under which dynamic reduction can be implemented effectively, proving the accuracy of Criag-Bampton (C.B.) method and limitations of Static Condensation. The study highlights the longer runtime needed to produce the reduced matrices of components compared to the overall runtime of the complete unreduced model. Although once the components are reduced, the assembly run is significantly. Hence the decision to use Component Mode Synthesis (CMS) is to be taken judiciously considering the number of

  19. Virtual modelling of components of a production system as the tool of lean engineering

    NASA Astrophysics Data System (ADS)

    Monica, Z.

    2015-11-01

    Between the most effective techniques of manufacturing management is considered the Lean Engineering. The term “lean engineering” was created by Japanese manufacturers. The high efficiency of this method resulted in a meaningful growth in concern in the philosophy of Lean among European companies, and consequently the use of its European markets. Lean philosophy is an approach to manufacturing to minimize the use of all resources, including time. These are resources that are used in the company for a variety of activities. This implies, first identify and then eliminate activities which does not generate added value in the field of design, manufacturing, supply chain management, and customer relations. The producers of these principles not only employ teams multi-professional employees at all levels of the organization, but also use a more automated machines to produce large quantities of products with a high degree of diversity. Lean Engineering is to use a number of principles and practical guidelines that allow you to reduce costs by eliminating absolute extravagance, and also simplification of all manufacturing processes and maintenance. Nowadays it could be applied the powerful engineering programs to realize the concept of Lean Engineering. They could be described using the term CAD/CAM/CAE. They consist of completely different packages for both the design of elements, as well process design. Their common feature is generally considered with their application area. They are used for computer programs assisting the design, development and manufacturing phases of a manufacturing process. The idea of the presented work is to use the Siemens NX software for aiding the process of Lean Engineering system creating. The investigated system is a robotized workcell. In the NX system are created the components of the designed workcell such as machine tools, as industrial robot, as conveyors and buffers. The system let to functionally link these components to

  20. Vapour and acid components separation from gases by membranes principles and engineering approach to membranes development

    NASA Astrophysics Data System (ADS)

    Kagramanov, G. G.; Storojuk, I. P.; Farnosova, E. N.

    2016-09-01

    The modern commercially available polymer membranes and membrane modules for purification of gases, containing acid components, simultaneously with dehumidification of treated gas streams, were developed and commercialized in the very end of XXth century. The membranes basic properties - selectivity (separation factor) and permeation flow rates - are relatively far from satisfying the growing and modern-scale industrial need in purification technologies and corresponding equipments. The attempt to formulate the basic principles, scientific and engineering approaches to the development of prospective membranes for the purification of gases, especially such as natural and oil gases, from acid components, simultaneously with drying them, was being made. For this purpose the influence of various factors - polymer nature, membrane type, structure, geometrical and mass-transfer characteristics, etc. - were studied and analyzed in order to formulate the basic principles and demands for development of membranes, capable to withstand successfully the sever conditions of exploitation.

  1. Energy efficient engine high-pressure turbine component rig performance test report

    NASA Technical Reports Server (NTRS)

    Leach, K. P.

    1983-01-01

    A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.

  2. Novel Thin Film Sensor Technology for Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2007-01-01

    Degradation and damage that develops over time in hot section components can lead to catastrophic failure of the turbine section of aircraft engines. A range of thin film sensor technology has been demonstrated enabling on-component measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Conductive ceramics are beginning to be investigated as new materials for use as thin film sensors in the hot section, leveraging expertise in thin films and high temperature materials. The current challenges are to develop new sensor and insulation materials capable of withstanding the extreme hot section environment, and to develop techniques for applying sensors onto complex high temperature structures for aging studies of hot propulsion materials. The technology research and development ongoing at NASA Glenn Research Center for applications to future aircraft, launch vehicles, space vehicles, and ground systems is outlined.

  3. The component-based architecture of the HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C

    1994-12-01

    The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications.

  4. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  5. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  6. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Topp, Dave; Veres, Joe

    1999-01-01

    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  7. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine

    NASA Astrophysics Data System (ADS)

    Li, Yujun; Tse, Peter W.; Yang, Xin; Yang, Jianguo

    2010-01-01

    The accuracy of fault diagnostic systems for diesel engine-type generators relies on a comparison of the currently extracted sensory features with those captured during normal operation or the so-called "baseline." However, the baseline is not easily obtained without the required expertise. Even worse, in an attempt to save costs, many of the diesel engine generators in manufacturing plants are second hand or have been purchased from unknown suppliers, meaning that the baseline is unknown. In this paper, a novel vibration-based fault diagnostic method is developed to identify the vital components of a diesel engine that have abnormal clearance. The advantage of this method is that it does not require the comparison of current operating parameters to those collected as the baseline. First, the nominal baseline is obtained via theoretical modeling rather than being actually captured from the sensory signals in a healthy condition. The abnormal clearance is then determined by inspecting the timing of impacts created by the components that had abnormal clearance during operation. To detect the timing of these impacts from vibration signals accurately, soft-re-sampling and empirical mode decomposition (EMD) techniques are employed. These techniques have integrated with our proposed ranged angle (RA) analysis to form a new ranged angle-empirical mode decomposition method (RA-EMD). To verify the effectiveness of the RA-EMD in detecting the impacts and their times of occurrence, their induced vibrations are collected from a series of generators under normal and faulty engine conditions. The results show that this method is capable of extracting the impacts induced by vibrations and is able to determine their times of occurrence accurately even when the impacts have been overwhelmed by other unrelated vibration signals. With the help of the RA-EMD, clearance-related faults, such as incorrect open and closed valve events, worn piston rings and liners, etc., become detectable

  8. Hypersonic research engine/aerothermodynamic integration model: Experimental results. Volume 3: Mach 7 component integration and performance

    NASA Technical Reports Server (NTRS)

    Andrews, E. H., Jr.; Mackley, E. A.

    1976-01-01

    The NASA Hypersonic Research Engine Project was undertaken to design, develop, and construct a hypersonic research ramjet engine for high performance and to flight test the developed concept on the X-15-2A airplane over the speed range from Mach 3 to 8. Computer program results are presented here for the Mach 7 component integration and performance tests.

  9. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  10. Free form fabrication of metallic components using laser engineered net shaping (LENS{trademark})

    SciTech Connect

    Griffith, M.L.; Keicher, D.M.; Atwood, C.L.

    1996-09-01

    Solid free form fabrication is one of the fastest growing automated manufacturing technologies that has significantly impacted the length of time between initial concept and actual part fabrication. Starting with CAD renditions of new components, several techniques such as stereolithography and selective laser sintering are being used to fabricate highly accurate complex three-dimensional concept models using polymeric materials. Coupled with investment casting techniques, sacrificial polymeric objects are used to minimize costs and time to fabricate tooling used to make complex metal castings. This paper will describe recent developments in a new technology, known as LENS{sup {trademark}} (Laser Engineered Net Shaping), to fabricate metal components directly from CAD solid models and thus further reduce the lead times for metal part fabrication. In a manner analogous to stereolithography or selective sintering, the LENS{sup {trademark}} process builds metal parts line by line and layer by layer. Metal particles are injected into a laser beam, where they are melted and deposited onto a substrate as a miniature weld pool. The trace of the laser beam on the substrate is driven by the definition of CAD models until the desired net-shaped densified metal component is produced.

  11. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  12. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  13. Laser engineered net shaping (LENS) for the fabrication of metallic components

    SciTech Connect

    Griffith, M.L.; Keicher, D.L.; Romero, J.A.; Atwood, C.L.; Harwell, L.D.; Greene, D.L.; Smugeresky, J.E.

    1996-06-01

    Solid free form fabrication is a fast growing automated manufacturing technology that has reduced the time between initial concept and fabrication. Starting with CAD renditions of new components, techniques such as stereolithography and selective laser sintering are being used to fabricate highly accurate complex 3-D objects using polymers. Together with investment casting, sacrificial polymeric objects are used to minimize cost and time to fabricate tooling used to make complex metal casting. This paper describes recent developments in LENS{trademark} (Laser Engineered Net Shaping) to fabricate the metal components {ital directly} from CAD solid models and thus further reduce the lead time. Like stereolithography or selective sintering, LENS builds metal parts line by line and layer by layer. Metal particles are injected into a laser beam where they are melted and deposited onto a substrate as a miniature weld pool. The trace of the laser beam on the substrate is driven by the definition of CAD models until the desired net-shaped densified metal component is produced.

  14. The structure and function of the first component of complement: genetic engineering approach (a review).

    PubMed

    Gál, P; Cseh, S; Schumaker, V N; Závodszky, P

    1994-01-01

    The availability of cDNA and genomic clones for the subcomponents of C1, as well as the recognition of the modular organization of serine-proteases have opened up exciting new possibilities for approaching structural problems. In this review the latest achievements of combined protein engineering, functional and structural studies are summarized. The concept of this research is to construct deletion, point and hybrid mutants of the highly homologous C1r and C1s subcomponents, to reveal the functional role of individual modules, map the interaction sites between subcomponents of the C1 complex and refine the structural model of C1. The first prerequisite of such an approach was the expression of the subcomponents in a eukaryotic system, in biologically active form. This was followed by expression of various mutants. Autographa californica nuclear polyhedrosis virus was used as vector to express human C1r and C1s in Spodoptera frugiperda cell culture and in lepidopteran larvae. The yield of expression was high enough to isolate recombinant subcomponents for structural and functional studies. Recombinant viruses containing the A-, B-, and C-chains of C1q were also constructed. The insect cells are able to beta-hydroxylate the Asn residue of the EGF domain in the C1r but with a low efficiency. It is clear now, that this post-translational modification does not play a role in the Ca2+ dependent C1r-C1s interaction. The results with deletion mutants of C1r show that both, domain I, and II are absolutely necessary for the tetramer formation and both have regulatory role in the autoactivation. The C1s alpha R hybrid does not dimerize in presence of Ca2+, however it can form a tetramer with C11(2) that can bind to C1q. This observation indicates that the function of the C1s alpha part in the hybrid is modulated by the C1r part (gamma B) of the molecule. The C1Rs hybrid behaves like C1r, providing haemolytically active C1 with C1q and C1s. This observations shows that the

  15. Instantaneous heat transfer coefficient based upon two-dimensional analyses of Stirling space engine components

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Kannapareddy, Mohan; Tew, Roy C.; Dudenhoefer, James E.

    1991-01-01

    Twelve different cases of multidimensional models of Stirling engine components for space applications have been numerically investigated for oscillating, incompressible laminar flow with heat transfer. The cases studied covered wide ranges of Valensi number (from 44 to 700), Re(max) number (from 8250 to 60,000), and relative amplitude of fluid motion of 0.686 and 1.32. The Nusselt numbers obtained from the present study indicate a very complex shape with respect to time and axial location in the channel. The results indicate that three parameters can be used to define the local Nusselt number variation, namely: time average, amplitude, and phase angle. These parameters could be correlated respectively using: Re(max), Va and Re(max), and the relative amplitude of fluid motion.

  16. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  17. Free vibration analysis of civil engineering structures by component-wise models

    NASA Astrophysics Data System (ADS)

    Carrera, Erasmo; Pagani, Alfonso

    2014-09-01

    Higher-order beam models are used in this paper to carry out free vibration analysis of civil engineering structures. Refined kinematic fields are developed using the Carrera Unified Formulation (CUF), which allows for the implementation of any-order theory without the need for ad hoc formulations. The principle of virtual displacements in conjunction with the finite element method (FEM) is used to formulate stiffness and mass matrices in terms of fundamental nuclei. The nuclei depend neither on the adopted class of beam theory nor on the FEM approximation along the beam axis. This paper focuses on a particular class of CUF models that makes use of Lagrange polynomials to discretize cross-sectional displacement variables. This class of models are referred to as component-wise (CW) in recent works. According to the CW approach, each structural component (e.g. columns, walls, frame members, and floors) can be modeled by means of the same 1D formulation. A number of typical civil engineering structures (e.g. simple beams, arches, truss structures, and complete industrial and civil buildings) are analyzed and CW results are compared to classical beam theories (Euler-Bernoulli and Timoshenko), refined beam models based on Taylor-like expansions of the displacements on the cross-section, and classical solid/shell FEM solutions from the commercial code MSC Nastran. The results highlight the enhanced capabilities of the proposed formulation. It is in fact demonstrated that CW models are able to replicate 3D solid results with very low computational efforts.

  18. Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system.

    PubMed

    Ganesh, Irisappan; Ravikumar, Sambandam; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2013-12-01

    DcuS/DcuR two component system (TCS) was firstly employed for the expression of the gfp gene under the dcuB gene promoter in aerobic condition to develop high throughput screening system able to screen microorganisms producing high amount of fumarate. However, the DcuS/DcuR TCS could not produce a signal strong enough to mediate the expression of the gfp gene responding fumarate concentration. Thus, DcuS/DucR TCS was engineered by recruiting the EnvZ/OmpR system, the most-studied TCS in E. coli. A chimeric DcuS/EnvZ (DcuSZ) TCS was constructed by fusing the sensor histidine kinase of DcuS with the cytoplasmic catalytic domain of EnvZ, in which the expression of the gfp gene or the ompC gene was mediated by the ompC gene promoter through the cognate response regulator, OmpR. The output signals produced by the chimeric DcuSZ TCS were enough to detect fumarate concentration quantatively, in which the expressions of the gfp gene and the ompC gene were proportional to the fumarate concentration in the medium. Moreover, principal component analysis of C4-dicarboxylates showed that DcuSZ chimera was highly specific to fumarate but could also respond to other C4-dicarboxylates, which strongly suggests that TCS-based high throughput screening system able to screen microorganisms producing target chemicals can be developed.

  19. Energy efficient engine. Fan and quarter-stage component performance report

    NASA Technical Reports Server (NTRS)

    Cline, S. J.; Halter, P. H.; Kutney, J. T., Jr.; Sullivan, T. J.

    1983-01-01

    The fan configuration for the general Electric/NASA Energy Efficient Engine was selected following an extensive preliminary design study. The fan has an inlet radius ratio of 0.342 and a specific flowrate of 208.9 Kg/sec/sq. m (42.8 1bm/sec/sq. ft). The design corrected tip speed is 411.5 m/sec (1350 ft/sec) producing a bypass flow total-pressure ratio of 1.65 and a core flow total-pressure ratio of 1.6. The design bypass ratio is 6.8. The aerodynamic design point corresponds to the maximum climb power setting at Mach 0.8 and 10.67 Km (35,000 ft) altitude. The fully-instrumented fan component was tested in the Lynn Large Fan Test Facility in 1981. The overall performance results, reported herein, showed excellent fan performance with the fan meeting all of its component test goals of flow, efficiency and stall margin.

  20. NASA Glenn's Engine Components Research Lab, Cell 2B, Reactivated to Support the U.S. Army Research Laboratory T700 Engine Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Griffin, Thomas A.

    2004-01-01

    The U.S. Army Vehicle Technology Directorate at the NASA Glenn Research Center has been directed by their parent command, the U.S. Army Research Laboratory (ARL), to demonstrate active stall technology in a turboshaft engine as the next step in transitioning this technology to the Army and aerospace industry. Therefore, the Vehicle Technology Directorate requested the reactivation of Glenn's Engine Components Research Lab, Cell 2B, (ECRL 2B). They wanted to test a T700 engine that had been used previously for turboshaft engine research as a partnership between the Army and NASA on small turbine engine research. ECRL 2B had been placed in standby mode in 1997. Glenn's Testing Division initiated reactivation in May 2002 to support the new research effort, and they completed reactivation and improvements in September 2003.

  1. Multi-component nanofibrous scaffolds with tunable properties for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Jose, Moncy V.

    Bone is a highly complex tissue which is an integral part of vertebrates and hence any damage has a major negative effect on the quality of life. Tissue engineering is regarded as an ideal route to resolve the issues related to the scarcity of tissue and organ for transplantation. Apart from cell line and growth factors, the choice of materials and fabrication technique for scaffold are equally important. The goal of this work was to develop a multi-component nanofibrous scaffold based on a synthetic polymer (poly(lactic-co-glycolide) (PLGA)), a biopolymer (collagen) and a biomineral (nano-hydroxyapatite (nano-HA)) by electrospinning technique, which mimics the nanoscopic, chemical, and anisotropic features of bone. Preliminary studies involved fabrication of nanocomposite scaffolds based on PLGA and nano-HA. Morphological and mechanical characterizations revealed that at low concentrations, nano-HA acted as reinforcements, whereas at higher concentrations the presence of aggregation was detrimental to the scaffold. Hydrolytic degradation studies revealed the scaffold had a little mass loss and the mechanical property was maintained for a period of 6 weeks. This study was followed by evaluation of a blend system based on PLGA and collagen. Collagen addition provides hydrophilicity and the necessary cell binding sites in PLGA. The structural characterization revealed that the blend had limited interactions between the two components. The mechanical characterization revealed that with increasing collagen concentration, there was a decline in mechanical properties. However, crosslinking of the blend system, with carbodiimide (EDC) resulted in improving the mechanical properties of the scaffolds. A multi-component system was developed by adding different concentrations of nano-HA to a fixed PLGA/collagen blend composition (80/20). Morphological and mechanical characterizations revealed properties similar to the PLGA/HA system. Cyto-compatibility studies revealed

  2. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    NASA Astrophysics Data System (ADS)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  3. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering.

    PubMed

    Huber, Birgit; Borchers, Kirsten; Tovar, Günter Em; Kluger, Petra J

    2016-01-01

    In vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components for the composition of three-dimensional fatty tissue constructs. Cytocompatibility evaluations of the GM and the photoinitiator Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) showed no cytotoxicity in the relevant range of concentrations. Matrix stiffness of cell-laden hydrogels was adjusted to native fatty tissue by tuning the degree of crosslinking and was shown to be comparable to that of native fatty tissue. Mature adipocytes were then cultured for 14 days within the GM resulting in a fatty tissue construct loaded with viable cells expressing cell markers perilipin A and laminin. This work demonstrates that mature adipocytes are a highly valuable cell source for the composition of fatty tissue equivalents in vitro. Photo-crosslinkable methacrylated gelatin is an excellent tissue scaffold and a promising bioink for new printing techniques due to its biocompatibility and tunable properties.

  4. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering.

    PubMed

    Huber, Birgit; Borchers, Kirsten; Tovar, Günter Em; Kluger, Petra J

    2016-01-01

    In vitro engineering of autologous fatty tissue constructs is still a major challenge for the treatment of congenital deformities, tumor resections or high-graded burns. In this study, we evaluated the suitability of photo-crosslinkable methacrylated gelatin (GM) and mature adipocytes as components for the composition of three-dimensional fatty tissue constructs. Cytocompatibility evaluations of the GM and the photoinitiator Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) showed no cytotoxicity in the relevant range of concentrations. Matrix stiffness of cell-laden hydrogels was adjusted to native fatty tissue by tuning the degree of crosslinking and was shown to be comparable to that of native fatty tissue. Mature adipocytes were then cultured for 14 days within the GM resulting in a fatty tissue construct loaded with viable cells expressing cell markers perilipin A and laminin. This work demonstrates that mature adipocytes are a highly valuable cell source for the composition of fatty tissue equivalents in vitro. Photo-crosslinkable methacrylated gelatin is an excellent tissue scaffold and a promising bioink for new printing techniques due to its biocompatibility and tunable properties. PMID:26017717

  5. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    and a backup system. All the components of the system are connected to the IrLaW software through an IP network. The monitoring system is fully autonomous since August 2013 and provides data at 0. Hz sampling frequency. First results obtained by data post-processing is addressed. Finally, discussion on experimental feedback and main outcomes of several month of measurement in outdoor conditions will be presented. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, R. Averty ".Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", in Proc of 11th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [3]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [4]I. Catapano, R. Di Napoli, F. Soldovieri1, M. Bavusi, A. Loperte and J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", Journal of Geophysics and Engineering, Volume 9, Number 4, August 2012, pp 100-107, IOP Science, doi:10.1088/1742-2132/9/4/S100.

  6. ARTEMISTM Core Simulator: Latest Developments

    NASA Astrophysics Data System (ADS)

    Hobson, Greg; Bolloni, Hans-Wilhelm; Breith, Karl-Albert; Dall'Osso, Aldo; van Geemert, René; Haase, Hartmut; Hartmann, Bettina; Leberig, Mario; Porsch, Dieter; Pothet, Baptiste; Riedmann, Michael; Sieber, Galina; Tomatis, Daniele

    2014-06-01

    AREVA has developed a new coupled neutronics/thermal-hydraulics code system, ARCADIA®. It makes use of modern computing resources to enable more realistic reactor analysis as improved understanding of nuclear reactor behavior is the basis for efficient margin management, i.e. optimization of safety and performance. One of the principal components of this new system is the core simulator, ARTEMIS™. The purpose of this paper is to recall its features, present the latest developments and give a summary of the validation tests.

  7. System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect

    Jeffrey Bryan

    2009-06-01

    This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

  8. Lab-on-a-Chip Design-Build Project with a Nanotechnology Component in a Freshman Engineering Course

    ERIC Educational Resources Information Center

    Allam, Yosef; Tomasko, David L.; Trott, Bruce; Schlosser, Phil; Yang, Yong; Wilson, Tiffany M.; Merrill, John

    2008-01-01

    A micromanufacturing lab-on-a-chip project with a nanotechnology component was introduced as an alternate laboratory in the required first-year engineering curriculum at The Ohio State University. Nanotechnology is introduced in related reading and laboratory tours as well as laboratory activities including a quarter-length design, build, and test…

  9. Phase of Photothermal Emission Analysis as a Diagnostic Tool for Thermal Barrier Coatings on Serviceable Engine Components

    NASA Astrophysics Data System (ADS)

    Kakuda, Tyler

    Power generation and aircraft companies are continuously improving the efficiency of gas turbines to meet economic and environmental goals. The trend towards higher efficiency has been achieved in part by raising the operating temperature of engines. At elevated temperatures, engine components are subject to many forms of degradation including oxidation, creep deformation and thermal cycle fatigue. To minimize these harmful effects, ceramic thermal barrier coatings (TBCs) are routinely used to insulate metal components from excessive heat loads. Efforts to make realistic performance assessments of current and candidate coating materials has led to a diverse battery of creative measurement techniques. While it is unrealistic to envision a single measurement that would provide all conceivable information about the TBC, it is arguable that the capability for the single most important measurement is still lacking. A quantitative and nondestructive measurement of the thermal protection offered by a coating is not currently among the measurements one can employ on a serviceable engine part (or even many experimental specimens). In this contribution, phase of photothermal emission analysis (PopTea) is presented as a viable thermal property measurement for serviceable engine components. As it will be shown, PopTea has the versatility to make measurements on gas turbine parts in situ, with the goal of monitoring TBCs over the lifetime of the engine. The main challenges toward this goal are dealing with changes that occur to the TBC during service. Several of the main degradations seen on engine equipment include: aging, surface contamination and infiltration of foreign deposits. Measuring coatings under these conditions, is the impetus of this work. Furthermore, it is demonstrated that PopTea can be used on real engine equipment with measurements made on an actual turbine blade.

  10. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  11. A rocket-based combined-cycle engine prototype demonstrating comprehensive component compatibility and effective mode transition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; He, Guoqiang; Liu, Peijin; Qin, Fei; Wei, Xianggeng; Liu, Jie; Wu, Lele

    2016-11-01

    A rocket-based combined cycle (RBCC) engine was designed to demonstrate its broad applicability in the ejector and ramjet modes within the flight range from Mach 0 to Mach 4.5. To validate the design, a prototype was fabricated and tested as a freejet engine operating at flight Mach 3 using hydrocarbon fuel. The proposed design was a single module, heat sink steel alloy model with an interior fuel supply and active control system and a fully integrated flowpath that was comprehensively instrumented with pressure sensors. The mass capture and back pressure resistance of the inlet were numerically investigated and experimentally calibrated. The combustion process and rocket operation during mode transition were investigated by direct-connect tests. Finally, the comprehensive component compatibility and multimodal operational capability of the RBCC engine prototype was validated through freejet tests. This paper describes the design of the RBCC engine prototype, reviews the testing procedures, and discusses the experimental results of these efforts in detail.

  12. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  13. An overview of the current technology relevant to the design and development of the Space Transportation Main Engine (STME)

    NASA Technical Reports Server (NTRS)

    Das, Digendra K.

    1991-01-01

    The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.

  14. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; Patterson, Clark; Santelle, Tom; Mehl, Jeremy

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  15. Performance of the Components of the XJ34-WE-32 Turbojet Engine over a Range of Engine and Flight Conditions

    NASA Technical Reports Server (NTRS)

    Mcaulay, John E; Sobolewski, Adam E; Smith, Ivan D

    1952-01-01

    Performance of the compressor, combustor, and turbine operating as integral parts of the XJ34-WE-32 turbojet engine was determined in the Lewis altitude wind tunnel over a range of altitudes from 5000 to 55,000 feet and flight Mach numbers from 0.28 to 1.05. Data were obtained for each of four exhaust-nozzle areas and are presented in graphical and tabular form.

  16. A study on two-phase, two-component Stirling engine

    SciTech Connect

    Iwasaki, E.; Hirata, M.

    1982-08-01

    The characteristics of a Stirling engine of Freon(R-113)-Air mixture as a working fluid are studied. A small Stirling engine is designed. The engine rotates by itself only at some mixture ratio of Freon and air at a speed from 40 to 60 rpm when the temperature of the heater and cooler should be kept at 373K and 288K respectively. By using a Freon-Air mixture, the average heat transfer coefficient at the heater wall is improved by a factor of 10, compared with using air only. In addition, the power output is positive even in the compression space.

  17. Application of systems engineering techniques to component design - Capturing functionality and linking part 'critical to quality' features to requirements

    SciTech Connect

    Patel, C. M.; Moorby, J. S.; Sulley, J. L.

    2012-07-01

    A systems engineering approach - focusing upon functionality - has predominantly been applied in industry to the design of complex systems with many functional interactions, inputs and outputs, eg the design of a decay heat removal system. This paper presents how systems engineering techniques can be applied to component design, i.e. treating the component as a system in its own right, and using functionality as the 'bridge' between the customer requirements and accepted performance. A pressure relief valve is used as an example to present the techniques of: Functional Modelling to establish the functional requirements and Functional Failure Modes and Effects Analysis to establish any emergent functionality to reduce the risk of adverse behaviour. A key aspect of component design is capturing the design intent and establishing the 'Critical to Quality 'features that can critically affect quality and performance. This paper details 'Quality Function Deployment' being applied to a component to capture such features and to establish a clear link to the overarching performance requirements. This approach is particularly useful in ensuring continuity of design understanding throughout the component life cycle, assessing the effects of any proposed changes to the design and the effects of changes in system or customer requirements, or for using the design in a different application. (authors)

  18. Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1980-01-01

    A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.

  19. Durability testing of medium speed diesel engine components designed for operating on coal/water slurry fuel

    NASA Astrophysics Data System (ADS)

    McDowell, R. E.; Giammarise, A. W.; Johnson, R. N.

    1994-01-01

    Over 200 operating cylinder hours were run on critical wearing engine parts. The main components tested included cylinder liners, piston rings, and fuel injector nozzles for coal/water slurry fueled operation. The liners had no visible indication of scoring nor major wear steps found on their tungsten carbide coating. While the tungsten carbide coating on the rings showed good wear resistance, some visual evidence suggests adhesive wear mode was present. Tungsten carbide coated rings running against tungsten carbide coated liners in GE 7FDL engines exhibit wear rates which suggest an approximate 500 to 750 hour life. Injector nozzle orifice materials evaluated were diamond compacts, chemical vapor deposited diamond tubes, and thermally stabilized diamond. Based upon a total of 500 cylinder hours of engine operation (including single-cylinder combustion tests), diamond compact was determined to be the preferred orifice material.

  20. Biological effects of fuel and exhaust components from spacecraft descent engines employing hydrazine

    NASA Technical Reports Server (NTRS)

    Lehwalt, M. E.; Woeller, F. H.; Oyama, V. I.

    1973-01-01

    The effect of the products of the Viking terminal descent engine fuel upon possible extraterrestrial life at the Martian landing site is examined. The effects of the engine exhaust, the hydrazine fuel, and the breakdown products of the latter on terrestrial microorganisms have been studied. The results indicate that the gaseous exhaust products would probably not be hazardous to microorganisms, but that liquid hydrazine would be lethal.

  1. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program. Volume 1: Technical discussion

    NASA Astrophysics Data System (ADS)

    Ackermann, R. A.

    1988-01-01

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95 F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation.

  2. Enhancement and Extension of Porosity Model in the FDNS-500 Code to Provide Enhanced Simulations of Rocket Engine Components

    NASA Technical Reports Server (NTRS)

    Cheng, Gary

    2003-01-01

    In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes

  3. Reduction of regulated and unregulated exhaust gas emission components from diesel engines running with rapeseedmethylester using oxidation catalyst technologies

    SciTech Connect

    May, H.; Huettenberger, P.

    1996-12-31

    Up to now all engine research was based on engines, which are adapted to Diesel fuel but not to vegetableoilmethylester (VME). Caused by the special climate conditions in Europe rapeseed and sunflowers, in the US soya-beans and in the tropical countries palm trees are the favorable plants for vegetable oil production. The physical and chemical properties of Diesel fuel and VME are quite different. Therefore an engine adaption and redesign to VME is a suitable way of further reduction of noxious and climate-influencing emissions. To prove the effectiveness of the emission reduction the European test-cycle ECE/EUDC, the US-FTP 75 test for passenger cars and the European 13-stage-test-cycle for heavy duty-truck-engines has been used with and without an oxidation catalyst in each case. The results of the exhaust gas measurement both concerning regulated and unregulated components are shown. A comparison between engines fueled with fossil diesel fuel and rapeseedmethylester (RME) is given.

  4. Neutron diffraction residual stress studies for aero-engine component applications

    NASA Astrophysics Data System (ADS)

    Clay, K.; Small, C.

    1991-12-01

    Computer graphics for a presentation describing how Rolls-Royce is refining the method of residual stress measurement by neutron diffraction to suit the characteristic stress fields of components are presented. Results to date are given. An outline of how this residual stress data is to be used in developing stress models for critical rotating components is given.

  5. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  6. Biological, Social, and Organizational Components of Success for Women in Academic Science and Engineering: Workshop Report

    ERIC Educational Resources Information Center

    National Academies Press, 2006

    2006-01-01

    During the last 40 years, the number of women studying science and engineering (S&E) has increased dramatically. Nevertheless, women do not hold academic faculty positions in numbers that commensurate with their increasing share of the S&E talent pool. The discrepancy exists at both the junior and senior faculty levels. In December 2005,…

  7. Extending Engineering Design Graphics Laboratories to Have a CAD/CAM Component: Implementation Issues.

    ERIC Educational Resources Information Center

    Juricic, Davor; Barr, Ronald E.

    1996-01-01

    Reports on a project that extended the Engineering Design Graphics curriculum to include instruction and laboratory experience in computer-aided design, analysis, and manufacturing (CAD/CAM). Discusses issues in project implementation, including introduction of finite element analysis to lower-division students, feasibility of classroom prototype…

  8. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  9. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    ERIC Educational Resources Information Center

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VIII. ENGINE COMPONENTS--PART I.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF DIESEL ENGINE CYLINDER HEADS AND CYLINDER ASSEMBLIES. TOPICS ARE CYLINDER ASSEMBLY (LINERS), CYLINDER HEADS, VALVES AND VALVE MECHANISMS, AND PISTON AND PISTON RINGS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  11. Preventive Maintenance Study: A Key Component in Engineering Education to Enhance Industrial Productivity and Competitiveness.

    ERIC Educational Resources Information Center

    Nachlas, Joel A.; Cassady, C. Richard

    1999-01-01

    Suggests that a chief contributor to the continued economic success of the western economies will be the productivity gains available through efficient preventative maintenance planning and argues for appropriate changes in engineering curricula. Describes the formulation of maintenance planning problems and illustrates with numerical examples the…

  12. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... media. (3) Fuel tank pressure-relief valve operation. (4) Fuel vapor control valves. VII. Air...

  13. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... media. (3) Fuel tank pressure-relief valve operation. (4) Fuel vapor control valves. VII. Air...

  14. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... media. (3) Fuel tank pressure-relief valve operation. (4) Fuel vapor control valves. VII. Air...

  15. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exhaust valves. (2) Drive belts. (3) Manifold and cylinder head bolts. (4) Engine oil and filter. (5...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... media. (3) Fuel tank pressure-relief valve operation. (4) Fuel vapor control valves. VII. Air...

  16. Integration and alignment of ATLAS instrument engineering model components in Optical Development System Lab

    NASA Astrophysics Data System (ADS)

    Evans, Tyler

    2013-09-01

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center required a test-bed to prove out new concepts before the mission launches in 2016. The Optical Development System (ODS) laboratory was created to use breadboard, prototype, and engineering-model levels of hardware and software to model and evaluate the ATLAS alignment system. A one meter parabolic mirror was used to create a collimated light beam to align prototype and engineering model transmitter and receiver optics and test closed-loop alignment algorithms. To achieve an error of less than two micro-radians, an active deformable mirror was used to correct the wave front to subtract out the collimator mount error.

  17. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    SciTech Connect

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  18. Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk

    PubMed Central

    Friedel, Swetlana; Usadel, Björn; von Wirén, Nicolaus; Sreenivasulu, Nese

    2012-01-01

    Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein–protein or TF-gene networks. PMID:23293646

  19. Diesel fuel component contributions to engine emissions and performance: Clean fuel study

    SciTech Connect

    Erwin, J.; Ryan, T.W. III; Moulten, D.S.

    1994-08-01

    The emissions characteristics of diesel engines are dominated by current engine design parameters as long as the fuels conform to the current industry-accepted specifications. The current and future emissions standard, are low enough that the fuel properties and compositions are starting to play a more significant role in meeting the emerging standards. The potential role of the fuel composition has been recognized by state and federal government agencies, and for the first time, fuel specifications have become part of the emissions control legislation. In this work, five different fuel feed and blend stocks were hydrotreated to two levels of sulfur and aromatic content. These materials were then each distilled to seven or eight fractions of congruent boiling points. After this, the raw materials and all of the fractions were characterized by a complement of tests from American Society for Testing and Materials and by hydrocarbon-type analyses. The sample matrix was subjected to a series of combustion bomb and engine tests to determine the ignition, combustion, and emissions characteristics of each of the 80 test materials.

  20. Analysis of whisker-toughened ceramic components: A design engineer's viewpoint

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Manderscheid, Jane M.; Palko, Joseph L.

    1989-01-01

    The use of ceramics components in gas turbines, cutting tools, and heat exchangers has been limited by the relatively low flaw tolerance of monolithic ceramics. The development of whisker toughened ceramic composites offers the potential for considerable improvement in fracture toughness as well as strength. However, the variability of strength is still too high for the application of deterministic design approaches. Several phenomenological reliability theories proposed for this material system are reviewed and the development is reported of a public domain computer algorithm. This algorithm, when coupled with a general purpose finite element program, predicts the fast fracture reliability of a structural component under multiaxial loading conditions.

  1. Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence.

    PubMed

    Mir, Niyaz A; Dubey, Ritesh; Desiraju, Gautam R

    2016-03-01

    A synthetic strategy is described for the co-crystallization of four- and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.

  2. 40 CFR Appendix Vi to Part 86 - Vehicle and Engine Components

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Carburetor-idle RPM, mixture ratio. (3) Choke mechanism. (4) Fuel system filter and fuel system lines and... media. (3) Fuel tank pressure-relief valve operation. (4) Fuel vapor control valves. VII. Air Inlet Components. (1) Carburetor air cleaner filter. (2) Hot air control valve. (b) Diesel Light-Duty...

  3. A new technology perspective and engineering tools approach for large, complex and distributed mission and safety critical systems components

    NASA Technical Reports Server (NTRS)

    Carrio, Miguel A., Jr.

    1988-01-01

    Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.

  4. Partial coverage inspection of corroded engineering components using extreme value analysis

    NASA Astrophysics Data System (ADS)

    Benstock, Daniel; Cegla, Frederic

    2016-02-01

    Ultrasonic thickness C-scans provide information about wall thickness of a component over the entire inspected area. They are performed to determine the condition of a component. However, this is time consuming, expensive and can be unfeasible where access to a component is restricted. The pressure to maximize inspection resources and minimize inspection costs has led to both the development of new sensing technologies and inspection strategies. Partial coverage inspection aims to tackle this challenge by using data from an ultrasonic thickness C-scan of a small fraction of a component's area to extrapolate to the condition of the entire component. Extreme value analysis is a particular tool used in partial coverage inspection. Typical implementations of extreme value analysis partition a thickness map into a number of equally sized blocks and extract the minimum thickness from each block. Extreme value theory provides a limiting form for the probability distribution of this set of minimum thicknesses, from which the parameters of the limiting distribution can be extracted. This distribution provides a statistical model for the minimum thickness in a given area, which can be used for extrapolation. In this paper the basics of extreme value analysis and its assumptions are introduced. We discuss a new method for partitioning a thickness map, based on ensuring that there is evidence that the assumptions of extreme value theory are met by the inspection data. Examples of the implementation of this method are presented on both simulated and experimental data. Further it is shown that realistic predictions can be made from the statistical models developed using this methodology.

  5. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect

    Erwin, J.; Ryan, T.W. III; Moulton, D.S.

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  6. OMSSAGUI: An open-source user interface component to configure and run the OMSSA search engine.

    PubMed

    Tharakan, Ravi; Martens, Lennart; Van Eyk, Jennifer E; Graham, David R

    2008-06-01

    We here present a user-friendly and extremely lightweight tool that can serve as a stand-alone front-end for the Open MS Search Algorithm (OMSSA) search engine, or that can directly be used as part of an informatics processing pipeline for MS driven proteomics. The OMSSA graphical user interface (OMSSAGUI) tool is written in Java, and is supported on Windows, Linux, and OSX platforms. It is an open source under the Apache 2 license and can be downloaded from http://code.google.com/p/mass-spec-gui/.

  7. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  8. Development of wear-resistant ceramic coatings for diesel engine components

    SciTech Connect

    Naylor, M.G.S. )

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  9. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOEpatents

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  10. Thermal and mechanical analysis of major components for the advanced adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proposed design for the light duty diesel is an in-line four cylinder spark assisted diesel engine mounted transversely in the front of the vehicle. The engine has a one piece cylinder head, with one intake valve and one exhaust valve per cylinder. A flat topped piston is used with a cylindrical combustion chamber recessed into the cylinder head directly under the exhaust valve. A single ceramic insert is cast into the cylinder head to insulate both the combustion chamber and the exhaust port. A similar ceramic insert is cast into the head to insulate the intake port. A ceramic faceplate is pressed into the combustion face of the head to insulate the face of the head from hot combustion gas. The valve seats are machined directly into the ceramic faceplate for the intake valve and into the ceramic exhaust pot insert for the exhaust valve. Additional ceramic applications in the head are the use of ceramic valve guides and ceramic insulated valves. The ceramic valve guides are press fit into the head and are used for increased wear resistance. The ceramic insulated valves are conventional valves with the valve faces plasma spray coated with ceramic for insulation.

  11. Degradation Mechanisms of an Advanced Jet Engine Service-Retired TBC Component

    NASA Astrophysics Data System (ADS)

    Wu, Rudder T.; Osawa, Makoto; Yokokawa, Tadaharu; Kawagishi, Kyoko; Harada, Hiroshi

    Current use of TBCs is subjected to premature spallation failure mainly due to the formation of thermally grown oxides (TGOs). Although extensive research has been carried out to gain better understanding of the thermo - mechanical and -chemical characteristics of TBCs, laboratory-scale studies and simulation tests are often carried out in conditions significantly differed from the complex and extreme environment typically of a modern gas-turbine engine, thus, failed to truly model service conditions. In particular, the difference in oxygen partial pressure and the effects of contaminants present in the engine compartment have often been neglected. In this respect, an investigation is carried out to study the in-service degradation of an EB-PVD TBC coated nozzle-guide vane. Several modes of degradation were observed due to three factors: 1) presence of residual stresses induced by the thermal-expansion mismatches, 2) evolution of bond coat microstructure and subsequent formation of oxide spinels, 3) deposition of CMAS on the surface of TBC.

  12. Latest Double Chooz results

    NASA Astrophysics Data System (ADS)

    Lasserre, Thierry; Double Chooz Collaboration

    2016-05-01

    I report the latest results from the Double Chooz experiment on the θ13 neutrino mixing angle. Two detectors are located at distances of 400 m and 1050 m from the reactor cores of the Chooz nuclear power station (France) to measure the disappearance of electron antineutrinos. The far detector has been taking data since 2011, accumulating a live time of 467.90 days (66.5 GW-ton-year). In this article we focus on the latest measurement using neutrino-induced neutron capture on hydrogen. A new analysis improved the signal efficiency and reduced the backgrounds and systematic uncertainties, leading to sin2 2θ 13 = 0.095+0.039 -0.038. When combined with the Gadolinium-based analysis this leads to sin2 2θ13 = 0.088+0.33 -0.033. The distortion from the prediction above a visible energy of 4 MeV is confirmed. The near detector started data taking in 2014 and first results shall be reported in 2016.

  13. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  14. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  15. Engine component improvement: JT8D and JT9D performance improvements

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1978-01-01

    A feasibility analysis screening method for predicting the airline acceptance of a proposed engine performance improvement modification was developed. Technical information derived from available test data and analytical models is used along with conceptual/preliminary designs to establish the predicted performance improvement, weight and installation characteristics, the cost for new production and retrofit, maintenance cost and qualitative characteristics of the performance improvement concepts being evaluated. These results are used to arrive at the payback period, which is the time required for an airline to recover the investment cost of concept implementation, and to predict the amount of fuel saved by a performance improvement concept. The assumptions used to calculate the payback period and fuel saved are discussed. A summary of the results when the screening method is applied is presented for several representative JT8D and JT9D performance improvement concepts. An example of the input information used to develop the summary results is shown.

  16. A comparison of forming technologies for ceramic gas-turbine engine components

    NASA Technical Reports Server (NTRS)

    Hengst, R. R.; Heichel, D. N.; Holowczak, J. E.; Taglialavore, A. P.; Mcentire, B. J.

    1990-01-01

    For over ten years, injection molding and slip casting have been actively developed as forming techniques for ceramic gas turbine components. Co-development of these two processes has continued within the U.S. DOE-sponsored Advanced Turbine Technology Application Project (ATTAP). Progress within ATTAP with respect to these two techniques is summarized. A critique and comparison of the two processes are given. Critical aspects of both processes with respect to size, dimensional control, material properties, quality, cost, and potential for manufacturing scale-up are discussed.

  17. Development of wear resistant ceramic coatings for diesel engine components. Final report

    SciTech Connect

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  18. Latest results from Planck

    NASA Astrophysics Data System (ADS)

    Tauber, Jan; sSubmitted Planck Collaboration

    2016-01-01

    This talk will present an overview of the most recent Planck data and results, with emphasis on polarization.The use of CMB polarization data from Planck confirms the best-fit Lambda-CDM model obtained with Planck temperature-only data, and improves the accuracy with which cosmological parameters are determined. The most recent results based on polarized E-mode and B-mode CMB power spectra at large angular scales will be presented, and their implications for the epoch of reionization and primordial gravitational waves.In this talk I will also present the latest analysis of polarized diffuse galactic foreground emissions based on Planck data. Both the synchrotron and dust emission maps obtained from Planck reveal new facets of the galactic interstellar medium. In particular dust emission holds the promise of providing a model of the large-scale 3D shape of the Galactic magnetic field, as well as its small scale behavior.

  19. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  20. Gas engine heat pump system and component efficiency and reliability improvement, phase 1

    NASA Astrophysics Data System (ADS)

    1987-01-01

    The Gas Research Institute is directing several research projects to develop gas fired heat pumps for residential and light commercial use. The project work discussed in the report identifies and evaluates potential improvements in the cycle and key components of these heat pumps and provides short- and long-term inputs for the heat pump product development efforts. Principal results of Phase I studies under the project are: test procedures for gas fired heat pumps (GFHP), a cycle analysis model for GFHP's, an assessment of appropriate compressor technology for GFHP's, specification of fan operating strategies, a review of emission standards for GFHP's, identification of low-temperature capacity enhancement issues, a guide on the sizing of field tests, current assessments of foreign technology valuable to GFHP's, and an assessment of the health and safety attributes of methylene chloride.

  1. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F.; Frary, M.E.; Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused

  2. Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components

    SciTech Connect

    M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

    2006-03-02

    The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings

  3. High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.

    2004-01-01

    As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices

  4. Using the Laser Engineered Net Shaping (LENS{trademark}) process to produce complex components from a CAD solid model

    SciTech Connect

    Smugeresky, J.E.; Keicher, D.M.; Romero, J.A.; Griffith, M.L.; Harwell, L.D.

    1997-08-01

    The Laser Engineered Net Shaping (LENS{trademark}) process, currently under development, has demonstrated the capability to produce near-net shape, fully dense metallic parts with reasonably complex geometrical features directly from a Computer-Aided Design (CAD) solid model. Using a highly localized laser beam, metal powders are used to produce very fine grain high strength structures. Results to date show that excellent mechanical properties can be achieved in alloys such as 316 stainless steel and Inconel 625. Significant increases in yield strength have been achieved with no loss in ductility. The current approach lends itself to produce components with a dimensional accuracy of {+-} 0.002 inches in the deposition plane and {+-} 0.015 inches in the growth direction. These results suggest that the LENS{trademark} process will provide a viable means for direct fabrication of metallic hardware.

  5. Improved silencing suppression and enhanced heterologous protein expression are achieved using an engineered viral helper component proteinase.

    PubMed

    Haikonen, T; Rajamäki, M-L; Valkonen, J P T

    2013-11-01

    RNA silencing limits transient expression of heterologous proteins in plants. Co-expression of viral silencing suppressor proteins can increase and prolong protein expression, but highly efficient silencing suppressors may stress plant tissue and be detrimental to protein yields. Little is known whether silencing suppression could be improved without harm to plant tissues. This study reports development of enhanced silencing suppressors by engineering the helper component proteinase (HCpro) of Potato virus A (PVA). Mutations were introduced to a short region of HCpro (positions 330-335 in PVA HCpro), which is hypervariable among potyviruses. Three out of the four HCpro mutants suppressed RNA silencing more efficiently and sustained expression of co-expressed jellyfish green fluorescent protein for a longer time than wild-type HCpro in agroinfiltrated leaves of Nicotiana benthamiana. Leaf tissues remained healthy-looking without any visible signs of stress. PMID:23933077

  6. CFD-based surrogate modeling of liquid rocket engine components via design space refinement and sensitivity assessment

    NASA Astrophysics Data System (ADS)

    Mack, Yolanda

    Computational fluid dynamics (CFD) can be used to improve the design and optimization of rocket engine components that traditionally rely on empirical calculations and limited experimentation. CFD based-design optimization can be made computationally affordable through the use of surrogate modeling which can then facilitate additional parameter sensitivity assessments. The present study investigates surrogate-based adaptive design space refinement (DSR) using estimates of surrogate uncertainty to probe the CFD analyses and to perform sensitivity assessments for complex fluid physics associated with liquid rocket engine components. Three studies were conducted. First, a surrogate-based preliminary design optimization was conducted to improve the efficiency of a compact radial turbine for an expander cycle rocket engine while maintaining low weight. Design space refinement was used to identify function constraints and to obtain a high accuracy surrogate model in the region of interest. A merit function formulation for multi-objective design point selection reduced the number of design points by an order of magnitude while maintaining good surrogate accuracy among the best trade-off points. Second, bluff body-induced flow was investigated to identify the physics and surrogate modeling issues related to the flow's mixing dynamics. Multiple surrogates and DSR were instrumental in identifying designs for which the CFD model was deficient and to help to pinpoint the nature of the deficiency. Next, a three-dimensional computational model was developed to explore the wall heat transfer of a GO2/GH2 shear coaxial single element injector. The interactions between turbulent recirculating flow structures, chemical kinetics, and heat transfer are highlighted. Finally, a simplified computational model of multi-element injector flows was constructed to explore the sensitivity of wall heating and improve combustion efficiency to injector element spacing. Design space refinement

  7. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  8. 40 CFR 1068.255 - What are the provisions for exempting engines and fuel-system components for hardship for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... violation and that you would face serious economic hardship if we do not grant the exemption. This exemption... corporate name and trademark. (iii) Engine displacement (in liters or cubic centimeters) and model year of... CFR 1068.255 FROM EMISSION STANDARDS AND RELATED REQUIREMENTS.” If the engine meets alternate...

  9. Latest Electroweak Results from CDF

    SciTech Connect

    Lancaster, Mark

    2010-05-01

    The latest results in electroweak physics from proton anti-proton collisions at the Fermilab Tevatron recorded by the CDF detector are presented. The results provide constraints on parton distribution functions, the mass of the Higgs boson and beyond the Standard Model physics.

  10. Effects of Boattail Area Contouring and Simulated Turbojet Exhaust on the Loading and Fuselage-tail Component Drag of a Twin-engine Fighter-type Airplane Model

    NASA Technical Reports Server (NTRS)

    Foss, Willard E , Jr; Runckel, Jack F; Lee, Edwin E , Jr

    1958-01-01

    An investigation of a twin-engine fighter-type airplane model has been conducted in the Langley 16-foot transonic tunnel to determine the effect on drag of a fuselage volume addition incorporating streamline contouring and more extensive boattailing of the engine shrouds. The effect of hot exhausts from the turbojet engines was simulated with hydrogen peroxide gas generators using scaled nonafterburning engine nozzles. Afterbody pressure distributions, base drag coefficients, and forces on the fuselage-tail configurations are presented at Mach numbers from 0.80 to 1.05 angles of attack of 0 degree and 4 degrees for jet pressure ratios from 1 to 7. The effect of jet operation on both the basic and modified models was generally to decrease base pressures but to increase most other afterbody pressures and, therefore, to result in an overall decrease in fuselage-tail component drag. The addition of volume to the basic model reduced the base drag coefficient by 0.0010 with the jets off and 0.0018 at a typical cruise operating condition of a jet pressure ratio of 3, a Mach number of 0.85, and an angle of attack of 4 degrees. The overall jet-off reduction in fuselage-tail component drag due to the volume addition was a maximum of 0.0040 at a Mach number of 0.90 for an angle of attack of 4 degrees.

  11. An overview of the small engine component technology (SECT) studies. [commuter, rotorcraft, cruise missile and auxiliary power applications in year 2000

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.; Wintucky, W. T.; Niedwiecki, R. W.

    1986-01-01

    The objectives of the joint NASA/Army SECT studies were to identify high payoff technologies for year 2000 small gas turbine engine applications and to provide a technology plan for guiding future research and technology efforts applicable to rotorcraft, commuter and general aviation aircraft and cruise missiles. Competitive contracts were awarded to Allison, AVCO Lycoming, Garrett, Teledyne CAE and Williams International. This paper presents an overview of the contractors' study efforts for the commuter, rotorcraft, cruise missile, and auxiliary power (APU) applications with engines in the 250 to 1,000 horsepower size range. Reference aircraft, missions and engines were selected. Advanced engine configurations and cycles with projected year 2000 component technologies were evaluated and compared with a reference engine selected by the contractor. For typical commuter and rotorcraft applications, fuel savings of 22 percent to 42 percent can be attained. For $1/gallon and $2/gallon fuel, reductions in direct operating cost range from 6 percent to 16 percent and from 11 percent to 17 percent respectively. For subsonic strategic cruise missile applications, fuel savings of 38 percent to 54 percent can be achieved which allows 35 percent to 60 percent increase in mission range and life cycle cost reductions of 40 percent to 56 percent. High payoff technologies have been identified for all applications.

  12. Influence of vegetable oil based alternate fuels on residue deposits and components wear in a diesel engine

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200-hour EMA cycle laboratory screening endurance test. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. This investigation employed an analysis of variance to compare CRC carbon and lacquer ratings and wear of engine parts for all tested fuels. The paper deals with carbon and lacquer formation and its effect on long-term engine performance as experienced during the operation with the alternate fuels. Significantly heavier deposits than for the diesel fuel were observed for the microemulsion and 25-75 sunflower oil blend. particularly on the exhaust and intake valve stems, on the piston lands, and in the piston grooves. In all tests engine wear was not significant. The final dimensions of the measured elements did not exceed the manufacturer's initial parts specifications.

  13. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  14. 40 CFR 1068.255 - What are the provisions for exempting engines and fuel-system components for hardship for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... violation and that you would face serious economic hardship if we do not grant the exemption. This exemption... involved. (2) The size of your company and your ability to endure the hardship. (3) The amount of time you... CFR 1068.255 FROM EMISSION STANDARDS AND RELATED REQUIREMENTS.” If the engine meets alternate...

  15. Perceptions of male versus female students enrolled in science, technology, engineering and mathematics courses regarding peer tutoring, a component for student retention

    NASA Astrophysics Data System (ADS)

    Kingsbury, Cheryl D.

    Academic departments in the areas of science, technology, engineering, and mathematics, strive to develop in students the ability to problem solve, analyze, and to critically think about solutions to problems. Academic departments are committed to success, yet retention rates are lower than would be expected for females in science, technology, engineering, and mathematics fields of study, where female students are underrepresented. The purpose of the study was to explore the perceptions of male and female traditional and nontraditional students who participated in a science, technology, engineering or mathematics STEM course during the spring 2010 semester regarding peer tutoring, and to understand why females are underrepresented and not retained at the same level as males in science, technology, engineering and mathematics STEM courses at the University of North Dakota. The participants in this quantitative study were students enrolled at the University of North Dakota who voluntarily completed a peer tutoring usage survey. A total of 231 students enrolled in Concepts of Biology (Biol 111), Introduction to Chemistry (Chem 115), Advanced Applications of CADD (Tech 202), Material Properties and Selection (ME 313), and College Algebra (Math 103), completed a survey about their spring 2010 semester. Five research questions searched for the differences between male and female perceptions regarding peer tutoring, a component of student retention. The independent variable was gender, the dependent variables were the factors regarding peer tutoring: academic preparedness, academic support and cost, and demographics. Two significant differences were found: (a) females viewed themselves as less prepared for science, technology, engineering, and mathematics courses than did male students, and (b) females were more in favor of the costs of peer tutoring than were male students. These findings support Merton's Self-fulfilling Prophecy Theory. Female students perceived

  16. Isotopic Tracing of Fuel Components in Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-In-Diesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2001-03-20

    Accelerator Mass Spectrometry (AMs) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuel blends and a control diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol ({approx}400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMs analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0.% ethanol fuels, respectively). The distribution of the oxygen, not just the quantity, was an important factor in reducing PM emissions.

  17. COTS-based OO-component approach for software inter-operability and reuse (software systems engineering methodology)

    NASA Technical Reports Server (NTRS)

    Yin, J.; Oyaki, A.; Hwang, C.; Hung, C.

    2000-01-01

    The purpose of this research and study paper is to provide a summary description and results of rapid development accomplishments at NASA/JPL in the area of advanced distributed computing technology using a Commercial-Off--The-Shelf (COTS)-based object oriented component approach to open inter-operable software development and software reuse.

  18. Performance of Axial-Flow Supersonic Compressor of XJ55-FF-1 Turbojet Engine. II - Performance of Inlet Guide Vanes as Separate Component

    NASA Technical Reports Server (NTRS)

    Graham, Robert C.; Tysl, Edward R.

    1949-01-01

    The inlet wide vanes for the supersonic compressor of the XJ55-FF-1 engine were studied as a separate component in order to determine the performance prior to installation in the compressor test rig. Turning angles approached design values, and increased approximately to through the inlet Mach number range from 0.30 to choke. A sharp break in turning angle was experienced when the choke condition was reached. The total-pressure loss through the guide vanes was approximately 1 percent for the unchoked conditions and from 5 to 6 percent when choked.

  19. Design the Cost Approach in Trade-Off's for Structural Components, Illustrated on the Baseline Selection of the Engine Thrust Frame of Ariane 5 ESC-B

    NASA Astrophysics Data System (ADS)

    Appolloni, L.; Juhls, A.; Rieck, U.

    2002-01-01

    upper stages, along with modifications to the main cryogenic stage and solid boosters, will increase performance and meet demands of a changing market. A two-steps approach was decided for future developments of the launcher upper stage, in order to increase the payload lift capability of Ariane 5. The first step ESC-A is scheduled for first launch in 2002. As later step ESC-B shall grow up to 12 tons in GTO orbit, with multiple restart capability, i.e. re-ignitable engine. Ariane 5 ESC-B first flight is targeted for 2006. It will be loaded with 28 metric tons of liquid oxygen and liquid hydrogen and powered by a new expander cycle engine "Vinci". The Vinci engine will be connected to the tanks of the ESC-B stage via the structure named from the designers ETF, or Engine Thrust Frame. In order to develop a design concept for the ETF component a trade off was performed, based on the most modern system engineering methodologies. This paper will describe the basis of the system engineering approach in the design to cost process, and illustrate such approach as it has been applied during the trade off for the baseline selection of the Engine Thrust Frame of Ariane 5 ESC-B.

  20. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    NASA Astrophysics Data System (ADS)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  1. Investigation of Surface Treatments to Improve the Friction and Wear of Titanium Alloys for Diesel Engine Components

    SciTech Connect

    Blau, Peter J.; Cooley, Kevin M.; Kirkham, Melanie J.; Bansal, Dinesh G.

    2012-09-20

    This final report summarizes experimental and analytical work performed under an agreement between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Transportation Technologies, and UT-Battelle LLC. The project was directed by Jerry Gibbs, of the U.S. Department of Energy’s Propulsion Materials Program, with management by D. P. Stinton and J. A. Haynes of ORNL. Participants included Peter J. Blau (Principal Investigator), Kevin M. Cooley (senior technician), Melanie J. Kirkham (materials scientist) of the Materials Science and Technology Division or ORNL, and Dinesh G. Bansal, a post doctoral fellow employed by Oak Ridge Associated Universities (ORAU) and who, at the time of this writing, is an engineer with Cummins, Inc. This report covers a three-year effort that involved two stages. In the first stage, and after a review of the literature and discussions with surface treatment experts, a series of candidate alloys and surface treatments for titanium alloy (Ti-6Al-4V) was selected for initial screening. After pre-screening using an ASTM standard test method, the more promising surface treatments were tested in Phase 2 using a variable loading apparatus that was designed and built to simulate the changing load patterns in a typical connecting rod bearing. Information on load profiles from the literature was supplemented with the help of T.C. Chen and Howard Savage of Cummins, Inc. Considering the dynamic and evolving nature of materials technology, this report presents a snapshot of commercial and experimental bearing surface technologies for titanium alloys that were available during the period of this work. Undoubtedly, further improvements in surface engineering methods for titanium will evolve.

  2. Engineering a synthetic cell panel to identify signalling components reprogrammed by the cell growth regulator anterior gradient-2.

    PubMed

    Gray, Terry A; Alsamman, Khaldoon; Murray, Euan; Sims, Andrew H; Hupp, Ted R

    2014-06-01

    AGR2 forms an ER-resident signalling axis in cell development, limb regeneration, and in human diseases like asthma and cancer, yet molecular mechanisms underlying its effects remain largely undefined. A single integrated Flippase recombination target (FRT) site was engineered within the AGR2-non expressing A375 cell line to allow integration of a constitutively expressed AGR2 alleles. This allows an analysis of how AGR2 protein expression reprogrammes intracellular signalling. The engineered expression of AGR2 had marginal impact on global transcription signalling, compared to its paralogue AGR3. However, expression of AGR2 had a significant impact on remodelling the cellular proteome using a triple-labelled SILAC protocol. 29 045 peptides were detected for the identification and relative quantitation of 3003 proteins across the experimental conditions. Ingenuity Pathway annotation highlighted the dominant pathway suppressed by wt-AGR2 was the p53-signalling axis. DNA damage induced p53 stabilization and p21 induction by cisplatin treatment confirmed that wt-AGR2 expression suppressed the p53 pathway. The furthest outlying SILAC protein expression change induced by AGR2 was the anti-viral and cell cycle regulator tumour susceptibility gene 101 (TSG101), confirmed by immunoblotting. Transfection of TSG101 into MCF7 (AGR2+, oestrogen dependent), A549 (AGR2+, oestrogen independent) or A375 (AGR2-) cells confirmed that TSG101 attenuates p53 signalling. These systems wide screens suggest that the most dominant landscape reprogrammed by low levels of AGR2 protein is the cellular proteome, rather than the transcriptome, and provide focus for evaluating its role in proteostasis.

  3. Component build-up method for engineering analysis of missiles at low-to-high angles of attack

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1992-01-01

    Methods are presented for estimating the component build-up terms, with the exception of zero-lift drag, for missile airframes in steady flow and at arbitrary angles of attack and bank. The underlying and unifying bases of all these efforts are slender-body theory and its nonlinear extensions through the equivalent angle-of-attack concept. Emphasis is placed on the forces and moments which act on each of the fins, so that control cross-coupling effects as well as longitudinal and lateral-directional effects can be determined.

  4. Method for extracting forward acoustic wave components from rotating microphone measurements in the inlets of turbofan engines

    NASA Technical Reports Server (NTRS)

    Cicon, D. E.; Sofrin, T. G.

    1995-01-01

    This report describes a procedure for enhancing the use of the basic rotating microphone system so as to determine the forward propagating mode components of the acoustic field in the inlet duct at the microphone plane in order to predict more accurate far-field radiation patterns. In addition, a modification was developed to obtain, from the same microphone readings, the forward acoustic modes generated at the fan face, which is generally some distance downstream of the microphone plane. Both these procedures employ computer-simulated calibrations of sound propagation in the inlet duct, based upon the current radiation code. These enhancement procedures were applied to previously obtained rotating microphone data for the 17-inch ADP fan. The forward mode components at the microphone plane were obtained and were used to compute corresponding far-field directivities. The second main task of the program involved finding the forward wave modes generated at the fan face in terms of the same total radial mode structure measured at the microphone plane. To obtain satisfactory results with the ADP geometry it was necessary to limit consideration to the propagating modes. Sensitivity studies were also conducted to establish guidelines for use in other fan configurations.

  5. [Effect of sand-stabilization engineering on soil humus and components by analysis by several spectroscopy methods].

    PubMed

    Zhang, Yu-lan; Sun, Cai-xia; Duan, Zheng-hu; Chen, Li-jun; Wu, Zhi-jie; Chen, Xiao-hong; Zhang, Ai-ming; Liu, Xing-bin; Wang, Jun-yu

    2010-01-01

    After the potassium bichromate-strong sulfuric acid hot process, the ultraviolet spectrophotometer was used on the contrast with the traditional titrimetric method to analyze soil (51 years, 43 year, 32 year, 20 year vegetations restores in the Tenggeli sand) humus and the humus components content. At the same time, the infrared spectrum was used to discuss their structure change during restoring process. The result indicated that using the visible spectroscopy method for the determination of the humus and the humus component is feasible. The spectroscopy method determination of organic matter is better (coefficient of variation at most is 7.26%) than the traditional titrimetric method, as it is accurate, fast and simple, and favors large quantities. The result indicated that humus content presents increasing tendency along with restoring ages. Change is big in early restore time, and tends to be stable in the later period. Infrared spectrum shape is similar, but the characteristic peak intensity has obvious difference. Compared with the wind-drift sand, little molecule saccharides decrease and aryl-groups increase.

  6. Induction of engineered residual stresses fields and enhancement of fatigue life of high reliability metallic components by laser shock processing

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; Correa, C.; Gil-Santos, A.; Peral, D.

    2013-02-01

    Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional "shot peening" technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

  7. NDE measurements for understanding of performance: A few case studies on engineering components, human health and cultural heritage

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Venkatraman, B.

    2013-01-01

    Life cycle management involves a seamless integration of materials, design, analysis, production, manufacturing, and degradation plus, a wide variety of disciplines relating to surveillance and characterisation with adequate feedback and control. Science and technology of non-destructive evaluation (NDE) links all these domains and disciplines together in a seamless and robust manner. A number of research programs on NDE science and technology have evolved during the last four decades world over including the one at Indira Gandhi Centre for Atomic Research, Kalpakkam, initiated and nurtured by the first author. Many engineering and technology challenges pertaining to fast spectrum reactors have been successfully solved by this Centre through development of innovative sensors, procedures and coupled with strong basic science and modeling approaches. These technologies have also been selectively applied in gaining insights of human health and cultural heritage. This paper highlights some of the innovative NDE sensors and techniques developed in the field of electromagnetic NDE and their successful applications. A few interesting case studies pertaining to NDE in heritage and healthcare using acoustic and thermal methods are also presented.

  8. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    PubMed

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  9. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  10. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

    NASA Astrophysics Data System (ADS)

    Acharya, Ranadip; Das, Suman

    2015-09-01

    This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

  11. Zika Virus: the Latest Newcomer.

    PubMed

    Saiz, Juan-Carlos; Vázquez-Calvo, Ángela; Blázquez, Ana B; Merino-Ramos, Teresa; Escribano-Romero, Estela; Martín-Acebes, Miguel A

    2016-01-01

    Since the beginning of this century, humanity has been facing a new emerging, or re-emerging, virus threat almost every year: West Nile, Influenza A, avian flu, dengue, Chikungunya, SARS, MERS, Ebola, and now Zika, the latest newcomer. Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, was identified in 1947 in a sentinel monkey in Uganda, and later on in humans in Nigeria. The virus was mainly confined to the African continent until it was detected in south-east Asia the 1980's, then in the Micronesia in 2007 and, more recently in the Americas in 2014, where it has displayed an explosive spread, as advised by the World Health Organization, which resulted in the infection of hundreds of thousands of people. ZIKV infection was characterized by causing a mild disease presented with fever, headache, rash, arthralgia, and conjunctivitis, with exceptional reports of an association with Guillain-Barre syndrome (GBS) and microcephaly. However, since the end of 2015, an increase in the number of GBS associated cases and an astonishing number of microcephaly in fetus and new-borns in Brazil have been related to ZIKV infection, raising serious worldwide public health concerns. Clarifying such worrisome relationships is, thus, a current unavoidable goal. Here, we extensively review what is currently known about ZIKV, from molecular biology, transmission routes, ecology, and epidemiology, to clinical manifestations, pathogenesis, diagnosis, prophylaxis, and public health. PMID:27148186

  12. Zika Virus: the Latest Newcomer.

    PubMed

    Saiz, Juan-Carlos; Vázquez-Calvo, Ángela; Blázquez, Ana B; Merino-Ramos, Teresa; Escribano-Romero, Estela; Martín-Acebes, Miguel A

    2016-01-01

    Since the beginning of this century, humanity has been facing a new emerging, or re-emerging, virus threat almost every year: West Nile, Influenza A, avian flu, dengue, Chikungunya, SARS, MERS, Ebola, and now Zika, the latest newcomer. Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, was identified in 1947 in a sentinel monkey in Uganda, and later on in humans in Nigeria. The virus was mainly confined to the African continent until it was detected in south-east Asia the 1980's, then in the Micronesia in 2007 and, more recently in the Americas in 2014, where it has displayed an explosive spread, as advised by the World Health Organization, which resulted in the infection of hundreds of thousands of people. ZIKV infection was characterized by causing a mild disease presented with fever, headache, rash, arthralgia, and conjunctivitis, with exceptional reports of an association with Guillain-Barre syndrome (GBS) and microcephaly. However, since the end of 2015, an increase in the number of GBS associated cases and an astonishing number of microcephaly in fetus and new-borns in Brazil have been related to ZIKV infection, raising serious worldwide public health concerns. Clarifying such worrisome relationships is, thus, a current unavoidable goal. Here, we extensively review what is currently known about ZIKV, from molecular biology, transmission routes, ecology, and epidemiology, to clinical manifestations, pathogenesis, diagnosis, prophylaxis, and public health.

  13. Zika Virus: the Latest Newcomer

    PubMed Central

    Saiz, Juan-Carlos; Vázquez-Calvo, Ángela; Blázquez, Ana B.; Merino-Ramos, Teresa; Escribano-Romero, Estela; Martín-Acebes, Miguel A.

    2016-01-01

    Since the beginning of this century, humanity has been facing a new emerging, or re-emerging, virus threat almost every year: West Nile, Influenza A, avian flu, dengue, Chikungunya, SARS, MERS, Ebola, and now Zika, the latest newcomer. Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, was identified in 1947 in a sentinel monkey in Uganda, and later on in humans in Nigeria. The virus was mainly confined to the African continent until it was detected in south-east Asia the 1980’s, then in the Micronesia in 2007 and, more recently in the Americas in 2014, where it has displayed an explosive spread, as advised by the World Health Organization, which resulted in the infection of hundreds of thousands of people. ZIKV infection was characterized by causing a mild disease presented with fever, headache, rash, arthralgia, and conjunctivitis, with exceptional reports of an association with Guillain–Barre syndrome (GBS) and microcephaly. However, since the end of 2015, an increase in the number of GBS associated cases and an astonishing number of microcephaly in fetus and new-borns in Brazil have been related to ZIKV infection, raising serious worldwide public health concerns. Clarifying such worrisome relationships is, thus, a current unavoidable goal. Here, we extensively review what is currently known about ZIKV, from molecular biology, transmission routes, ecology, and epidemiology, to clinical manifestations, pathogenesis, diagnosis, prophylaxis, and public health. PMID:27148186

  14. Space expectations: Latest survey results

    NASA Astrophysics Data System (ADS)

    Raitt, David; Swan, Cathy; Swan, Peter; Woods, Arthur

    2010-11-01

    At the 59th IAC in Glasgow, a paper was presented describing two studies being carried out by Commission VI of the International Academy of Astronautics on the impact of space activities upon society. One of these studies sought to discover the hopes, aspirations and expectations of those outside the space field - the person in the street - regarding space activities. The paper reviewed the thought processes and decisions leading up to the commencement of the survey, documented the reasoning behind the questions which the public were; described the efforts to translate the questionnaire into the six Unesco languages to achieve wider participation, and provided an overview of results to date. This present paper provides an update on this Space Expectations survey as the study comes to a close. The paper briefly discusses the addition of new languages for the questionnaire and the drive to make the survey better known and encourage participation worldwide, before going on to provide a detailed analysis of the latest results of opinions. Insights include respondent's thoughts regarding the visions and costs of space activities, how much people feel part of them and whether and how they would like to be more involved.

  15. Latest design of gate valves

    SciTech Connect

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  16. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  17. A novel high-speed production process to create modular components for the bottom-up assembly of large-scale tissue-engineered constructs.

    PubMed

    Khan, Omar F; Voice, Derek N; Leung, Brendan M; Sefton, Michael V

    2015-01-01

    To replace damaged or diseased tissues, large tissue-engineered constructs can be prepared by assembling modular components in a bottom-up approach. However, a high-speed method is needed to produce sufficient numbers of these modules for full-sized tissue substitutes. To this end, a novel production technique is devised, combining air shearing and a plug flow reactor-style design to rapidly produce large quantities of hydrogel-based (here type I collagen) cylindrical modular components with tunable diameters and length. Using this technique, modules containing NIH 3T3 cells show greater than 95% viability while endothelial cell surface attachment and confluent monolayer formation are demonstrated. Additionally, the rapidly produced modules are used to assemble large tissue constructs (>1 cm(3) ) in vitro. Module building blocks containing luciferase-expressing L929 cells are packed in full size adult rat-liver-shaped bioreactors and perfused with cell medium, to demonstrate the capacity to build organ-shaped constructs; bioluminescence demonstrates sustained viability over 3 d. Cardiomyocyte-embedded modules are also used to assemble electrically stimulatable contractile tissue.

  18. Glaucoma: Symptoms, Diagnosis, Treatment and Latest Research

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Glaucoma Glaucoma: Symptoms, Diagnosis, Treatment and Latest Research Past Issues / Fall 2009 Table of Contents Symptoms and Diagnosis Glaucoma can develop in one or both eyes. Often ...

  19. Editorial: Latest methods and advances in biotechnology.

    PubMed

    Lee, Sang Yup; Jungbauer, Alois

    2014-01-01

    The latest "Biotech Methods and Advances" special issue of Biotechnology Journal continues the BTJ tradition of featuring the latest breakthroughs in biotechnology. The special issue is edited by our Editors-in-Chief, Prof. Sang Yup Lee and Prof. Alois Jungbauer and covers a wide array of topics in biotechnology, including the perennial favorite workhorses of the biotech industry, Chinese hamster ovary (CHO) cell and Escherichia coli.

  20. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.

    PubMed

    Price, G Dean; Badger, Murray R; Woodger, Fiona J; Long, Ben M

    2008-01-01

    Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentrations around the primary CO(2)-fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). In cyanobacteria, Rubisco is encapsulated in unique micro-compartments known as carboxysomes. Cyanobacteria can possess up to five distinct transport systems for Ci uptake. Through database analysis of some 33 complete genomic DNA sequences for cyanobacteria it is evident that considerable diversity exists in the composition of transporters employed, although in many species this diversity is yet to be confirmed by comparative phenomics. In addition, two types of carboxysomes are known within the cyanobacteria that have apparently arisen by parallel evolution, and considerable progress has been made towards understanding the proteins responsible for carboxysome assembly and function. Progress has also been made towards identifying the primary signal for the induction of the subset of CCM genes known as CO(2)-responsive genes, and transcriptional regulators CcmR and CmpR have been shown to regulate these genes. Finally, some prospects for introducing cyanobacterial CCM components into higher plants are considered, with the objective of engineering plants that make more efficient use of water and nitrogen.

  1. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.

    PubMed

    Price, G Dean; Badger, Murray R; Woodger, Fiona J; Long, Ben M

    2008-01-01

    Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentrations around the primary CO(2)-fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). In cyanobacteria, Rubisco is encapsulated in unique micro-compartments known as carboxysomes. Cyanobacteria can possess up to five distinct transport systems for Ci uptake. Through database analysis of some 33 complete genomic DNA sequences for cyanobacteria it is evident that considerable diversity exists in the composition of transporters employed, although in many species this diversity is yet to be confirmed by comparative phenomics. In addition, two types of carboxysomes are known within the cyanobacteria that have apparently arisen by parallel evolution, and considerable progress has been made towards understanding the proteins responsible for carboxysome assembly and function. Progress has also been made towards identifying the primary signal for the induction of the subset of CCM genes known as CO(2)-responsive genes, and transcriptional regulators CcmR and CmpR have been shown to regulate these genes. Finally, some prospects for introducing cyanobacterial CCM components into higher plants are considered, with the objective of engineering plants that make more efficient use of water and nitrogen. PMID:17578868

  2. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  3. Engineered Transcriptional Systems for Cyanobacterial Biotechnology

    PubMed Central

    Camsund, Daniel; Lindblad, Peter

    2014-01-01

    Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform photosynthesis and the ease with which they are genetically modified. In this review, we discuss transcriptional parts and promoters available for engineering cyanobacteria. First, we go through special cyanobacterial characteristics that may impact engineering, including the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing component characteristics that are desirable for synthetic biology approaches, including decoupling, modularity, and orthogonality. We then summarize and discuss the latest promoters for use in cyanobacteria regarding characteristics such as regulation, strength, and dynamic range and suggest potential uses. Finally, we provide an outlook and suggest future developments that would advance the field and accelerate the use of cyanobacteria for renewable biotechnology. PMID:25325057

  4. The Latest Trends in LED Lighting

    NASA Astrophysics Data System (ADS)

    Bessho, Makoto; Shimizu, Keiichi

    LED is regarded as the latest and the fourth generation of light sources following incandescent lamps as the first generation, fluorescent lamps as the second generation, and HID lamps as the third generation. Excellent characteristics, such as high efficiency, long life, compactness, light weight, mercury free, very weak IR and UV emission, etc. are their advantage in comparison with the conventional light sources. With the progress of LED lighting technologies, their application is spreading in sign and display device, spot lighting, base lighting, security lighting, and further, new market, which is impossible to realize by the conventional light sources, is expected. This article reports the latest trend in LED lighting.

  5. Combined application of plasma mutagenesis and gene engineering leads to 5-oxomilbemycins A3/A4 as main components from Streptomyces bingchenggensis.

    PubMed

    Wang, Hai-Yan; Zhang, Ji; Zhang, Yue-Jing; Zhang, Bo; Liu, Chong-Xi; He, Hai-Rong; Wang, Xiang-Jing; Xiang, Wen-Sheng

    2014-12-01

    Milbemycin oxime has been commercialized as effective anthelmintics in the fields of animal health, agriculture, and human infections. Currently, milbemycin oxime is synthesized by a two-step chemical reaction, which involves the ketonization of milbemycins A3/A4 to yield the intermediates 5-oxomilbemycins A3/A4 using CrO3 as catalyst. Due to the low efficiency and environmental unfriendliness of the ketonization of milbemycins A3/A4, it is imperative to develop alternative strategies to produce 5-oxomilbemycins A3/A4. In this study, the atmospheric and room temperature plasma (ARTP) mutation system was first employed to treat milbemycin-producing strain Streptomyces bingchenggensis, and a mutant strain BC-120-4 producing milbemycins A3, A4, B2, and B3 as main components was obtained, which favors the construction of genetically engineered strains producing 5-oxomilbemycins. Importantly, the milbemycins A3/A4 yield of BC-120-4 reached 3,890 ± 52 g/l, which was approximately two times higher than that of the initial strain BC-109-6 (1,326 ± 37 g/l). The subsequent interruption of the gene milF encoding a C5-ketoreductase responsible for the ketonization of milbemycins led to strain BCJ60 (∆milF) with the production of 5-oxomilbemycins A3/A4 and the elimination of milbemycins A3, A4, B2, and B3. The high 5-oxomilbemycins A3/A4 yield (3,470 ± 147 g/l) and genetic stability of BCJ60 implied the potential use in industry to prepare 5-oxomilbemycins A3/A4 for the semisynthesis of milbemycins oxime. PMID:25081559

  6. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  7. The Latest Scams in Literacy Education.

    ERIC Educational Resources Information Center

    Berger, Alan

    The claims for the huge numbers of students suffering from the "latest scams" in literacy education--learning disability, dyslexia, attention deficit disorder, at risk, and hypoglycemia--are driven by political, economic, and social profits with minimal concern for children. While such problems exist, the phrases used to describe these conditions…

  8. Latest Results from the COMPASS Experiment

    NASA Astrophysics Data System (ADS)

    Stolarski, M.

    2016-02-01

    In this paper the latest results from the COMPASS experiment are presented. We show results from longitudinally and transversely polarised targets off which high energy muons are scattered. In addition the future plans of COMPASS as well as results of the beam test runs are also presented.

  9. Israel's Latest Conflict: Paying for Higher Education

    ERIC Educational Resources Information Center

    Kalman, Matthew

    2007-01-01

    This article describes Israel's latest conflict--plummeting government spending and strikes by faculty members and students which are threatening the stability of the country's universities. The founders of the modern state of Israel considered higher education to be so important that they established the country's first two universities long…

  10. Engineering approaches to ecosystem restoration

    SciTech Connect

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  11. Latest Results in SLAC 75 MW PPM Klystrons

    NASA Astrophysics Data System (ADS)

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.

    2006-01-01

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan ) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

  12. Latest Results in SLAC 75-MW PPM Klystrons

    SciTech Connect

    Sprehn, D.; Caryotakis, G.; Haase, A.; Jongewaard, E.; Laurent, L.; Pearson, C.; Phillips, R.; /SLAC

    2006-03-06

    75 MW X-band klystrons utilizing Periodic Permanent Magnet (PPM) focusing have been undergoing design, fabrication and testing at the Stanford Linear Accelerator Center (SLAC) for almost nine years. The klystron development has been geared toward realizing the necessary components for the construction of the Next Linear Collider (NLC). The PPM devices built to date which fit this class of operation consist of a variety of 50 MW and 75 MW devices constructed by SLAC, KEK (Tsukuba, Japan) and industry. All these tubes follow from the successful SLAC design of a 50 MW PPM klystron in 1996. In 2004 the latest two klystrons were constructed and tested with preliminary results reported at EPAC2004. The first of these two devices was tested to the full NLC specifications of 75 MW, 1.6 microseconds pulse length, and 120 Hz. This 14.4 kW average power operation came with a tube efficiency >50%. The most recent testing of these last two devices will be presented here. Design and manufacturing issues of the latest klystron, due to be tested by the Fall of 2005, are also discussed.

  13. Latest Proterozoic stratigraphy and earth history

    NASA Technical Reports Server (NTRS)

    Knoll, Andrew H.; Walter, Malcolm R.

    1992-01-01

    Novel biostratigraphic and chemostratigraphic data furnish an improved framework for stratigraphic correlation of the Proterozoic Eon as well as tools for a chronostratigraphic division of the late Proterozoic. It is argued that, in conjunction with geochronometric data, protistan microfossils and isotope geochemistry can furnish a means for an eventual integration of the latest Proterozoic Eon. Attention is given to the emerging methodologies of fossil protists and prokaryotes and of isotopic chemostratigraphy.

  14. Latest jet results from the Tevatron

    SciTech Connect

    Price, Darren D.

    2010-05-01

    A brief overview of the latest status of jet physics studies at the Tevatron in proton-antiproton collisions at {radical}s = 1.96 TeV is presented. In particular, measurements of the inclusive jet production cross-section, dijet production and searches for new physics, the ratio of the 3-jet to 2-jet production cross-sections, and the three-jet mass are discussed.

  15. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Kamarei, A. R.; Nakhost, Z.

    1985-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.

  16. Latest Progress on the QUBIC Instrument

    NASA Astrophysics Data System (ADS)

    Ghribi, A.; Aumont, J.; Battistelli, E. S.; Bau, A.; Bélier, B.; Bergé, L.; Bernard, J.-Ph.; Bersanelli, M.; Bigot-Sazy, M.-A.; Bordier, G.; Bunn, E. T.; Cavaliere, F.; Chanial, P.; Coppolecchia, A.; Decourcelle, T.; De Bernardis, P.; De Petris, M.; Drilien, A.-A.; Dumoulin, L.; Falvella, M. C.; Gault, A.; Gervasi, M.; Giard, M.; Gradziel, M.; Grandsire, L.; Gayer, D.; Hamilton, J.-Ch.; Haynes, V.; Giraud-Héraud, Y.; Holtzer, N.; Kaplan, J.; Korotkov, A.; Lande, J.; Lowitz, A.; Maffei, B.; Marnieros, S.; Martino, J.; Masi, S.; Mennella, A.; Montier, L.; Murphy, A.; Ng, M. W.; Olivieri, E.; Pajot, F.; Passerini, A.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Prêle, D.; Rambaud, D.; Rigaut, O.; Rosset, C.; Salatino, M.; Schillaci, A.; Scully, S.; O'Sullivan, C.; Tartari, A.; Timbie, P.; Tucker, G.; Vibert, L.; Voisin, F.; Watson, B.; Zannoni, M.

    2014-09-01

    QUBIC is a unique instrument that crosses the barriers between classical imaging architectures and interferometry taking advantage from both high sensitivity and systematics mitigation. The scientific target is to detect primordial gravitational waves created by inflation by the polarization they imprint on the cosmic microwave background—the holy grail of modern cosmology. In this paper, we show the latest advances in the development of the architecture and the sub-systems of the first module of this instrument to be deployed at Dome Charlie Concordia base—Antarctica in 2015.

  17. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  18. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  19. Skylab experiments. Volume 7: Living and working in space. [Skylab mission data on human factors engineering and spacecraft components for high school level education

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments conducted on the Skylab vehicle that will measure and evaluate the ability of the crew to live and work effectively in space are discussed. The methods and techniques of human engineering as they relate to the design and evaluation of work spaces, requirements, and tools are described. The application of these methods and the Skylab measurements to the design of future spacecraft are analyzed.

  20. Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment

    PubMed Central

    Edalat, Faramarz; Bae, Hojae; Manoucheri, Sam; Cha, Jae Min; Khademhosseini, Ali

    2012-01-01

    Stem cell-based therapeutics have become a vital component in tissue engineering and regenerative medicine. The microenvironment within which stem cells reside, i.e. the niche, plays a crucial role in regulating stem cell self-renewal and differentiation. However, current biological techniques lack the means to recapitulate the complexity of this microenvironment. Nano- and microengineered materials offer innovative methods to: (1) deconstruct the stem cell niche to understand the effects of individual elements; (2) construct complex tissue-like structures resembling the niche to better predict and control cellular processes; and (3) transplant stem cells or activate endogenous stem cell populations for regeneration of aged or diseased tissues. Here, we highlight some of the latest advances in this field and discuss future applications and directions of the use of nano- and microtechnologies for stem cell engineering. PMID:22101755

  1. A Real-Time Monitoring System to Assess the Platelet Aggregatory Capacity of Components of a Tissue-Engineered Blood Vessel Wall

    PubMed Central

    Musa, Faiza Idris

    2016-01-01

    Native blood vessels contain both an antiaggregatory intimal layer, which prevents platelet activation in the intact vessel, and a proaggregatory medial layer, which stimulates platelet aggregation upon vascular damage. Yet, current techniques for assessing the functional properties of tissue-engineered blood vessels may not be able to assess the relative effectiveness of both these pro- and antiaggregatory properties of the vessel construct. In this study, we present a novel technique for quantitatively assessing the pro- and antiaggregatory properties of different three-dimensional blood vessel constructs made using a layered fabrication method. This technique utilizes real-time measurements of cytosolic Ca2+ signaling to assess platelet activation in fluorescently labeled human platelet suspensions using fluorescence spectrofluorimetry, while also permitting examination of thrombus formation upon the surface of the construct using fluorescent imaging of DiOC6-labeled platelets. Experiments using this method demonstrated that type I collagen hydrogels, commonly used as scaffolds for vascular tissue engineering, were unable to support significant platelet activation, while type I and III neo-collagen secreted from human coronary artery smooth muscle cells cultured within these hydrogels as the medial layer were able to support thrombus formation. The incorporation of an intimal layer consisting of human umbilical vein endothelial cells on top of the medial layer inhibited platelet activation and aggregation. These data demonstrate that the methodology presented here is able to quantitatively compare the capacity of different constructs to trigger or prevent platelet activation. As such, this technique may provide a useful tool for standardizing the assessment of the functional properties of tissue-engineered blood vessel constructs developed using different culturing techniques. PMID:27260694

  2. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect

    Naylor, M.G.S.

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  3. Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse (Presentation)

    SciTech Connect

    Pesaran, A.; Wierzbicki, T.; Sahraei, E.; Li, G.; Collins, L.; Sprague, M.; Kim, G. H.; Santhangopalan, S.

    2014-06-01

    The EV Everywhere Grand Challenge aims to produce plug-in electric vehicles as affordable and convenient for the American family as gasoline-powered vehicles by 2022. Among the requirements set by the challenge, electric vehicles must be as safe as conventional vehicles, and EV batteries must not lead to unsafe situations under abuse conditions. NREL's project started in October 2013, based on a proposal in response to the January 2013 DOE VTO FOA, with the goal of developing computer aided engineering tools to accelerate the development of safer lithium ion batteries.

  4. [Latest advances of SLA class I genes].

    PubMed

    Tao, Xuan; Li, Hua; Li, Xue-Wei; Yu, Hui; Zuo, Qi-Zhen

    2007-11-01

    The Swine leukocyte antigen (SLA) class I genes encode multi-glycoproteins on cell surface, which present endogenous antigenic peptides to T cells and thus initiate specific immune responses. In this article, latest advances on molecular structure, expression in tissues, regulation of expression, genotyping, polymorphism, and evolution of SLA class I genes were introduced, in which genotyping and polymorphism were emphasized. Molecular typing methods of SLA class I genes include serological method, DNA sequencing, PCR-SSP, PCR-SSOP and MS, of which PCR-SSP is frequently used in genotyping of SLA class I genes as a simple and rapid method. Future directions for the study and application of SLA class I genes on gene functions, peptide vaccine, xenotransplantation were also discussed.

  5. [Latest pain management for painful bony metastases].

    PubMed

    Ikenaga, Masayuki

    2006-04-01

    Pain management for painful bony metastases is the most important problem for symptom relief of terminally-ill cancer patients. Pathological fractures often decrease the activity of daily life (ADL) of patients, and cause deterioration of the quality of life (QOL) and prognosis. Basically pharmacological therapies of the World Health Organization (WHO) method are essential for symptom relief from cancer pain. This article provides the latest pain managements (palliative irradiation, bisphosphonate, orthopedic surgery, percutaneous vertebroplasty and radiopharmaceutical therapy) of bony metastases, and mentions the indications and the problems of these interventions. In consideration to prognosis, the QOL and patient's needs, medical staffs have to perform multidisciplinary approach for providing suitable palliative care. PMID:16582515

  6. Latest Development of CFB Boilers in China

    NASA Astrophysics Data System (ADS)

    Yue, G. X.; Yang, H. R.; Lu, J. F.; Zhang, H.

    The circulating fluidized bed (CFB) coal-fired boiler has being rapidly developed in China since 1980s and becomes a key clean coal technology used in thermal and power generation. In this paper, the development history and development status of the CFB boiler in China are introduced. The development history of the CFB boiler in China is divided into four periods and the important features of each period are given. Some latest research activities and important results on CFB boilers, and the typical achievements and newest development of the CFB boiler in China are also introduced. In addition, a few challenges and development directions including the capacity scaling up, SO2 removal and energy saving are discussed.

  7. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  8. University Satellite Featuring Latest OBC Core & Payload Data Processing Technologies

    NASA Astrophysics Data System (ADS)

    Eickhoff, Jens; Roser, Hans-Peter; Stevenson, Dave; Habinc, Sandi

    2010-08-01

    As already published in diverse papers, University of Stuttgart, Germany, is running a small satellite development programme. The first satellite under development (Phase C) is a 3-axis stabilized LEO satellite with a box size of 60cm x 70cm x 80cm, deployable solar panels, ACS including star trackers, wheels and GPS and a mass of 120kg. Launch is envisaged 2013 on an ISRO PSLV launcher. The design is conceptualized to be suitable not only for this specific mission, but to serve as Future Lowcost Platform for diverse science smallsat missions. This paper presents the latest onboard computer technologies selected and defined for the spacecraft covering both the main OBC (CDMU) as well as the payload data processing unit (PMC). The key point is that although being a university project it has been achieved to implement onboard hardware and software design to be fully compliant to international space standards like CCSDS and PUS. The corresponding author is system engineering coach for the project from industry.

  9. Environmental engineering education: examples of accreditation and quality assurance

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.

    2013-12-01

    Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In

  10. Geo-Engineering through Internet Informatics (GEMINI)

    SciTech Connect

    Doveton, John H.; Watney, W. Lynn

    2003-03-06

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  11. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  12. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  13. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  14. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  15. IN-SITU CHEMICAL OXIDATION--ENGINEERING ISSUE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Engineering Issue Papers are a series of technology transfer documents that summarize the latest available information on specific technical issues, including fate and transport, specific contaminants, selected treatment and site rem...

  16. Engineering issue: Indoor Air Vapor Intrusion Mitigation Approaches

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) Engineering Issues are a new series of technology transfer documents that summarize the latest available information on selected treatment and site remeediation technologies and related issues. They are designed to help remedial projec...

  17. Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components

    SciTech Connect

    Wereszczak, A.A.; Kirkland, T.P.

    1996-03-01

    Tensile creep-rupture of a commercial gas pressure sintered Si3N4 and a sintered SiC is examined at 1038, 1150, and 1350 C. These 2 ceramics are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and there is interest in their high temperature performance over service times {ge} 10,000 h (14 months). For this long lifetime, a static tensile stress of 300 MPa at 1038/1150 C and 125 Mpa at 1350 C cannot be exceeded for Si3N4; for SiC, the corresponding numbers are 300 Mpa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C. Creep-stress exponents for Si3N4 are 33, 17, and 8 for 1038, 1150, 1350 C; fatigue- stress exponents are equivalent to creep exponents, suggesting that the fatigue mechanism causing fracture is related to the creep mechanism. Little success was obtained in producing failure in SiC after several decades of time through exposure to appropriate tensile stress; if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. Creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that initiated from the surface.

  18. Product engineering guide

    SciTech Connect

    McCarty, C.E.

    1989-12-01

    The semiconductor product engineers job requires knowledge and expertise related to many different subjects. This report provides guidance for newcomers to product engineering and is a consise reference for all others involved in product engineering. Subjects addressed are Customer/Supplier interactions, component development sequence, production schedule support, component characterization, product specifications, test equipment requirements, product qualification, characterization and development reports, preferred parts list, standard packaging, and finally, classification and security considerations. This guide is intended to help standardize and simplify the component development sequence presently used in the semiconductor product engineering department. 3 figs., 2 tabs.

  19. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  20. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  1. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Hindes, C.; Battista, R.; Connelly, M.; Cronin, M.; Howarth, R.; Donahue, A.; Slate, E.; Stotts, R.; Lacy, R.

    1988-01-01

    The study of high power kinematic Stirling engines for transportation use, testing of Mod I and Mod II Stirling engines, and component development activities are summarized. Mod II development testing was performed to complete the development of the basic engine and begin characterization of performance. Mod I engines were used for Mod II component development and to obtain independent party (U.S. Air Force) evaluation of Stirling engine vehicle performance.

  2. Creep performance of candidate SiC and Si{sub 3}N{sub 4} materials for land-based, gas turbine engine components

    SciTech Connect

    Wereszczak, A.A.; Kirkland, T.P.

    1997-10-01

    The tensile creep-rupture performance of a commercially available gas pressure sintered silicon nitride (Si{sub 3}N{sub 4}) and a sintered silicon carbide (SiC) is examined at 1038, 1150, and 1350 C. These two ceramic materials are candidates for nozzles and combustor tiles that are to be retrofitted in land-based gas turbine engines, and interest exists to investigate their high-temperature mechanical performance over service times up to, and in excess of, 10,000 hours ({approx}14 months). To achieve lifetimes approaching 10,000 hours for the candidate Si{sub 3}N{sub 4} ceramic, it was found (or it was estimated based on ongoing test data) that a static tensile stress of 300 MPa at 1038 and 1150 C, and a stress of 125 MPa at 1350 C cannot be exceeded. For the SiC ceramic, it was estimated from ongoing test data that a static tensile stress of 300 MPa at 1038 C, 250 MPa at 1150 C, and 180 MPa at 1350 C cannot be exceeded. The creep-stress exponents for this Si{sub 3}N{sub 4} were determined to be 33, 17, and 8 for 1038, 1150, and 1350 C, respectively. The fatigue-stress exponents for the Si{sub 3}N{sub 4} were found to be equivalent to the creep exponents, suggesting that the fatigue mechanism that ultimately causes fracture is controlled and related to the creep mechanisms. Little success was experienced at generating failures in the SiC after several decades of time through exposure to appropriate tensile stress; it was typically observed that if failure did not occur on loading, then the SiC specimens most often did not creep-rupture. However, creep-stress exponents for the SiC were determined to be 57, 27, and 11 for 1038, 1150, and 1350 C, respectively. For SiC, the fatigue-stress exponents did not correlate as well with creep-stress exponents. Failures that occurred in the SiC were a result of slow crack growth that was initiated from the specimen`s surface.

  3. Piston engine configuration alternatives

    SciTech Connect

    Wyczalek, F.A.

    1989-01-01

    This paper provides a technological assessment of alternate engine component configuration and material alternatives. It includes a comparative analysis of key characteristics of Gasoline, Diesel and Gas Turbine engines built by Daihatsu, Honda, Isuzu, Mazda, Mitsubishi, Nissan, Suburu, Suzuki and Toyota. The piston engines range from two to ten cylinders with inline, vee and opposed configurations. Furthermore, additional special features and alternative choices include variable compression ratio, ceramic structural components, supercharger, turbocharger, twin turbocharger, supercharger-turbocharger combined and the regenerative gas turbine.

  4. Engineering, conjugation, and immunogenicity assessment of Escherichia coli O121 O antigen for its potential use as a typhoid vaccine component.

    PubMed

    Wetter, Michael; Kowarik, Michael; Steffen, Michael; Carranza, Paula; Corradin, Giampietro; Wacker, Michael

    2013-07-01

    State-of-the-art production technologies for conjugate vaccines are complex, multi-step processes. An alternative approach to produce glycoconjugates is based on the bacterial N-linked protein glycosylation system first described in Campylobacter jejuni. The C. jejuni N-glycosylation system has been successfully transferred into Escherichia coli, enabling in vivo production of customized recombinant glycoproteins. However, some antigenic bacterial cell surface polysaccharides, like the Vi antigen of Salmonella enterica serovar Typhi, have not been reported to be accessible to the bacterial oligosaccharyltransferase PglB, hence hamper development of novel conjugate vaccines against typhoid fever. In this report, Vi-like polysaccharide structures that can be transferred by PglB were evaluated as typhoid vaccine components. A polysaccharide fulfilling these requirements was found in Escherichia coli serovar O121. Inactivation of the E. coli O121 O antigen cluster encoded gene wbqG resulted in expression of O polysaccharides reactive with antibodies raised against the Vi antigen. The structure of the recombinantly expressed mutant O polysaccharide was elucidated using a novel HPLC and mass spectrometry based method for purified undecaprenyl pyrophosphate (Und-PP) linked glycans, and the presence of epitopes also found in the Vi antigen was confirmed. The mutant O antigen structure was transferred to acceptor proteins using the bacterial N-glycosylation system, and immunogenicity of the resulting conjugates was evaluated in mice. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with E. coli O121 LPS. One animal developed a significant rise in serum immunoglobulin anti-Vi titer upon immunization.

  5. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  6. Latest biomaterials and technology in dentistry.

    PubMed

    Zandparsa, Roya

    2014-01-01

    Navigation technology is applied successfully in oral and maxillofacial surgery. Laser beams are used for caries removal. With nanodentistry, it is possible to maintain comprehensive oral health care. Nanorobots induce oral analgesia, desensitize teeth, and manipulate the tissue. They can also be used for preventive, restorative, and curative procedures. Strategies to engineer tissue can be categorized into 3 major classes: conductive, inductive, and cell transplantation approaches. Several populations of cells with stem cell properties have been isolated from different parts of the tooth.

  7. Service Cart For Engines

    NASA Technical Reports Server (NTRS)

    Ng, Gim Shek

    1995-01-01

    Cart supports rear-mounted air-cooled engine from Volkswagen or Porsche automobile. One person removes, repairs, tests, and reinstalls engine of car, van, or home-built airplane. Consists of framework of wood, steel, and aluminum components supported by four wheels. Engine lifted from vehicle by hydraulic jack and gently lowered onto waiting cart. Jack removed from under engine. Rear of vehicle raised just enough that engine can be rolled out from under it. Cart easily supports 200-lb engine. Also used to hold transmission. With removable sheet-metal top, cart used as portable seat.

  8. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  9. Additive Manufacturing of Aerospace Propulsion Components

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  10. Latest Zika Puzzle: How U.S. Patient Infected Caregiver

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159925.html Latest Zika Puzzle: How U.S. Patient Infected Caregiver Officials say ... MONDAY, July 18, 2016 (HealthDay News) -- The mysterious Zika virus continues to surprise health scientists. On Monday, ...

  11. ATRF Houses the Latest DNA Sequencing Technologies | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer By the end of October, the Advanced Technology Research Facility (ATRF) will be one of the few facilities in the world to house all of the latest DNA sequencing technologies.

  12. Engineering Education for a New Era

    NASA Astrophysics Data System (ADS)

    Ohgaki, Shinichiro

    Engineering education is composed of five components, the idea what engineering education ought to be, the knowledge in engineering fields, those who learn engineering, those who teach engineering and the stakeholders in engineering issues. The characteristics of all these five components are changing with the times. When we consider the engineering education for the next era, we should analyze the changes of all five components. Especially the knowledge and tools in engineering fields has been expanding, and advanced science and technology is casting partly a dark shadow on the modern convenient life. Moral rules or ethics for developing new products and engineering systems are now regarded as most important in engineering fields. All those who take the responsibility for engineering education should understand the change of all components in engineering education and have a clear grasp of the essence of engineering for sustainable society.

  13. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  14. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)

    1982-01-01

    Activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, and computer code development are summarized.

  15. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)

    1982-01-01

    Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized.

  16. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  17. Fuel conservative aircraft engine technology

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1978-01-01

    Technology developments for more fuel-efficiency subsonic transport aircraft are reported. Three major propulsion projects were considered: (1) engine component improvement - directed at current engines; (2) energy efficient engine - directed at new turbofan engines; and (3) advanced turboprops - directed at technology for advanced turboprop-powered aircraft. Each project is reviewed and some of the technologies and recent accomplishments are described.

  18. Brain components

    MedlinePlus

    ... 3 major components of the brain are the cerebrum, cerebellum, and brain stem. The cerebrum is divided into left and right hemispheres, each ... gray matter) is the outside portion of the cerebrum and provides us with functions associated with conscious ...

  19. Guide for Oxygen Compatibility Assessments on Oxygen Components and Systems

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Shoffstall, Michael S.; Stoltzfus, Joel M.

    2007-01-01

    Understanding and preventing fire hazards is necessary when designing, maintaining, and operating oxygen systems. Ignition risks can be minimized by controlling heat sources and using materials that will not ignite or will not support burning in the end-use environment. Because certain materials are more susceptible to ignition in oxygen-enriched environments, a compatibility assessment should be performed before the component is introduced into an oxygen system. This document provides an overview of oxygen fire hazards and procedures that are consistent with the latest versions of American Society for Testing and Materials (ASTM) Standards G63 (1999) and G94 (2005) to address fire hazards associated with oxygen systems. This document supersedes the previous edition, NASA Technical Memorandum 104823, Guide for Oxygen Hazards Analyses on Components and Systems (1996). The step-by-step oxygen compatibility assessment method described herein (see Section 4) enables oxygen-system designers, system engineers, and facility managers to determine areas of concern with respect to oxygen compatibility and, ultimately, prevent damage to a system or injury to personnel.

  20. Paleoseismology of latest Pleistocene and Holocene fault activity in central Oregon

    SciTech Connect

    Pezzopane, S.K.; Weldon, R.J. II . Dept. of Geological Sciences)

    1993-04-01

    Latest Pleistocene and Holocene fault activity in Oregon concentrates along four zones that splay northward from seismically active faults along the Central Nevada and Eastern California seismic zones. The Central Oregon fault zone is one of these zones, which splays northward from dextral faults of the Walker Lane, stretching across the flanks of several ranges in south-central Oregon along a N20[degree]W trend, and ultimately merges with the Cascade volcanic arc near Newberry volcano. Aerial-photo interpretations and field investigations reveal fault scarps with, on average about 4 m, but in places as much as [approximately]10 m of vertical expression across latest Pleistocene pluvial lake deposits and geomorphic surfaces. Trenches across three different faults in the Central Oregon zone reveal evidence for multiple episodes of faulting in the form of fault-related colluvial deposits and deformed horizons which have been cut by younger fault movements. Trench exposures reveal faults with relatively steep dips and anastomosing traces, which are interpreted locally as evidence for a small oblique-slip component. Vertical offsets measured in the trenches are [approximately]2 m or more for each event. Radiocarbon analyses and preliminary tephra correlations indicate that the exposed deposits are [approximately]30,000 yr in age and younger, and record the decline of latest Pleistocene pluvial lakes. Commonly, reworked or deformed lacustrine deposits and interlayered and faulted colluvial deposits mark the second and third events back, which probably occurred in the Latest Pleistocene, at a time during low to moderate lake levels. If offsets of the past 18,000 yr are representative of the long-term average, then faults along this zone have slip rates of from 0.2 mm/yr to 0.6 mm/yr and recurrence intervals that range from [approximately]4,000 yr to 11,000 yr.

  1. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  2. Latest climate changes in Romania :tornadoes

    NASA Astrophysics Data System (ADS)

    Pop, Elena

    2014-05-01

    Latest climate changes in Romania :tornadoes As climate change has been considered a research priority in the European Strategy for enduring development , I have done a detailed research with my students of the new climate change that has been going on in Romania for the past decade. More precisely I have studied together with my students the phenomenon of tornadoes that have seriously affected on some occasions some our our country's locations, such as Facaeni, in the county of Ialomita, in August 2002. A quite unusual phenomenon occurred on that location situated at 44.56 degrees northern latitude and at 27.89 degrees eastern longitude, that caused severe damage to the local environment and three persons lost their lives in the process, as well as other thirty people suffering from bad injuries. The magnitude of that strong phenomenon rose on the Fujita scale at level F3 which implied wing gusts between 252-300 km/ hour . A main cause of occurrence of such a severe weather was the difference in temperature of two huge air masses, one of Polar origin, and other coming from tropical latitudes . Their crossroads was on that precise territory of Romania. The duration of the worst part of the tornado path lasted only for two minutes, but the consequences of its passage were colossal : total destruction of 33 households, and other 395 were partially damaged, 1,000 people afflicted by the devastation and 100 acres of acacia tree forest ripped off the ground. The first ever recorded tornado phenomenon in Romania was around 1894-1896, considered at that time " a freak of nature" was seen as a cloud formation abnormality , an uncontrolled force of nature that had a huge impact , and at the same time, it vanished into "thin air " fast. The most affected areas in Romania by tornadoes are the south-eastern planes where the cloud formations can create fast columns of air rotating up to 500 km/hour. The local people compared the cloud funnels created on the planes to "serpents

  3. T-Minus DART: Latest Technical Developments

    NASA Astrophysics Data System (ADS)

    Uitendaal, M.; Olthof, H.

    2015-09-01

    By being the only method to obtain in-situ measurements of the mesosphere and lower thermosphere, sounding rockets are an invaluable asset for the atmospheric research community and many more fields of science. Their complex nature, however, complicates their operation and a single mission costs much time and effort of a large crew. Smaller and simpler sounding rockets have been used in the past, the Super Loki (SuLo) and the VIPER being a good example of that. However, this type of system is not available any more. T-Minus Engineering intents to develop a replacement system. The concept and baseline design have been established, and a first test flight has been performed in order to test some of the most important features of this system.

  4. Laser fringe anemometry for aero engine components

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.

    1986-01-01

    Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.

  5. Low transient thermal stress turbine engine components

    DOEpatents

    Shi, Jun; Schmidt, Wayde R.

    2011-06-28

    A turbine vane includes a platform; and at least one airfoil mounted to the platform and having a trailing edge and a leading edge, wherein the vane is composed of a functionally graded material having a first material and a second material, wherein the trailing edge includes a greater amount of the first material than the second material, and the leading edge includes a greater amount of the second material than the first material.

  6. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  7. Stennis certifies final shuttle engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.

  8. Advances in water engineering

    SciTech Connect

    Tebbutt, T.H.Y.

    1985-01-01

    Water is the world's most important natural resource and its efficient utilization requires a proper understanding of the multifunctional role of water in modern society. The philosophy of integrating both quality and quantity considerations of water engineering is an essential aspect of optimal use of resources and this book provides a collection of 41 papers to emphasize this philosophy. Each section of the contents includes a state-of-the art review followed by specialist contributions on a specific topic so that the reader can gain an overview of the area as well as being informed about the latest developments in particular aspects of the subject.

  9. Scientific Software Component Technology

    SciTech Connect

    Kohn, S.; Dykman, N.; Kumfert, G.; Smolinski, B.

    2000-02-16

    We are developing new software component technology for high-performance parallel scientific computing to address issues of complexity, re-use, and interoperability for laboratory software. Component technology enables cross-project code re-use, reduces software development costs, and provides additional simulation capabilities for massively parallel laboratory application codes. The success of our approach will be measured by its impact on DOE mathematical and scientific software efforts. Thus, we are collaborating closely with library developers and application scientists in the Common Component Architecture forum, the Equation Solver Interface forum, and other DOE mathematical software groups to gather requirements, write and adopt a variety of design specifications, and develop demonstration projects to validate our approach. Numerical simulation is essential to the science mission at the laboratory. However, it is becoming increasingly difficult to manage the complexity of modern simulation software. Computational scientists develop complex, three-dimensional, massively parallel, full-physics simulations that require the integration of diverse software packages written by outside development teams. Currently, the integration of a new software package, such as a new linear solver library, can require several months of effort. Current industry component technologies such as CORBA, JavaBeans, and COM have all been used successfully in the business domain to reduce software development costs and increase software quality. However, these existing industry component infrastructures will not scale to support massively parallel applications in science and engineering. In particular, they do not address issues related to high-performance parallel computing on ASCI-class machines, such as fast in-process connections between components, language interoperability for scientific languages such as Fortran, parallel data redistribution between components, and massively

  10. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  11. Armored Geomembrane Cover Engineering

    PubMed Central

    Foye, Kevin

    2011-01-01

    Geomembranes are an important component of modern engineered barriers to prevent the infiltration of stormwater and runoff into contaminated soil and rock as well as waste containment facilities—a function generally described as a geomembrane cover. This paper presents a case history involving a novel implementation of a geomembrane cover system. Due to this novelty, the design engineers needed to assemble from disparate sources the design criteria for the engineering of the cover. This paper discusses the design methodologies assembled by the engineering team. This information will aid engineers designing similar cover systems as well as environmental and public health professionals selecting site improvements that involve infiltration barriers. PMID:21776229

  12. NASA Now: Engineering Spacesuits

    NASA Video Gallery

    Mallory Jennings, a Technology Development Engineer who develops components for the next-generation spacesuit, explains how the design for the spacesuit is dependent upon the mission that the astro...

  13. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Vatsky, A.; Antonelli, M. (Editor)

    1983-01-01

    Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studied, components and subsystems, and the study and test of low cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.

  14. The latest results/analysis from Double Chooz Experiment

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Double Chooz Collaboration

    2015-04-01

    Precise measurement of the neutrino mixing angle theta13 is the primary goal of the Double Chooz Experiment. Inverse beta decay process provides a unique signature of anti-neutrino interaction from the reactors, giving prompt signals from positron annihilation and delayed signals from neutron capture by either Gadolinium (Gd) or Hydrogen (H). In this talk, the latest Gd- and H-based analysis results from Double Chooz will be presented, including the detection efficiency evaluation, background estimates, energy calibration and oscillation results. The latest analysis/results from Double Chooz experiment.

  15. Hyperfrequency components

    NASA Astrophysics Data System (ADS)

    1994-09-01

    The document has a collection of 19 papers (11 on technologies, 8 on applications) by 26 authors and coauthors. Technological topics include: evolution from conventional HEMT's double heterojunction and planar types of pseudomorphic HEMT's; MMIC R&D and production aspects for very-low-noise, low-power, and very-low-noise, high-power applications; hyperfrequency CAD tools; parametric measurements of hyperfrequency components on plug-in cards for design and in-process testing uses; design of Class B power amplifiers and millimetric-wave, bigrid-transistor mixers, exemplifying combined use of three major types of physical simulation in electrical modeling of microwave components; FET's for power amplification at up to 110 GHz; production, characterization, and nonlinear applications of resonant tunnel diodes. Applications topics include: development of active modules for major European programs; tubes versus solid-state components in hyperfrequency applications; status and potentialities of national and international cooperative R&D on MMIC's and CAD of hyperfrequency circuitry; attainable performance levels in multifunction MMIC applications; state of the art relative of MESFET power amplifiers (Bands S, C, X, Ku); creating a hyperfrequency functions library, of parametrizable reference cells or macrocells; and design of a single-stage, low-noise, band-W amplifier toward development of a three-stage amplifier.

  16. Component separations.

    PubMed

    Heller, Lior; McNichols, Colton H; Ramirez, Oscar M

    2012-02-01

    Component separation is a technique used to provide adequate coverage for midline abdominal wall defects such as a large ventral hernia. This surgical technique is based on subcutaneous lateral dissection, fasciotomy lateral to the rectus abdominis muscle, and dissection on the plane between external and internal oblique muscles with medial advancement of the block that includes the rectus muscle and its fascia. This release allows for medial advancement of the fascia and closure of up to 20-cm wide defects in the midline area. Since its original description, components separation technique underwent multiple modifications with the ultimate goal to decrease the morbidity associated with the traditional procedure. The extensive subcutaneous lateral dissection had been associated with ischemia of the midline skin edges, wound dehiscence, infection, and seroma. Although the current trend is to proceed with minimally invasive component separation and to reinforce the fascia with mesh, the basic principles of the techniques as described by Ramirez et al in 1990 have not changed over the years. Surgeons who deal with the management of abdominal wall defects are highly encouraged to include this technique in their collection of treatment options.

  17. Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  18. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  19. Scientific Component Technology Initiative

    SciTech Connect

    Kohn, S; Bosl, B; Dahlgren, T; Kumfert, G; Smith, S

    2003-02-07

    The laboratory has invested a significant amount of resources towards the development of high-performance scientific simulation software, including numerical libraries, visualization, steering, software frameworks, and physics packages. Unfortunately, because this software was not designed for interoperability and re-use, it is often difficult to share these sophisticated software packages among applications due to differences in implementation language, programming style, or calling interfaces. This LDRD Strategic Initiative investigated and developed software component technology for high-performance parallel scientific computing to address problems of complexity, re-use, and interoperability for laboratory software. Component technology is an extension of scripting and object-oriented software development techniques that specifically focuses on the needs of software interoperability. Component approaches based on CORBA, COM, and Java technologies are widely used in industry; however, they do not support massively parallel applications in science and engineering. Our research focused on the unique requirements of scientific computing on ASCI-class machines, such as fast in-process connections among components, language interoperability for scientific languages, and data distribution support for massively parallel SPMD components.

  20. Embedding Sustainable Development at Cambridge University Engineering Department

    ERIC Educational Resources Information Center

    Fenner, Richard A.; Ainger, Charles M.; Cruickshank, Heather J.; Guthrie, Peter M.

    2005-01-01

    Purpose--The paper seeks to examine the latest stage in a process of change aimed at introducing concepts of sustainable development into the activities of the Department of Engineering at Cambridge University, UK. Design/methodology/approach--The rationale behind defining the skills which future engineers require is discussed and vehicles for…

  1. Space Shuttle Main Engine: Thirty Years of Innovation

    NASA Technical Reports Server (NTRS)

    Jue, F. H.; Hopson, George (Technical Monitor)

    2002-01-01

    The Space Shuttle Main Engine (SSME) is the first reusable, liquid booster engine designed for human space flight. This paper chronicles the 30-year history and achievements of the SSME from authority to proceed up to the latest flight configuration - the Block 2 SSME.

  2. APS beamline standard components handbook

    SciTech Connect

    Kuzay, T.M.

    1992-01-01

    It is clear that most Advanced Photon Source (APS) Collaborative Access Team (CAT) members would like to concentrate on designing specialized equipment related to their scientific programs rather than on routine or standard beamline components. Thus, an effort is in progress at the APS to identify standard and modular components of APS beamlines. Identifying standard components is a nontrivial task because these components should support diverse beamline objectives. To assist with this effort, the APS has obtained advice and help from a Beamline Standardization and Modularization Committee consisting of experts in beamline design, construction, and operation. The staff of the Experimental Facilities Division identified various components thought to be standard items for beamlines, regardless of the specific scientific objective of a particular beamline. A generic beamline layout formed the basis for this identification. This layout is based on a double-crystal monochromator as the first optical element, with the possibility of other elements to follow. Pre-engineering designs were then made of the identified standard components. The Beamline Standardization and Modularization Committee has reviewed these designs and provided very useful input regarding the specifications of these components. We realize that there will be other configurations that may require special or modified components. This Handbook in its current version (1.1) contains descriptions, specifications, and pre-engineering design drawings of these standard components. In the future, the APS plans to add engineering drawings of identified standard beamline components. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

  3. Actively Controlled Components. Chapter 2

    NASA Technical Reports Server (NTRS)

    Horn, W.; Hiller, S.-J.; Pfoertner, H.; Schadow, K.; Rosenfeld, T.; Garg, S.

    2009-01-01

    Active Control can help to meet future engine requirements by an active improvement of the component characteristics. The concept is based on an intelligent control logic, which senses actual operating conditions and reacts with adequate actuator action. This approach can directly improve engine characteristics as performance, operability, durability and emissions on the one hand. On the other hand active control addresses the design constrains imposed by unsteady phenomena like inlet distortion, compressor surge, combustion instability, flow separations, vibration and noise, which only occur during exceptional operating conditions. The feasibility and effectiveness of active control technologies have been demonstrated in lab-scale tests. This chapter describes a broad range of promising applications for each engine component. Significant efforts in research and development remain to implement these technologies in engine rig and finally production engines and to demonstrate today s engine generation airworthiness, safety, reliability, and durability requirements. Active control applications are in particular limited by the gap between available and advanced sensors and actuators, which allow an operation in the harsh environment in an aero engine. The operating and performance requirements for actuators and sensors are outlined for each of the gas turbine sections from inlet to nozzle.

  4. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  5. Latest German-English Terminology in CADCAM & Robotics

    NASA Astrophysics Data System (ADS)

    Hussain, S. M.

    2014-07-01

    As a technical translator who speaks German fluently, the author would like to study and display the latest bilingual technical terminology in German being used in hardware, software and process technology involved in CADCAM & ROBOTICS. This will greatly help technical translators to correctly translate difficult texts from this area of technology.

  6. Teacher Evaluation in China: Latest Trends and Future Directions

    ERIC Educational Resources Information Center

    Liu, Shujie; Zhao, Decheng

    2013-01-01

    With the implementation of teacher performance pay in 2009 in China, teacher performance evaluation has become a heated topic. This research study follows up on two previous studies of teacher evaluation in China and continues the dialog by analyzing the latest trends in the context of teacher performance pay. There were two sources of information…

  7. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  8. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  9. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  10. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  11. Layered Systems Engineering Engines

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Overman, Marvin J.

    2009-01-01

    A notation is described for depicting the relationships between multiple, contemporaneous systems engineering efforts undertaken within a multi-layer system-of-systems hierarchy. We combined the concepts of remoteness of activity from the end customer, depiction of activity on a timeline, and data flow to create a new kind of diagram which we call a "Layered Vee Diagram." This notation is an advance over previous notations because it is able to be simultaneously precise about activity, level of granularity, product exchanges, and timing; these advances provide systems engineering managers a significantly improved ability to express and understand the relationships between many systems engineering efforts. Using the new notation, we obtain a key insight into the relationship between project duration and the strategy selected for chaining the systems engineering effort between layers, as well as insights into the costs, opportunities, and risks associated with alternate chaining strategies.

  12. Monitoring of the Latest Stages of Neutron Star Transient Outbursts

    NASA Astrophysics Data System (ADS)

    Campana, Sergio

    Binary transients vary their X-ray luminosity over many orders of magnitude, allowing to probe different accretion regimes that are unaccessible to persistent sources. This is the main drive of the present proposal that aims at observing the latest stages of transient outbursts, looking for spectral and timing properties changes. We propose to monitor the final stages of two HXRT and two SXRT outbursts. We will complemement these data with approved (AO1) INTEGRAL data on a sample of SXRTs and with IR/optical data taken with REM at La Silla. RXTE is particularly well suited due to its schedule flexibility and unrivalled capability of exploring fast variability and it provides a unique opportunity to gain insight in the physics of the outburst latest stages.

  13. Latest technologies for the enhancement of antibody affinity.

    PubMed

    Wark, Kim L; Hudson, Peter J

    2006-08-01

    High affinity antibodies are crucial both for the discovery and validation of biomarkers for human health and disease and as clinical diagnostic and therapeutic reagents. This review describes some of the latest technologies for the design, mutation and selection of high affinity antibodies that provide a paradigm for molecular evolution of a far wider range of proteins including enzymes. Strategies include both in vivo and in vitro methods and embrace the latest concepts for antibody display and selection. Specifically, affinity enhancement can be tailored to the target-binding surface, typically the complementary determining region (CDR) loops in antibodies, whereas enhanced stability, expression or catalytic properties can be affected by selected changes to the core protein scaffold. Together, these technologies provide a rapid and powerful strategy to drive the next generation of protein-based reagents for numerous clinical, environmental and agribusiness applications.

  14. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  15. Latest innovations for tattoo and permanent makeup removal.

    PubMed

    Mao, Johnny C; DeJoseph, Louis M

    2012-05-01

    The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented.

  16. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Technical Reports Server (NTRS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  17. Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.

  18. Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Malaria Vaccine Adjuvants: Latest Update and Challenges in Preclinical and Clinical Research

    PubMed Central

    Mata, Elena; Salvador, Aiala; Igartua, Manoli; Hernández, Rosa María; Pedraz, José Luis

    2013-01-01

    There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages. PMID:23710439

  20. Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing

    NASA Technical Reports Server (NTRS)

    Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

    2001-01-01

    Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable

  1. Freshman Engineering Retention: A Holistic Look

    ERIC Educational Resources Information Center

    Honken, Nora; Ralston, Patricia A. S.

    2013-01-01

    The ability to increase the number of engineering graduates depends on many factors including our country's P-16+ educational system, the job market and the engineering professions. Students need to be prepared for the rigorous math and science components of engineering programs, but they also must have interest in engineering as a profession,…

  2. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  3. Italian High-speed Airplane Engines

    NASA Technical Reports Server (NTRS)

    Bona, C F

    1940-01-01

    This paper presents an account of Italian high-speed engine designs. The tests were performed on the Fiat AS6 engine, and all components of that engine are discussed from cylinders to superchargers as well as the test set-up. The results of the bench tests are given along with the performance of the engines in various races.

  4. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  5. Computer aided photographic engineering

    NASA Technical Reports Server (NTRS)

    Hixson, Jeffrey A.; Rieckhoff, Tom

    1988-01-01

    High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.

  6. Automotive Engine Maintenance and Repair, 8-1. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Marine Corps, Washington, DC.

    These military-developed curriculum materials consist of six individualized lessons dealing with automotive engine maintenance and repair. Covered in the individual volumes are basic engine construction and operation, engine and engine components design, engine malfunction diagnosis and remedy, engine disassembly, engine repair, and engine repair…

  7. Development of an Ada programming support environment database SEAD (Software Engineering and Ada Database) administration manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    Software Engineering and Ada Database (SEAD) was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities which are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce duplication of effort while improving quality in the development of future software systems. SEAD data is organized into five major areas: information regarding education and training resources which are relevant to the life cycle of Ada-based software engineering projects such as those in the Space Station program; research publications relevant to NASA projects such as the Space Station Program and conferences relating to Ada technology; the latest progress reports on Ada projects completed or in progress both within NASA and throughout the free world; Ada compilers and other commercial products that support Ada software development; and reusable Ada components generated both within NASA and from elsewhere in the free world. This classified listing of reusable components shall include descriptions of tools, libraries, and other components of interest to NASA. Sources for the data include technical newletters and periodicals, conference proceedings, the Ada Information Clearinghouse, product vendors, and project sponsors and contractors.

  8. Genetically engineered microorganisms for improved crop production. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of genetically altered bacteria and viruses to improve and increase crop production. The uses of microorganisms to transport desirable genes into the subject plant, and the external applications of microorganisms for frost protection, insect repellent properties, or conversion of nitrogen to fertilizer are among the topics discussed. (Contains 250 citations and includes a subject term index and title list.)

  9. Powder processing of oxides. (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the properties and applications of metal oxide ceramics and refractories. Citations consider cold isostatic pressing, compacting, densification, firing, grinding, hot isostatic pressing, laser beam processing, and sintering. Aluminum oxide, berylium oxide, hafnium oxide, silicon dioxide, and titanium dioxide are covered. Uses in insulation, propulsion systems, electric devices, and cylinder heads are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Powder processing of nitrides (excluding hot isostatic processing). (Latest citations from Engineered Materials abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the properties and processing of metal nitride ceramics and refractories. Citations consider compacting and sintering processes. Phase transformations, crystallization, and devitrification processes are considered. Aluminum nitride, boron nitride, silicon nitride, silicon oxynitride, and titanium nitride are among materials discussed. The use of hot isostatic pressing is considered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Thermal insulating materials. (Latest citations from Information Services in Mechanical Engineering database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning medium and high temperature thermal insulating materials. Various types of insulating materials are examined with respect to their properties and suitability for insulating electrical generators, solar heating and cooling systems, furnaces, and rocket motors. Ceramics, silica, and polyethylene are among the materials considered. (Contains a minimum of 71 citations and includes a subject term index and title list.)

  12. Thermal insulating materials. (Latest citations from Information Services in Mechanical Engineering data base). Published Search

    SciTech Connect

    Not Available

    1992-07-01

    The bibliography contains citations concerning medium and high temperature thermal insulating materials. Various types of insulating materials are examined with respect to their properties and suitability for insulating electrical generators, solar heating and cooling systems, furnaces, and rocket motors. Ceramics, silica, and polyethylene are among the materials considered. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  13. Powder processing of oxides. (Latest citations from Engineered Materials Abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the properties and applications of metal oxide ceramics and refractories. Citations consider cold isostatic pressing, compacting, densification, firing, grinding, hot isostatic pressing, laser beam processing, and sintering. Aluminum oxide, berylium oxide, hafnium oxide, silicon dioxide, and titanium dioxide are covered. Uses in insulation, propulsion systems, electric devices, and cylinder heads are included. (Contains a minimum of 225 citations and includes a subject term index and title list.)

  14. Petroleum engineering: Horizontal drilling. (Latest citations from the Georef database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning horizontal drilling technology for oil well production. Articles discuss techniques and problems associated with geologic formations such as chalk deposits, fractured rock systems, clastic rocks, sandstones, and karst areas. Citations address applications of horizontal drilling to petroleum exploration, extension of existing fields, enhanced oil recovery, targeted zone drilling, and geologically restrained petroleum reservoirs. (Contains a minimum of 123 citations and includes a subject term index and title list.)

  15. Oil spill removal techniques and equipment. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning equipment and techniques for the control, dispersal, cleanup, and disposal of oil spills. Topics include chemical dispersants, booms, and mechanical skimmers. The citations emphasize spill removal for harbors, estuaries, and shorelines, and examine spill impact on water birds and marine life. (Contains a minimum of 195 citations and includes a subject term index and title list.)

  16. Antibody Engineering and Therapeutics

    PubMed Central

    Almagro, Juan Carlos; Gilliland, Gary L; Breden, Felix; Scott, Jamie K; Sok, Devin; Pauthner, Matthias; Reichert, Janice M; Helguera, Gustavo; Andrabi, Raiees; Mabry, Robert; Bléry, Mathieu; Voss, James E; Laurén, Juha; Abuqayyas, Lubna; Barghorn, Stefan; Ben-Jacob, Eshel; Crowe, James E; Huston, James S; Johnston, Stephen Albert; Krauland, Eric; Lund-Johansen, Fridtjof; Marasco, Wayne A; Parren, Paul WHI; Xu, Kai Y

    2014-01-01

    The 24th Antibody Engineering & Therapeutics meeting brought together a broad range of participants who were updated on the latest advances in antibody research and development. Organized by IBC Life Sciences, the gathering is the annual meeting of The Antibody Society, which serves as the scientific sponsor. Preconference workshops on 3D modeling and delineation of clonal lineages were featured, and the conference included sessions on a wide variety of topics relevant to researchers, including systems biology; antibody deep sequencing and repertoires; the effects of antibody gene variation and usage on antibody response; directed evolution; knowledge-based design; antibodies in a complex environment; polyreactive antibodies and polyspecificity; the interface between antibody therapy and cellular immunity in cancer; antibodies in cardiometabolic medicine; antibody pharmacokinetics, distribution and off-target toxicity; optimizing antibody formats for immunotherapy; polyclonals, oligoclonals and bispecifics; antibody discovery platforms; and antibody-drug conjugates. PMID:24589717

  17. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  18. Engineering Practice and Engineering Ethics.

    ERIC Educational Resources Information Center

    Lynch, William T.; Kline, Ronald

    2000-01-01

    Offers ways of applying science and technology studies to the teaching of engineering ethics. Suggests modifications of both detailed case studies on engineering disasters and hypothetical, ethical dilemmas employed in engineering ethics classes. (Author/CCM)

  19. Top: Latest results from the Tevatron - Cross section and mass

    SciTech Connect

    M. Coca

    2003-09-02

    The Tevatron is presently the world's only source of top quark production. This presentation summarizes the latest Run II results on top physics obtained by the CDF and D0 collaborations, using data taken until mid-January 2003. The first cross section measurements at 1.96 TeV in dilepton and lepton+jets channels agree with the NLO (Next-to-Leading-Order) theoretical predictions. Two top mass measurements, one by CDF using Run II data and another by D0 using an improved technique anticipate the improvements to come in the near future.

  20. Latest Trend of Object Oriented Technology and Agent Technology

    NASA Astrophysics Data System (ADS)

    Nakatani, Takako; Hanyuda, Eiiti; Kurokawa, Toshiaki; Suguta, Shigeki; Ohsuga, Akihiko; Kodama, Kiminobu; Masumura, Hitoshi; Nakamura, Masatoshi; Tanaka, Tatsuji

    Object-oriented technology is used for the software of the large range, and its application fields are increasing. Object-oriented technology is also accepted naturally in the field of Internet application. Consequently, developments of new kinds of object-oriented technologies have been performed. Agent technology has been developed based on an object-oriented concept, and may have a great evolution with applying to applications of Internet field. In this paper, authors introduce the latest trend and the example of application of such object-oriented technology and agent technology.

  1. Constraining interacting dark energy models with latest cosmological observations

    NASA Astrophysics Data System (ADS)

    Xia, Dong-Mei; Wang, Sai

    2016-11-01

    The local measurement of H0 is in tension with the prediction of Λ cold dark matter model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on cosmic microwave background, the baryon acoustic oscillation, large-scale structure, supernovae, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  2. Constraining interacting dark energy models with latest cosmological observations

    NASA Astrophysics Data System (ADS)

    Xia, Dong-Mei; Wang, Sai

    2016-08-01

    The local measurement of H0 is in tension with the prediction of ΛCDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  3. [Latest Advance of Study on Pathogenesis of Immune Thrombocytopenia].

    PubMed

    Yang, Min; Liu, Wen-Jun

    2016-06-01

    Immune thrombocytopenia (ITP) is recognized as a multifactorial cell-specific autoimmune disorder, and its pathogenesis is still not very clear. Traditional concept suggests that the platelet destruction mediated by autoantibodies is the pathophysiology mechanism of ITP, while many studies in recent years have shown that the abnormities of T lymphocyte, dendritic cell (DC), natural killer cell (NK), cytokine, programmed cell death (PCD), oxidative stress (OS), infection, pregnancy and drugs etc play an important role in the pathogenesis of ITP. Since the study of ITP has made a series of important achievements in recent years, this review focuses on the latest advance of studies on pathogenesis of ITP. PMID:27342542

  4. Aeronautics and Space Engineering Board: Aeronautics Assessment Committee

    NASA Technical Reports Server (NTRS)

    1977-01-01

    High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.

  5. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  6. One-component nanomedicine.

    PubMed

    Su, Hao; Koo, Jin Mo; Cui, Honggang

    2015-12-10

    One-component nanomedicine (OCN) represents an emerging class of therapeutic nanostructures that contain only one type of chemical substance. This one-component feature allows for fine-tuning and optimization of the drug loading and physicochemical properties of nanomedicine in a precise manner through molecular engineering of the underlying building blocks. Using a precipitation procedure or effective molecular assembly strategies, molecularly crafted therapeutic agents (e.g. polymer-drug conjugates, small molecule prodrugs, or drug amphiphiles) could involuntarily aggregate, or self-assemble into nanoscale objects of well-defined sizes and shapes. Unlike traditional carrier-based nanomedicines that are inherently multicomponent systems, an OCN does not require the use of additional carriers and could itself possess desired physicochemical features for preferential accumulation at target sites. We review here recent progress in the molecular design, conjugation methods, and fabrication strategies of OCN, and analyze the opportunities that this emerging platform could open for the new and improved treatment of devastating diseases such as cancer.

  7. Plastics within the internal combustion engine

    SciTech Connect

    Gaudette, E.P.

    1985-01-01

    A high strength, lightweight polymeric material has been developed which shows considerable promise as an engine component material. The polymer has been successfully tested in a number of engine components, such as spring retainers, valve stems, piston skirts, and piston pins. This paper introduces the concept of using plastic material to produce an engine component. The utilization of polymeric materials in the transportation industry, especially automotive, is extensive. This paper describes the designs, assembly, and performance of plastic engine components as currently known today.

  8. Stirling engines

    SciTech Connect

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  9. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  10. Household Vehicles Energy Use: Latest Data and Trends

    EIA Publications

    2005-01-01

    This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

  11. NATO Engine Test AT RRAD

    SciTech Connect

    Harry M. Meyer III

    2003-03-26

    This report details the reasons for and the outcome of a diesel engine test performed at the Red River Army Depot (RRAD) as part of a program called the Bradley Fighting Vehicle Component Reclamation through Thermal spray coating Technology Program.

  12. Improved automobile gas turbine engine

    NASA Technical Reports Server (NTRS)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  13. 14 CFR 23.994 - Fuel system components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system components. 23.994 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.994 Fuel system components. Fuel system components in an engine nacelle or in the...

  14. 14 CFR 25.994 - Fuel system components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system components. 25.994 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.994 Fuel system components. Fuel system components in an engine nacelle or in the fuselage must be protected from...

  15. Aircraft Engine-Monitoring System And Display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Person, Lee H., Jr.

    1992-01-01

    Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.

  16. Corrosion issues in joining lightweight materials: A review of the latest achievements

    NASA Astrophysics Data System (ADS)

    Montemor, M. F.

    2016-02-01

    Multimaterials assemblies and, in particular, assemblies made of lightweight components are of utmost relevance in many technical applications. These assemblies include multimetal, metal-polymer, metal-adhesive, and metal-composites combinations, among others. Presently, the transportation sector is looking for lighter materials that allow for reducing fuel consumption and the environmental footprint. Aluminum and magnesium alloys, as well as composites and polymers, are considered strategic for such purposes, and their joining in metal-metal or hybrid assemblies has been explored to develop lightweight components. These multimaterial assemblies are often exposed to aggressive environments in which moisture and aggressive species are present. Under these conditions corrosion phenomena are a major source of material failures. Depending on the nature of the metals and nonmetals and of the joining process, the mechanism and extent of corrosion can vary significantly. Thus, it is essential to understand the impact of corrosion in joined materials and to know which counter-measures can be adopted to mitigate corrosion events in the system of concern. This chapter aims at reviewing the latest results of studies focused in corrosion issues in the joining of lightweight materials. It describes the most common corrosion phenomena observed in joined materials, and it emphasizes corrosion issues in assemblies that combine different metals and that combine metals with nonmetals. Moreover, it overviews the state-of-the-art in corrosion protection strategies that can be applied and, finally, it overlooks the future trends.

  17. Component Fragility Research Program: Phase 1 component prioritization

    SciTech Connect

    Holman, G.S.; Chou, C.K.

    1987-06-01

    Current probabilistic risk assessment (PRA) methods for nuclear power plants utilize seismic ''fragilities'' - probabilities of failure conditioned on the severity of seismic input motion - that are based largely on limited test data and on engineering judgment. Under the NRC Component Fragility Research Program (CFRP), the Lawrence Livermore National Laboratory (LLNL) has developed and demonstrated procedures for using test data to derive probabilistic fragility descriptions for mechanical and electrical components. As part of its CFRP activities, LLNL systematically identified and categorized components influencing plant safety in order to identify ''candidate'' components for future NRC testing. Plant systems relevant to safety were first identified; within each system components were then ranked according to their importance to overall system function and their anticipated seismic capacity. Highest priority for future testing was assigned to those ''very important'' components having ''low'' seismic capacity. This report describes the LLNL prioritization effort, which also included application of ''high-level'' qualification data as an alternate means of developing probabilistic fragility descriptions for PRA applications.

  18. Engineering Design Thinking

    ERIC Educational Resources Information Center

    Lammi, Matthew; Becker, Kurt

    2013-01-01

    Engineering design thinking is "a complex cognitive process" including divergence-convergence, a systems perspective, ambiguity, and collaboration (Dym, Agogino, Eris, Frey, & Leifer, 2005, p. 104). Design is often complex, involving multiple levels of interacting components within a system that may be nested within or connected to other systems.…

  19. Incorporating global components into ethics education.

    PubMed

    Wang, George; Thompson, Russell G

    2013-03-01

    Ethics is central to science and engineering. Young engineers need to be grounded in how corporate social responsibility principles can be applied to engineering organizations to better serve the broader community. This is crucial in times of climate change and ecological challenges where the vulnerable can be impacted by engineering activities. Taking a global perspective in ethics education will help ensure that scientists and engineers can make a more substantial contribution to development throughout the world. This paper presents the importance of incorporating the global and cross culture components in the ethic education. The authors bring up a question to educators on ethics education in science and engineering in the globalized world, and its importance, necessity, and impendency. The paper presents several methods for discussion that can be used to identify the differences in ethics standards and practices in different countries; enhance the student's knowledge of ethics in a global arena. PMID:21769592

  20. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., propellers, appliances, or component parts for return to service after maintenance, preventive maintenance... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  1. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., propellers, appliances, or component parts for return to service after maintenance, preventive maintenance... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  2. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., propellers, appliances, or component parts for return to service after maintenance, preventive maintenance... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  3. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., propellers, appliances, or component parts for return to service after maintenance, preventive maintenance... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  4. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after..., propellers, appliances, or component parts for return to service after maintenance, preventive maintenance... Administrator, may approve an aircraft, airframe, aircraft engine, propeller, appliance, or component part...

  5. International Doctoral Science and Engineering Students: Impact on Cohorts' Career Prospects

    ERIC Educational Resources Information Center

    Su, Xuhong

    2013-01-01

    As more international doctoral students flow into science and engineering departments in American research universities, a marked shift on the demographic composition of doctoral student bodies has been witnessed. Using a dataset combining a survey of science and engineering department chairs with the latest department evaluation information, this…

  6. Latest progress from the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Collaboration

    2016-05-01

    Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.

  7. The endocannabinoid system: a general view and latest additions

    PubMed Central

    Petrocellis, Luciano De; Cascio, Maria Grazia; Marzo, Vincenzo Di

    2004-01-01

    After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana's psychoactive principle Δ9-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest ‘additions' to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids. PMID:14744801

  8. Introduction to Latest RF ATE with Low Test Cost Solutions

    NASA Astrophysics Data System (ADS)

    Kimishima, Masayuki

    This paper describes latest RF Automated Test Equipment (RF ATE) technologies that include device under test (DUT) connections, a calibration method, and an RF test module mainly focusing on low cost of test (COT). Most important respect for low COT is how achieve a number of simultaneous measurements and short test time as well as a plain calibration. We realized these respects by a newly proposed calibration method and a drastically downsized RF test module with multiple resources and high throughput. The calibration method is very convenient for RF ATE. Major contribution for downsizing of the RF test module is RF circuit technology in form of RF functional system in package (RF-SIPs), resulting in very attractive test solutions.

  9. Latest Guadalupian (Middle Permian) conodonts and foraminifers from West Texas

    USGS Publications Warehouse

    Lambert, L.L.; Wardlaw, B.R.; Nestell, M.K.; Nestell, G.P.

    2002-01-01

    Clarkina, which characterizes Upper Permian (Lopingian Series) strata, evolved from Jinogondolella altudaensis in the Delaware basin of West Texas as demonstrated by transitional continuity. The West Texas section is significantly more complete in the uppermost Guadalupian interval than that of the probable GSSP reference section in South China, and clarifies the phylogenetic relationships among other conodont taxa as well. Jinogondolella granti clearly evolved into J. artafrons new species, both characterized by Pa elements with a distinctive fused carina. Representatives of Jinogondolella crofti are limited to the uppermost part of the altudaensis zone, and are interpreted as terminal paedomorphs. The associated foraminifer (non-fusulinid) fauna has some species in common with Zechstein faunas, possibly presaging the evaporitic basin that would develop following this latest Guadalupian marine deposition in West Texas.

  10. Latest NASA Instrument Cost Model (NICM): Version VI

    NASA Technical Reports Server (NTRS)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  11. Latest development of legal regulations of organ transplant in China.

    PubMed

    Ding, Chunyan

    2008-12-01

    Organ transplant practice has developed greatly in last two decades in China. In response to the practical need, the State Council released the Regulations on Human Organ Transplant 2007, replacing the previous Interim Provisions on Administration of Clinical Application of Human Organ Transplant Technology 2006. This article first examines the latest development of legal regulations of organ transplant by comparing the differences between the two pieces of legislation. It then analyzes the impact of the new rules set forth in the 2007 Regulations upon three problems existing in the current organ transplant practice, that is, organ procurement from executed prisoners, organ trade, and organ tourism. The article finally discusses the deficiencies of the 2007 Regulations, which are supposed to be remedied in the next legal reform.

  12. Latest Jurassic-early Cretaceous regressive facies, northeast Africa craton

    SciTech Connect

    van Houten, F.B.

    1980-06-01

    Nonmarine to paralic detrital deposits accumulated in six large basins between Algeria and the Arabo-Nubian shield during major regression in latest Jurassic and Early Cretaceous time. The Ghadames Sirte (north-central Libya), and Northern (Egypt) basins lay along the cratonic margin of northeastern Africa. The Murzuk, Kufra, and Southern (Egypt) basins lay in the south within the craton. Data for reconstructing distribution, facies, and thickness of relevant sequences are adequate for the three northern basins only. High detrital influx near the end of Jurassic time and in mid-Cretaceous time produced regressive nubian facies composed largely of low-sinuosity stream and fahdelta deposits. In the west and southwest the Ghadames, Murzuk, and Kufra basins were filled with a few hundred meters of detritus after long-continued earlier Mesozoic aggradation. In northern Egypt the regressive sequence succeeded earlier Mesozoic marine sedimentation; in the Sirte and Southern basins correlative deposits accumulated on Precambrian and Variscan terranes after earlier Mesozoic uplift and erosion. Waning of detrital influx into southern Tunisia and adjacent Libya in the west and into Israel in the east initiated an Albian to early Cenomanian transgression of Tethys. By late Cenomanian time it had flooded the entire cratonic margin, and spread southward into the Murzuk and Southern basins, as well as onto the Arabo-Nubian shield. Latest Jurassic-earliest Cretaceous, mid-Cretaceous, and Late Cretaceous transgressions across northeastern Africa recorded in these sequences may reflect worldwide eustatic sea-level rises. In contrast, renewed large supply of detritus during each regression and a comparable subsidence history of intracratonic and marginal basins imply regional tectonic control. 6 figures.

  13. The New and TALENted Genome Engineering Toolbox

    PubMed Central

    Campbell, Jarryd M.; Hartjes, Katherine A.; Nelson, Timothy J.; Xu, Xiaolei; Ekker, Stephen C.

    2014-01-01

    Recent advances in the burgeoning field of genome engineering are accelerating the realization of personalized therapeutics for cardiovascular disease. In the post-genomic era, sequence-specific gene-editing tools enable the functional analysis of genetic alterations implicated in disease. In partnership with high-throughput model systems, efficient gene manipulation provides an increasingly powerful toolkit to study phenotypes associated with patient-specific genetic defects. Herein, this review emphasizes the latest developments in genome engineering and how applications within the field are transforming our understanding of personalized medicine with an emphasis on cardiovascular diseases. PMID:23948583

  14. New and TALENted genome engineering toolbox.

    PubMed

    Campbell, Jarryd M; Hartjes, Katherine A; Nelson, Timothy J; Xu, Xiaolei; Ekker, Stephen C

    2013-08-16

    Recent advances in the burgeoning field of genome engineering are accelerating the realization of personalized therapeutics for cardiovascular disease. In the postgenomic era, sequence-specific gene-editing tools enable the functional analysis of genetic alterations implicated in disease. In partnership with high-throughput model systems, efficient gene manipulation provides an increasingly powerful toolkit to study phenotypes associated with patient-specific genetic defects. Herein, this review emphasizes the latest developments in genome engineering and how applications within the field are transforming our understanding of personalized medicine with an emphasis on cardiovascular diseases. PMID:23948583

  15. Engineering Allostery

    PubMed Central

    Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M.

    2014-01-01

    Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most critical for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G-protein coupled receptors and protein kinases. PMID:25306102

  16. C4 expansion in the central Inner Mongolia during the latest Miocene and early Pliocene

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfu; Wang, Yang; Deng, Tao; Wang, Xiaoming; Biasatti, Dana; Xu, Yingfeng; Li, Qiang

    2009-10-01

    The emergence of C4 photosynthesis in plants as a significant component of terrestrial ecosystems is thought to be an adaptive response to changes in atmospheric CO 2 concentration and/or climate during Neogene times and has had a profound effect on the global terrestrial biosphere. Although expansion of C4 grasses in the latest Miocene and Pliocene has been widely documented around the world, the spatial and temporal variations in the C4 expansion are still not well understood and its driving mechanisms remain a contentious issue. Here we present the results of carbon and oxygen isotope analyses of fossil and modern mammalian tooth enamel samples from the central Inner Mongolia. Our samples represent a diverse group of herbivorous mammals including deer, elephants, rhinos, horses and giraffes, ranging in age from the late Oligocene to modern. The δ13C values of 91 tooth enamel samples of early late-Miocene age or older, with the exception of two 13 Ma rhino samples (- 7.8 and - 7.6‰) and one 8.5 Ma suspected rhino sample (- 7.6‰), were all less than - 8.0‰ (VPDB), indicating that there were no C4 grasses present in their diets and thus probably few or no C4 grasses in the ecosystems of the central Inner Mongolia prior to ~ 8 Ma. However, 12 out of 26 tooth enamel samples of younger ages (~ 7.5 Ma to ~ 3.9 Ma) have δ13C values higher than - 8.0‰ (up to - 2.4‰), indicating that herbivores in the area had variable diets ranging from pure C3 to mixed C3-C4 vegetation during that time interval. The presence of C4 grasses in herbivores' diets (up to ~ 76% C4) suggests that C4 grasses were a significant component of the local ecosystems in the latest Miocene and early Pliocene, consistent with the hypothesis of a global factor as the driving mechanism of the late Miocene C4 expansion. Today, C3 grasses dominate grasslands in the central Inner Mongolia area. The retreat of C4 grasses from this area after the early Pliocene may have been driven by regional

  17. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  18. Ceramic Matrix Composites for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2011-01-01

    Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.

  19. Engine Lubricant

    NASA Technical Reports Server (NTRS)

    1993-01-01

    PS 212, a plasma-sprayed coating developed by NASA, is used to coat valves in a new rotorcam engine. The coating eliminates the need for a liquid lubricant in the rotorcam, which has no crankshaft, flywheel, distributor or water pump. Developed by Murray United Development Corporation, it is a rotary engine only 10 inches long with four cylinders radiating outward from a central axle. Company officials say the engine will be lighter, more compact and cheaper to manufacture than current engines and will feature cleaner exhaust emissions. A licensing arrangement with a manufacturer is under negotiation. Primary applications are for automobiles, but the engine may also be used in light aircraft.

  20. Ceramics for engines

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.

    1987-01-01

    Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics.

  1. Fast Whole-Engine Stirling Analysis

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  2. Fast Whole-Engine Stirling Analysis

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  3. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  4. Ceramic composites for rocket engine turbines

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Eckel, Andrew J.

    1991-01-01

    The use of ceramic materials in the hot section of the fuel turbopump of advanced reusable rocket engines promises increased performance and payload capability, improved component life and economics, and greater design flexibility. Severe thermal transients present during operation of the Space Shuttle Main Engine (SSME), push metallic components to the limit of their capabilities. Future engine requirements might be even more severe. In phase one of this two-phase program, performance benefits were quantified and continuous fiber reinforced ceramic matrix composite components demonstrated a potential to survive the hostile environment of an advanced rocket engine turbopump.

  5. Aeronautical Engineering: A Continuing Bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems.

  6. An Analog Computer for Electronic Engineering Education

    ERIC Educational Resources Information Center

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  7. Incorporating Engineering Design Challenges into STEM Courses

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  8. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  9. 40 CFR 93.111 - Criteria and procedures: Latest emissions model.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions model. 93.111 Section 93.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and procedures: Latest emissions model. (a) The conformity determination must be based on the latest emission estimation model available. This criterion is satisfied if the most current version of the...

  10. Latest Pleistocene Deposition and Erosion on the New Jersey Shelf

    NASA Astrophysics Data System (ADS)

    Christensen, B. A.; Alexander, C.; Stackhouse, S.; Turner, R.; Nordfjord, S.; Austin, J.; Goff, J.; Gulick, S.; Fulthorpe, C.

    2007-12-01

    The New Jersey margin is an ideal location for the study of sedimentary response to glacioeustatic forcing because this passive continental edge is both wide and stable. Although the region has been intensively imaged and mapped geophysically, it is still far from being understood stratigraphically because of a lack of samples to constrain timing and paleo-depositional environment. This study examines the timing and nature of latest Pleistocene erosion and deposition on the shelf, using grab samples and core recovered using the AHC-800 (Active Heave Compensation - 800 m) drilling system. The latest Pleistocene shelf is characterized by (1) downcutting and erosion by rivers associated with subaerial exposure during glacial retreat of sea level; (2) deposition at the shelf edge during sea level fall associated with formation of an outer shelf wedge; and (3) deposition in estuarine environments as sea level rose. Foraminiferal and sediment textural analyses of cores samples ground truth previous seismic reflection-based interpretations of incision and paleochannel formation. Grab samples analyzed for foraminiferal content and grain size identify environment of deposition within three main bathymetric features: sand ridges, sand ribbons, and glacial scours. Radiometric dating (14C) further constrains the timing of intervals of erosion and deposition. We relate our results to other studies and suggest a complex, spatially variable shelf response to glacial advance and retreat. K-Ar analyses of hornblende crystals provide constraints on sediment sources. Two assemblages exist: one consistent with ages of Proterozoic age plutons in the New Jersey area, and another, younger, indicating mixing. K-Ar dates show a clear difference between and Holocene (930- 970 +/- 20 Ma) sedimentary assemblages and sediments older than 30 k.y, (850-880 Ma +/- 20-30 Ma). Holocene hornblend crystal ages are consistent with Grenvillian aged plutons common to the source region (e

  11. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  12. Software Management Environment (SME): Components and algorithms

    NASA Technical Reports Server (NTRS)

    Hendrick, Robert; Kistler, David; Valett, Jon

    1994-01-01

    This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'

  13. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    PubMed

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol. PMID:25162720

  14. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    PubMed

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol.

  15. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    Engine control techniques were established and new technology requirements were identified. The designs of the components and engine were prepared in sufficient depth to calculate engine and component weights and envelopes, turbopump efficiencies and recirculation leakage rates, and engine performance. Engine design assumptions are presented along with the structural design criteria.

  16. Intelligent Engine Systems

    NASA Technical Reports Server (NTRS)

    Xie, Ming

    2008-01-01

    A high bypass jet engine fan case represents one of the largest, heaviest single components in an engine. In addition to supporting the inlet and providing the fan flowpath, the most critical function is the containment of a failed fan blade. In this development program, a lightweight, low-cost composite containment case with diagnostic capabilities was developed, fabricated, and tested. The fan case design, containment methods, and diagnostic concepts evaluated in the initial Propulsion 21 program were improved and scaled up to a full case design.

  17. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Influence of airplane components for model D. [Langley spin tunnel tests

    NASA Technical Reports Server (NTRS)

    Ralston, J.

    1983-01-01

    The influence of airplane components, as well as wing location and tail length, on the rotational flow aerodynamics is discussed for a 1/6 scale general aviation airplane model. The airplane was tested in a built-up fashion (i.e., body, body-wing, body-wing-vertical, etc.) in the presence of two wing locations and two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omega b/2V range of 0 to 0.9.

  18. Abating exhaust noises in jet engines

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R. (Inventor)

    1974-01-01

    A noise abating improvement for jet engines including turbojets, turbofans, turboprops, ramjets, scramjets, and hybrid jets is introduced. A provision is made for an apparatus in the primary and/or secondary flow streams of the engines; the apparatus imparts to the exhaust gases a component rotation or swirl about the engine's longitudinal axis. The rotary component in the exhaust gases causes a substantial suppression of sound energy build up normally produced by an axial flow exhaust system.

  19. The Latest SORCE SIM Degradation Model and the Resulting SSI Measurements from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Beland, S.; Harder, J. W.; Snow, M. A.; Woods, T. N.; Lindholm, C.

    2015-12-01

    The Spectral Irradiance Monitor (SIM) instrument on board the Solar Radiation and Climate Experiment (SORCE) mission has been taking daily Solar Spectral Irradiance (SSI) measurements since April 2003. A new mode of operation was introduced in March 2014 to address issues with depleted battery life and daily operations was resumed after 6 months of interrupted observations. It is critical to accurately track the instrument degradation over time to be able to measure the small SSI variations over the solar cycle for the wavelength range covered by SIM (220-2400nm). The instrument degradation is constantly being updated and the corresponding model has been refined over the years to account for changes and a better understanding of the instrument's behavior over time. This presentation will describe the latest SIM degradation model, how the various components were measured and how they affect the final degradation values. We'll compare the results from both channels on SIM with the SORCE-SOLSTICE data covering the overlapping wavelengths. We'll also present the integrated SIM SSI compared with the SORCE-TIM measurements.

  20. Shockwave Engine: Wave Disk Engine

    SciTech Connect

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  1. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  2. Automotive Stirling Engine Development Project

    NASA Technical Reports Server (NTRS)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  3. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production

    PubMed Central

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-d-glucopyranosyl α-d-galactopyranoside) or galactotrehalose (α-d-galactopyranosyl α-d-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. “Greener” alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  4. Latest news from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (∼ 100 GeV to ∼ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ∼ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  5. Source mask optimization study based on latest Nikon immersion scanner

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Wei, Fang; Chen, Lijun; Zhang, Chenming; Zhang, Wei; Nishinaga, Hisashi; El-Sewefy, Omar; Gao, Gen-Sheng; Lafferty, Neal; Meiring, Jason; Zhang, Recoo; Zhu, Cynthia

    2016-03-01

    The 2x nm logic foundry node has many challenges since critical levels are pushed close to the limits of low k1 ArF water immersion lithography. For these levels, improvements in lithographic performance can translate to decreased rework and increased yield. Source Mask Optimization (SMO) is one such route to realize these image fidelity improvements. During SMO, critical layout constructs are intensively optimized in both the mask and source domain, resulting in a solution for maximum lithographic entitlement. From the hardware side, advances in source technology have enabled free-form illumination. The approach allows highly customized illumination, enabling the practical application of SMO sources. The customized illumination sources can be adjusted for maximum versatility. In this paper, we present a study on a critical layer of an advanced foundry logic node using the latest ILT based SMO software, paired with state-of-the-art scanner hardware and intelligent illuminator. Performance of the layer's existing POR source is compared with the ideal SMO result and the installed source as realized on the intelligent illuminator of an NSR-S630D scanner. Both simulation and on-silicon measurements are used to confirm that the performance of the studied layer meets established specifications.

  6. Latest quaternary volcanism in the St. George Basin, southwestern Utah

    SciTech Connect

    Millings, V.T. III; Green, J.D.; Nusbaum, R.L. . Dept. of Geology)

    1993-03-01

    The St. George Basin was the site of mafic volcanism from about 6 Ma to 1 ka. The nature of latest Quaternary volcanism is of interest because the Basin is recognized as a low temperature (< 90C) geothermal resource area and it is part of the transition zone between the Basin and Range Province and the Colorado Plateau. The authors have studied the geochemistry, mineralogy, and aerial distribution of two of the youngest eruptions centers: (1) Veyo Volcano; and (2) the Diamond Valley scoria cones (DVSC). Veyo Volcano erupted basaltic andesite, beginning with an explosive stage marked by a 0.5 m basal Plinian layer. Later eruptions alternated between quiescent and Strombolian-styles. Phenocrysts include clear plagioclase, sieve-texture plagioclase, olivine and rare augite. The DVSC and associated Santa Clara lava flow are tholeiitic basalt, consisting of olivine phenocrysts, and rare plagioclase phenocrysts. Based on preliminary geochemical data, Diamond Valley rocks exhibit lower incompatible element ratios compared to mafic rocks on the Markagunt Plateau and transition zone rocks. In contrast, Veyo Volcano rocks are similar to transition zone mafic rocks with regard to incompatible element abundances.

  7. Minocycline in the treatment of acne: latest findings.

    PubMed

    Maffeis, L; Veraldi, S

    2010-06-01

    Minocycline is a semi-synthetic tetracycline antibiotic effective against a wide range of aerobic and anaerobic Gram-positive and Gram-negative bacteria. It is highly active in the pilosebaceous complex, due to its great lipophilicity, and therefore it has been used in the treatment of moderate to severe papulo-pustular acne for a long time. It has an optimal therapeutic range and the percentage of P. acnes resistant strains are still inferior to 5%. Besides the antimicrobial activity, minocycline has an anti-inflammatory action, due to the reduction in neutrophilic chemotaxis, the inhibitory effect on pro-inflammatory cytokines, and the reduction in sebum free fatty acids and bacterial lipases. In 2006 the Food and Drug Administration (FDA) approved a new extended-release formulation of minocycline. This formulation allowed the reduction of some dose-related adverse events, such as those affecting the vestibular system. Besides the dose-related events (nausea, vomiting, and dizziness), minocycline is also known to induce hyperpigmentation, even if less frequently than doxycycline, and is rarely responsible for autoimmune disorders, hypersensitivity reactions, and serum sickness-like reactions. The latest guidelines in the treatment of acne recommend a dose of 50-100 mg, once or twice a daily for the non-modified release minocycline, and 1 mg/kg daily for the new extended-release formulation. This agent is most appropriately used in combination with a topical regimen containing benzoyl peroxide and/or retinoid.

  8. Lung cancer screening: latest developments and unanswered questions.

    PubMed

    van der Aalst, Carlijn M; Ten Haaf, Kevin; de Koning, Harry J

    2016-09-01

    The US National Lung Screening Trial showed that individuals randomly assigned to screening with low-dose CT scans had 20% lower lung cancer mortality than did those screened with conventional chest radiography. On the basis of a review of the literature and a modelling study, the US Preventive Services Task Force recommends annual screening for lung cancer for individuals aged 55-80 years who have a 30 pack-year smoking history and either currently smoke or quit smoking within the past 15 years. However, the balance between benefits and harms of lung cancer screening is still greatly debated. The large number of false-positive results and the potential for overdiagnosis are causes for concern. Some investigators suggest the ratio between benefits and harms could be improved through various means. Nevertheless, many questions remain with regard to the implementation of lung cancer screening. This paper highlights the latest developments in CT lung cancer screening and provides an overview of the main unanswered questions. PMID:27599248

  9. All-sky observations with HAWC: latest results

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; HAWC Collaboration

    2015-08-01

    The High Altitude Water Cherenkov (HAWC) observatory is a ground-based air- shower detector designed to study cosmic rays and gamma rays with energies from 100 GeV up to 100 TeV. HAWC simultaneously surveys 2sr of the northern sky with a high duty cycle > 90% in search for photons from point and extended sources, diffuse emission, transient events and other astrophysical phenomena at multi-TeV scales against the background of cosmic rays. In fact, the study of this background will open also the possibility of doing cosmic ray physics in the GeV — TeV regime and even to perform solar studies at HAWC. The observatory will consist of a densely packed array of 300 water Cherenkov tanks (4.5 m tall and 7.3 m diameter with 4 photomultipliers each) distributed on a 22 000 m2 surface. Deployment started in March 2012 on a plateau situated on the Sierra Negra Volcano in the state of Puebla, Mexico, at an altitude of 4100 m. Construction is expected to be finished by the first months of 2015. In the mean time, HAWC has been taking data with a partial array and preliminary results have been already obtained. In this contribution, the results from the latest HAWC observations will be presented.

  10. Latest Progress in CNT-Based Composites for Space Applications

    NASA Astrophysics Data System (ADS)

    Klebor, Maximilian; Heep, Felicitas; Pfeiffer, Ernst K.; Linke, Stefan; Roddecke, Susanne; Lodereau, Pierre

    2012-07-01

    Composite materials used in S/C platforms and pay- loads can benefit from the latest developments in carbon fibres and nano-technologies. One of the most relevant novelties is the gradual incorporation of nano-species in the resin systems. This paper addresses the results of several technology studies lead and or performed by HPS. They deal with the incorporation of CNT and other nano-species into CFRP to improve the physical properties and to antagonise specific CFRP drawbacks like e.g. the anisotropic properties based on the respective carbon fibre setup. The most interesting and promising applications for these novel composites were assessed and selected for composite development. Entities from several European countries worked together to establish composite and structure processing methods. Promising results concerning electrical and thermal properties were obtained but also many challenges had and still have to be faced. During the projects it has been found that different ingredient combinations and manufacturing processes are favourable for different applications/improvements. It seems that the CNTs and the processes have to be tailored for one specific target property, e.g. electrical conductivity enhancement. The achieved material improvements were and are still further investigated.

  11. On the anomalies in the latest LHCb data

    NASA Astrophysics Data System (ADS)

    Hurth, T.; Mahmoudi, F.; Neshatpour, S.

    2016-08-01

    Depending on the assumptions on the power corrections to the exclusive b → sℓ+ℓ- decays, the latest data of the LHCb Collaboration - based on the 3 fb-1 data set and on two different experimental analysis methods - still shows some tensions with the Standard Model predictions. We present a detailed analysis of the theoretical inputs and various global fits to all the available b → sℓ+ℓ- data. This constitutes the first global analysis of the new data of the LHCb Collaboration based on the hypothesis that these tensions can be at least partially explained by new physics contributions. In our model-independent analysis we present one-, two-, four-, and also five-dimensional global fits in the space of Wilson coefficients to all available b → sℓ+ℓ- data. We also compare the two different experimental LHCb analyses of the angular observables in B →K*μ+μ-. We explicitly analyse the dependence of our results on the assumptions about power corrections, but also on the errors present in the form factor calculations. Moreover, based on our new global fits we present predictions for ratios of observables which may show a sign of lepton non-universality. Their measurements would crosscheck the LHCb result on the ratio RK = BR (B+ →K+μ+μ-) / BR (B+ →K+e+e-) in the low-q2 region which deviates from the SM prediction by 2.6σ.

  12. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  13. Latest news from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  14. The FOXSI sounding rocket: Latest analysis and results

    NASA Astrophysics Data System (ADS)

    Camilo Buitrago-Casas, Juan; Glesener, Lindsay; Christe, Steven; Krucker, Sam; Ishikawa, Shin-Nosuke; Takahashi, Tadayuki; Ramsey, Brian; Han, Raymond

    2016-05-01

    Hard X-ray (HXR) observations are a linchpin for studying particle acceleration and hot thermal plasma emission in the solar corona. Current and past indirectly imaging instruments lack the sensitivity and dynamic range needed to observe faint HXR signatures, especially in the presences of brighter sources. These limitations are overcome by using HXR direct focusing optics coupled with semiconductor detectors. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment is a state of the art solar telescope that develops and applies these capabilities.The FOXSI sounding rocket has successfully flown twice, observing active regions, microflares, and areas of the quiet-Sun. Thanks to its far superior imaging dynamic range, FOXSI performs cleaner hard X-ray imaging spectroscopy than previous instruments that use indirect imaging methods like RHESSI.We present a description of the FOXSI rocket payload, paying attention to the optics and semiconductor detectors calibrations, as well as the upgrades made for the second flight. We also introduce some of the latest FOXSI data analysis, including imaging spectroscopy of microflares and active regions observed during the two flights, and the differential emission measure distribution of the nonflaring corona.

  15. Stationary turbine component with laminated skin

    DOEpatents

    James, Allister W.

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  16. An integrated systems engineering approach to aircraft design

    NASA Astrophysics Data System (ADS)

    Price, M.; Raghunathan, S.; Curran, R.

    2006-06-01

    The challenge in Aerospace Engineering, in the next two decades as set by Vision 2020, is to meet the targets of reduction of nitric oxide emission by 80%, carbon monoxide and carbon dioxide both by 50%, reduce noise by 50% and of course with reduced cost and improved safety. All this must be achieved with expected increase in capacity and demand. Such a challenge has to be in a background where the understanding of physics of flight has changed very little over the years and where industrial growth is driven primarily by cost rather than new technology. The way forward to meet the challenges is to introduce innovative technologies and develop an integrated, effective and efficient process for the life cycle design of aircraft, known as systems engineering (SE). SE is a holistic approach to a product that comprises several components. Customer specifications, conceptual design, risk analysis, functional analysis and architecture, physical architecture, design analysis and synthesis, and trade studies and optimisation, manufacturing, testing validation and verification, delivery, life cycle cost and management. Further, it involves interaction between traditional disciplines such as Aerodynamics, Structures and Flight Mechanics with people- and process-oriented disciplines such as Management, Manufacturing, and Technology Transfer. SE has become the state-of-the-art methodology for organising and managing aerospace production. However, like many well founded methodologies, it is more difficult to embody the core principles into formalised models and tools. The key contribution of the paper will be to review this formalisation and to present the very latest knowledge and technology that facilitates SE theory. Typically, research into SE provides a deeper understanding of the core principles and interactions, and helps one to appreciate the required technical architecture for fully exploiting it as a process, rather than a series of events. There are major issues as

  17. Invisible Engineers

    NASA Astrophysics Data System (ADS)

    Ohashi, Hideo

    Questionnaire to ask “mention three names of scientists you know” and “three names of engineers you know” was conducted and the answers from 140 adults were analyzed. The results indicated that the image of scientists is represented by Nobel laureates and that of engineers by great inventors like Thomas Edison and industry founders like Soichiro Honda. In order to reveal the image of engineers among young generation, questionnaire was conducted for pupils in middle and high schools. Answers from 1,230 pupils were analyzed and 226 names mentioned as engineers were classified. White votes reached 60%. Engineers who are neither big inventors nor company founders collected less than 1% of named votes. Engineers are astonishingly invisible from young generation. Countermeasures are proposed.

  18. Information engineering

    SciTech Connect

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  19. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  20. Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: Data, lessons, interpretations

    USGS Publications Warehouse

    Kuntz, M.A.; Spiker, E. C.; Rubin, M.; Champion, D.E.; Lefebvre, R.H.

    1986-01-01

    Latest Pleistocene-Holocene basaltic lava fields of the Snake River Plain, Idaho, have been dated by the radiocarbon method. Backhoe excavations beneath lava flows typically yielded carbon-bearing, charred eolian sediment. This material provided most of the samples for this study; the sediment typically contains less than 0.2% carbon. Charcoal fragments were obtained from tree molds but only from a few backhoe excavations. Contamination of the charred sediments and charcoal by younger carbon components is extensive; the effects of contamination were mitigated but appropriate pretreatment of samples using acid and alkali leaches. Twenty of the more than 60 lava flows of the Craters of the Moon lava field have been dated; their ages range from about 15,000 to about 2000 yr B.P. The ages permit assignment of the flows to eight distinct eruptive periods with an average recurrence interval of about 2000 yr. The seven other latest Pleistocene-Holocene lava fields were all emplaced in short eruptive bursts. Their 14C ages (yr B.P.) are: Kings Bowl (2222?? 100), Wapi (2270 ?? 50), Hells Half Acre (5200 ?? 150), Shoshone (10,130 ?? 350), North Robbers and South Robbers (11.980 ?? 300), and Cerro Grande (13,380 ?? 350). ?? 1986.