75 FR 29803 - Agency Information Collection Activity Seeking OMB Approval
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... action to correct unsafe conditions in aircraft, engines, propellers, and appliances. Reports of... issued to require correct corrective action to correct unsafe conditions in aircraft, engines, propellers...
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... correct corrective action to correct unsafe conditions in aircraft, engines, propellers, and appliances... action was adequate to correct the unsafe condition. The respondents are aircraft owners and operators... when an unsafe condition is discovered on a specific aircraft type. If the condition is serious enough...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... correct corrective action to correct unsafe conditions in aircraft, engines, propellers, and appliances... action was adequate to correct the unsafe condition. The respondents are aircraft owners and operators... when an unsafe condition is discovered on a specific aircraft type. If the condition is serious enough...
Airflow and thrust calibration of an F100 engine, S/N P680059, at selected flight conditions
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Lee, D.; Rodriguez, J. R.
1978-01-01
An airflow and thrust calibration of an F100 engine, S/N P680059, was conducted to study airframe propulsion system integration losses in turbofan-powered high-performance aircraft. The tests were conducted with and without thrust augmentation for a variety of simulated flight conditions with emphasis on the transonic regime. The resulting corrected airflow data generalized into one curve with corrected fan speed while corrected gross thrust increased as simulated flight conditions increased. Overall agreement between measured data and computed results was 1 percent for corrected airflow and -1 1/2 percent for gross thrust. The results of an uncertainty analysis are presented for both parameters at each simulated flight condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otobe, Y.; Chikamatsu, M.
1988-03-08
A method of controlling the fuel supply to an internal combustion engine is described, wherein a quantity of fuel for supply to the engine is determined by correcting a basic value of the quantity of fuel determined as a function of at least one operating parameter of the engine by correction values dependent upon operating conditions of the engine and the determined quantity of fuel is supplied to the engine. The method comprises the steps of: (1) detecting a value of at least one predetermined operating parameter of the engine; (2) manually adjusting a single voltage creating means to setmore » an output voltage therefrom to such a desired value as to compensate for deviation of the air/fuel ratio of a mixture supplied to the engine due to variations in operating characteristics of engines between different production lots or aging changes; (3) determining a value of the predetermined one correction value corresponding to the set desired value of output voltage of the single voltage creating means, and then modifying the thus determined value in response to the detected value of the predetermined at least one operating parameter of the engine during engine operation; and (4) correcting the basic value of the quantity of fuel by the value of the predetermined one correction value having the thus modified value, and the other correction values.« less
NASA Astrophysics Data System (ADS)
Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.
2018-03-01
In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.
77 FR 2015 - Special Conditions: Pratt and Whitney Canada Model PW210S Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-13
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 33 [Docket No. NE130; Special Conditions No. 33-008-SC] Special Conditions: Pratt and Whitney Canada Model PW210S Turboshaft Engine Correction In rule document 2011-14113 appearing on pages 33981-33982 in the issue of Friday, June...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Yasuoka, A.
1988-05-24
A method of controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine, is described comprising the steps of: calculating a solenoid current control value as a function of engine operating conditions; detecting an engine coolant temperature corresponding to the solenoid temperature; determining a temperature correction value in accordance with the solenoid temperature; and calculating a driving signal for controlling the operation of the solenoid as a function of the solenoid current control value and the temperature correction value.
75 FR 68179 - Airworthiness Directives; Austro Engine GmbH Model E4 Diesel Piston Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD results from mandatory continuing airworthiness information (MCAI) issued by an aviation authority of another country to identify and correct an unsafe condition on an aviation product. The MCAI describes the unsafe condition as:
Method and apparatus for reconstructing in-cylinder pressure and correcting for signal decay
Huang, Jian
2013-03-12
A method comprises steps for reconstructing in-cylinder pressure data from a vibration signal collected from a vibration sensor mounted on an engine component where it can generate a signal with a high signal-to-noise ratio, and correcting the vibration signal for errors introduced by vibration signal charge decay and sensor sensitivity. The correction factors are determined as a function of estimated motoring pressure and the measured vibration signal itself with each of these being associated with the same engine cycle. Accordingly, the method corrects for charge decay and changes in sensor sensitivity responsive to different engine conditions to allow greater accuracy in the reconstructed in-cylinder pressure data. An apparatus is also disclosed for practicing the disclosed method, comprising a vibration sensor, a data acquisition unit for receiving the vibration signal, a computer processing unit for processing the acquired signal and a controller for controlling the engine operation based on the reconstructed in-cylinder pressure.
76 FR 65421 - Airworthiness Directives; Schempp-Hirth Flugzeugbau GmbH Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... the unsafe condition as: It has been reported that small cracks on engine pylons, in the area of the lower engine support, were not detected through the ``standard'' inspection required by the daily... not detected and corrected, could lead to an engine pylon failure and consequent damage to the...
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
NASA Technical Reports Server (NTRS)
Sarracino, Marcello
1941-01-01
The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-23
... Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a... condition, if not corrected, could lead to in-flight cases of engine shutdown. We are issuing this AD to...
Apparatus for controlling air/fuel ratio for internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, K.; Mizuno, T.
1986-07-08
This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less
Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows
NASA Technical Reports Server (NTRS)
Williams, J. G.; Steenken, W. G.; Yuhas, A. J.
1996-01-01
The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.
40 CFR 1065.659 - Removed water correction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... know that saturated water vapor conditions exist. Use good engineering judgment to measure the... absolute pressure based on an alarm set point, a pressure regulator set point, or good engineering judgment... from raw exhaust, you may determine the amount of water based on intake-air humidity, plus a chemical...
40 CFR 1065.659 - Removed water correction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... know that saturated water vapor conditions exist. Use good engineering judgment to measure the... absolute pressure based on an alarm set point, a pressure regulator set point, or good engineering judgment... from raw exhaust, you may determine the amount of water based on intake-air humidity, plus a chemical...
Predictive modeling and reducing cyclic variability in autoignition engines
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
RL10 ignition limits test for Shuttle Centaur
NASA Technical Reports Server (NTRS)
1987-01-01
During routine development testing of the RL10A-3-3B engine a potential no-ignition condition was encountered when operating at certain propellant inlet conditions within the Shuttle Centaur G operating region. The conditions, the resulting investigative program, and methods to correct the potential problem are discussed. The Shuttle Centaur program was cancelled prior to completion of this effort. Although the RL10 engine in the Atlas Centaur vehicle is required by specification to operate over a wide range of propellant inlet conditions. The vehicle actually operates over a narrow range of conditions. This factor, combined with configuration differences between Atlas Centaur (or Titan Centaur) and the Shuttle Centaur RL10 engines, indicates the ignition problem does not exist for these vehicles. As a precautionary measure the vehicle manufacturer was requested to coordinate with Pratt and Whitney any anticipated changes in propellant inlet conditions from the current narrow range. An engineering change will be proposed for future RL10 deliveries to provide more consistent propellant flow to the igniter. This will permit operation of the engine throughout the wide range specification inlet conditions if desired.
78 FR 39571 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... 2800, Aircraft Fuel System. (e) Unsafe Condition This AD was prompted by reports of two in-service... system, followed by loss of fuel system suction feed capability on one engine, and in-flight shutdown of... and correct loss of the engine fuel suction feed capability of the fuel system, which, in the event of...
40 CFR 1065.935 - Emission test sequence for field testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... verifications in emission calculations. (5) You may periodically condition and analyze batch samples in-situ... drift corrected results in emissions calculations. (6) Unless you weighed PM in-situ, such as by using... engine in-use until the engine coolant, block, or head absolute temperature is within ±10% of its mean...
40 CFR 1065.935 - Emission test sequence for field testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... verifications in emission calculations. (5) You may periodically condition and analyze batch samples in-situ... drift corrected results in emissions calculations. (6) Unless you weighed PM in-situ, such as by using... engine in-use until the engine coolant, block, or head absolute temperature is within ±10% of its mean...
40 CFR 1065.935 - Emission test sequence for field testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... verifications in emission calculations. (5) You may periodically condition and analyze batch samples in-situ... drift corrected results in emissions calculations. (6) Unless you weighed PM in-situ, such as by using... engine in-use until the engine coolant, block, or head absolute temperature is within ±10% of its mean...
40 CFR 1065.935 - Emission test sequence for field testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... verifications in emission calculations. (5) You may periodically condition and analyze batch samples in-situ... drift corrected results in emissions calculations. (6) Unless you weighed PM in-situ, such as by using... engine in-use until the engine coolant, block, or head absolute temperature is within ±10% of its mean...
40 CFR 1065.935 - Emission test sequence for field testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... verifications in emission calculations. (5) You may periodically condition and analyze batch samples in-situ... drift corrected results in emissions calculations. (6) Unless you weighed PM in-situ, such as by using... engine in-use until the engine coolant, block, or head absolute temperature is within ±10% of its mean...
76 FR 75442 - Airworthiness Directives; Quest Aircraft Design, LLC Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... right-hand side of the engine bypass door attachment. This condition, if not corrected, could lead to an... Directorate, 901 Locust, Kansas City, Missouri 64106. For information on the availability of this material at... where a loose IPS bolt was found on the right-hand side of the engine bypass door attachment on Quest...
On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise
NASA Technical Reports Server (NTRS)
McAninch, Gerry L.; Shepherd, Kevin P.
2011-01-01
The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.
75 FR 5689 - Airworthiness Directives; Turbomeca Arriel 2B and 2B1 Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
...We are adopting a new airworthiness directive (AD) for the products listed above. This AD results from mandatory continuing airworthiness information (MCAI) issued by an aviation authority of another country to identify and correct an unsafe condition on an aviation product. The MCAI describes the unsafe condition as:
Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging
NASA Astrophysics Data System (ADS)
Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.
1994-10-01
An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.
Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)
2003-01-01
In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.
Cramer, C.H.; Kumar, A.
2003-01-01
Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.
Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2003-01-01
In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.
Knowledge-Acquisition Tool For Expert System
NASA Technical Reports Server (NTRS)
Disbrow, James D.; Duke, Eugene L.; Regenie, Victoria A.
1988-01-01
Digital flight-control systems monitored by computer program that evaluates and recommends. Flight-systems engineers for advanced, high-performance aircraft use knowlege-acquisition tool for expert-system flight-status monitor suppling interpretative data. Interpretative function especially important in time-critical, high-stress situations because it facilitates problem identification and corrective strategy. Conditions evaluated and recommendations made by ground-based engineers having essential knowledge for analysis and monitoring of performances of advanced aircraft systems.
Sebastiano, Vittorio; Maeder, Morgan L; Angstman, James F; Haddad, Bahareh; Khayter, Cyd; Yeo, Dana T; Goodwin, Mathew J; Hawkins, John S; Ramirez, Cherie L; Batista, Luis F Z; Artandi, Steven E; Wernig, Marius; Joung, J Keith
2011-11-01
The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications. Copyright © 2011 AlphaMed Press.
2012-01-01
Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains. PMID:22569138
NASA Technical Reports Server (NTRS)
1979-01-01
The photos show automobile engines being tested for nitrous oxide emissions, as required by the Environmental Protection Agency (EPA), at the Research and Engineering Division of Ford Motor Company, Dearborn. Michigan. NASA technical information helped the company develop a means of calculating emissions test results. Nitrous oxide emission readings vary with relative humidity in the test facility. EPA uses a standard humidity measurement, but the agency allows manufacturers to test under different humidity conditions, then apply a correction factor to adjust the results to the EPA standard. NASA's Dryden Flight Research Center developed analytic equations which provide a simple, computer-programmable method of correcting for humidity variations. A Ford engineer read a NASA Tech Brief describing the Dryden development and requested more detailed information in the form of a technical support package, which NASA routinely supplies to industry on request. Ford's Emissions Test Laboratory now uses the Dryden equations for humidity-adjusted emissions data reported to EPA.
The effect of humidity on engine power at altitude
NASA Technical Reports Server (NTRS)
Brooks, D G; Garlock, E A
1933-01-01
From tests made in the altitude chamber of the Bureau of Standards, it was found that the effect of humidity on engine power is the same at altitudes up to 25,000 feet as at sea level. Earlier tests on automotive engines, made under sea-level conditions, showed that water vapor acts as an inert diluent, reducing engine power in proportion to the amount of vapor present. By combining the effects of atmospheric pressure, temperature, and humidity, it is shown that the indicated power obtainable from an engine is proportional to its mass rate of consumption of oxygen. This has led the National Advisory Committee for Aeronautics to adopt a standard basis for the correction of engine performance, in which the effect of humidity is included.
NASA Technical Reports Server (NTRS)
Geisenheyner, Robert M.; Berdysz, Joseph J.
1948-01-01
An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.
NASA Technical Reports Server (NTRS)
Kurtenbach, F. J.
1979-01-01
The technique which relies on afterburner duct pressure measurements and empirical corrections to an ideal one dimensional flow analysis to determine thrust is presented. A comparison of the calculated and facility measured thrust values is reported. The simplified model with the engine manufacturer's gas generator model are compared. The evaluation was conducted over a range of Mach numbers from 0.80 to 2.00 and at altitudes from 4020 meters to 15,240 meters. The effects of variations in inlet total temperature from standard day conditions were explored. Engine conditions were varied from those normally scheduled for flight. The technique was found to be accurate to a twice standard deviation of 2.89 percent, with accuracy a strong function of afterburner duct pressure difference.
1988-06-03
S. This is 23.0030 US S per aircraft and year. A310/A300-600 Engine Condition Monitorig U 45000 a 4 37A 4a 4. - -n 2500 1.0 a F ig. 3 COSTS/SAVINGS...to correct for variations in the background caused by disturbances such as vapor clouds in the field of view creating scattering or obscuration...in the signal characteristics. Fine debris tends to travel with the airstream in a cloud , and larger flakes and particles become more dispersed because
Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara
2017-08-01
The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.
Similarity tests of turbine vanes, effects of ceramic thermal barrier coatings
NASA Technical Reports Server (NTRS)
Gladden, H. J.
1980-01-01
The role of material thermal conductivity was analyzed for its effect on the thermal performance of air-cooled gas turbine components coated with a ceramic thermal barrier material when tested at reduced temperatures and pressures. It is shown that the thermal performance can be evaluated reliably at reduced gas and coolant conditions; however, thermal conductivity corrections are required for the data at reduced conditions. Corrections for a ceramic thermal barrier coated vane are significantly different than for an uncoated vane. Comparison of uncorrected test data, therefore, would show erroneously that the thermal barrier coating was ineffective. When thermal conductivity corrections are applied to the test data these data are then shown to be representative of engine data and also show that the thermal barrier coating increases the vane cooling effectiveness by 12.5 percent.
NASA Technical Reports Server (NTRS)
Gensenheyner, Robert M.; Berdysz, Joseph J.
1947-01-01
An investigation to determine the performance and operational characteristics of the TG-1OOA gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet rm-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and.correcte& horsepower. For the range of corrected engine speeds investigated, over-all total-pressure-loss ratio, cycle efficiency, ana the frac%ional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. The scatter of combustion- efficiency data tended to obscure any effect of altitude or ram-pressure ratio. For the range of corrected horse-powers investigated, the total-pressure-loss ratio an& the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horse-powers investigated at all corrected engine speeds.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... caused by fan blade flutter at certain engine settings during prolonged ground running. This condition, if not corrected, could affect the integrity of the fan blades, leading to cracking of multiple fan... aviation product. The MCAI describes the unsafe condition as: Several instances of fan blade cracking have...
Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C
2008-03-15
The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
30 CFR 36.26 - Composition of exhaust gas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... immediately at full load and speed. The preliminary liquid-fuel-injection rate shall be such that the exhaust will not contain black smoke and the applicant shall adjust the injection rate promptly to correct any adverse conditions disclosed by preliminary tests. (b) Final engine adjustment. The liquid fuel supply to...
30 CFR 36.26 - Composition of exhaust gas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... immediately at full load and speed. The preliminary liquid-fuel-injection rate shall be such that the exhaust will not contain black smoke and the applicant shall adjust the injection rate promptly to correct any adverse conditions disclosed by preliminary tests. (b) Final engine adjustment. The liquid fuel supply to...
30 CFR 36.26 - Composition of exhaust gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... immediately at full load and speed. The preliminary liquid-fuel-injection rate shall be such that the exhaust will not contain black smoke and the applicant shall adjust the injection rate promptly to correct any adverse conditions disclosed by preliminary tests. (b) Final engine adjustment. The liquid fuel supply to...
30 CFR 36.26 - Composition of exhaust gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... immediately at full load and speed. The preliminary liquid-fuel-injection rate shall be such that the exhaust will not contain black smoke and the applicant shall adjust the injection rate promptly to correct any adverse conditions disclosed by preliminary tests. (b) Final engine adjustment. The liquid fuel supply to...
Performance Charts for the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irving M.
1947-01-01
Charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of the pressure losses in the inlet duct and combustion chamber, the variation in the physical properties of the gas as it passes through the cycle, and the change in mass flow by the addition of fuel are included. The principle performance charts show the effects of the primary variables and correction charts provide the effects of the secondary variables.
75 FR 44725 - Airworthiness Directives; Pratt & Whitney PW4000 Series Turbofan Engines; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... Engineer, Engine Certification Office, FAA, Engine and Propeller Directorate, 12 New England Executive Park..., Massachusetts, on July 23, 2010. Francis A. Favara, Manager, Engine and Propeller Directorate, Aircraft... PW4000 Series Turbofan Engines; Correction AGENCY: Federal Aviation Administration (FAA), DOT. ACTION...
78 FR 25484 - Advisory Committee for Engineering; Notice of Meeting; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Engineering; Notice of Meeting; Correction This document corrects a notice that was published in the Federal Register on April 24, 2013 on page 24239. The... Science and Engineering, 1115; Notice of Meeting All other information in the April 24, 2013 notice...
Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.; Wood, S. C.
1972-01-01
The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.
A fuzzy gear shifting strategy for manual transmissions
NASA Astrophysics Data System (ADS)
Mashadi, B.; Kazemkhani, A.
2005-12-01
Governing parameters in decision making for gear changing of an automated manual transmission are discussed based on two different criteria, namely engine working conditions and driver's intention. By taking into consideration the effects of these parameters, gear shifting strategy is designed with the application of Fuzzy control method. The controller structure is formed in two layers. In the first layer two fuzzy inference modules are used to determine necessary outputs. In second layer a fuzzy inference module makes the decision of shifting by up-shift, downshift or maintain commands. The quality of Fuzzy controller behavior is examined by making use of ADVISOR software. It is shown that at different driving conditions the controller makes correct decisions for gear shifting accounting for dynamical requirements of vehicle. It is also shown that the controller based on both engine state and driver's intention eliminates unnecessary shiftings that are present when the intention is ignored. A micro-trip is designed in which a required speed in the form of a step function is demanded for the vehicle. Starting from rest both strategies change the gear to reach maximum speed more or less in a similar fashion. In deceleration phase, however, large differences are observed between the two strategies. The engine-state strategy is less sensitive to downshift, taking even unnecessary up shift decisions. The state-intention strategy, however, correctly interprets the driver's intention for decreasing speed and utilizes engine brake torque to reduce vehicle speed in a shorter time.
78 FR 52836 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
...) of America Code 2800, Aircraft Fuel System. (e) Unsafe Condition This AD was prompted by reports of... airplanes of total loss of boost pump pressure of the fuel feed system, followed by loss of fuel system... operational tests of the engine fuel suction feed of the fuel system, and corrective actions if necessary. We...
How great a thirst? Assembling a river restoration toolkit
Steve Harris
1999-01-01
The Rio Grande River's biologically troubled status is clearly linked to present and historic water management. To restore the river to pre-settlement conditions will take a "tool kit" that holds authorities, knowledge, and skills needed to correct historical neglect and abuse. Tools include awareness, planning, partnerships, engineering solutions, and a...
Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process
NASA Astrophysics Data System (ADS)
Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.
2018-01-01
The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.
Real-Time Diagnosis of Faults Using a Bank of Kalman Filters
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2006-01-01
A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... DEPARTMENT OF DEFENSE Department of the Army; Corps of Engineers Notice of Correction to the... the Army, U.S. Army Corps of Engineers, DoD. ACTION: Notice of Correction. SUMMARY: This notice... (360) 734-3156, or by regular mail at Mr. Randel Perry, U.S. Army Corps of Engineers, Seattle District...
78 FR 34279 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
.... Discussion Transport Canada (TC), which is the aviation authority for Canada, has issued TC AD No. CF-2005-24, dated July 4, 2005, to correct an unsafe condition for Model 230 helicopters. TC advises of several... these failures have occurred on the same engine used by Bell on Model 230 helicopters. According to TC...
1981-04-01
NAM ANDADONS I. PRGRAM ELEMENT. PROJECT, TASKCARA a WORKC UNINUER Lbnabe1 Engineering Associates, P.C. I UBR J. K. Tirmns and Associates, Inc. It...inspections can unsafe conditions be detected and only throug ontinued care and maintenance can these conditions be prevented or corrected. Phase I...downstream toe should be monitored during routine maintenance. It is also recomnended that attempts be made to halt shoreline erosion in order to prevent
Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements
NASA Astrophysics Data System (ADS)
Hagen, D. E.; Whitefield, P. D.; Lobo, P.
2015-12-01
International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.
A Thermodynamic Study of the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irvin M
1947-01-01
Charts are presented for computing thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of pressure losses in the inlet duct and the combustion chamber, of variation in physical properties of the gas as it passes through the system, of reheating of the gas due to turbine losses, and of change in mass flow by the addition of fuel are included. The principle performance chart shows the effects of primary variables and correction charts provide the effects of secondary variables and of turbine-loss reheat on the performance of the system. The influence of characteristics of a given compressor and turbine on performance of a turbojet engine containing a matched set of these given components is discussed for cases of an engine with a centrifugal-flow compressor and of an engine with an axial-flow compressor.
78 FR 34290 - Airworthiness Directives; Bell Helicopter Textron Canada Limited (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
.... Discussion Transport Canada (TC), which is the aviation authority for Canada, has issued TC AD No. CF-2005-25, dated July 5, 2005, to correct an unsafe condition for Model 430 helicopters. TC advises of several... turbine wheel is installed on the 250-C40B engine used by Bell on Model 430 helicopters. According to TC...
Extension of similarity test procedures to cooled engine components with insulating ceramic coatings
NASA Technical Reports Server (NTRS)
Gladden, H. J.
1980-01-01
Material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components, both with and without a ceramic thermal-barrier material, tested at reduced temperatures and pressures. The analysis shows that neglecting the material thermal conductivity can contribute significant errors when metal-wall-temperature test data taken on a turbine vane are extrapolated to engine conditions. This error in metal temperature for an uncoated vane is of opposite sign from that for a ceramic-coated vane. A correction technique is developed for both ceramic-coated and uncoated components.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...
Transient rotordynamic analysis for the space-shuttle main engine high-pressure oxygen turbopump
NASA Technical Reports Server (NTRS)
Childs, D. W.
1974-01-01
A simulation study was conducted to examine the transient rotordynamics of the space shuttle main engine (SSME) high pressure oxygen turbopump (HPOTP) with the objective of identifying, anticipating, and avoiding rotordynamic problem areas. Simulations were performed for steady state operations at emergency power levels and for critical speed transitions. No problems are indicated in steady state operation of the HPOTP emergency power levels, although the results indicated that a rubbing condition will be experienced during critical speed transition at shutdown, particularly involving rotor deceleration rate and imbalance distribution rubbing at the turbine floating-ring seals. The condition is correctable by either reducing the imbalance at the HPOTP hot gas turbine wheels, or by a more rapid deceleration of the rotor through it critical speed.
A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.
1984-01-01
This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.
A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.
1983-01-01
This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.
Erratum: Erratum to Central European Journal of Engineering, Volume 4, Issue 1
NASA Astrophysics Data System (ADS)
Kumar, M. Ajay; Srikanth, N. V.
2014-06-01
Paper by M. Ajay Kumar, N. V. Srikanth, et al. "An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions" in Volume 4, Issue 1, 27-38/March 2014 doi: 10.2478/s13531-013-0143-4 contains an error in the title. The correct title is presented below
78 FR 71989 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... forward engine mount, and related investigative and corrective actions if necessary. This AD was prompted by a report of cracked barrel nuts found on a forward engine mount. We are issuing this AD to detect and correct cracked barrel nuts on a forward engine mount, which could result in reduced load capacity...
A computational continuum model of poroelastic beds
Zampogna, G. A.
2017-01-01
Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355
Effect of ambient temperature and humidity on emissions of an idling gas turbine
NASA Technical Reports Server (NTRS)
Kauffman, C. W.
1977-01-01
The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...
NASA Astrophysics Data System (ADS)
Leonardi, Marco; Nasuti, Francesco; Di Matteo, Francesco; Steelant, Johan
2017-10-01
An investigation on the low frequency combustion instabilities due to the interaction of combustion chamber and feed line dynamics in a liquid rocket engine is carried out implementing a specific module in the system analysis software EcosimPro. The properties of the selected double time lag model are identified according to the two classical assumptions of constant and variable time lag. Module capabilities are evaluated on a literature experimental set up consisting of a combustion chamber decoupled from the upstream feed lines. The computed stability map results to be in good agreement with both experimental data and analytical models. Moreover, the first characteristic frequency of the engine is correctly predicted, giving confidence on the use of the module for the analysis of chugging instabilities. As an example of application, a study is carried out on the influence of the feed lines on the system stability, correctly capturing that the lines extend the stable regime of the combustion chamber and that the propellant domes play a key role in coupling the dynamics of combustion chamber and feed lines. A further example is presented to discuss on the role of pressure growth rate and of the combustion chamber properties on the possible occurrence of chug instability during engine start-up and on the conditions that lead to its damping or growth.
NASA Technical Reports Server (NTRS)
Prince, W.R.; Schulze, F.W.
1952-01-01
An investigation of the effect of inlet pressure, corrected engine speed, and turbine temperature level on turbine-inlet gas temperature distributions was conducted on a J40-WE-6, interim J40-WE-6, and prototype J40-WE-8 turbojet engine in the altitude wind tunnel at the NAC.4 Lewis laboratory. The engines were investigated over a range of simulated pressure altitudes from 15,000 to 55,000 feet, flight Mach numbers from 0.12 to 0.64, and corrected engine speeds from 7198 to 8026 rpm, The gas temperature distribution at the turbine of the three engines over the range of operating conditions investigated was considered satisfactory from the standpoint of desired temperature distribution with one exception - the distribution for the J40-WE-6 engine indicated a trend with decreasing engine-inlet pressure for the temperature to exceed the desired in the region of the blade hub. Installation of a compressor-outlet mixer vane assembly remedied this undesirable temperature distribution, The experimental data have shown that turbine-inlet temperature distributions are influenced in the expected manner by changes in compressor-outlet pressure or mass-flow distribution and by changes in combustor hole-area distribution. The similarity between turbine-inlet and turbine-outlet temperature distribution indicated only a small shift in temperature distribution imposed by the turbine rotors. The attainable jet thrusts of the three engines were influenced in different degrees and directions by changes in temperature distributions with change in engine-inlet pressure. Inability to match the desired temperature distribution resulted, for the J40-WE-6 engine, in an 11-percent thrust loss based on an average turbine-inlet temperature of 1500 F at an engine-inlet pressure of 500 pounds per square foot absolute. Departure from the desired temperature distribution in the Slade tip region results, for the prototype J40-WE-8 engine, in an attainable thrust increase of 3 to 4 percent as compared with that obtained if tip-region temperature limitations were observed.
Adaptive model-based control systems and methods for controlling a gas turbine
NASA Technical Reports Server (NTRS)
Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)
2004-01-01
Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1948-01-01
As part of an investigation of the performance and operational characteristics of the axial-flow gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100 R. The highest compressor pressure ratio obtained was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475 R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1947-01-01
As part of an investigation of the performance and operational characteristics of the TG-100A gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100R. The highest compressor pressure ratio was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
An experimental procedure to determine heat transfer properties of turbochargers
NASA Astrophysics Data System (ADS)
Serrano, J. R.; Olmeda, P.; Páez, A.; Vidal, F.
2010-03-01
Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger.
14 CFR 29.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...
14 CFR 29.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...
Method of controlling a variable geometry type turbocharger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Y.
1988-08-23
This patent describes a method of controlling the supercharging pressure of a variable geometry type turbocharger having a bypass, comprising the following steps which are carried out successively: receiving signals from an engine speed sensor and from an engine knocking sensor; receiving a signal from a throttle valve sensor; judging whether or not an engine is being accelerated, and proceeding to step below if the engine is being accelerated and to step below if the engine is not being accelerated, i.e., if the engine is in a constant speed operation; determining a first correction value and proceeding to step below;more » judging whether or not the engine is knocking, and proceeding to step (d) if knocking is occurring and to step (f) below if no knocking is occurring; determining a second correction value and proceeding to step; receiving signals from the engine speed sensor and from an airflow meter which measures the quantity of airflow to be supplied to the engine; calculating an airflow rate per engine revolution; determining a duty valve according to the calculated airflow rate; transmitting the corrected duty value to control means for controlling the geometry of the variable geometry type turbocharger and the opening of bypass of the turbocharger, thereby controlling the supercharging pressure of the turbocharger.« less
NASA Astrophysics Data System (ADS)
Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe
2017-10-01
Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.
Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R
2011-04-15
This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.
77 FR 58532 - Reissuance of Nationwide Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... DEPARTMENT OF DEFENSE Department of the Army, Corps of Engineers RIN 0710-AA71 Reissuance of Nationwide Permits AGENCY: Army Corps of Engineers, DoD. ACTION: Final notice; correction. SUMMARY: The U.S...://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits.aspx . Corrections In the Federal...
Gas analysis system for the Eight Foot High Temperature Tunnel
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Davis, Patricia P.; Upchurch, Billy T.; Puster, Richard L.
1992-01-01
This paper describes the development of a gas collection and analysis system that is to be installed in the Eight-Foot High Temperature Tunnel (8' HTT) at NASA's Langley Research Center. This system will be used to analyze the test gas medium that results after burning a methane-air mixture to achieve the proper tunnel test parameters. The system consists of a sampling rake, a gas sample storage array, and a gas chromatographic system. Gas samples will be analyzed after each run to assure that proper combustion takes place in the tunnel resulting in a correctly balanced composition of the test gas medium. The proper ratio of gas species is critically necessary in order for the proper operation and testing of scramjet engines in the tunnel. After a variety of methane-air burn conditions have been analyzed, additional oxygen will be introduced into the combusted gas and the enriched test gas medium analyzed. The pre/post enrichment sets of data will be compared to verify that the gas species of the test gas medium is correctly balanced for testing of air-breathing engines.
Human Factors Research Under Ground-Based and Space Conditions. Part 1
NASA Technical Reports Server (NTRS)
1997-01-01
Session TP2 includes short reports concerning: (1) Human Factors Engineering of the International space Station Human Research Facility; (2) Structured Methods for Identifying and Correcting Potential Human Errors in Space operation; (3) An Improved Procedure for Selecting Astronauts for Extended Space Missions; (4) The NASA Performance Assessment Workstation: Cognitive Performance During Head-Down Bedrest; (5) Cognitive Performance Aboard the Life and Microgravity Spacelab; and (6) Psychophysiological Reactivity Under MIR-Simulation and Real Micro-G.
Digital computer program for generating dynamic turbofan engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Krosel, S. M.; Szuch, J. R.; Westerkamp, E. J.
1983-01-01
This report describes DIGTEM, a digital computer program that simulates two spool, two-stream turbofan engines. The turbofan engine model in DIGTEM contains steady-state performance maps for all of the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. Altogether there are 16 state variables and state equations. DIGTEM features a backward-differnce integration scheme for integrating stiff systems. It trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off-design points and iterates to a balanced engine condition. Transients can also be run. They are generated by defining controls as a function of time (open-loop control) in a user-written subroutine (TMRSP). DIGTEM has run on the IBM 370/3033 computer using implicit integration with time steps ranging from 1.0 msec to 1.0 sec. DIGTEM is generalized in the aerothermodynamic treatment of components.
Internal-Performance Evaluation of Two Fixed-Divergent-Shroud Ejectors
NASA Technical Reports Server (NTRS)
Mihaloew, James R.
1960-01-01
Ejectors designed for use in a Mach 2.2 aircraft were evaluated over a range of representative primary pressure ratios and ejector corrected weight-flow ratios. Basic thrust and pumping characteristics are discussed in terms of an assumed engine operating schedule to illustrate the variation of performance with Mach number. The two designs differed about 16 percent in the shroud longitudinal spacing ratio. For corrected ejector weight-flow ratios up to 0.10, the performance of the fixed-shroud ejector designs is comparable with that of a similar continuously variable ejector except at conditions corresponding to acceleration with afterburning from Mach 0.4 to 1.2. In this region, the ejector thrust ratio decreased to a minimum of 0.96.
Build 3 of an Accelerated Mission Test of a TF41 with Block 76 Hardware.
1979-12-01
Temperature and Calculated Turbine 28 Stator Inlet Temperature Time History 7 ACU/DCU Time Checks 31 8 Oil Consumption Between Fills 32 9 Overall Oil...Consumption 33 10 Engine Vibration History 36 11 Corrected "A" Cycle Performance Trends 33 12 Corrected "A" Cycle Performance Trends 39 13 Corrected...records of engine histories during actual flight. An extensive program of pilot interviews 12 0 Li) 05 ____ ____ ___ ____ ____ ___ ____ ____ __ F
An Assessment Methodology to Evaluate In-Flight Engine Health Management Effectiveness
NASA Astrophysics Data System (ADS)
Maggio, Gaspare; Belyeu, Rebecca; Pelaccio, Dennis G.
2002-01-01
flight effectiveness of candidate engine health management system concepts. A next generation engine health management system will be required to be both reliable and robust in terms of anomaly detection capability. The system must be able to operate successfully in the hostile, high-stress engine system environment. This implies that its system components, such as the instrumentation, process and control, and vehicle interface and support subsystems, must be highly reliable. Additionally, the system must be able to address a vast range of possible engine operation anomalies through a host of different types of measurements supported by a fast algorithm/architecture processing capability that can identify "true" (real) engine operation anomalies. False anomaly condition reports for such a system must be essentially eliminated. The accuracy of identifying only real anomaly conditions has been an issue with the Space Shuttle Main Engine (SSME) in the past. Much improvement in many of the technologies to address these areas is required. The objectives of this study were to identify and demonstrate a consistent assessment methodology that can evaluate the capability of next generation engine health management system concepts to respond in a correct, timely manner to alleviate an operational engine anomaly condition during flight. Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, identified a probabilistic modeling approach to assess engine health management system concept effectiveness using a deterministic anomaly-time event assessment modeling approach that can be applied in the engine preliminary design stage of development to assess engine health management system concept effectiveness. Much discussion in this paper focuses on the formulation and application approach in performing this assessment. This includes detailed discussion of key modeling assumptions, the overall assessment methodology approach identified, and the identification of key supporting engine health management system concept design/operation and fault mode information required to utilize this methodology. At the paper's conclusion, discussion focuses on a demonstration benchmark study that applied this methodology to the current SSME health management system. A summary of study results and lessons learned are provided. Recommendations for future work in this area are also identified at the conclusion of the paper. * Please direct all correspondence/communication pertaining to this paper to Dennis G. Pelaccio, Science
Developing Formal Correctness Properties from Natural Language Requirements
NASA Technical Reports Server (NTRS)
Nikora, Allen P.
2006-01-01
This viewgraph presentation reviews the rationale of the program to transform natural language specifications into formal notation.Specifically, automate generation of Linear Temporal Logic (LTL)correctness properties from natural language temporal specifications. There are several reasons for this approach (1) Model-based techniques becoming more widely accepted, (2) Analytical verification techniques (e.g., model checking, theorem proving) significantly more effective at detecting types of specification design errors (e.g., race conditions, deadlock) than manual inspection, (3) Many requirements still written in natural language, which results in a high learning curve for specification languages, associated tools and increased schedule and budget pressure on projects reduce training opportunities for engineers, and (4) Formulation of correctness properties for system models can be a difficult problem. This has relevance to NASA in that it would simplify development of formal correctness properties, lead to more widespread use of model-based specification, design techniques, assist in earlier identification of defects and reduce residual defect content for space mission software systems. The presentation also discusses: potential applications, accomplishments and/or technological transfer potential and the next steps.
On the boundary treatment in spectral methods for hyperbolic systems
NASA Technical Reports Server (NTRS)
Canuto, C.; Quarteroni, A.
1986-01-01
Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions are clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.
On the boundary treatment in spectral methods for hyperbolic systems
NASA Technical Reports Server (NTRS)
Canuto, Claudio; Quarteroni, Alfio
1987-01-01
Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions is clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine... following: (i) Drift correction. (ii) Noise correction. (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and...
Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.
Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng
2017-08-01
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
Characterization of particulate matter and gaseous emissions of a C-130H aircraft.
Corporan, Edwin; Quick, Adam; DeWitt, Matthew J
2008-04-01
The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.
NASA Astrophysics Data System (ADS)
Gaunaa, Mac; Heinz, Joachim; Skrzypiński, Witold
2016-09-01
The crossflow principle is one of the key elements used in engineering models for prediction of the aerodynamic loads on wind turbine blades in standstill or blade installation situations, where the flow direction relative to the wind turbine blade has a component in the direction of the blade span direction. In the present work, the performance of the crossflow principle is assessed on the DTU 10MW reference blade using extensive 3D CFD calculations. Analysis of the computational results shows that there is only a relatively narrow region in which the crossflow principle describes the aerodynamic loading well. In some conditions the deviation of the predicted loadings can be quite significant, having a large influence on for instance the integral aerodynamic moments around the blade centre of mass; which is very important for single blade installation applications. The main features of these deviations, however, have a systematic behaviour on all force components, which in this paper is employed to formulate the first version of an engineering correction method to the crossflow principle applicable for wind turbine blades. The new correction model improves the agreement with CFD results for the key aerodynamic loads in crossflow situations. The general validity of this model for other blade shapes should be investigated in subsequent works.
Hybrid Environmental Control System Integrated Modeling Trade Study Analysis for Commercial Aviation
NASA Astrophysics Data System (ADS)
Parrilla, Javier
Current industry trends demonstrate aircraft electrification will be part of future platforms in order to achieve higher levels of efficiency in various vehicle level sub-systems. However electrification requires a substantial change in aircraft design that is not suitable for re-winged or re-engined applications as some aircraft manufacturers are opting for today. Thermal limits arise as engine cores progressively get smaller and hotter to improve overall engine efficiency, while legacy systems still demand a substantial amount of pneumatic, hydraulic and electric power extraction. The environmental control system (ECS) provides pressurization, ventilation and air conditioning in commercial aircraft, making it the main heat sink for all aircraft loads with exception of the engine. To mitigate the architecture thermal limits in an efficient manner, the form in which the ECS interacts with the engine will have to be enhanced as to reduce the overall energy consumed and achieve an energy optimized solution. This study examines a tradeoff analysis of an electric ECS by use of a fully integrated Numerical Propulsion Simulation System (NPSS) model that is capable of studying the interaction between the ECS and the engine cycle deck. It was found that a peak solution lays in a hybrid ECS where it utilizes the correct balance between a traditional pneumatic and a fully electric system. This intermediate architecture offers a substantial improvement in aircraft fuel consumptions due to a reduced amount of waste heat and customer bleed in exchange for partial electrification of the air-conditions pack which is a viable option for re-winged applications.
Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Schaefer, J. W.
1977-01-01
The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... CONTACT: James Lawrence, Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller..., Manager, Engine and Propeller Directorate, Aircraft Certification Service. [FR Doc. 2011-26274 Filed 10-14... Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; correction...
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.; Burcham, R. E.; Diamond, W. A.
1985-01-01
High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-steip and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mullen, R. L.; Braun, M. J.; Burcham, R. E.; Diamond, W. A.
1987-01-01
High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-step and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.
A Reconsideration of the Extension Strain Criterion for Fracture and Failure of Rock
NASA Astrophysics Data System (ADS)
Wesseloo, J.; Stacey, T. R.
2016-12-01
The complex behaviours of rocks and rock masses have presented paradoxes to the rock engineer, including the fracturing of seemingly strong rock under low stress conditions, which often occurs near excavation boundaries. The extension strain criterion was presented as a fracture initiation criterion under these conditions (Stacey in Int J Rock Mech Min Sci 18:469-474, 1981). This criterion has been used successfully by some and criticised by others. In this paper, we review the literature on the extension strain criterion and present a case for the correct interpretation of the criterion and the conditions suitable for its use. We argue that the extension strain criterion can also be used to provide an indication of damage level under conditions of relatively low confining stress. We also present an augmentation of the criterion, the ultimate extension strain, which is applicable under extensional loading conditions when σ 2 is similar in magnitude to σ 1.
Shiloh, Roy; Remez, Roei; Lu, Peng-Han; Jin, Lei; Lereah, Yossi; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady
2018-06-01
Nearly eighty years ago, Scherzer showed that rotationally symmetric, charge-free, static electron lenses are limited by an unavoidable, positive spherical aberration. Following a long struggle, a major breakthrough in the spatial resolution of electron microscopes was reached two decades ago by abandoning the first of these conditions, with the successful development of multipole aberration correctors. Here, we use a refractive silicon nitride thin film to tackle the second of Scherzer's constraints and demonstrate an alternative method for correcting spherical aberration in a scanning transmission electron microscope. We reveal features in Si and Cu samples that cannot be resolved in an uncorrected microscope. Our thin film corrector can be implemented as an immediate low cost upgrade to existing electron microscopes without re-engineering of the electron column or complicated operation protocols and can be extended to the correction of additional aberrations. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lou, Fangyuan
The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication systems, secondary air systems, a throttle system, and different inlet configurations) were built. Additionally, three Labview programs were developed for acquiring the compressor health monitoring, steady and unsteady pressure and strain data. The baseline, steady aerodynamic performance map was established. Additionally, the unsteady pressure field in the compressor was investigated. Steady performance data have been acquired from choke to near surge at three different corrected speeds from 90% to 100% corrected speed in 5% increments. The performance of the compressor stage was characterized using total pressure ratio (TPR), total temperature ratio (TTR), and isentropic efficiency. The impeller alone and diffuser along performance were also investigated, and the high loss regions in the compressor were identified. At last, the compressor unsteady shroud pressure was investigated at 100% corrected speed in both the time domain and frequency domain. Results show strong pressure components in relation to the shaft frequency (SF). The impeller has 17 main blades and 17 splitter blades, and introduces pressure fluctuations at 17SF and its harmonics. Additionally, the diffuser has a vane count of 25 and results in pressure spectra of 59SF (17+17+25) due to the interactions between the impeller and diffuser.
Rheometry of polymer melts using processing machines
NASA Astrophysics Data System (ADS)
Friesenbichler, Walter; Neunhäuserer, Andreas; Duretek, Ivica
2016-08-01
The technology of slit-die rheometry came into practice in the early 1960s. This technique enables engineers to measure the pressure drop very precisely along the slit die. Furthermore, slit-die rheometry widens up the measurable shear rate range and it is possible to characterize rheological properties of complicated materials such as wall slipping PVCs and high-filled compounds like long fiber reinforced thermoplastics and PIM-Feedstocks. With the use of slit-die systems in polymer processing machines e.g., Rauwendaal extrusion rheometer, by-pass extrusion rheometer, injection molding machine rheometers, new possibilities regarding rheological characterization of thermoplastics and elastomers at processing conditions near to practice opened up. Special slit-die systems allow the examination of the pressure-dependent viscosity and the characterization of cross-linking elastomers because of melt preparation and reachable shear rates comparable to typical processing conditions. As a result of the viscous dissipation in shear and elongational flows, when performing rheological measurements for high-viscous elastomers, temperature-correction of the apparent values has to be made. This technique was refined over the last years at Montanuniversitaet. Nowadays it is possible to characterize all sorts of rheological complicated polymeric materials under process- relevant conditions with viscosity values fully temperature corrected.
Bifurcation of elastic solids with sliding interfaces
NASA Astrophysics Data System (ADS)
Bigoni, D.; Bordignon, N.; Piccolroaz, A.; Stupkiewicz, S.
2018-01-01
Lubricated sliding contact between soft solids is an interesting topic in biomechanics and for the design of small-scale engineering devices. As a model of this mechanical set-up, two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so this formulation is the objective of the present paper. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or `spring-type' interfacial conditions are not able to predict bifurcations in tension, while experiments-one of which, ad hoc designed, is reported-show that these bifurcations are a reality and become possible when the correct sliding interface model is used. The presented results introduce a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact.
40 CFR 1065.659 - Removed water correction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Removed water correction. 1065.659... CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.659 Removed water correction. (a) If you remove water upstream of a concentration measurement, x, correct for the removed water...
Investigations for the improvement of space shuttle main engine electron beam welding equipment
NASA Technical Reports Server (NTRS)
Smock, R. A.; Taylor, R. A.; Wall, W. A., Jr.
1977-01-01
Progress made in the testing, evaluation, and correction of MSFC's 7.5 kW electron beam welder in support of space shuttle main engine component welding is summarized. The objective of this project was to locate and correct the deficiencies in the welder. Some 17 areas were deficient in the 7.5 kW ERI welding system and the associated corrective action was taken to improve its operational performance. An overall improvement of 20 times the original reliability was obtained at full rated capacity after the modifications were made.
Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Schaefer, J. W.
1977-01-01
The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.
Internal Performance Evaluation of a Two Position Divergent Shroud Ejector
NASA Technical Reports Server (NTRS)
Mihaloew, James R.; Stofan, Andrew J.
1960-01-01
A two-position divergent shroud ejector was investigated in an unheated quiescent-air facility over a range of operational variables applicable to a Mach 2.5 aircraft. The performance data are shown in terms of hypothetical engine operating conditions to illustrate variations of performance with Mach number. The overall thrust performance was reasonably good, with ejector thrust ratios ranging from 0.97 to 0.98 for all conditions except that corresponding to acceleration with afterburning through the transonic flight Mach number region from 0.9 to 1.1, where the ejector thrust ratio decreased to as low as 0.945 for an ejector corrected weight-flow ratio of 0.105.
Effect of a part-span variable inlet guide vane on the performance of a high-bypass turbofan engine
NASA Technical Reports Server (NTRS)
Bobula, G. A.; Soeder, R. H.; Burkardt, L. A.
1981-01-01
The ability of a part span variable inlet guide vane (VIGV) to modulate the thrust of a high bypass turbofan engine was evaluated at altitude/Mach number conditions of 4572 m/0.6 and 9144 m/0.93. Fan tip, gas generator and supercharger performance were also determined, both on operating lines and during fan duct throttling. The evaluation was repeated with the bypass splitter extended forward to near the fan blade trailing edge. Gross thrust attentuation of over 50 percent was achieved with 50 degree VIGV closure at 100 percent corrected fan speed. Gas generator supercharger performance fell off with VIGV closure, but this loss was reduced when a splitter extension was added. The effect of VIVG closure on gas generator performance was minimal.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Moore, C S
1931-01-01
Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.
14 CFR 23.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...
14 CFR 23.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engines with multiple intakes with separate humidity measurements at each intake, use a flow-weighted average humidity for NOX corrections. If individual flows of each intake are not measured, use good engineering judgment to estimate a flow-weighted average humidity. (3) Temperature. Good engineering judgment...
NASA Technical Reports Server (NTRS)
Gardiner, Arthur W; Whedon, William E
1928-01-01
This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.
An Experimental Evaluation of Blockage Corrections for Current Turbines
NASA Astrophysics Data System (ADS)
Ross, Hannah; Polagye, Brian
2017-11-01
Flow confinement has been shown to significantly alter the performance of turbines that extract power from water currents. These performance effects are related to the degree of constraint, defined by the ratio of turbine projected area to channel cross-sectional area. This quantity is referred to as the blockage ratio. Because it is often desirable to adjust experimental observations in water channels to unconfined conditions, analytical corrections for both wind and current turbines have been derived. These are generally based on linear momentum actuator disk theory but have been applied to turbines without experimental validation. This work tests multiple blockage corrections on performance and thrust data from a cross-flow turbine and porous plates (experimental analogues to actuator disks) collected in laboratory flumes at blockage ratios ranging between 10 and 35%. To isolate the effects of blockage, the Reynolds number, Froude number, and submergence depth were held constant while the channel width was varied. Corrected performance data are compared to performance in a towing tank at a blockage ratio of less than 5%. In addition to examining the accuracy of each correction, underlying assumptions are assessed to determine why some corrections perform better than others. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1256082 and the Naval Facilities Engineering Command (NAVFAC).
Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario
2018-05-01
In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.
V & V Within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission critical software. This paper describes the working group's success in identifying V&V tasks that could be performed in the domain engineering and transition levels of reuse-based software engineering. The primary motivation for V&V at the domain level is to provide assurance that the domain requirements are correct and that the domain artifacts correctly implement the domain requirements. A secondary motivation is the possible elimination of redundant V&V activities at the application level. The group also considered the criteria and motivation for performing V&V in domain engineering.
Autonomous Quantum Error Correction with Application to Quantum Metrology
NASA Astrophysics Data System (ADS)
Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.
2017-04-01
We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Automated Parameter Studies Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian
2004-01-01
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.
Distributed Health Monitoring System for Reusable Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.
2009-01-01
The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Correction AGENCY: Office... employees at the Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC). Within that notice the descriptors for levels IV and V are incorrect under factor...
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.
2012-01-01
Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.
78 FR 68360 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. The AD number is incorrect in the Regulatory text. This document corrects that error. In... turbofan engines. As published, the AD number 2013-19-17 under Sec. 39.13 [Amended], is incorrect. No other...
Efficiency of single-particle engines
NASA Astrophysics Data System (ADS)
Proesmans, Karel; Driesen, Cedric; Cleuren, Bart; Van den Broeck, Christian
2015-09-01
We study the efficiency of a single-particle Szilard and Carnot engine. Within a first order correction to the quasistatic limit, the work distribution is found to be Gaussian and the correction factor to average work and efficiency only depends on the piston speed. The stochastic efficiency is studied for both models and the recent findings on efficiency fluctuations are confirmed numerically. Special features are revealed in the zero-temperature limit.
Ciliates learn to diagnose and correct classical error syndromes in mating strategies
Clark, Kevin B.
2013-01-01
Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987
ON THE PROBLEM OF CORRECTING TWISTED TURBINE BLADES,
TURBINE BLADES , DESIGN), GAS TURBINES , STEAM TURBINES , BLADE AIRFOILS , ASPECT RATIO, FLUID DYNAMICS, SECONDARY FLOW, ANGLE OF ATTACK, INLET GUIDE VANES , CORRECTIONS, PERFORMANCE( ENGINEERING ), OPTIMIZATION, USSR
Single event upset protection circuit and method
Wallner, John; Gorder, Michael
2016-03-22
An SEU protection circuit comprises first and second storage means for receiving primary and redundant versions, respectively, of an n-bit wide data value that is to be corrected in case of an SEU occurrence; the correction circuit requires that the data value be a 1-hot encoded value. A parity engine performs a parity operation on the n bits of the primary data value. A multiplexer receives the primary and redundant data values and the parity engine output at respective inputs, and is arranged to pass the primary data value to an output when the parity engine output indicates `odd` parity, and to pass the redundant data value to the output when the parity engine output indicates `even` parity. The primary and redundant data values are suitably state variables, and the parity engine is preferably an n-bit wide XOR or XNOR gate.
NASA Astrophysics Data System (ADS)
Ponomarev, Vasily
SPLDESS development with the elements of a multimedia illustration of traditional hypertext search results by Internet search engine provides research of information propagation innovative effect during the public access information-recruiting networks of information kiosks formation at the experimental stage with the mirrors at the constantly updating portal for Internet users. Author of this publication put the emphasis on a condition of pertinent search engine results of the total answer by the user inquiries, that provide the politically correct and not usurping socially-network data mining effect at urgent monitoring. Development of the access by devices of the new communication types with the newest technologies of data transmission, multimedia and an information exchange from the first innovation line usage support portal is presented also (including the device of social-psycho-linguistic determination according the author's conception).
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.
Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing
2017-08-01
Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE /NV
This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 252: Area 25 Engine Test Stand-1 Decontamination Pad, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Located at the Nevada Test Site in Nevada, CAU 252 consists of only one Corrective Action Site (25-07-04, Decontamination Pad). This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary at CAU 252. The Corrective Action Decision Document and Closure Report have been combined into one report because the potential contaminants of concern weremore » either not detected during the corrective action investigation or were only present at naturally occurring concentrations. Based on the field results, neither corrective action or a corrective action plan is required at this site. A Notice of Completion to DOE/NV is being requested from the Nevada Division of Environmental Protection for closure of CAU 252, as well as a request that this site be moved from Appendix III to Appendix IV of the FFACO. Further, no use restrictions are required to be placed on this CAU.« less
Lewis Research Center support of Chrysler upgraded engine program
NASA Technical Reports Server (NTRS)
Warren, E. L.
1978-01-01
Running of the upgraded engine has indicated that, although the engine is mechanically sound, it is deficient in power. Recent modifications and corrective action have improved this. Testing of the engine is being done in the test cell. This simulates an automobile installation. Located in the inlet flow ducts are two turbine flow meters to measure engine air flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, D.W.; Higgins, S.T.; Slowik, A.A.
1984-08-01
The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed as a result of an extensive comparative evaluation of flue gas desulfurization (FGD) and physical coal cleaning. The Homer City System, the Multistream Coal Cleaning System (MCCS), was chosen as an economical alternative to FGD. The plant contains circuits for cleaning coarse, medium, and fine coals and for recovering fine and very fine coals.more » The dominant type of cleaning equipment used in the plant is the dense medium cyclone. The original '93 plant' configuration was never able to clean coal to the conditions specified in the plant design. An extensive test and evaluation program was begun to identify and correct the causes of plant operating problems. After extensive pilot plant equipment tests and engineering studies were completed, recommendations were made for plant modifications necessary to correct the design and operating deficiencies of the plant. Extensive modifications were made to one of two parallel processing trains in the plant (the 'B' circuits), and a test program was initiated to evaluate these corrective measures. The modified 'B' circuits have not yet met design conditions.« less
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1983-01-01
Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.
40 CFR 1065.695 - Data requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... restriction. (v) Charge air cooler volume. (vi) Charge air cooler outlet temperature, specified engine.... (iii) “Dry-to-wet” correction. (iv) NMHC, CH4, and contamination correction. (v) NOX humidity...
ERIC Educational Resources Information Center
El Guemmat, Kamal; Ouahabi, Sara
2018-01-01
The objective of this article is to analyze the searching and indexing techniques of educational search engines' implementation while treating future challenges. Educational search engines could greatly help in the effectiveness of e-learning if used correctly. However, these engines have several gaps which influence the performance of e-learning…
40 CFR 1065.659 - Removed water correction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Removed water correction. 1065.659... CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.659 Removed water correction. (a) If you remove water upstream of a concentration measurement, x, or upstream of a flow measurement...
On a difficulty in eigenfunction expansion solutions for the start-up of fluid flow
NASA Astrophysics Data System (ADS)
Christov, Ivan C.
2015-11-01
Most mathematics and engineering textbooks describe the process of ``subtracting off'' the steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be solved by separation of variables (i.e., eigenfunction expansions). While this method produces the correct solution for the start-up of the flow of, e.g., a Newtonian fluid between parallel plates, it can lead to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show that the reason for this is the non-rigorous enforcement of the start-up condition in the textbook approach, which leads to a violation of the principle of causality. Nevertheless, these boundary-value problems can be solved correctly using eigenfunction expansions, and we present the formulation that makes this possible (in essence, an application of Duhamel's principle). The solutions obtained by this new approach are shown to agree identically with those obtained by using the Laplace transform in time only, a technique that enforces the proper start-up condition implicitly (hence, the same error cannot be committed). Supported, in part, by NSF Grant DMS-1104047 and the U.S. DOE (Contract No. DE-AC52-06NA25396) through the LANL/LDRD Program.
Efficiency at maximum power of a chemical engine.
Hooyberghs, Hans; Cleuren, Bart; Salazar, Alberto; Indekeu, Joseph O; Van den Broeck, Christian
2013-10-07
A cyclically operating chemical engine is considered that converts chemical energy into mechanical work. The working fluid is a gas of finite-sized spherical particles interacting through elastic hard collisions. For a generic transport law for particle uptake and release, the efficiency at maximum power η(mp) [corrected] takes the form 1/2+cΔμ+O(Δμ(2)), with 1∕2 a universal constant and Δμ the chemical potential difference between the particle reservoirs. The linear coefficient c is zero for engines featuring a so-called left/right symmetry or particle fluxes that are antisymmetric in the applied chemical potential difference. Remarkably, the leading constant in η(mp) [corrected] is non-universal with respect to an exceptional modification of the transport law. For a nonlinear transport model, we obtain η(mp) = 1/(θ + 1) [corrected], with θ > 0 the power of Δμ in the transport equation.
NASA Technical Reports Server (NTRS)
Manchala, Daniel W.; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald T.; Brown, Gerald V.; Lawrence, Charles; Klusman, Steve
1994-01-01
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezoelectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
Static and kinematic positioning using WADGPS from geostationary satellites
NASA Astrophysics Data System (ADS)
Cefalo, R.; Gatti, M.
2003-04-01
STATIC AND KINEMATIC POSITIONING USING WADGPS CORRECTIONS FROM GEOSTATIONARY SATELLITES Cefalo R. (1), Gatti M (2) (1) Department of Civil Engineering, University of Trieste, P.le Europa 1, 34127 Trieste, Italy, cefalo@dic.univ.trieste.it, (2) Department of Engineering, University of Ferrara, via Saragat 1, 44100 Ferrara, Italy, mgatti@ing.unife.it ABSTRACT. Starting from February 2000, static and kinematic experiments have been performed at the Department of Civil Engineering of University of Trieste, Italy and the Department of Engineering of University of Ferrara, Italy, using the WADGPS (Wide Area Differential GPS) corrections up linked by Geostationary Satellites belonging to the American WAAS and European EGNOS. Recently, a prototypal service by ESA (European Space Agency) named SISNet (Signal In Space through Internet), has been introduced using Internet to diffuse the messages up linked through AOR-E and IOR Geostationary Satellites. This service will overcome the problems relative to the availability of the corrections in urban areas. This system is currently under tests by the authors in order to verify the latency of the message and the applicability and accuracies obtainable in particular in dynamic applications.
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
Labrecque, Michel; Ratté, Stéphane; Frémont, Pierre; Cauchon, Michel; Ouellet, Jérôme; Hogg, William; McGowan, Jessie; Gagnon, Marie-Pierre; Njoya, Merlin; Légaré, France
2013-10-01
To compare the ability of users of 2 medical search engines, InfoClinique and the Trip database, to provide correct answers to clinical questions and to explore the perceived effects of the tools on the clinical decision-making process. Randomized trial. Three family medicine units of the family medicine program of the Faculty of Medicine at Laval University in Quebec city, Que. Fifteen second-year family medicine residents. Residents generated 30 structured questions about therapy or preventive treatment (2 questions per resident) based on clinical encounters. Using an Internet platform designed for the trial, each resident answered 20 of these questions (their own 2, plus 18 of the questions formulated by other residents, selected randomly) before and after searching for information with 1 of the 2 search engines. For each question, 5 residents were randomly assigned to begin their search with InfoClinique and 5 with the Trip database. The ability of residents to provide correct answers to clinical questions using the search engines, as determined by third-party evaluation. After answering each question, participants completed a questionnaire to assess their perception of the engine's effect on the decision-making process in clinical practice. Of 300 possible pairs of answers (1 answer before and 1 after the initial search), 254 (85%) were produced by 14 residents. Of these, 132 (52%) and 122 (48%) pairs of answers concerned questions that had been assigned an initial search with InfoClinique and the Trip database, respectively. Both engines produced an important and similar absolute increase in the proportion of correct answers after searching (26% to 62% for InfoClinique, for an increase of 36%; 24% to 63% for the Trip database, for an increase of 39%; P = .68). For all 30 clinical questions, at least 1 resident produced the correct answer after searching with either search engine. The mean (SD) time of the initial search for each question was 23.5 (7.6) minutes with InfoClinique and 22.3 (7.8) minutes with the Trip database (P = .30). Participants' perceptions of each engine's effect on the decision-making process were very positive and similar for both search engines. Family medicine residents' ability to provide correct answers to clinical questions increased dramatically and similarly with the use of both InfoClinique and the Trip database. These tools have strong potential to increase the quality of medical care.
40 CFR 1065.659 - Removed water correction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Removed water correction. 1065.659 Section 1065.659 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.659 Removed water correction. (a) If you remove water upstream of a...
A new digitized reverse correction method for hypoid gears based on a one-dimensional probe
NASA Astrophysics Data System (ADS)
Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo
2017-12-01
In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.
30 CFR 57.12030 - Correction of dangerous conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Correction of dangerous conditions. 57.12030... Electricity Surface and Underground § 57.12030 Correction of dangerous conditions. When a potentially dangerous condition is found it shall be corrected before equipment or wiring is energized. ...
30 CFR 57.12030 - Correction of dangerous conditions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Correction of dangerous conditions. 57.12030... Electricity Surface and Underground § 57.12030 Correction of dangerous conditions. When a potentially dangerous condition is found it shall be corrected before equipment or wiring is energized. ...
30 CFR 57.12030 - Correction of dangerous conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Correction of dangerous conditions. 57.12030... Electricity Surface and Underground § 57.12030 Correction of dangerous conditions. When a potentially dangerous condition is found it shall be corrected before equipment or wiring is energized. ...
30 CFR 57.12030 - Correction of dangerous conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Correction of dangerous conditions. 57.12030... Electricity Surface and Underground § 57.12030 Correction of dangerous conditions. When a potentially dangerous condition is found it shall be corrected before equipment or wiring is energized. ...
30 CFR 57.12030 - Correction of dangerous conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Correction of dangerous conditions. 57.12030... Electricity Surface and Underground § 57.12030 Correction of dangerous conditions. When a potentially dangerous condition is found it shall be corrected before equipment or wiring is energized. ...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
40 CFR 65.64 - Group determination procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... stream volumetric flow shall be corrected to 2.3 percent moisture; or (2) The engineering assessment... section or by using the engineering assessment procedures in paragraph (i) of this section. (1) The net...
Failure detection and correction for turbofan engines
NASA Technical Reports Server (NTRS)
Corley, R. C.; Spang, H. A., III
1977-01-01
In this paper, a failure detection and correction strategy for turbofan engines is discussed. This strategy allows continuing control of the engines in the event of a sensor failure. An extended Kalman filter is used to provide the best estimate of the state of the engine based on currently available sensor outputs. Should a sensor failure occur the control is based on the best estimate rather than the sensor output. The extended Kalman filter consists of essentially two parts, a nonlinear model of the engine and up-date logic which causes the model to track the actual engine. Details on the model and up-date logic are presented. To allow implementation, approximations are made to the feedback gain matrix which result in a single feedback matrix which is suitable for use over the entire flight envelope. The effect of these approximations on stability and response is discussed. Results from a detailed nonlinear simulation indicate that good control can be maintained even under multiple failures.
Quantum Tunneling Affects Engine Performance.
Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J
2013-06-20
We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.
76 FR 55553 - Airworthiness Standards; Rotor Overspeed Requirements; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... concerning this final rule, contact Tim Mouzakis, Engine and Propeller Directorate Standards Staff, ANE-111, Engine and Propeller Directorate, Federal Aviation Administration, 12 New England Executive Park...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... Engines Installed In, But Not Limited To, Diamond Aircraft Industries Model DA 42 Airplanes; Correction..., Diamond Aircraft Industries model DA 42 airplanes. The part number for engine model TAE 125-01 is missing...-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries model DA 42...
Modified pressure loss model for T-junctions of engine exhaust manifold
NASA Astrophysics Data System (ADS)
Wang, Wenhui; Lu, Xiaolu; Cui, Yi; Deng, Kangyao
2014-11-01
The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.
Quadros, Rolen M; Miura, Hiromi; Harms, Donald W; Akatsuka, Hisako; Sato, Takehito; Aida, Tomomi; Redder, Ronald; Richardson, Guy P; Inagaki, Yutaka; Sakai, Daisuke; Buckley, Shannon M; Seshacharyulu, Parthasarathy; Batra, Surinder K; Behlke, Mark A; Zeiner, Sarah A; Jacobi, Ashley M; Izu, Yayoi; Thoreson, Wallace B; Urness, Lisa D; Mansour, Suzanne L; Ohtsuka, Masato; Gurumurthy, Channabasavaiah B
2017-05-17
Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
Pressure Rise, Gas Vibrations and Combustion Noises During the Explosion of Fuels
NASA Technical Reports Server (NTRS)
Wawrziniok,
1933-01-01
In the use of piezo-quartz indicators for high-speed automobile engines, the interpretation of pressure-time diagrams made by an oscillograph offers certain difficulties. On the one hand, the scale of the pressure amplitudes is not always the same under all conditions, while, on the other hand, the atmospheric zero line may be shifted from its correct position in the oscillogram. These facts make necessary to verify the readings of the quartz indicators by direct calibration before and after each series of tests and, on the basis of the results, to determine the scale for the oscillograms.
Evaluation Of Different Power Conditioning Options For Stirling Generators
NASA Astrophysics Data System (ADS)
Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.
2011-10-01
Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
NASA Technical Reports Server (NTRS)
Gove, W D
1929-01-01
The rate of change in power of aircraft engines with altitude has been the subject of considerable discussion. Only a small amount of data from direct measurements of the power delivered by airplane engines during flight, however, has been published. This report presents the results of direct measurements of the power delivered by a Liberty 12 airplane engine taken with a hub dynamometer at standard altitudes from zero to 13,000 feet. Six flights were made with the engine installed in a modified DH-4 airplane. The experimental relation of brake horsepower to altitude is compared with two theoretical relations and with the experimental results, for a second Liberty 12 engine, given in NACA Technical Report no. 252. The rate of change in power with altitude of a third Liberty engine, measured with a calibrated propeller, is also given for comparison. The data presented substantiate the theoretical relation of brake horsepower to altitude based on the correction of ground level indicated horsepower for change in atmospheric temperature and pressure with the subsequent deduction of friction horsepower corrected for altitude. (author)
Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2007-01-01
Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, M.L.; Kittelson, D.B.; Leuer, R.H.
1996-10-01
A two-dimensional optimization process, which simultaneously adjusts the spark timing and equivalence ratio of a lean-burn, natural gas, Hercules G1600 engine, has been demonstrated. First, the three-dimensional surface of thermal efficiency was mapped versus spark timing and equivalence ratio at a single speed and load combination. Then the ability of the control system to find and hold the combination of timing and equivalence ratio that gives the highest thermal efficiency was explored. NO{sub x}, CO, and HC maps were also constructed from the experimental data to determine the tradeoffs between efficiency and emissions. The optimization process adds small synchronous disturbancesmore » to the spark timing and air flow while the fuel injected per cycle is held constant for four cycles. The engine speed response to these disturbances is used to determine the corrections for spark timing and equivalence ratio. The control process, in effect, uses the engine itself as the primary sensor. The control system can adapt to changes in fuel composition, operating conditions, engine wear, or other factors that may not be easily measured. Although this strategy was previously demonstrated in a Volkswagen 1.7 liter light duty engine (Frankling et al., 1994b), until now it has not been demonstrated in a heavy-duty engine. This paper covers the application of the approach to a Hercules G1600 engine.« less
NASA Astrophysics Data System (ADS)
Guo, Haotian; Duan, Fajie; Zhang, Jilong
2016-01-01
Blade tip-timing is the most effective method for blade vibration online measurement of turbomachinery. In this article a synchronous resonance vibration measurement method of blade based on tip-timing is presented. This method requires no once-per revolution sensor which makes it more generally applicable in the condition where this sensor is difficult to install, especially for the high-pressure rotors of dual-rotor engines. Only three casing mounted probes are required to identify the engine order, amplitude, natural frequency and the damping coefficient of the blade. A method is developed to identify the blade which a tip-timing data belongs to without once-per revolution sensor. Theoretical analyses of resonance parameter measurement are presented. Theoretic error of the method is investigated and corrected. Experiments are conducted and the results indicate that blade resonance parameter identification is achieved without once-per revolution sensor.
The isentropic light piston annular cascade facil ity at RAE Pyestock
NASA Astrophysics Data System (ADS)
Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.
1985-09-01
An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.
Hinckley, Daniel M.; Freeman, Gordon S.; Whitmer, Jonathan K.; de Pablo, Juan J.
2013-01-01
A new 3-Site-Per-Nucleotide coarse-grained model for DNA is presented. The model includes anisotropic potentials between bases involved in base stacking and base pair interactions that enable the description of relevant structural properties, including the major and minor grooves. In an improvement over available coarse-grained models, the correct persistence length is recovered for both ssDNA and dsDNA, allowing for simulation of non-canonical structures such as hairpins. DNA melting temperatures, measured for duplexes and hairpins by integrating over free energy surfaces generated using metadynamics simulations, are shown to be in quantitative agreement with experiment for a variety of sequences and conditions. Hybridization rate constants, calculated using forward-flux sampling, are also shown to be in good agreement with experiment. The coarse-grained model presented here is suitable for use in biological and engineering applications, including nucleosome positioning and DNA-templated engineering. PMID:24116642
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebelmann, K.L.
1990-01-01
Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fullymore » characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig.« less
14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)
Code of Federal Regulations, 2010 CFR
2010-01-01
... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...
14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)
Code of Federal Regulations, 2013 CFR
2013-01-01
... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...
14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)
Code of Federal Regulations, 2012 CFR
2012-01-01
... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...
14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)
Code of Federal Regulations, 2011 CFR
2011-01-01
... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...
14 CFR Appendix G to Part 135 - Extended Operations (ETOPS)
Code of Federal Regulations, 2014 CFR
2014-01-01
... the FAA; (b) The operation is conducted in a multi-engine transport category turbine-powered airplane... Mexico) with multi-engine transport category turbine-engine powered airplanes. The certificate holder may... speed, corrected for wind and temperature) may not exceed the time specified in the Airplane Flight...
Code of Federal Regulations, 2014 CFR
2014-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permit limit applicable to the process vent. (iv) Design analysis based on accepted chemical engineering... rates, halogenated process vent determinations, process vent TRE index values, and engineering... corrected to 2.3 percent moisture; or (2) The engineering assessment procedures in paragraph (k) of this...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank Automotive Research, Development and Engineering Center (TARDEC); Correction AGENCY: Office of the Deputy... Berry, U. S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), 6501 East 11...
77 FR 58301 - Technical Amendment; Airworthiness Standards: Aircraft Engines; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... technical amendment, the FAA clarified aircraft engine vibration test requirements in the airworthiness... amendment, the FAA intended to clarify vibration test requirements in Sec. 33.83 of 14 Code of Federal... read as follows: Sec. 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
..., S.A. Models CFM56-3 and -3B Turbofan Engines AGENCY: Federal Aviation Administration (FAA...), for certain CFM International, S.A. models CFM56-3 and -3B turbofan engines. That proposed AD would... inspection compliance threshold, to correct the engine model designations affected, and to clarify some of...
A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications
Barrias, António; Casas, Joan R.; Villalba, Sergi
2016-01-01
The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures. PMID:27223289
A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications.
Barrias, António; Casas, Joan R; Villalba, Sergi
2016-05-23
The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.
NASA Technical Reports Server (NTRS)
Dobrzynski, W.
1984-01-01
Amiet's correction scheme for sound wave transmission through shear-layers is extended to incorporate the additional effects of different temperatures in the flow-field in the surrounding medium at rest. Within a parameter-regime typical for acoustic measurements in wind tunnels amplitude- and angle-correction is calculated and plotted systematically to provide a data base for the test engineer.
Borycki, E; Kushniruk, A; Nohr, C; Takeda, H; Kuwata, S; Carvalho, C; Bainbridge, M; Kannry, J
2013-01-01
Issues related to lack of system usability and potential safety hazards continue to be reported in the health information technology (HIT) literature. Usability engineering methods are increasingly used to ensure improved system usability and they are also beginning to be applied more widely for ensuring the safety of HIT applications. These methods are being used in the design and implementation of many HIT systems. In this paper we describe evidence-based approaches to applying usability engineering methods. A multi-phased approach to ensuring system usability and safety in healthcare is described. Usability inspection methods are first described including the development of evidence-based safety heuristics for HIT. Laboratory-based usability testing is then conducted under artificial conditions to test if a system has any base level usability problems that need to be corrected. Usability problems that are detected are corrected and then a new phase is initiated where the system is tested under more realistic conditions using clinical simulations. This phase may involve testing the system with simulated patients. Finally, an additional phase may be conducted, involving a naturalistic study of system use under real-world clinical conditions. The methods described have been employed in the analysis of the usability and safety of a wide range of HIT applications, including electronic health record systems, decision support systems and consumer health applications. It has been found that at least usability inspection and usability testing should be applied prior to the widespread release of HIT. However, wherever possible, additional layers of testing involving clinical simulations and a naturalistic evaluation will likely detect usability and safety issues that may not otherwise be detected prior to widespread system release. The framework presented in the paper can be applied in order to develop more usable and safer HIT, based on multiple layers of evidence.
Preedagasamzin, Sarinthip; Nualkaew, Tiwaporn; Pongrujikorn, Tanjitti; Jinawath, Natini; Kole, Ryszard; Fucharoen, Suthat; Jearawiriyapaisarn, Natee; Svasti, Saovaros
2018-04-30
Repair of a splicing defect of β-globin pre-mRNA harboring hemoglobin E (HbE) mutation was successfully accomplished in erythroid cells from patients with β-thalassemia/HbE disorder by a synthetic splice-switching oligonucleotide (SSO). However, its application is limited by short-term effectiveness and requirement of lifelong periodic administration of SSO, especially for chronic diseases like thalassemias. Here, we engineered lentiviral vectors that stably express U7 small nuclear RNA (U7 snRNA) carrying the splice-switching sequence of the SSO that restores correct splicing of β E -globin pre-mRNA and achieves a long-term therapeutic effect. Using a two-step tiling approach, we systematically screened U7 snRNAs carrying splice-switching SSO sequences targeted to the cryptic 5' splice site created by HbE mutation. We tested this approach and identified the most responsive element for mediating splicing correction in engineered U7 snRNAs in HeLa-β E cell model cell line. Remarkably, the U7 snRNA lentiviral vector (U7 βE4+1) targeted to this region effectively restored the correctly-spliced β E -globin mRNA for at least 5 months. Moreover, the effects of the U7 βE4+1 snRNA lentiviral vector were also evident as upregulation of the correctly-spliced β E -globin mRNA in erythroid progenitor cells from β-thalassemia/HbE patients treated with the vector, which led to improvements of pathologies in erythroid progenitor cells from thalassemia patients. These results suggest that the splicing correction of β E -globin pre-mRNA by the engineered U7 snRNA lentiviral vector provides a promising, long-term treatment for β-thalassemia/HbE. Copyright © 2018 Elsevier Inc. All rights reserved.
Correcting horsepower measurements to a standard temperature
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report discusses the relation between the temperature of the air at the entrance to the carburetor and the power developed by the engine. Its scope is limited to a consideration of the range of temperatures likely to result from changes of season, locality, or altitude, since its primary aim is the finding of a satisfactory basis for correcting power measurements to a standard temperature. The tests upon which this report is based were made upon aviation engines in the Altitude Laboratory of the Bureau of Standards. From the results of over 1,600 tests it is concluded that if calculations be based on the assumption that the indicated horsepower of an engine varies inversely as the square root of the absolute temperature of the carburetor air the values obtained will check closely experimental measurements. The extent to which this relationship would be expected from theoretical considerations is discussed and some suggestions are given relative to the use of this relationship in correcting horsepower measurements. (author)
Evaluation of Fuel Character Effects on J79 Engine Combustion System
1979-06-01
A. Overall Engine Description The J79 engine is a lightweight, high-thrust, axial - flow turbojet engine with variable afterburner thrust. This engine...thimbles are arranged to provide flow patterns for flame stabilization in the primary zone and mixing and turbine inlet temperature profile control at...measured with stainard )SZ orifices- Fuel flow races uere measured with calibrated turbine flotaMcers corrected for the density aan viscosity of each
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
..., Aerospace Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England... Directives; General Electric Company (GE) CF34-1A, CF34-3A, and CF34-3B Series Turbofan Engines; Correction... to GE CF34-1A, CF34-3A, and CF34-3B series turbofan engines. The docket number is incorrect in all...
78 FR 14722 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... capability on one engine, and in-flight shutdown of the engine. This action revises that NPRM by proposing to... maintenance planning data (MPD) document. We are proposing this supplemental NPRM to detect and correct... feed system, followed by loss of fuel system suction feed capability on one engine, and in-flight...
77 FR 72200 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... correctly on the engine fuel feed manifold couplings. This AD also requires inspecting the assembly of the engine fuel feed manifold rigid and full flexible couplings. This AD was prompted by reports of fuel leaks due to improperly assembled engine fuel feed manifold couplings. We are issuing this AD to detect...
76 FR 37247 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... the left engine accessory compartment, and corrective actions if necessary. This new AD also requires...) Replace the left engine fuel and hydraulic tubing and install a tubing support channel using new parts. (2... other damage of the case drain tube from the hydraulic pump case installed on the left-hand engine, and...
An Extreme-Value Approach to Anomaly Vulnerability Identification
NASA Technical Reports Server (NTRS)
Everett, Chris; Maggio, Gaspare; Groen, Frank
2010-01-01
The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.
NASA Technical Reports Server (NTRS)
Krebs, Richard P.; Suozzi, Frank L.
1947-01-01
Performance characteristics of the turbine in the 19B-8 jet propulsion engine were determined from an investigation of the complete engine in the Cleveland altitude wind tunnel. The investigation covered a range of simulated altitudes from 5000 to 30,000 feet and flight Mach numbers from 0.05 to 0.46 for various tail-cone positions over the entire operable range of engine speeds. The characteristics of the turbine are presented as functions of the total-pressure ratio across the turbine and the turbine speed and the gas flow corrected to NACA standard atmospheric conditions at sea level. The effect of changes in altitude, flight Mach number, and tail-cone position on turbine performance is discussed. The turbine efficiency with the tail cone in varied from a maximum of 80.5 percent to minimum of 75 percent over a range of engine speeds from 7500 to 17,500 rpm at a flight Mach number of 0.055. Turbine efficiency was unaffected by changes in altitude up to 15,000 feet but was a function of tail-cone position and flight Mach number. Decreasing the tail-pipe-nozzle outlet area 21 percent reduced the turbine efficiency between 2 and 4.5 percent. The turbine efficiency increased between 1.5 and 3 percent as the flight Mach number changed from 0.055 to 0.297.
Results of the Phoenix Relative Humidity Sensor Recalibration
NASA Astrophysics Data System (ADS)
Martinez, G.; Fischer, E.; Renno, N. O.
2017-12-01
We show results of the recalibration of the Thermal and Electrical Conductivity Probe (TECP) relative humidity (RH) sensor of the Phoenix Mars lander [Zent et al., 2009]. Due to uncertainties in its pre-flight calibration, which partially overlapped the environmental conditions found at the Phoenix landing site [Tamppari et al., 2010], only the raw, unprocessed output of the TECP RH sensor is available in NASA's Planetary Data System (PDS). The sensor's calibration was revised in 2016 to correct for inaccuracies at the lowest temperatures [Zent et al., 2016], but the new processed RH values were not posted in the PDS. We have been using a spare engineering unit of the TECP to recalibrate the sensor in the full range of Phoenix landing site conditions in the Michigan Mars Environmental Chamber (MMEC) [Fischer et al., 2016]. We compare raw output data of the engineering unit in the MMEC with that of the flight unit from the preflight calibration. We observed that the engineering unit's RH sensor output was shifted to higher values compared to the flight unit's output at the same conditions of temperature and humidity. Based on this shift, we use a translation function that fits the in-situ measurements of the flight unit into the engineering unit output space. To improve the accuracy of this function, we use additional observations corresponding to saturated conditions when near-surface fog was observed [Whiteway et al., 2009], as well as observations around noon when the RH is expected to be below 5%. The entire range of conditions observed on the Martian surface is covered in our recalibration. The raw output of the sensor is used to obtain a new calibration function. This allows us to obtain high-level RH data at Martian polar conditions. The recalibrated data will be posted in the PDS. REFERENCES: Fischer, E., et al. (2016), Astrobiology, 16, 12, doi: 10.1089/ast.2016.1525. Tamppari, L. K., et al. (2010), J. Geophys. Res., 115, E00E17, doi:10.1029/2009JE003415. Whiteway, J. A., et al. (2009), Science, 325, 68, doi: 10.1126/science.1172344. Zent, A. P., et al. (2009), J. Geophys. Res., 114, E00A27, doi:10.1029/2007JE003052. Zent, A. P., et al. (2016), J. Geophys. Res. Planets, 121, 626-651, doi:10.1002/2015JE004933.
NASA Astrophysics Data System (ADS)
Braun, Jaroslav; Štroner, Martin; Urban, Rudolf
2015-05-01
All surveying instruments and their measurements suffer from some errors. To refine the measurement results, it is necessary to use procedures restricting influence of the instrument errors on the measured values or to implement numerical corrections. In precise engineering surveying industrial applications the accuracy of the distances usually realized on relatively short distance is a key parameter limiting the resulting accuracy of the determined values (coordinates, etc.). To determine the size of systematic and random errors of the measured distances were made test with the idea of the suppression of the random error by the averaging of the repeating measurement, and reducing systematic errors influence of by identifying their absolute size on the absolute baseline realized in geodetic laboratory at the Faculty of Civil Engineering CTU in Prague. The 16 concrete pillars with forced centerings were set up and the absolute distances between the points were determined with a standard deviation of 0.02 millimetre using a Leica Absolute Tracker AT401. For any distance measured by the calibrated instruments (up to the length of the testing baseline, i.e. 38.6 m) can now be determined the size of error correction of the distance meter in two ways: Firstly by the interpolation on the raw data, or secondly using correction function derived by previous FFT transformation usage. The quality of this calibration and correction procedure was tested on three instruments (Trimble S6 HP, Topcon GPT-7501, Trimble M3) experimentally using Leica Absolute Tracker AT401. By the correction procedure was the standard deviation of the measured distances reduced significantly to less than 0.6 mm. In case of Topcon GPT-7501 is the nominal standard deviation 2 mm, achieved (without corrections) 2.8 mm and after corrections 0.55 mm; in case of Trimble M3 is nominal standard deviation 3 mm, achieved (without corrections) 1.1 mm and after corrections 0.58 mm; and finally in case of Trimble S6 is nominal standard deviation 1 mm, achieved (without corrections) 1.2 mm and after corrections 0.51 mm. Proposed procedure of the calibration and correction is in our opinion very suitable for increasing of the accuracy of the electronic distance measurement and allows the use of the common surveying instrument to achieve uncommonly high precision.
Correcting a Persistent Manhattan Project Statistical Error
NASA Astrophysics Data System (ADS)
Reed, Cameron
2011-04-01
In his 1987 autobiography, Major-General Kenneth Nichols, who served as the Manhattan Project's ``District Engineer'' under General Leslie Groves, related that when the Clinton Engineer Works at Oak Ridge, TN, was completed it was consuming nearly one-seventh (~ 14%) of the electric power being generated in the United States. This statement has been reiterated in several editions of a Department of Energy publication on the Manhattan Project. This remarkable claim has been checked against power generation and consumption figures available in Manhattan Engineer District documents, Tennessee Valley Authority records, and historical editions of the Statistical Abstract of the United States. The correct figure is closer to 0.9% of national generation. A speculation will be made as to the origin of Nichols' erroneous one-seventh figure.
Input/output models for general aviation piston-prop aircraft fuel economy
NASA Technical Reports Server (NTRS)
Sweet, L. M.
1982-01-01
A fuel efficient cruise performance model for general aviation piston engine airplane was tested. The following equations were made: (1) for the standard atmosphere; (2) airframe-propeller-atmosphere cruise performance; and (3) naturally aspirated engine cruise performance. Adjustments are made to the compact cruise performance model as follows: corrected quantities, corrected performance plots, algebraic equations, maximize R with or without constraints, and appears suitable for airborne microprocessor implementation. The following hardwares are recommended: ignition timing regulator, fuel-air mass ration controller, microprocessor, sensors and displays.
Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System
NASA Astrophysics Data System (ADS)
Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor
2016-09-01
The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Rogers, D. W.; Bahr, D. W.
1976-01-01
The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.
NASA Astrophysics Data System (ADS)
Bauke, Stephan; Golibrzuch, Kai; Wackerbarth, Hainer; Fendt, Peter; Zigan, Lars; Seefeldt, Stefan; Thiele, Olaf; Berg, Thomas
2018-05-01
Lowering greenhouse gas emissions is one of the most challenging demands of today's society. Especially, the automotive industry struggles with the development of more efficient internal combustion (IC) engines. As an alternative to conventional fuels, methane has the potential for a significant emission reduction. In methane fuelled engines, the process of mixture formation, which determines the properties of combustion after ignition, differs significantly from gasoline and diesel engines and needs to be understood and controlled in order to develop engines with high efficiency. This work demonstrates the development of a gas sensing system that can serve as a diagnostic tool for measuring crank-angle resolved relative air-fuel ratios in methane-fuelled near-production IC engines. By application of non-dispersive infrared absorption spectroscopy at two distinct spectral regions in the ν3 absorption band of methane around 3.3 μm, the system is able to determine fuel density and temperature simultaneously. A modified spark plug probe allows for straightforward application at engine test stations. Here, the application of the detection system in a rapid compression machine is presented, which enables validation and characterization of the system on well-defined gas mixtures under engine-like dynamic conditions. In extension to a recent proof-of-principle study, a refined data analysis procedure is introduced that allows the correction of artefacts originating from mechanical distortions of the sensor probe. In addition, the measured temperatures are compared to data obtained with a commercially available system based on the spectrally resolved detection of water absorption in the near infrared.
Feasibility of a new Indiana Coordinate Reference System (INCRS).
DOT National Transportation Integrated Search
2012-10-01
Engineers, Surveyors, and GIS Professionals spend an enormous amount of time correcting field surveys to the classical State Plane : Coordinate System (SPCS). The current mapping corrections are in the order of 1:33,000, or 30 parts per million (ppm)...
Real application of BIM in the engineering system design for energy management
NASA Astrophysics Data System (ADS)
Pelipenko, Alexey; Gogina, Elena
2017-10-01
In the article, the information modelling technology (BIM) that is gaining popularity in Russia and in the world, is considered. Its growing relevance relates to many factors: first, attention to this technology by the local and federal authorities; Secondly, with the desire to improve the quality of design documentation, to obtain the correct volumes of materials and equipment; Thirdly, with the tendency to create “smart” cities and, as a result, the rational use of energy resources. Within the framework of this article, on an example of an urban infrastructure object, the pros and cons of this technology were considered. As a facility, a local wastewater treatment plant was chosen. The stages of creating an information model on the available documentation are described: 4 main milestones that need to be implemented. In addition, further possible ways of using the model are described. Presented are the pros and cons of using this technology. Among the main advantages is the possibility of using this information model in the operation of treatment plants and further obtaining actual data for monitoring the condition of equipment and, therefore, controlling the consumable resources; At an early stage, a reduction in the number of mutual intersections of engineering systems; Obtaining the correct specifications. The results of the work described in the article can be used in the following areas: utilities, energy management, design and construction.
Publisher Correction: Oncolytic viruses as engineering platforms for combination immunotherapy.
Twumasi-Boateng, Kwame; Pettigrew, Jessica L; Kwok, Y Y Eunice; Bell, John C; Nelson, Brad H
2018-05-04
In the online html version of this article, the affiliations for Jessica L. Pettigrew and John C. Bell were not correct. Jessica L. Pettigrew is at the Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada and John C. Bell is at the Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. This is correct in the print and PDF versions of the article and has been corrected in the html version.
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1987-01-01
Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.
NASA Technical Reports Server (NTRS)
Schnell, W. C.
1982-01-01
The jet induced effects of several exhaust nozzle configurations (axisymmetric, and vectoring/modulating varients) on the aeropropulsive performance of a twin engine V/STOL fighter design was determined. A 1/8 scale model was tested in an 11 ft transonic tunnel at static conditions and over a range of Mach Numbers from 0.4 to 1.4. The experimental aspects of the static and wind-on programs are discussed. Jet effects test techniques in general, fow through balance calibrations and tare force corrections, ASME nozzle thrust and mass flow calibrations, test problems and solutions are emphasized.
Volkov and Kononenko prepare for the undocking of the ESA Jules Verne ATV during Expedition 17
2008-09-05
ISS017-E-015234 (5 Sept. 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left) and Oleg Kononenko, Expedition 17 commander and flight engineer, respectively, make preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.
Volkov and Kononenko prepare for the undocking of the ESA Jules Verne ATV during Expedition 17
2008-09-05
ISS017-E-015229 (5 Sept. 2008) --- Russian Federal Space Agency cosmonauts Sergei Volkov (left) and Oleg Kononenko, Expedition 17 commander and flight engineer, respectively, make preparations in the International Space Station's Zvezda Service Module for the undocking of the European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV). The ATV departed from the aft port of Zvezda at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.
Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation
NASA Astrophysics Data System (ADS)
Coleman, Kenneth; Kosson, Robert
1989-07-01
Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.
Computational technique for stepwise quantitative assessment of equation correctness
NASA Astrophysics Data System (ADS)
Othman, Nuru'l Izzah; Bakar, Zainab Abu
2017-04-01
Many of the computer-aided mathematics assessment systems that are available today possess the capability to implement stepwise correctness checking of a working scheme for solving equations. The computational technique for assessing the correctness of each response in the scheme mainly involves checking the mathematical equivalence and providing qualitative feedback. This paper presents a technique, known as the Stepwise Correctness Checking and Scoring (SCCS) technique that checks the correctness of each equation in terms of structural equivalence and provides quantitative feedback. The technique, which is based on the Multiset framework, adapts certain techniques from textual information retrieval involving tokenization, document modelling and similarity evaluation. The performance of the SCCS technique was tested using worked solutions on solving linear algebraic equations in one variable. 350 working schemes comprising of 1385 responses were collected using a marking engine prototype, which has been developed based on the technique. The results show that both the automated analytical scores and the automated overall scores generated by the marking engine exhibit high percent agreement, high correlation and high degree of agreement with manual scores with small average absolute and mixed errors.
75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End... for my engines in model year 2014 and earlier? * * * * * Table 2 of Sec. 1039.102--Interim Tier 4...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2008-0554] RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases; Corrections AGENCY: Nuclear Regulatory... the American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016, phone (800) 843...
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 [Docket No.: FAA-2012-1333; Amendment No. 34-5A] RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on...
Lox/Gox related failures during Space Shuttle Main Engine development
NASA Technical Reports Server (NTRS)
Cataldo, C. E.
1981-01-01
Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.
The need for scientific software engineering in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Luty, Brock; Rose, Peter W.
2017-03-01
Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.
The need for scientific software engineering in the pharmaceutical industry.
Luty, Brock; Rose, Peter W
2017-03-01
Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.
Exergetic analysis of a thermo-generator for automotive application: A dynamic numerical approach
NASA Astrophysics Data System (ADS)
Glavatskaya, O.; Goupil, C.; Bakkali, A. El; Shonda, O.
2012-06-01
It is well known that, when using a passenger car with an ICE (Internal Combustion Engine), only a fraction of the burnt fuel energy actually contributes to drive the vehicle. Typical passenger vehicle engines run about 25% efficiency while a great part of the remaining energy (about 40%), is lost through the exhaust gases. This latter has a significant energy conversion potential since the temperature (more than 300°C) and the mass flow rate are high enough. Thus, direct conversion of heat into electricity is a credible option if the overall system is optimized. This point is crucial since the heat conversion into work process is very sensible to any mismatching of the different parts of the system, and very sensible significant to the possible varying working conditions. All these effects constitute irreversibility sources that degrade the overall efficiency. The exergetic analysis is known to be an efficient tool for finding the root causes of theses irreversible processes. In order to investigate the performance of our automotive thermo-generator we propose an analysis of the exergy flow through the system under dynamic conditions. Taking into account the different irreversible sources such as thermal conduction and Joule effect, we are able to localize and quantify the exergy losses. Then, in order to optimize the thermoelectric converter for a given vehicle, correct actions in term of design and working conditions can be proposed.
Spray ignition measurements in a constant volume combustion vessel under engine-relevant conditions
NASA Astrophysics Data System (ADS)
Ramesh, Varun
Pressure-based and optical diagnostics for ignition delay (ID) measurement of a diesel spray from a multi-hole nozzle were investigated in a constant volume combustion vessel (CVCV) at conditions similar to those in a conventional diesel engine at the start of injection (SOI). It was first hypothesized that compared to an engine, the shorter ID in a CVCV was caused by NO, a byproduct of premixed combustion. The presence of a significant concentration of NO+NO2 was confirmed experimentally and by using a multi-zone model of premixed combustion. Experiments measuring the effect of NO on ID were performed at conditions relevant to a conventional diesel engine. Depending on the temperature regime and the nature of the fuel, NO addition was found to advance or retard ignition. Constant volume ignition simulations were capable of describing the observed trends; the magnitudes were different due to the physical processes involved in spray ignition, not modeled in the current study. The results of the study showed that ID is sensitive to low NO concentrations (<100 PPM) in the low-temperature regime. A second source of uncertainty in pressure-based ID measurement is the systematic error associated with the correction used to account for the speed of sound. Simultaneous measurements of volumetric OH chemiluminescence (OHC) and pressure during spray ignition found the OHC to closely resemble the pressure-based heat release rate for the full combustion duration. The start of OHC was always found to be shorter than the pressure-based ID for all fuels and conditions tested by 100 ms. Experiments were also conducted measuring the location and timing of high-temperature ignition and the steady-state lift-off length by high-speed imaging of OHC during spray ignition. The delay period calculated using the measured ignition location and the bulk average speed of sound was in agreement with the delay between OHC and the pressure-based ID. Results of the study show that start of OHC is coupled to detectable heat release and the two measurements are correlated by the time required for the pressure wave to propagate at the speed of sound between the ignition site and the transducer.
Electrical capacitance clearanceometer
NASA Technical Reports Server (NTRS)
Hester, Norbert J. (Inventor); Hornbeck, Charles E. (Inventor); Young, Joseph C. (Inventor)
1992-01-01
A hot gas turbine engine capacitive probe clearanceometer is employed to measure the clearance gap or distance between blade tips on a rotor wheel and its confining casing under operating conditions. A braze sealed tip of the probe carries a capacitor electrode which is electrically connected to an electrical inductor within the probe which is inserted into a turbine casing to position its electrode at the inner surface of the casing. Electrical power is supplied through a voltage controlled variable frequency oscillator having a tuned circuit in which the probe is a component. The oscillator signal is modulated by a change in electrical capacitance between the probe electrode and a passing blade tip surface while an automatic feedback correction circuit corrects oscillator signal drift. A change in distance between a blade tip and the probe electrode is a change in capacitance therebetween which frequency modulates the oscillator signal. The modulated oscillator signal which is then processed through a phase detector and related circuitry to provide an electrical signal is proportional to the clearance gap.
78 FR 37497 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
... and corrective actions if necessary. That AD resulted from fuel system reviews conducted by the... the fuel tanks are installed, and related investigative and corrective actions if necessary. Since the... CONTACT: Rebel Nichols, Aerospace Engineer, Propulsion Branch, ANM-140S, FAA, Seattle Aircraft...
Turbine Engine Component Analysis: Cantilevered Composite Flat Plate Analysis
1989-11-01
4/5 element which translates into the ADIN. shell element (Type 7) with thickness correction. PATADI automatically generates midsurface normal vectors...for each node referenced by a shell element. Using thickness correction, the element thickness will be oriented along the midsurface direction. If no
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air background emission...
40 CFR 1065.667 - Dilution air background emission correction.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air background emission...
Quan, H T
2014-06-01
We study the maximum efficiency of a heat engine based on a small system. It is revealed that due to the finiteness of the system, irreversibility may arise when the working substance contacts with a heat reservoir. As a result, there is a working-substance-dependent correction to the Carnot efficiency. We derive a general and simple expression for the maximum efficiency of a Carnot cycle heat engine in terms of the relative entropy. This maximum efficiency approaches the Carnot efficiency asymptotically when the size of the working substance increases to the thermodynamic limit. Our study extends Carnot's result of the maximum efficiency to an arbitrary working substance and elucidates the subtlety of thermodynamic laws in small systems.
Experimental Flow Models for SSME Flowfield Characterization
NASA Technical Reports Server (NTRS)
Abel, L. C.; Ramsey, P. E.
1989-01-01
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.
Defining a region of optimization based on engine usage data
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-08-04
Methods and systems for engine control optimization are provided. One or more operating conditions of a vehicle engine are detected. A value for each of a plurality of engine control parameters is determined based on the detected one or more operating conditions of the vehicle engine. A range of the most commonly detected operating conditions of the vehicle engine is identified and a region of optimization is defined based on the range of the most commonly detected operating conditions of the vehicle engine. The engine control optimization routine is initiated when the one or more operating conditions of the vehicle engine are within the defined region of optimization.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... an inspection of the aft engine mount to determine if the center link assembly is correctly installed... reports indicating that operators found that the center link assembly for the aft engine mount was... prevent increased structural loads on the aft engine mount, which could result in failure of the aft...
75 FR 74663 - Airworthiness Directives; The Boeing Company Model 747-400 and -400D Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... number three engine pylons near the leading edge, and related investigative and corrective actions, if... routing of the wire bundles in the number two and number three engine pylons near the leading edge, and... routing of the wire bundles in the number two and number three engine pylons near the leading edge; and do...
75 FR 38056 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... (Row A) of the support fittings of the left and right engine aft mount with new fasteners. The service... fasteners (Row A) of the support fittings of the left and right engine aft mounts with new fasteners, in... fittings of the left and right engines, and corrective actions if necessary. This proposed AD would instead...
Wright, Rachel L.; Spurgeon, Laura C.; Elliott, Mark T.
2014-01-01
Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself. PMID:25309397
Wright, Rachel L; Elliott, Mark T
2014-01-01
Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task-correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... Equation W-7 to allow for reporters to use alternative methods such as engineering estimates based on best... requirement in 40 CFR 98.236 for reporting of ``annual throughput as determined by engineering estimate based...
Aircraft Maintenance Expert Systems.
1983-11-01
PARA 2 -104)) 44: (( JETCAL ANALYSIS SHOWS SYSTEM READS CORRECT) (REPLACE FAULTY PARTS)) 45: ((OVERTEMP EXCEEDED SERVICE LIMITS) 46: I(ENGINE CONTROL...CIRCUITS WITHIN LIMITS ON JETCAL ) (REPLACE FAULTY PARTS)) 47: (ADJUST EST AT AMPLIFIER AND CHECK TENP)) (SEND ENGINE TO HIGHER LEVEL MAINTENANCE)) 48: 2
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
NASA Astrophysics Data System (ADS)
Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.
2012-01-01
This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.
Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing
NASA Technical Reports Server (NTRS)
Russell, Samuel S.; Walker, James L.; Lansing, Mathew
2003-01-01
The Space Shuttle Main Engine (SSME) is composed of cooling tubes brazed to the inside of a conical structural jacket. Because of the geometry there are regions that can't be inspected for leaks using the bubble solution and low-pressure method. The temperature change due escaping gas is detectable on the surface of the nozzle under the correct conditions. The methods and results presented in this summary address the thermographic identification of leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera is used to record the minute temperature change associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner "hot wall" surface as the nozzle is pressurized. These images are enhanced by digitally subtracting a thermal reference image taken before pressurization, greatly diminishing background noise. The method provides a nonintrusive way of localizing the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation.
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
NASA Astrophysics Data System (ADS)
Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.
2017-08-01
The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.
Developing a Corrective Action Simulator to Support Decision Making Research and Training
2008-05-01
positions, and any time-based simulation injects (e.g., JSTARS reporting tracks, the Engineer reporting a new aircraft bingo time, a threat being active...future instantiations would benefit from migrating to the IMPRINT Pro version. During the course of this development effort the Army Research...initiating corrective action when a subordinate is observed to make an error (of omission or commission) 58 • Benefits of a Corrective
1981-12-01
obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of...Thermometer T W OF Temperature Web Bulb Sling Psychrometer % Relative Humidity Psychrometric chart mm Hg Vapor Pressure Vapor Pressure chart - Correction...results obtained recommendations are made to improve the system. FEES was designed to handle spark ignition and compression ignition research engines of
Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments
Lee, M.W.
2006-01-01
Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinckley, Daniel M.; Freeman, Gordon S.; Whitmer, Jonathan K.
2013-10-14
A new 3-Site-Per-Nucleotide coarse-grained model for DNA is presented. The model includes anisotropic potentials between bases involved in base stacking and base pair interactions that enable the description of relevant structural properties, including the major and minor grooves. In an improvement over available coarse-grained models, the correct persistence length is recovered for both ssDNA and dsDNA, allowing for simulation of non-canonical structures such as hairpins. DNA melting temperatures, measured for duplexes and hairpins by integrating over free energy surfaces generated using metadynamics simulations, are shown to be in quantitative agreement with experiment for a variety of sequences and conditions. Hybridizationmore » rate constants, calculated using forward-flux sampling, are also shown to be in good agreement with experiment. The coarse-grained model presented here is suitable for use in biological and engineering applications, including nucleosome positioning and DNA-templated engineering.« less
Positive-negative corresponding normalized ghost imaging based on an adaptive threshold
NASA Astrophysics Data System (ADS)
Li, G. L.; Zhao, Y.; Yang, Z. H.; Liu, X.
2016-11-01
Ghost imaging (GI) technology has attracted increasing attention as a new imaging technique in recent years. However, the signal-to-noise ratio (SNR) of GI with pseudo-thermal light needs to be improved before it meets engineering application demands. We therefore propose a new scheme called positive-negative correspondence normalized GI based on an adaptive threshold (PCNGI-AT) to achieve a good performance with less amount of data. In this work, we use both the advantages of normalized GI (NGI) and positive-negative correspondence GI (P-NCGI). The correctness and feasibility of the scheme were proved in theory before we designed an adaptive threshold selection method, in which the parameter of object signal selection conditions is replaced by the normalizing value. The simulation and experimental results reveal that the SNR of the proposed scheme is better than that of time-correspondence differential GI (TCDGI), avoiding the calculation of the matrix of correlation and reducing the amount of data used. The method proposed will make GI far more practical in engineering applications.
Effects of Altitude on Turbojet Engine Performance
NASA Technical Reports Server (NTRS)
Fleming, William A
1951-01-01
Component and over-all performance characteristics of several turbojet engines investigated in the altitude facilities of the NACA Lewis Laboratory during the last several years are summarized to indicate the effects of altitude on turbojet engine performance. Data presented show that failure of turbojet engine performance to generalize for all altitudes can be traced to reductions in compressor efficiency, corrected air flow, and combustion efficiency at altitude. In addition, it is shown that although engines of different design may have equal thrusts at sea level, the thrusts at altitude may vary widely because of differences in compressor performance characteristics from one engine to another.
CIVIL AVIATION, *ALTIMETERS, FLIGHT INSTRUMENTS, RELIABILITY, ERRORS , PERFORMANCE(ENGINEERING), BAROMETERS, BAROMETRIC PRESSURE, ATMOSPHERIC TEMPERATURE, ALTITUDE, CORRECTIONS, AVIATION SAFETY, USSR.
The Accuracy and Correction of Fuel Consumption from Controller Area Network Broadcast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeffrey D; Wood, Eric W
Fuel consumption (FC) has always been an important factor in vehicle cost. With the advent of electronically controlled engines, the controller area network (CAN) broadcasts information about engine and vehicle performance, including fuel use. However, the accuracy of the FC estimates is uncertain. In this study, the researchers first compared CAN-broadcasted FC against physically measured fuel use for three different types of trucks, which revealed the inaccuracies of CAN-broadcast fueling estimates. To match precise gravimetric fuel-scale measurements, polynomial models were developed to correct the CAN-broadcasted FC. Lastly, the robustness testing of the correction models was performed. The training cycles inmore » this section included a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. The mean relative differences were reduced noticeably.« less
How Should Ethical Theories Be Dealt with in Engineering Ethics?
NASA Astrophysics Data System (ADS)
Ohishi, Toshihiro
Contemporary engineering ethics scholars deal with contesting several ethical theories without criticizing them radically and try to use them to solve ethical problems. In this paper I first show that a conflict between ethical theories is not superficial, and pragmatic methods are adopted in engineering ethics. Second, I claim that the way to deal with contesting ethical theories in contemporary engineering ethics has an unacceptable side which does not accord with my argument that a conflict between ethical theories is not superficial and pragmatic methods are adopted in engineering ethics. Finally, I conclude that this inconsistency in contemporary engineering ethics should be corrected to make contemporary engineering ethics consistent.
NASA Technical Reports Server (NTRS)
Gupta, U. K.; Ali, M.
1989-01-01
The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.
Prelude to corneal tissue engineering – Gaining control of collagen organization
Ruberti, Jeffrey W.; Zieske, James D.
2012-01-01
By most standard engineering practice principles, it is premature to credibly discuss the “engineering” of a human cornea. A professional design engineer would assert that we still do not know what a cornea is (and correctly so), therefore we cannot possibly build one. The proof resides in the fact that there are no clinically viable corneas based on classical tissue engineering methods available. This is possibly because tissue engineering in the classical sense (seeding a degradable scaffolding with a population synthetically active cells) does not produce conditions which support the generation of organized tissue. Alternative approaches to the problem are in their infancy and include the methods which attempt to recapitulate development or to produce corneal stromal analogs de novo which require minimal remodeling. Nonetheless, tissue engineering efforts, which have been focused on producing the fundamental functional component of a cornea (organized alternating arrays of collagen or “lamellae”) may have already provided valuable new insights and tools relevant to development, growth, remodeling and pathologies associated with connective tissue in general. This is because engineers ask a fundamentally different question (How can that be done?) than do biological scientists (How is that done?). The difference in inquiry has prompted us to closely examine (and to mimic) development as well as investigate collagen physicochemical behavior so that we may exert control over organization both in cell-culture (in vitro) and on the benchtop (de novo). Our initial results indicate that reproducing corneal stroma-like local and long-range organization of collagen may be simpler than we anticipated while controlling spacing and fibril morphology remains difficult, but perhaps not impossible in the (reasonably) near term. PMID:18775789
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane
2017-01-01
The purpose of this study was to determine if selected factors influenced the ability of students in school-based agricultural education programs to generate a correct hypothesis when troubleshooting small gasoline engines. Variables of interest included students' cognitive style, age, GPA, and content knowledge in small gasoline engines. Kirton's…
ERIC Educational Resources Information Center
Rajasenan, D.
2014-01-01
The major problem of the engineering entrance examination is the exclusion of certain sections of the society in social, economic, regional and gender dimensions. This has seldom been taken for analysis towards policy correction. To lessen this problem a minor policy shift was prepared in the year 2011 with a 50-50 proportion in academic marks and…
Engineering Management for Zone Construction of Ships
1985-09-01
Theory has steadily developed along with the better understanding of human relations, moti- vation and worklife sciences. That this is so, is clear from a...will not accomplish its goals effectively and efficiently if it is not staffed with the correct number of people with the correct balance of education
Introduction to Forward-Error-Correcting Coding
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
1996-01-01
This reference publication introduces forward error correcting (FEC) and stresses definitions and basic calculations for use by engineers. The seven chapters include 41 example problems, worked in detail to illustrate points. A glossary of terms is included, as well as an appendix on the Q function. Block and convolutional codes are covered.
75 FR 5514 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2009-0771; FRL-9108-7] Approval and Promulgation of Air Quality Implementation Plans; Indiana; Correction AGENCY: Environmental Protection Agency..., Environmental Engineer, Criteria Pollutant Section, Air Programs Branch (AR-18J), Environmental Protection...
Interactive chemistry management system (ICMS); Field demonstration results at United Illuminating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noto, F.A.; Farrell, D.M.; Lombard, E.V.
1988-01-01
The authors report on a field demonstration of the interactive chemistry management system (ICMS) performed in the late summer of 1987 at the New Haven Harbor Station of United Illuminating Co. This demonstration was the first installation of the ICMS at an actual plant site. The ICMS is a computer-based system designed to monitor, diagnose, and provide optional automatic control of water and steam chemistry throughout the steam generator cycle. It is one of the diagnostic modules that comprises CE-TOPS (combustion engineering total on-line performance system), which continuously monitors operating conditions and suggests priority actions to increase operation efficiency, extendmore » the performance life of boiler components and reduce maintenance costs. By reducing the number of forced outages through early identification of potentially detrimental conditions, diagnosis of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result.« less
Status of flow separation prediction in liquid propellant rocket nozzles
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1974-01-01
Flow separation which plays an important role in the design of a rocket engine nozzle is discussed. For a given ambient pressure, the condition of no flow separation limits the area ratio and, therefore, the vacuum performance. Avoidance of performance loss due to area ratio limitation requires a correct prediction of the flow separation conditions. To provide a better understanding of the flow separation process, the principal behavior of flow separation in a supersonic overexpanded rocket nozzle is described. The hot firing separation tests from various sources are summarized, and the applicability and accuracy of the measurements are described. A comparison of the different data points allows an evaluation of the parameters that affect flow separation. The pertinent flow separation predicting methods, which are divided into theoretical and empirical correlations, are summarized and the numerical results are compared with the experimental points.
Thermal Analysis of Reinforced Concrete Tank for Conditioning Wood by FEM Method
NASA Astrophysics Data System (ADS)
Błaszczyński, Tomasz; Babiak, Michał; Wielentejczyk, Przemysław
2017-10-01
The article introduces the analysis of a RC tank for conditioning wood carried out using the FEM (Finite Element Method). A temperature gradient distribution increase resulting from the influence of hot liquid filling the tank was defined. Values of gradients in border sections of the tank walls and the bottom were defined on the basis of the isotherm method. The obtained results were compared with empirical formulas from literature. Strength analyses were also carried out. Additionally, the problematic aspects of elongated monolithic tanks for liquids were introduced, especially regarding large temperature gradients and the means of necessary technical solutions. The use of the FEM method for designing engineering objects is, nowadays, an irreplaceable solution. In the case of the discussed tank, a spatial model of the construction mapping its actual performance was constructed in order to correctly estimate the necessary dimensions of wall and bottom sections, as well as reinforcement.
Sinha, Rajeshwari; Khare, Sunil K
2014-01-01
Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants.
Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon
2016-01-01
Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.
A flamelet model for transcritical LOx/GCH4 flames
NASA Astrophysics Data System (ADS)
Müller, Hagen; Pfitzner, Michael
2017-03-01
This work presents a numerical framework to efficiently simulate methane combustion at supercritical pressures. A LES flamelet approach is adapted to account for real-gas thermodynamics effects which are a prominent feature of flames at near-critical injection conditions. The thermodynamics model is based on the Peng-Robinson equation of state (PR-EoS) in conjunction with a novel volume-translation method to correct deficiencies in the transcritical regime. The resulting formulation is more accurate than standard cubic EoSs without deteriorating their good computational performance. To consistently account for pressure and strain fluctuations in the flamelet model, an additional enthalpy equation is solved along with the transport equations for mixture fraction and mixture fraction variance. The method is validated against available experimental data for a laboratory scale LOx/GCH4 flame at conditions that resemble those in liquid-propellant rocket engines. The LES result is in good agreement with the measured OH* radiation.
Sinha, Rajeshwari; Khare, Sunil K.
2014-01-01
Search for new industrial enzymes having novel properties continues to be a desirable pursuit in enzyme research. The halophilic organisms inhabiting under saline/ hypersaline conditions are considered as promising source of useful enzymes. Their enzymes are structurally adapted to perform efficient catalysis under saline environment wherein n0n-halophilic enzymes often lose their structure and activity. Haloenzymes have been documented to be polyextremophilic and withstand high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. Although vast amount of information have been generated on salt mediated protection and structure function relationship in halophilic proteins, their clear understanding and correct perspective still remain incoherent. Furthermore, understanding their protein architecture may give better clue for engineering stable enzymes which can withstand harsh industrial conditions. The article encompasses the current level of understanding about haloadaptations and analyzes structural basis of their enzyme stability against classical denaturants. PMID:24782853
Integrating Model-Based Transmission Reduction into a multi-tier architecture
NASA Astrophysics Data System (ADS)
Straub, J.
A multi-tier architecture consists of numerous craft as part of the system, orbital, aerial, and surface tiers. Each tier is able to collect progressively greater levels of information. Generally, craft from lower-level tiers are deployed to a target of interest based on its identification by a higher-level craft. While the architecture promotes significant amounts of science being performed in parallel, this may overwhelm the computational and transmission capabilities of higher-tier craft and links (particularly the deep space link back to Earth). Because of this, a new paradigm in in-situ data processing is required. Model-based transmission reduction (MBTR) is such a paradigm. Under MBTR, each node (whether a single spacecraft in orbit of the Earth or another planet or a member of a multi-tier network) is given an a priori model of the phenomenon that it is assigned to study. It performs activities to validate this model. If the model is found to be erroneous, corrective changes are identified, assessed to ensure their significance for being passed on, and prioritized for transmission. A limited amount of verification data is sent with each MBTR assertion message to allow those that might rely on the data to validate the correct operation of the spacecraft and MBTR engine onboard. Integrating MBTR with a multi-tier framework creates an MBTR hierarchy. Higher levels of the MBTR hierarchy task lower levels with data collection and assessment tasks that are required to validate or correct elements of its model. A model of the expected conditions is sent to the lower level craft; which then engages its own MBTR engine to validate or correct the model. This may include tasking a yet lower level of craft to perform activities. When the MBTR engine at a given level receives all of its component data (whether directly collected or from delegation), it randomly chooses some to validate (by reprocessing the validation data), performs analysis and sends its own results (v- lidation and/or changes of model elements and supporting validation data) to its upstream node. This constrains data transmission to only significant (either because it includes a change or is validation data critical for assessing overall performance) information and reduces the processing requirements (by not having to process insignificant data) at higher-level nodes. This paper presents a framework for multi-tier MBTR and two demonstration mission concepts: an Earth sensornet and a mission to Mars. These multi-tier MBTR concepts are compared to a traditional mission approach.
Boomwhackers and End-Pipe Corrections
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.
2014-02-01
End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.
NASA Technical Reports Server (NTRS)
Miles, J. H.
1974-01-01
A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on the N-independent-source model of P. Thomas extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown flap data taken from turbofan engine tests and from large scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.
NASA Technical Reports Server (NTRS)
2003-01-01
Many people are familiar with the popular science fiction series Star Trek: The Next Generation, a show featuring a blind character named Geordi La Forge, whose visor-like glasses enable him to see. What many people do not know is that a product very similar to Geordi's glasses is available to assist people with vision conditions, and a NASA engineer's expertise contributed to its development. The JORDY(trademark) (Joint Optical Reflective Display) device, designed and manufactured by a privately-held medical device company known as Enhanced Vision, enables people with low vision to read, write, and watch television. Low vision, which includes macular degeneration, diabetic retinopathy, and glaucoma, describes eyesight that is 20/70 or worse, and cannot be fully corrected with conventional glasses.
Not all counterclockwise thermodynamic cycles are refrigerators
NASA Astrophysics Data System (ADS)
Dickerson, R. H.; Mottmann, J.
2016-06-01
Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.
NASA Technical Reports Server (NTRS)
1972-01-01
This document is Volume 2 of three volumes of the Final Report for the four band Multispectral Scanner System (MSS). The results are contained of an analysis of pictures of actual outdoor scenes imaged by the engineering model MSS for spectral response, resolution, noise, and video correction. Also included are the results of engineering tests on the MSS for reflectance and saturation from clouds. Finally, two panoramic pictures of Yosemite National Park are provided.
Erosion / Corrosion Resistant Coatings for Compressor Airfoils
2012-08-29
Platforms in Evaluation / Qualification T56 for C-130 AE1107 for V-22 T700 for H-60 T55 for MH-47 GE38 for H-53K Gem for Lynx T58 for H-46... T56 Performance Summary Uncoated vs Coated Engine Uncoated Engine (April – May 2011) With “sand turbine” at San Antonio: Coated Engine (July...power retention 2-3% Corrected Fuel Flow 1-2% Specific Fuel Consumption decrease @ 95% shp Coated Engine T56 Sand Ingestion Test 10 Pressure
NASA Technical Reports Server (NTRS)
Bobula, G. A.; Lottig, R. A.
1977-01-01
Effects of varying engine inlet Reynolds number index (0.75, 0.50, 0.25, and 0.12) and temperature (289 and 244 K) on a TFE731-2 turbofan engine were evaluated. Results were classified as either compression system effects or effects on overall performance. Standard performance maps are used to present compression system performance. Overall performance parameters are presented as a function of low rotor speed corrected to engine inlet temperature.
Jones, Andrew R.; Siepen, Jennifer A.; Hubbard, Simon J.; Paton, Norman W.
2010-01-01
Tandem mass spectrometry, run in combination with liquid chromatography (LC-MS/MS), can generate large numbers of peptide and protein identifications, for which a variety of database search engines are available. Distinguishing correct identifications from false positives is far from trivial because all data sets are noisy, and tend to be too large for manual inspection, therefore probabilistic methods must be employed to balance the trade-off between sensitivity and specificity. Decoy databases are becoming widely used to place statistical confidence in results sets, allowing the false discovery rate (FDR) to be estimated. It has previously been demonstrated that different MS search engines produce different peptide identification sets, and as such, employing more than one search engine could result in an increased number of peptides being identified. However, such efforts are hindered by the lack of a single scoring framework employed by all search engines. We have developed a search engine independent scoring framework based on FDR which allows peptide identifications from different search engines to be combined, called the FDRScore. We observe that peptide identifications made by three search engines are infrequently false positives, and identifications made by only a single search engine, even with a strong score from the source search engine, are significantly more likely to be false positives. We have developed a second score based on the FDR within peptide identifications grouped according to the set of search engines that have made the identification, called the combined FDRScore. We demonstrate by searching large publicly available data sets that the combined FDRScore can differentiate between between correct and incorrect peptide identifications with high accuracy, allowing on average 35% more peptide identifications to be made at a fixed FDR than using a single search engine. PMID:19253293
CFD analysis of the STME nozzle flowfield
NASA Technical Reports Server (NTRS)
Krishnan, Anantha; Tucker, Kevin
1992-01-01
The Space Transportation Main Engine (STME) uses a gas generator cycle to cool the nozzle wall by a film-dump of the turbine exhaust. The ability to cool the skirt is a key concern in the design of the STME. CFD calculations were undertaken to predict the film cooling effectiveness and performance sensitivities for various configurations, operating points, and inlet conditions. The results presented here were obtained for the subscale nozzle. The computations were performed using REFLEQS. The computational analysis showed that a chemical equilibrium model was necessary to obtain correct predictions of the specific impulse. The frozen composition model underpredicts the ISP by about 6 percent. It was also observed that the coolant film was successful in maintaining the nozzle wall well below the stagnation temperature of the core flow. The effect of the coolant flow on the performance of the engine was found to be negligible. The computed heat fluxes at the wall were in good agreement with the empirical data obtained by Pratt and Whitney. Further test data from Pratt and Whitney are forthcoming for the subscale nozzle. Calculations will be performed to determine cooling efficiencies and nozzle performance over a range of conditions, and model predictions will be compared with experimental data. Information is given in viewgraph form.
Pailleux, Mélanie; Boudard, Delphine; Pourchez, Jérémie; Forest, Valérie; Grosseau, Philippe; Cottier, Michèle
2013-04-01
Biomolecules can be adsorbed on nanoparticles (NPs) and degraded during in vitro toxicity assays. These artifactual phenomena could lead to misinterpretation of biological activity, such as false-negative results. To avoid possible underestimation of cytokine release after contact between NP and cells, we propose a methodology to account for these artifactual phenomena and lead to accurate measurements. We focused on the pro-inflammatory cytokine tumor necrosis factor TNF-α. We studied well-characterized boehmite engineered NP [aluminum oxide hydroxide, AlO(OH)]. The rate of TNF-α degradation and its adsorption (on boehmite and on the walls of wells) were determined in cell-free conditions by adding a known TNF-α concentration (1500 pg/ml) under various experimental conditions. After a 24-h incubation, we quantified that 7 wt.% of the initial TNF-α was degraded over time, 6 wt.% adsorbed on the walls of 96-well plates, and 13 wt.% adsorbed on the boehmite surface. Finally, boehmite NP were incubated with murine macrophages (RAW 264.7 cell line). The release of TNF-α was assessed for boehmite NP and the experimental data were corrected considering the artifactual phenomena, which accounted for about 20-30% of the total. Copyright © 2013 Elsevier Ltd. All rights reserved.
Decision making in family medicine
Labrecque, Michel; Ratté, Stéphane; Frémont, Pierre; Cauchon, Michel; Ouellet, Jérôme; Hogg, William; McGowan, Jessie; Gagnon, Marie-Pierre; Njoya, Merlin; Légaré, France
2013-01-01
Abstract Objective To compare the ability of users of 2 medical search engines, InfoClinique and the Trip database, to provide correct answers to clinical questions and to explore the perceived effects of the tools on the clinical decision-making process. Design Randomized trial. Setting Three family medicine units of the family medicine program of the Faculty of Medicine at Laval University in Quebec city, Que. Participants Fifteen second-year family medicine residents. Intervention Residents generated 30 structured questions about therapy or preventive treatment (2 questions per resident) based on clinical encounters. Using an Internet platform designed for the trial, each resident answered 20 of these questions (their own 2, plus 18 of the questions formulated by other residents, selected randomly) before and after searching for information with 1 of the 2 search engines. For each question, 5 residents were randomly assigned to begin their search with InfoClinique and 5 with the Trip database. Main outcome measures The ability of residents to provide correct answers to clinical questions using the search engines, as determined by third-party evaluation. After answering each question, participants completed a questionnaire to assess their perception of the engine’s effect on the decision-making process in clinical practice. Results Of 300 possible pairs of answers (1 answer before and 1 after the initial search), 254 (85%) were produced by 14 residents. Of these, 132 (52%) and 122 (48%) pairs of answers concerned questions that had been assigned an initial search with InfoClinique and the Trip database, respectively. Both engines produced an important and similar absolute increase in the proportion of correct answers after searching (26% to 62% for InfoClinique, for an increase of 36%; 24% to 63% for the Trip database, for an increase of 39%; P = .68). For all 30 clinical questions, at least 1 resident produced the correct answer after searching with either search engine. The mean (SD) time of the initial search for each question was 23.5 (7.6) minutes with InfoClinique and 22.3 (7.8) minutes with the Trip database (P = .30). Participants’ perceptions of each engine’s effect on the decision-making process were very positive and similar for both search engines. Conclusion Family medicine residents’ ability to provide correct answers to clinical questions increased dramatically and similarly with the use of both InfoClinique and the Trip database. These tools have strong potential to increase the quality of medical care. PMID:24130286
78 FR 56171 - Heavy-Duty Engine and Vehicle and Nonroad Technical Amendments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
...-0152; FRL 9900-11-OAR] RIN 2060-AR48; 2127-AL31 Heavy-Duty Engine and Vehicle and Nonroad Technical... emission standards for CO2, CH4, and N2O for heavy-duty vehicles at or below 14,000 pounds GVWR [Corrected...
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Papanikolopoulou, Katerina; van Raaij, Mark J; Mitraki, Anna
2008-01-01
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
NASA Astrophysics Data System (ADS)
Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna
Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.
Contingent negative variation (CNV) associated with sensorimotor timing error correction.
Jang, Joonyong; Jones, Myles; Milne, Elizabeth; Wilson, Daniel; Lee, Kwang-Hyuk
2016-02-15
Detection and subsequent correction of sensorimotor timing errors are fundamental to adaptive behavior. Using scalp-recorded event-related potentials (ERPs), we sought to find ERP components that are predictive of error correction performance during rhythmic movements. Healthy right-handed participants were asked to synchronize their finger taps to a regular tone sequence (every 600 ms), while EEG data were continuously recorded. Data from 15 participants were analyzed. Occasional irregularities were built into stimulus presentation timing: 90 ms before (advances: negative shift) or after (delays: positive shift) the expected time point. A tapping condition alternated with a listening condition in which identical stimulus sequence was presented but participants did not tap. Behavioral error correction was observed immediately following a shift, with a degree of over-correction with positive shifts. Our stimulus-locked ERP data analysis revealed, 1) increased auditory N1 amplitude for the positive shift condition and decreased auditory N1 modulation for the negative shift condition; and 2) a second enhanced negativity (N2) in the tapping positive condition, compared with the tapping negative condition. In response-locked epochs, we observed a CNV (contingent negative variation)-like negativity with earlier latency in the tapping negative condition compared with the tapping positive condition. This CNV-like negativity peaked at around the onset of subsequent tapping, with the earlier the peak, the better the error correction performance with the negative shifts while the later the peak, the better the error correction performance with the positive shifts. This study showed that the CNV-like negativity was associated with the error correction performance during our sensorimotor synchronization study. Auditory N1 and N2 were differentially involved in negative vs. positive error correction. However, we did not find evidence for their involvement in behavioral error correction. Overall, our study provides the basis from which further research on the role of the CNV in perceptual and motor timing can be developed. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
The bibliography contains citations of selected patents concerning fuel control devices and methods for use in internal combustion engines. Patents describe air-fuel ratio control, fuel injection systems, evaporative fuel control, and surge-corrected fuel control. Citations also discuss electronic and feedback control, methods for engine protection, and fuel conservation. (Contains a minimum of 232 citations and includes a subject term index and title list.)
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Turso, James A.; Shah, Neerav; Sowers, T. Shane; Owen, A. Karl
2005-01-01
A retrofit architecture for intelligent turbofan engine control and diagnostics that changes the fan speed command to maintain thrust is proposed and its demonstration in a piloted flight simulator is described. The objective of the implementation is to increase the level of autonomy of the propulsion system, thereby reducing pilot workload in the presence of anomalies and engine degradation due to wear. The main functions of the architecture are to diagnose the cause of changes in the engine s operation, warning the pilot if necessary, and to adjust the outer loop control reference signal in response to the changes. This requires that the retrofit control architecture contain the capability to determine the changed relationship between fan speed and thrust, and the intelligence to recognize the cause of the change in order to correct it or warn the pilot. The proposed retrofit architecture is able to determine the fan speed setting through recognition of the degradation level of the engine, and it is able to identify specific faults and warn the pilot. In the flight simulator it was demonstrated that when degradation is introduced into an engine with standard fan speed control, the pilot needs to take corrective action to maintain heading. Utilizing the intelligent retrofit control architecture, the engine thrust is automatically adjusted to its expected value, eliminating yaw without pilot intervention.
77 FR 76228 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-27
.... We are issuing this AD to prevent loss of the hydraulic locking function during take-off and go... corrected, if occurring during take-off and go-around phases in combination with one engine inoperative... and go-around phases, which, in combination with malfunction of one engine, could result in reduced...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
40 CFR 89.115 - Application for certificate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (AECD), and all fuel system components to be installed on any production or test engine(s); (3) Proposed... corrected by amendment as provided for in § 89.123 to accurately reflect the manufacturer's production. (d..., but not limited to, injection timing and fuel rate), including the following: (i) The nominal or...
75 FR 34653 - Engine-Testing Procedures
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1065 Engine-Testing Procedures CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End, revised as of July 1, 2009, on page 587, in Sec. 1065.340, reinstate paragraph (f)(6)(iii) to read as follows: Sec. 1065.340 Diluted exhaust flow...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...
Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education
ERIC Educational Resources Information Center
Schwalbe, Michelle Kristin
2010-01-01
This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…
78 FR 52838 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... Maintenance Planning Data (MPD) Document. Repeat the test thereafter at intervals not to exceed 7,500 flight... by loss of fuel system suction feed capability on one engine, and in-flight shutdown of the engine...-101, before further flight, perform all related testing and corrective actions, and repeat the...
Preliminary Airworthiness Evaluation AH-1S Helicopter with OGEE Tip Shape Rotor Blades
1980-05-01
ENGINEER PROJECT PILOT HENRY ARNAIZ PROJECT ENGINEER DTIC MAY 1980 ELECTEV SEP 2 I8 Approved for public release; distribution unlimited. A UNITED STATES...compressibility effects between flights. 7. Airspeed and altitude were obtained from a boom-mounted pitot -static probe. Corrections for position error
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... significant, American- manufactured large, crew-served, piston-powered, multi-engine, World War II bomber... public safety (e.g., older and slower multi-engine which airplanes allow time for appropriate corrective... air show that was piloted by two highly qualified and well-trained flight crewmembers clearly...
Apparatus for sensor failure detection and correction in a gas turbine engine control system
NASA Technical Reports Server (NTRS)
Spang, H. A., III; Wanger, R. P. (Inventor)
1981-01-01
A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.
NASA Technical Reports Server (NTRS)
1978-01-01
A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.
Towards self-correcting quantum memories
NASA Astrophysics Data System (ADS)
Michnicki, Kamil
This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real implementations of quantum memories. Numerical evidence also suggests that the cellular automaton could function as a decoder with a soft threshold.
Gene correction in patient-specific iPSCs for therapy development and disease modeling
Jang, Yoon-Young
2018-01-01
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field. PMID:27256364
Prediction of the production of nitrogen oxide (NOx) in turbojet engines
NASA Astrophysics Data System (ADS)
Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo
Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO database [Goehlich, R.A., 2000. Investigation into the applicability of pollutant emission models for computer aided preliminary aircraft design, Book number 175654, 4.2.2000, pp. 57-79] can now be completed using the approach we propose to complete the whole mission flight NOx emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imura, K; Fujibuchi, T; Hirata, H
Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less
Shalom, Erez; Shahar, Yuval; Parmet, Yisrael; Lunenfeld, Eitan
2015-04-01
To quantify the effect of a new continuous-care guideline (GL)-application engine, the Picard decision support system (DSS) engine, on the correctness and completeness of clinicians' decisions relative to an established clinical GL, and to assess the clinicians' attitudes towards a specific DSS. Thirty-six clinicians, including residents at different training levels and board-certified specialists at an academic OB/GYN department that handles around 15,000 deliveries annually, agreed to evaluate our continuous-care guideline-based DSS and to perform a cross-over assessment of the effects of using our guideline-based DSS. We generated electronic patient records that realistically simulated the longitudinal course of six different clinical scenarios of the preeclampsia/eclampsia/toxemia (PET) GL, encompassing 60 different decision points in total. Each clinician managed three scenarios manually without the Picard DSS engine (Non-DSS mode) and three scenarios when assisted by the Picard DSS engine (DSS mode). The main measures in both modes were correctness and completeness of actions relative to the PET GL. Correctness was further decomposed into necessary and redundant actions, relative to the guideline and the actual patient data. At the end of the assessment, a questionnaire was administered to the clinicians to assess their perceptions regarding use of the DSS. With respect to completeness, the clinicians applied approximately 41% of the GL's recommended actions in the non-DSS mode. Completeness increased to the performance of approximately 93% of the guideline's recommended actions, when using the DSS mode. With respect to correctness, approximately 94.5% of the clinicians' decisions in the non-DSS mode were correct. However, these included 68% of the actions that were correct but redundant, given the patient's data (e.g., repeating tests that had been performed), and 27% of the actions, which were necessary in the context of the GL and of the given scenario. Only 5.5% of the decisions were definite errors. In the DSS mode, 94% of the clinicians' decisions were correct, which included 3% that were correct but redundant, and 91% of the actions that were correct and necessary in the context of the GL and of the given scenario. Only 6% of the DSS-mode decisions were erroneous. The DSS was assessed by the clinicians as potentially useful. Support from the GL-based DSS led to uniformity in the quality of the decisions, regardless of the particular clinician, any particular clinical scenario, any particular decision point, or any decision type within the scenarios. Using the DSS dramatically enhances completeness (i.e., performance of guideline-based recommendations) and seems to prevent the performance of most of the redundant actions, but does not seem to affect the rate of performance of incorrect actions. The redundancy rate is enhanced by similar recent findings in recent studies. Clinicians mostly find this support to be potentially useful for their daily practice. A continuous-care GL-based DSS, such as the Picard DSS engine, has the potential to prevent most errors of omission by ensuring uniformly high quality of clinical decision making (relative to a GL-based norm), due to the increased adherence (i.e., completeness) to the GL, and most of the errors of commission that increase therapy costs, by reducing the rate of redundant actions. However, to prevent clinical errors of commission, the DSS needs to be accompanied by additional modules, such as automated control of the quality of the physician's actual actions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Peebles, Curtis
2007-01-01
In terms of technology, the X-43A/Hyper-X represented a singular milestone. After nearly a half century of high hopes, studies, wind tunnel tests, proposals, and canceled projects, a scramjet-powered vehicle had flown. The performance of the engine qualified the scramjet design tools and scaling laws. In turn, the theoretical calculations and ground testing could be used to design more advanced engine concepts. Just as important, both the scramjet and vehicle systems had successfully operated in the variable temperatures and densities of the atmosphere. The X-43A systems were able to maintain the exact flight conditions necessary for the scramjet to operate properly. Control deflections to correct the engine-induced moments were close to pre-flight predictions. When the unexpected occurred, such as when the vehicle pitched up during the cowl opening on the second flight, the control system was sufficiently designed to correct the situation. The airframe and wing structure, the thermal protection material, and the internal conditions of the X-43A performed largely as predicted. The HXLV thermal anomaly during the ascent on the third flight and "the Mach 8 unpleasantness" during the descent indicated that the HXLV and X-43A were not as resilient to aerodynamic heating as expected. The X-43A 's airframe drag and lift both were slightly higher than predicted, but still within preflight uncertainty predictions. The stability and control were as predicted, as was the boundary layer transition. The biggest aerodynamic worry before the flight was the separation of the HXLV and the X- 43A. After all was said and done, this went exactly as predicted, proving that non-symmetrical/high-dynamic pressure stage separations could be performed. This in turn meant that two-stage-to-orbit vehicles employing this technology were feasible. The Hyper-X program also served as a training ground for a new generation of scramjet and hypersonic researchers. This included both NASA and contractor personnel, providing them with experience in ground testing and component development; vehicle design, construction, integration, system checkout, and, ultimately, flight testing and data analysis. Additionally, researchers learned the practical details of running a project within finite budget and time limits, about the ambiguousness of risk assessment, and about the need to spend a significant amount of time and effort dealing with engineering problems, such as those with the FAS, that have nothing to do with the project's research goals. Finally, all those who worked on the X-43A project now know what it is like to spend years transforming an idea into a functional vehicle, only for it to be lost in a matter of seconds. And then to go through years of work to correct the problems, to face the possibility that still more might exist, and finally to savor the triumph of two successful flights. For those who will work on the hypersonic projects that emerge in coming years, these experiences may prove to be the most valuable of all.
Cost Analysis of Maintenance Programs for Pre-Positioned War Reserve Material Stock (PWRMS)
2002-06-01
perform electronic engine diagnosis and repair, complete engine and transmission rebuilding, powertrain and suspension work, bodywork , painting, and...cost is reimbursed by N44 • Any cost of breakdown maintenance such as transmission or engine failure. • Any cost of accident repair such as bodywork ...equipment in other TOA designators (TA10, P35, etc.) or any other maintenance such as corrective, breakdown, bodywork , or SLEP. Further studies need
CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 4
2007-04-01
and test markets . The decision fails the review, gets marked for adjustment, or passes. • The decision gets pushed out into the world. At this point...STD- 1521, Institute for Electrical and Electronics Engineers [IEEE]-15288). Myopically focused on early correctness, systems engineering can seem to...based on Mishkin Berteig’s experiences as an agile coach, consultant or trainer to teams and management in organizations across North America. From
Wu, Yan-Hua; Guo, Bin; Lou, Hui-Ling; Cui, Yu-Liang; Gu, Hui-Juan; Qiao, Shou-Yi
2012-02-01
Experimental gene engineering is a laboratory course focusing on the molecular structure, expression pattern and biological function of genes. Providing our students with a solid knowledge base and correct ways to conduct research is very important for high-quality education of genetic engineering. Inspired by recent progresses in this field, we improved the experimental gene engineering course by adding more updated knowledge and technologies and emphasizing on the combination of teaching and research, with the aim of offering our students a good start in their scientific careers.
16. Photocopy of Engineering Drawing (original in Engineering News, 4 ...
16. Photocopy of Engineering Drawing (original in Engineering News, 4 October 1890. p. 292), delineator unknown. Scales indicate height in feet above sea level. The gradient in the middle section of the tunnel is incorrectly labeled 1 in 100, whereas the correct gradient is 1 in 1,000. VIEW NORTH, PROFILE OF PART OF ST. CLAIR TUNNEL UNDER RIVER SHOWING SECTION OF RIVER BED AS DETERMINED BY BORINGS, 1890. - St. Clair Tunnel, Under St. Clair River between Port Huron, MI, & Sarnia, ON, Canada, Port Huron, St. Clair County, MI
Fixing convergence of Gaussian belief propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jason K; Bickson, Danny; Dolev, Danny
Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm ismore » linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.« less
Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)
NASA Technical Reports Server (NTRS)
Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.
2010-01-01
Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.
Turbulent flow in a 180 deg bend: Modeling and computations
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
1989-01-01
A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.
Motor-Reducer Sizing through a MATLAB-Based Graphical Technique
ERIC Educational Resources Information Center
Giberti, H.; Cinquemani, S.
2012-01-01
The design of the drive system for an automatic machine and its correct sizing is a very important competence for an electrical or mechatronic engineer. This requires knowledge that crosses the fields of electrical engineering, electronics and mechanics, as well as the skill to choose commercial components based upon their technical documentation.…
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the raw exhaust flow rate based on the measured intake air molar flow rate and the chemical balance..., fuel rate measurements, and fuel properties, consistent with good engineering judgment. (b) Determine...) and dilute exhaust corrected for any removed water. (c) Use good engineering judgment to develop your...
78 FR 60656 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... firewall center fire extinguisher discharge tube (No. 1 engine tube) and inspecting the outboard discharge tube to determine if it is correctly positioned. This AD was prompted by the discovery that the No. 1 engine tube installed on the helicopters is too long to ensure that a fire could be effectively...
The upside of noise: engineered dissipation as a resource in superconducting circuits
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2017-09-01
Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.
Reverse engineering time discrete finite dynamical systems: a feasible undertaking?
Delgado-Eckert, Edgar
2009-01-01
With the advent of high-throughput profiling methods, interest in reverse engineering the structure and dynamics of biochemical networks is high. Recently an algorithm for reverse engineering of biochemical networks was developed by Laubenbacher and Stigler. It is a top-down approach using time discrete dynamical systems. One of its key steps includes the choice of a term order, a technicality imposed by the use of Gröbner-bases calculations. The aim of this paper is to identify minimal requirements on data sets to be used with this algorithm and to characterize optimal data sets. We found minimal requirements on a data set based on how many terms the functions to be reverse engineered display. Furthermore, we identified optimal data sets, which we characterized using a geometric property called "general position". Moreover, we developed a constructive method to generate optimal data sets, provided a codimensional condition is fulfilled. In addition, we present a generalization of their algorithm that does not depend on the choice of a term order. For this method we derived a formula for the probability of finding the correct model, provided the data set used is optimal. We analyzed the asymptotic behavior of the probability formula for a growing number of variables n (i.e. interacting chemicals). Unfortunately, this formula converges to zero as fast as , where and . Therefore, even if an optimal data set is used and the restrictions in using term orders are overcome, the reverse engineering problem remains unfeasible, unless prodigious amounts of data are available. Such large data sets are experimentally impossible to generate with today's technologies.
A state comparison amplifier with feed forward state correction
NASA Astrophysics Data System (ADS)
Mazzarella, Luca; Donaldson, Ross; Collins, Robert; Zanforlin, Ugo; Buller, Gerald; Jeffers, John
2017-04-01
The Quantum State Comparison AMPlifier (SCAMP) is a probabilistic amplifier that works for known sets of coherent states. The input state is mixed with a guess state at a beam splitter and one of the output ports is coupled to a detector. The other output contains the amplified state, which is accepted on the condition that no counts are recorded. The system uses only classical resources and has been shown to achieve high gain and repetition rate. However the output fidelity is not high enough for most quantum communication purposes. Here we show how the success probability and fidelity are enhanced by repeated comparison stages, conditioning later state choices on the outcomes of earlier detections. A detector firing at an early stage means that a guess is wrong. This knowledge allows us to correct the state perfectly. The system requires fast-switching between different input states, but still requires only classical resources. Figures of merit compare favourably with other schemes, most notably the probability-fidelity product is higher than for unambiguous state discrimination. Due to its simplicity, the system is a candidate to counteract quantum signal degradation in a lossy fibre or as a quantum receiver to improve the key rate of continuous variable quantum communication. The work was supported by the QComm Project of the UK Engineering and Physical Sciences Research Council (EP/M013472/1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmina, L.K.
The research deals with different aspects of mathematical modelling and the analysis of complex dynamic non-linear systems as a consequence of applied problems in mechanics (in particular those for gyrosystems, for stabilization and orientation systems, control systems of movable objects, including the aviation and aerospace systems) Non-linearity, multi-connectedness and high dimensionness of dynamical problems, that occur at the initial full statement lead to the need of the problem narrowing, and of the decomposition of the full model, but with safe-keeping of main properties and of qualitative equivalence. The elaboration of regular methods for modelling problems in dynamics, the generalization ofmore » reduction principle are the main aims of the investigations. Here, uniform methodology, based on Lyapunov`s methods, founded by N.G.Ohetayev, is developed. The objects of the investigations are considered with exclusive positions, as systems of singularly perturbed class, treated as ones with singular parametrical perturbations. It is the natural extension of the statements of N.G.Chetayev and P.A.Kuzmin for parametrical stability. In paper the systematical procedures for construction of correct simplified models (comparison ones) are developed, the validity conditions of the transition are determined the appraisals are received, the regular algorithms of engineering level are obtained. Applicabilitelly to the stabilization and orientation systems with the gyroscopic controlling subsystems, these methods enable to build the hierarchical sequence of admissible simplified models; to determine the conditions of their correctness.« less
Design Approaches to Myocardial and Vascular Tissue Engineering.
Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y
2017-06-21
Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.
Method and system for providing work machine multi-functional user interface
Hoff, Brian D [Peoria, IL; Akasam, Sivaprasad [Peoria, IL; Baker, Thomas M [Peoria, IL
2007-07-10
A method is performed to provide a multi-functional user interface on a work machine for displaying suggested corrective action. The process includes receiving status information associated with the work machine and analyzing the status information to determine an abnormal condition. The process also includes displaying a warning message on the display device indicating the abnormal condition and determining one or more corrective actions to handle the abnormal condition. Further, the process includes determining an appropriate corrective action among the one or more corrective actions and displaying a recommendation message on the display device reflecting the appropriate corrective action. The process may also include displaying a list including the remaining one or more corrective actions on the display device to provide alternative actions to an operator.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1975-01-01
Kevlar-49 fairing panels were inspected and found to be performing satisfactorily after two years flight service on an Eastern and an Air Canada L-1011. Six panels are on each aircraft including sandwich and solid laminate wing-body panels, and 300 F service aft engine fairings. Some of the panels were removed from the aircraft to permit inspection of inner surfaces and fastener hole conditions. Minor defects such as surface cracks due to impact damage, small delaminated areas, elongation and fraying of fastener holes, were noted. None of these defects were considered serious enough to warrant corrective action in the opinion of airline personnel. The defects are typical for the most part of defects noted on similar fiberglass parts.
Instantons in Script N = 2 magnetized D-brane worlds
NASA Astrophysics Data System (ADS)
Billò, Marco; Frau, Marialuisa; Pesando, Igor; Di Vecchia, Paolo; Lerda, Alberto; Marotta, Raffaele
2007-10-01
In a toroidal orbifold of type IIB string theory we study instanton effects in Script N = 2 super Yang-Mills theories engineered with systems of wrapped magnetized D9 branes and Euclidean D5 branes. We analyze the various open string sectors in this brane system and study the 1-loop amplitudes described by annulus diagrams with mixed boundary conditions, explaining their rôle in the stringy instanton calculus. We show in particular that the non-holomorphic terms in these annulus amplitudes precisely reconstruct the appropriate Kähler metric factors that are needed to write the instanton correlators in terms of purely holomorphic variables. We also explicitly derive the correct holomorphic structure of the instanton induced low energy effective action in the Coulomb branch.
Software engineering and Ada (Trademark) training: An implementation model for NASA
NASA Technical Reports Server (NTRS)
Legrand, Sue; Freedman, Glenn
1988-01-01
The choice of Ada for software engineering for projects such as the Space Station has resulted in government and industrial groups considering training programs that help workers become familiar with both a software culture and the intricacies of a new computer language. The questions of how much time it takes to learn software engineering with Ada, how much an organization should invest in such training, and how the training should be structured are considered. Software engineering is an emerging, dynamic discipline. It is defined by the author as the establishment and application of sound engineering environments, tools, methods, models, principles, and concepts combined with appropriate standards, guidelines, and practices to support computing which is correct, modifiable, reliable and safe, efficient, and understandable throughout the life cycle of the application. Neither the training programs needed, nor the content of such programs, have been well established. This study addresses the requirements for training for NASA personnel and recommends an implementation plan. A curriculum and a means of delivery are recommended. It is further suggested that a knowledgeable programmer may be able to learn Ada in 5 days, but that it takes 6 to 9 months to evolve into a software engineer who uses the language correctly and effectively. The curriculum and implementation plan can be adapted for each NASA Center according to the needs dictated by each project.
Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.
Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P
2006-04-01
Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.
Web sites for postpartum depression: convenient, frustrating, incomplete, and misleading.
Summers, Audra L; Logsdon, M Cynthia
2005-01-01
To evaluate the content and the technology of Web sites providing information on postpartum depression. Eleven search engines were queried using the words "Postpartum Depression." The top 10 sites in each search engine were evaluated for correct content and technology using the Web Depression Tool, based on the Technology Assessment Model. Of the 36 unique Web sites located, 34 were available to review. Only five Web sites provided >75% correct responses to questions that summarized the current state of the science for postpartum depression. Eleven of the Web sites contained little or no useful information about postpartum depression, despite being among the first 10 Web sites listed by the search engine. Some Web sites contained possibly harmful suggestions for treatment of postpartum depression. In addition, there are many problems with the technology of Web sites providing information on postpartum depression. A better Web site for postpartum depression is necessary if we are to meet the needs of consumers for accurate and current information using technology that enhances learning. Since patient education is a core competency for nurses, it is essential that nurses understand how their patients are using the World Wide Web for learning and how we can assist our patients to find appropriate sites containing correct information.
Top down and bottom up engineering of bone.
Knothe Tate, Melissa L
2011-01-11
The goal of this retrospective article is to place the body of my lab's multiscale mechanobiology work in context of top-down and bottom-up engineering of bone. We have used biosystems engineering, computational modeling and novel experimental approaches to understand bone physiology, in health and disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as evolution) and length scales (a single bone like a femur, m; a sample of bone tissue, mm-cm; a cell and its local environment, μm; down to the length scale of the cell's own skeleton, the cytoskeleton, nm). First we introduce the concept of flow in bone and the three calibers of porosity through which fluid flows. Then we describe, in the context of organ-tissue, tissue-cell and cell-molecule length scales, both multiscale computational models and experimental methods to predict flow in bone and to understand the flow of fluid as a means to deliver chemical and mechanical cues in bone. Addressing a number of studies in the context of multiple length and time scales, the importance of appropriate boundary conditions, site specific material parameters, permeability measures and even micro-nanoanatomically correct geometries are discussed in context of model predictions and their value for understanding multiscale mechanobiology of bone. Insights from these multiscale computational modeling and experimental methods are providing us with a means to predict, engineer and manufacture bone tissue in the laboratory and in the human body. Copyright © 2010 Elsevier Ltd. All rights reserved.
Results from flamelet and non-flamelet models for supersonic combustion
NASA Astrophysics Data System (ADS)
Ladeinde, Foluso; Li, Wenhai
2017-11-01
Air-breathing propulsion systems (scramjets) have been identified as a viable alternative to rocket engines for improved efficiency. A scramjet engine, which operates at flight Mach numbers around 7 or above, is characterized by the existence of supersonic flow conditions in the combustor. In a dual-mode scramjet, this phenomenon is possible because of the relatively low value of the equivalence ratio and high stagnation temperature, which, together, inhibits thermal choking downstream of transverse injectors. The flamelet method has been our choice for turbulence-combustion interaction modeling and we have extended the basic approach in several dimensions, with a focus on the way the pressure and progress variable are modeled. Improved results have been obtained. We have also examined non-flamelet models, including laminar chemistry (QL), eddy dissipation concept (EDC), and partially-stirred reactor (PaSR). The pressure/progress variable-corrected simulations give better results compared with the original model, with reaction rates that are lower than those from EDC and PaSR. In general, QL tends to over-predict the reaction rate for the supersonic combustion problems investigated in our work.
76 FR 35378 - Installation and Use of Engine Cut-Off Switches on Recreational Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 175 and 183 [Docket No. USCG-2009-0206] RIN 1825-AB34 Installation and Use of Engine Cut-Off Switches on Recreational Vehicles Correction Proposed Rule document 2011-14140 was inadvertently published in the Rules section of the issue of June 8...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... not be fuel resistant, which could lead to detachment of particles from the fuel hose and cause..., if not corrected, could lead to detachment of particles from the fuel hose and irregularities in the... waiving notice and comment prior to adoption of this rule because detachment of particles from the fuel...
ERIC Educational Resources Information Center
Murphy, Francis S.
2005-01-01
Education of potential professional engineers should take account of the type of employment that they will eventually obtain. The quality of an engineering degree course can be judged by assessing whether the correct balance of "essential attributes" has been effectively obtained. This case study is concerned with assessing the balance…
Automatic Evaluation of Practices in Moodle for Self Learning in Engineering
ERIC Educational Resources Information Center
Sánchez, Carles; Ramos, Oriol; Márquez, Patricia; Marti, Enric; Rocarias, Jaume; Gil, Debora
2015-01-01
The first years in engineering degree courses are usually made of large groups with a low teacher-student ratio. Overcrowding in classrooms hinders continuous assessment much needed to promote independent learning. Therefore, there is a need to apply some kind of automatic evaluation to facilitate the correction of exercises outside the classroom.…
75 FR 66653 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... the left and right engine aft mounts with new fasteners, in accordance with the Accomplishment... defects of the upper fasteners of the aft mount support fittings of the left and right engines, and corrective actions if necessary. This new AD requires repetitive replacement of the upper row of fasteners of...
Perimeter security for Minnesota correctional facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crist, D.; Spencer, D.D.
1996-12-31
For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned newmore » construction at other facilities.« less
40 CFR 1066.605 - Mass-based and molar-based exhaust emission calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test interval, corrected to standard temperature and pressure. m PMfil = mass of particulate... = stabilized, ht = hot transient), corrected to standard reference conditions. m PMfil = mass of particulate... stabilized), corrected to standard reference conditions. m PMfil = mass of particulate matter emissions on...
1985-09-01
steadily developed along with the better understanding of human relations, moti- vation and worklife sciences. That this is so, is clear from a review of...accomplish its goals effectively and efficiently if it is not staffed with the correct number of people with the correct balance of education, training and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Bhandari, Mahabir S.; New, Joshua Ryan
This document describes the Oak Ridge National Laboratory (ORNL) multiyear experimental plan for validation and uncertainty characterization of whole-building energy simulation for a multi-zone research facility using a traditional rooftop unit (RTU) as a baseline heating, ventilating, and air conditioning (HVAC) system. The project’s overarching objective is to increase the accuracy of energy simulation tools by enabling empirical validation of key inputs and algorithms. Doing so is required to inform the design of increasingly integrated building systems and to enable accountability for performance gaps between design and operation of a building. The project will produce documented data sets that canmore » be used to validate key functionality in different energy simulation tools and to identify errors and inadequate assumptions in simulation engines so that developers can correct them. ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2004), currently consists primarily of tests to compare different simulation programs with one another. This project will generate sets of measured data to enable empirical validation, incorporate these test data sets in an extended version of Standard 140, and apply these tests to the Department of Energy’s (DOE) EnergyPlus software (EnergyPlus 2016) to initiate the correction of any significant deficiencies. The fitness-for-purpose of the key algorithms in EnergyPlus will be established and demonstrated, and vendors of other simulation programs will be able to demonstrate the validity of their products. The data set will be equally applicable to validation of other simulation engines as well.« less
NASA Technical Reports Server (NTRS)
Goldman, Louis J.
1993-01-01
An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes operating at transonic flow conditions. The vanes tested were based on a previous redesign of the first-stage stator in a two-stage turbine for a high-bypass-ratio engine. The vanes produced 75 deg of flow turning. Tests were conducted on a 0.771-scale model of the engine-sized stator. The advanced LA fringe system employed an extremely small 50-micron diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained at the mean radius upstream of, within, and downstream of the stator vane row at an exit critical velocity ratio of 1.050 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible, with calculations from a three-dimensional inviscid flow analysis. Comparisons were also made with the results obtained previously when these same vanes were tested at the design exit critical velocity ratio of 0.896 at the hub. The data are presented in both graphical and tabulated form so that they can be readily compared against other turbomachinery computations.
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Ying, Qi; Kleeman, Michael J.
2009-12-01
Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800-1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by "smart heaters" placed upstream of nephelometers. Mean fractional bias and mean fractional error were -0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.
Yao, Tao; Yin, Shi-Min; Xiangli, Bin; Lü, Qun-Bo
2010-06-01
Based on in-depth analysis of the relative radiation scaling theorem and acquired scaling data of pixel response nonuniformity correction of CCD (charge-coupled device) in spaceborne visible interferential imaging spectrometer, a pixel response nonuniformity correction method of CCD adapted to visible and infrared interferential imaging spectrometer system was studied out, and it availably resolved the engineering technical problem of nonuniformity correction in detector arrays for interferential imaging spectrometer system. The quantitative impact of CCD nonuniformity on interferogram correction and recovery spectrum accuracy was given simultaneously. Furthermore, an improved method with calibration and nonuniformity correction done after the instrument is successfully assembled was proposed. The method can save time and manpower. It can correct nonuniformity caused by other reasons in spectrometer system besides CCD itself's nonuniformity, can acquire recalibration data when working environment is changed, and can also more effectively improve the nonuniformity calibration accuracy of interferential imaging
Method and system for turbomachinery surge detection
Faymon, David K.; Mays, Darrell C.; Xiong, Yufei
2004-11-23
A method and system for surge detection within a gas turbine engine, comprises: measuring the compressor discharge pressure (CDP) of the gas turbine over a period of time; determining a time derivative (CDP.sub.D ) of the measured (CDP) correcting the CDP.sub.D for altitude, (CDP.sub.DCOR); estimating a short-term average of CDP.sub.DCOR.sup.2 ; estimating a short-term average of CDP.sub.DCOR ; and determining a short-term variance of corrected CDP rate of change (CDP.sub.roc) based upon the short-term average of CDP.sub.DCOR and the short-term average of CDP.sub.DCOR.sup.2. The method and system then compares the short-term variance of corrected CDP rate of change with a pre-determined threshold (CDP.sub.proc) and signals an output when CDP.sub.roc >CDP.sub.proc. The method and system provides a signal of a surge within the gas turbine engine when CDP.sub.roc remains>CDP.sub.proc for pre-determined period of time.
76 FR 16533 - Certain Other Dosage Form New Animal Drugs; Detomidine; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
.... FDA-2010-N-0002] Certain Other Dosage Form New Animal Drugs; Detomidine; Correction AGENCY: Food and... paragraph describing limitations to the approved conditions of use for detomidine hydrochloride oromucosal... conditions of use for detomidine hydrochloride oromucosal gel in horses. This correction is being made to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0254] Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and Research, Draft Report for Comment; Correction AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment; correction. SUMMARY: This document corrects a notice appearing...
Self-corrected elaboration and spacing effects in incidental memory.
Toyota, Hiroshi
2006-04-01
The present study investigated the effect of self-corrected elaboration on incidental memory as a function of types of presentation (massed vs spaced) and sentence frames (image vs nonimage). The subjects were presented a target word and an incongruous sentence frame and asked to correct the target to make a common sentence in the self-corrected elaboration condition, whereas in the experimenter-corrected elaboration condition they were asked to rate the appropriateness of the congruous word presented, followed by free recall test. The superiority of the self-corrected elaboration to the experimenter-corrected elaboration was observed only in some situations of combinations by the types of presentation and sentence frames. These results were discussed in terms of the effectiveness of the self-corrected elaboration.
Method of wavefront tilt correction for optical heterodyne detection systems under strong turbulence
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Tian, Xin; Pan, Le-chun
2014-07-01
Atmospheric turbulence decreases the heterodyne mixing efficiency of the optical heterodyne detection systems. Wavefront tilt correction is often used to improve the optical heterodyne mixing efficiency. But the performance of traditional centroid tracking tilt correction is poor under strong turbulence conditions. In this paper, a tilt correction method which tracking the peak value of laser spot on focal plane is proposed. Simulation results show that, under strong turbulence conditions, the performance of peak value tracking tilt correction is distinctly better than that of traditional centroid tracking tilt correction method, and the phenomenon of large antenna's performance inferior to small antenna's performance which may be occurred in centroid tracking tilt correction method can also be avoid in peak value tracking tilt correction method.
A Software Engineering Environment for the Navy.
1982-03-31
Engineering Pr.cess . - 55 ?art II: Description of A Software Engineering Env.Lonnmeut 1. Data Base ........................................ 7 -3 L.I...Methodology to Tool 1-54 2.2.2.2-6 Flow of Management: Activity to Methodology to Tool 21- 55 2.2.2.2-7 Pipelining for Activity-Specific Tools 11-56 A.1.1-1 A...testing techniques. 2.2. 2 Methodciogies and Tools: Correctness Analysis Pai e T- 4Metboioioo ies aews - Pev2.ews Jeicrmine the in ernai ’ Qolc .. ness and
Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report
NASA Technical Reports Server (NTRS)
1977-01-01
A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of servovalve designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked into position.
A top-down approach in control engineering third-level teaching: The case of hydrogen-generation
NASA Astrophysics Data System (ADS)
Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo
2017-09-01
This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.
40 CFR 91.311 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine air at the inlet to the engine and the dry atmospheric pressure (designated as p s and expressed... rates at standard conditions for temperature and pressure. Use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine...
40 CFR 90.311 - Test conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure, and use these conditions consistently throughout all calculations. Standard conditions for temperature and pressure are 25 °C and 101.3 kPa. (b) Engine test conditions. Measure the absolute temperature (designated as T and expressed in Kelvin) of the engine air at the inlet to the engine and the dry atmospheric...
Component improvement of free-piston Stirling engine key technology for space power
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1988-01-01
The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1979-01-01
Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.
NASA Technical Reports Server (NTRS)
Lessard, Victor R.
1993-01-01
Computations of three dimensional vortical flows over a generic High Speed Civil Transport (HSCT) configuration with an aspect ratio of 3.04 are performed using a thin-layer Navier-Stokes solver. The HSCT cruise configuration is modeled without leading or trailing edge flap deflections and without engine nacelles. The flow conditions, which correspond to tests done in the NASA Langley 8-Foot Transonic Pressure Tunnel (TPT), are a subsonic Mach number of 0.3 and Reynolds number of 4.4 million for a range-of-attack (-.23 deg to 17.78 deg). The effects of the farfield boundary location with respect to the body are investigated. The boundary layer is assumed turbulent and simulated using an algebraic turbulence model. The key features of the vortices and their interactions are captured. Grid distribution in the vortex regions is critical for predicting the correct induced lift. Computed forces and surface pressures compare reasonably well with the experimental TPT data.
Rational functional representation of flap noise spectra including correction for reflection effects
NASA Technical Reports Server (NTRS)
Miles, J. H.
1974-01-01
A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on Thomas' (1969) N-independent-source model extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown-flap data taken from turbofan engine tests and from large-scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.
Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture
NASA Technical Reports Server (NTRS)
Armstrong, Jeffrey B.; Simon, Donald L.
2012-01-01
An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases
Development of GUI Type On-Line Condition Monitoring Program for a Turboprop Engine Using Labview
NASA Astrophysics Data System (ADS)
Kong, Changduk; Kim, Keonwoo
2011-12-01
Recently, an aero gas turbine health monitoring system has been developed for precaution and maintenance action against faults or performance degradations of the advanced propulsion system which occurs in severe environments such as high altitude, foreign object damage particles, hot and heavy rain and snowy atmospheric conditions. However to establish this health monitoring system, the online condition monitoring program is firstly required, and the program must monitor the engine performance trend through comparison between measured engine performance data and base performance results calculated by base engine performance model. This work aims to develop a GUI type on-line condition monitoring program for the PT6A-67 turboprop engine of a high altitude and long endurance operation UAV using LabVIEW. The base engine performance of the on-line condition monitoring program is simulated using component maps inversely generated from the limited performance deck data provided by engine manufacturer. The base engine performance simulation program is evaluated because analysis results by this program agree well with the performance deck data. The proposed on-line condition program can monitor the real engine performance as well as the trend through precise comparison between clean engine performance results calculated by the base performance simulation program and measured engine performance signals. In the development phase of this monitoring system, a signal generation module is proposed to evaluate the proposed online monitoring system. For user friendly purpose, all monitoring program are coded by LabVIEW, and monitoring examples are demonstrated using the proposed GUI type on-condition monitoring program.
DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.
Dupuy, Aurélie; Sarasin, Alain
2015-06-01
Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
...) fan blades within compliance times specified in the AD, inspecting the fan blade abradable rub strip on certain engines for wear, inspecting the fan blades on certain engines for cracks, inspecting the.... This ad supersedure requires the same actions but corrects the effectivity for certain fan blades...
Free Fall Misconceptions: Results of a Graph Based Pre-Test of Sophomore Civil Engineering Students
ERIC Educational Resources Information Center
Montecinos, Alicia M.
2014-01-01
A partially unusual behaviour was found among 14 sophomore students of civil engineering who took a pre test for a free fall laboratory session, in the context of a general mechanics course. An analysis contemplating mathematics models and physics models consistency was made. In all cases, the students presented evidence favoring a correct free…
ERIC Educational Resources Information Center
Katsioloudis, Petros; Dickerson, Daniel; Jovanovic, Vukica; Jones, Mildred V.
2016-01-01
Spatial abilities, specifically visualization, play a significant role in the achievement in a wide array of professions including, but not limited to, engineering, technical, mathematical, and scientific professions. However, there is little correlation between the advantages of spatial ability as measured through the creation of a sectional-view…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012...
A Coupling Analysis Approach to Capture Unexpected Behaviors in Ares 1
NASA Astrophysics Data System (ADS)
Kis, David
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process. Preliminary corrections ensure no unanticipated behaviors arise during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can effect solid rocket motors in adverse ways. Within the Ares 1 rocket, unexpected vibrations deemed potentially harmful to future crew were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. This research proposes the use of a coupling strength analysis during the design and development phase to identify potential unanticipated behaviors such as thrust oscillation. Once these behaviors and couplings are identified then a value function, based on research in Value Driven Design, is proposed to evaluate mitigation strategies and their impact on system value. The results from this study showcase a strong coupling interaction from structural displacement back onto the fluid flow of the Ares 1 that was previously deemed inconsequential. These findings show that the use of a coupling strength analysis can aid engineers and managers in identifying unanticipated behaviors and then rank order their importance based on the impact they have on value.
Progress toward an advanced condition monitoring system for reusable rocket engines
NASA Technical Reports Server (NTRS)
Maram, J.; Barkhoudarian, S.
1987-01-01
A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.
Puzzler Solution: Just Making an Observation | Poster
Editor’s Note: It looks like we stumped you. None of the puzzler guesses were correct, but our winner was the closest to getting it right. He guessed it was a sanitary sewer clean-out pipe, and that’s what the photo looks like, according to our source at Facilities Maintenance and Engineering. Please continue reading for the correct puzzler solution. By Ashley DeVine, Staff
Puzzler Solution: Just Making an Observation | Poster
Editor’s Note: It looks like we stumped you. None of the puzzler guesses were correct, but our winner was the closest to getting it right. He guessed it was a sanitary sewer clean-out pipe, and that’s what the photo looks like, according to our source at Facilities Maintenance and Engineering. Please continue reading for the correct puzzler solution. By Ashley DeVine, Staff Writer
Publisher Correction: Quantum engineering of transistors based on 2D materials heterostructures
NASA Astrophysics Data System (ADS)
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-06-01
In the version of this Perspective originally published, in the email address for the author Giuseppe Iannaccone, the surname was incorrectly given as "innaconne"; this has now been corrected in all versions of the Perspective. Also, an error in the production process led to Figs. 1, 2 and 3 being of low resolution; these have now been replaced with higher-quality versions.
Economic Impacts of Prison Growth
2010-04-13
allow collective bargaining for public sector correctional workers, proposals to alter rules for the 2010 Census count, and rural development efforts...number of rural areas have chosen to tie their economies to prisons, viewing the institutions as recession-proof development engines. Though many local...correctional authorities. 80 Beale, Calvin L., “ Rural Prisons: An Update”, Rural Development Perspectives, vol. 11, no. 2, March 2001, p. 25. http
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions
2014-10-01
The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b
Analyses of Longitudinal Mode Combustion Instability in J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2011-01-01
The National Aeronautics and Space Administration (NASA) and Pratt & Whitney Rocketdyne are developing a liquid oxygen/liquid hydrogen rocket engine for future upper stage and trans-lunar applications. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. The contract for development was let to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations on the component test stand at the NASA Marshall Space Flight Center (MSFC). Several of the initial configurations resulted in combustion instability of the workhorse gas generator assembly at a frequency near the first longitudinal mode of the combustion chamber. In this paper, several aspects of these combustion instabilities are discussed, including injector, combustion chamber, feed system, and nozzle influences. To ensure elimination of the instabilities at the engine level, and to understand the stability margin, the gas generator system has been modeled at the NASA MSFC with two techniques, the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a lumped-parameter MATLAB(TradeMark) model created as an alternative calculation to the ROCCID methodology. To correctly predict the instability characteristics of all the chamber and injector geometries and test conditions as a whole, several inputs to the submodels in ROCCID and the MATLAB(TradeMark) model were modified. Extensive sensitivity calculations were conducted to determine how to model and anchor a lumped-parameter injector response, and finite-element and acoustic analyses were conducted on several complicated combustion chamber geometries to determine how to model and anchor the chamber response. These modifications and their ramification for future stability analyses of this type are discussed.
Predictive NO x emission monitoring on board a passenger ferry
NASA Astrophysics Data System (ADS)
Cooper, D. A.; Andreasson, K.
NO x emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NO x measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O 2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1-6.9% of the calibration domain (0-1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NO x±38 t and the average NO x emission corrected for ambient conditions 14.3 g kWh corr-1. The exhaust profile of the engine in terms of NO x, CO and CO 2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NO x emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NO x measurements on board ships.
Theory of Irregular Waveguides with Slowly Changing Parameters
1979-04-05
different waves are orthogcnal between themselves. The conditions of orthogonality we will record in such a way that it would be correct during any...replace the strain of surface, on which it is correct (3.2), by a small change in this condition on the undisturbed surface. Let us establish/install this...it is possible to show which (6.’ is correct with any sign L. The replacement of strain by boundary condition (6.1) introduces into calculation soca
NASA Astrophysics Data System (ADS)
Sembiring, N.; Panjaitan, N.; Angelita, S.
2018-02-01
PT. XYZ is a company owned by non-governmental organizations engaged in the field of production of rubber processing becoming crumb rubber. Part of the production is supported by some of machines and interacting equipment to achieve optimal productivity. Types of the machine that are used in the production process are Conveyor Breaker, Breaker, Rolling Pin, Hammer Mill, Mill Roll, Conveyor, Shredder Crumb, and Dryer. Maintenance system in PT. XYZ is corrective maintenance i.e. repairing or replacing the engine components after the crash on the machine. Replacement of engine components on corrective maintenance causes the machine to stop operating during the production process is in progress. The result is in the loss of production time due to the operator must replace the damaged engine components. The loss of production time can impact on the production targets which were not reached and lead to high loss costs. The cost for all components is Rp. 4.088.514.505. This cost is really high just for maintaining a Mill Roll Machine. Therefore PT. XYZ is needed to do preventive maintenance i.e. scheduling engine components and improving maintenance efficiency. The used methods are Reliability Engineering and Maintenance Value Stream Mapping (MVSM). The needed data in this research are the interval of time damage to engine components, opportunity cost, labor cost, component cost, corrective repair time, preventive repair time, Mean Time To Opportunity (MTTO), Mean Time To Repair (MTTR), and Mean Time To Yield (MTTY). In this research, the critical components of Mill Roll machine are Spier, Bushing, Bearing, Coupling and Roll. Determination of damage distribution, reliability, MTTF, cost of failure, cost of preventive, current state map, and future state map are done so that the replacement time for each critical component with the lowest maintenance cost and preparation of Standard Operation Procedure (SOP) are developed. For the critical component that has been determined, the Spier component replacement time interval is 228 days with a reliability value of 0,503171, Bushing component is 240 days with reliability value of 0.36861, Bearing component is 202 days with reliability value of 0,503058, Coupling component is 247 days with reliability value of 0,50108 and Roll component is 301 days with reliability value of 0,373525. The results show that the cost decreases from Rp 300,688,114 to Rp 244,384,371 obtained from corrective maintenance to preventive maintenance. While maintenance efficiency increases with the application of preventive maintenance i.e. for Spier component from 54,0540541% to 74,07407%, Bushing component from 52,3809524% to 68,75%, Bearing component from 40% to 52,63158%, Coupling component from 60.9756098% to 71.42857%, and Roll components from 64.516129% to 74.7663551%.
System and method for diagnosing EGR performance using NOx sensor
Mazur, Christopher John
2003-12-23
A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.
Combining results of multiple search engines in proteomics.
Shteynberg, David; Nesvizhskii, Alexey I; Moritz, Robert L; Deutsch, Eric W
2013-09-01
A crucial component of the analysis of shotgun proteomics datasets is the search engine, an algorithm that attempts to identify the peptide sequence from the parent molecular ion that produced each fragment ion spectrum in the dataset. There are many different search engines, both commercial and open source, each employing a somewhat different technique for spectrum identification. The set of high-scoring peptide-spectrum matches for a defined set of input spectra differs markedly among the various search engine results; individual engines each provide unique correct identifications among a core set of correlative identifications. This has led to the approach of combining the results from multiple search engines to achieve improved analysis of each dataset. Here we review the techniques and available software for combining the results of multiple search engines and briefly compare the relative performance of these techniques.
Combining Results of Multiple Search Engines in Proteomics*
Shteynberg, David; Nesvizhskii, Alexey I.; Moritz, Robert L.; Deutsch, Eric W.
2013-01-01
A crucial component of the analysis of shotgun proteomics datasets is the search engine, an algorithm that attempts to identify the peptide sequence from the parent molecular ion that produced each fragment ion spectrum in the dataset. There are many different search engines, both commercial and open source, each employing a somewhat different technique for spectrum identification. The set of high-scoring peptide-spectrum matches for a defined set of input spectra differs markedly among the various search engine results; individual engines each provide unique correct identifications among a core set of correlative identifications. This has led to the approach of combining the results from multiple search engines to achieve improved analysis of each dataset. Here we review the techniques and available software for combining the results of multiple search engines and briefly compare the relative performance of these techniques. PMID:23720762
NASA Astrophysics Data System (ADS)
Liersch, Stefan; Tecklenburg, Julia; Rust, Henning; Dobler, Andreas; Fischer, Madlen; Kruschke, Tim; Koch, Hagen; Fokko Hattermann, Fred
2018-04-01
Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars, where we know which fuel the engine requires, we never know in advance what unexpected side effects might be caused by the fuel we feed our models with. Sometimes we increase the fuel's octane number (bias correction) to achieve better performance and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five global CMIP5 Earth system models and 10 regional climate models (CORDEX Africa). WATCH forcing data were used to calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one hand it was found that the bias correction methods considerably improved the performance of average rainfall characteristics in the reference period (1970-1999) in most of the cases. This also holds true for non-extreme discharge conditions between Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasize magnitudes of projected change signals and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high and low flows and their extremes, which were often deteriorated by bias correction. This inaccuracy is a crucial deficiency for regional impact studies dealing with water management issues and it is therefore important to analyse model performance and characteristics and the effect of bias correction, and eventually to exclude some climate models from the ensemble. However, the multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Improved calibration-based non-uniformity correction method for uncooled infrared camera
NASA Astrophysics Data System (ADS)
Liu, Chengwei; Sui, Xiubao
2017-08-01
With the latest improvements of microbolometer focal plane arrays (FPA), uncooled infrared (IR) cameras are becoming the most widely used devices in thermography, especially in handheld devices. However the influences derived from changing ambient condition and the non-uniform response of the sensors make it more difficult to correct the nonuniformity of uncooled infrared camera. In this paper, based on the infrared radiation characteristic in the TEC-less uncooled infrared camera, a novel model was proposed for calibration-based non-uniformity correction (NUC). In this model, we introduce the FPA temperature, together with the responses of microbolometer under different ambient temperature to calculate the correction parameters. Based on the proposed model, we can work out the correction parameters with the calibration measurements under controlled ambient condition and uniform blackbody. All correction parameters can be determined after the calibration process and then be used to correct the non-uniformity of the infrared camera in real time. This paper presents the detail of the compensation procedure and the performance of the proposed calibration-based non-uniformity correction method. And our method was evaluated on realistic IR images obtained by a 384x288 pixels uncooled long wave infrared (LWIR) camera operated under changed ambient condition. The results show that our method can exclude the influence caused by the changed ambient condition, and ensure that the infrared camera has a stable performance.
12 CFR 621.14 - Certification of correctness.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS Report of Condition and Performance § 621.14 Certification of correctness. Each report of financial condition and performance filed with the Farm Credit Administration shall be certified as having... accurate representation of the financial condition and performance of the institution to which it applies...
A simple modern correctness condition for a space-based high-performance multiprocessor
NASA Technical Reports Server (NTRS)
Probst, David K.; Li, Hon F.
1992-01-01
A number of U.S. national programs, including space-based detection of ballistic missile launches, envisage putting significant computing power into space. Given sufficient progress in low-power VLSI, multichip-module packaging and liquid-cooling technologies, we will see design of high-performance multiprocessors for individual satellites. In very high speed implementations, performance depends critically on tolerating large latencies in interprocessor communication; without latency tolerance, performance is limited by the vastly differing time scales in processor and data-memory modules, including interconnect times. The modern approach to tolerating remote-communication cost in scalable, shared-memory multiprocessors is to use a multithreaded architecture, and alter the semantics of shared memory slightly, at the price of forcing the programmer either to reason about program correctness in a relaxed consistency model or to agree to program in a constrained style. The literature on multiprocessor correctness conditions has become increasingly complex, and sometimes confusing, which may hinder its practical application. We propose a simple modern correctness condition for a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and the parallel programming system.
Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner
NASA Astrophysics Data System (ADS)
Marx, David; Aurégan, Yves
2013-07-01
Lined ducts are used to reduce noise radiation from ducts in turbofan engines. In certain conditions they may sustain hydrodynamic instabilities. A local linear stability analysis of the flow in a 2D lined channel is performed using a numerical integration of the governing equations. Several model equations are used, one of them taking into account turbulent eddy viscosity, and a realistic turbulent mean flow profile is used that vanishes at the wall. The stability analysis results are compared to published experimental results. Both the model and the experiments show the existence of an unstable mode, and the importance of taking into account eddy viscosity in the model is shown. When this is done, quantities such as the growth rate and the velocity eigenfunctions are shown to agree correctly.
NASA Astrophysics Data System (ADS)
Wang, Liwei; Liu, Xinggao; Zhang, Zeyin
2017-02-01
An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.
Assuring NASA's Safety and Mission Critical Software
NASA Technical Reports Server (NTRS)
Deadrick, Wesley
2015-01-01
What is IV&V? Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products. Independence: 3 Key parameters: Technical Independence; Managerial Independence; Financial Independence. NASA IV&V perspectives: Will the system's software: Do what it is supposed to do?; Not do what it is not supposed to do?; Respond as expected under adverse conditions?. Systems Engineering: Determines if the right system has been built and that it has been built correctly. IV&V Technical Approaches: Aligned with IEEE 1012; Captured in a Catalog of Methods; Spans the full project lifecycle. IV&V Assurance Strategy: The IV&V Project's strategy for providing mission assurance; Assurance Strategy is driven by the specific needs of an individual project; Implemented via an Assurance Design; Communicated via Assurance Statements.
Visual Turing test for computer vision systems
Geman, Donald; Geman, Stuart; Hallonquist, Neil; Younes, Laurent
2015-01-01
Today, computer vision systems are tested by their accuracy in detecting and localizing instances of objects. As an alternative, and motivated by the ability of humans to provide far richer descriptions and even tell a story about an image, we construct a “visual Turing test”: an operator-assisted device that produces a stochastic sequence of binary questions from a given test image. The query engine proposes a question; the operator either provides the correct answer or rejects the question as ambiguous; the engine proposes the next question (“just-in-time truthing”). The test is then administered to the computer-vision system, one question at a time. After the system’s answer is recorded, the system is provided the correct answer and the next question. Parsing is trivial and deterministic; the system being tested requires no natural language processing. The query engine employs statistical constraints, learned from a training set, to produce questions with essentially unpredictable answers—the answer to a question, given the history of questions and their correct answers, is nearly equally likely to be positive or negative. In this sense, the test is only about vision. The system is designed to produce streams of questions that follow natural story lines, from the instantiation of a unique object, through an exploration of its properties, and on to its relationships with other uniquely instantiated objects. PMID:25755262
Similarity constraints in testing of cooled engine parts
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Stepka, F. S.
1974-01-01
A study is made of the effect of testing cooled parts of current and advanced gas turbine engines at the reduced temperature and pressure conditions which maintain similarity with the engine environment. Some of the problems facing the experimentalist in evaluating heat transfer and aerodynamic performance when hardware is tested at conditions other than the actual engine environment are considered. Low temperature and pressure test environments can simulate the performance of actual size prototype engine hardware within the tolerance of experimental accuracy if appropriate similarity conditions are satisfied. Failure to adhere to these similarity constraints because of test facility limitations or other reasons, can result in a number of serious errors in projecting the performance of test hardware to engine conditions.
Investigating the Speech Act of Correction in Iraqi EFL Context
ERIC Educational Resources Information Center
Darweesh, Abbas Deygan; Mehdi, Wafaa Sahib
2016-01-01
The present paper investigates the performance of the Iraqi students for the speech act of correction and how it is realized with status unequal. It attempts to achieve the following aims: (1) Setting out the felicity conditions for the speech act of correction in terms of Searle conditions; (2) Identifying the semantic formulas that realize the…
Dissipative quantum error correction and application to quantum sensing with trapped ions.
Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A
2017-11-28
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...
The Application of V&V within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward
1996-01-01
Verification and Validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In reuse-based software engineering, decisions on the requirements, design and even implementation of domain assets can can be made prior to beginning development of a specific system. in order to bring the effectiveness of V&V to bear within reuse-based software engineering. V&V must be incorporated within the domain engineering process.
A review of turbine blade tip heat transfer.
Bunker, R S
2001-05-01
This paper presents a review of the publicly available knowledge base concerning turbine blade tip heat transfer, from the early fundamental research which laid the foundations of our knowledge, to current experimental and numerical studies utilizing engine-scaled blade cascades and turbine rigs. Focus is placed on high-pressure, high-temperature axial-turbine blade tips, which are prevalent in the majority of today's aircraft engines and power generating turbines. The state of our current understanding of turbine blade tip heat transfer is in the transitional phase between fundamentals supported by engine-based experience, and the ability to a priori correctly predict and efficiently design blade tips for engine service.
Architects, unlike engineers, see solar as bread-and-butter issue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinly, D.R.
Neither the National Society of Professional Engineers nor the American Consulting Engineers Council has lobbied to increase the solar tax credits. But, promoting solar is good business. The American Institute of Architects is not in favor of tax credits for active systems, correctly perceiving the architects' main chance for fees is in passive solar design. The engineering groups have not monitored solar legislation closely, but AIA has presented testimony in favor of subsidies for passive solar energy programs, which until recently had been left out. New money that is available for passive solar systems and the attitude toward solar aremore » discussed. (MCW)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.
1976-03-01
Full scale engine tests were conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. (GRA)
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2016-02-01
General properties of the Foldy-Wouthuysen transformation which is widely used in quantum mechanics and quantum chemistry are considered. Merits and demerits of the original Foldy-Wouthuysen transformation method are analyzed. While this method does not satisfy the Eriksen condition of the Foldy-Wouthuysen transformation, it can be corrected with the use of the Baker-Campbell-Hausdorff formula. We show a possibility of such a correction and propose an appropriate algorithm of calculations. An applicability of the corrected Foldy-Wouthuysen method is restricted by the condition of convergence of a series of relativistic corrections.
76 FR 44265 - General Working Conditions in Shipyard Employment; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Employment; Correction AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Final... on General Working Conditions in Shipyard Employment published in the Federal Register of May 2, 2011...
Program for refan JT8D engine design, fabrication and test, phase 2
NASA Technical Reports Server (NTRS)
Glass, J. A.; Zimmerman, E. S.; Scaramella, V. M.
1975-01-01
The objective of the JT8D refan program was to design, fabricate, and test certifiable modifications of the JT8D engine which would reduce noise generated by JT8D powered aircraft. This was to be accomplished without affecting reliability and maintainability, at minimum retrofit cost, and with no performance penalty. The mechanical design, engine performance and stability characteristics at sea-level and altitude, and the engine noise characteristics of the test engines are documented. Results confirmed the structural integrity of the JT8D-109. Engine operation was stable throughout the airplane flight envelope. Fuel consumption of the test engines was higher than that required to meet the goal of no airplane performance penalty, but the causes were identified and corrected during a normal pre-certification engine development program. Compared to the baseline JT8D-109 engine, the acoustically treated JT8D-109 engine showed noise reductions of 6 PNdB at takeoff and 11 PNdB at a typical approach power setting.
Study of style effects on OCR errors in the MEDLINE database
NASA Astrophysics Data System (ADS)
Garrison, Penny; Davis, Diane L.; Andersen, Tim L.; Barney Smith, Elisa H.
2005-01-01
The National Library of Medicine has developed a system for the automatic extraction of data from scanned journal articles to populate the MEDLINE database. Although the 5-engine OCR system used in this process exhibits good performance overall, it does make errors in character recognition that must be corrected in order for the process to achieve the requisite accuracy. The correction process works by feeding words that have characters with less than 100% confidence (as determined automatically by the OCR engine) to a human operator who then must manually verify the word or correct the error. The majority of these errors are contained in the affiliation information zone where the characters are in italics or small fonts. Therefore only affiliation information data is used in this research. This paper examines the correlation between OCR errors and various character attributes in the MEDLINE database, such as font size, italics, bold, etc. and OCR confidence levels. The motivation for this research is that if a correlation between the character style and types of errors exists it should be possible to use this information to improve operator productivity by increasing the probability that the correct word option is presented to the human editor. We have determined that this correlation exists, in particular for the case of characters with diacritics.
A variational approach to parameter estimation in ordinary differential equations.
Kaschek, Daniel; Timmer, Jens
2012-08-14
Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.
PALM-3000: EXOPLANET ADAPTIVE OPTICS FOR THE 5 m HALE TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekany, Richard; Bouchez, Antonin; Baranec, Christoph
2013-10-20
We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics (AO) facility for the 5.1 m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ≈ 17. Using its unique 66 × 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm rms under ∼1'' seeing conditions. PALM-3000 can provide phase conjugation correction over a 6.''4 × 6.''4 working region at λmore » = 2.2 μm, or full electric field (amplitude and phase) correction over approximately one-half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable 10{sup –7} contrast at 1'' angular separation, including post-observation speckle suppression processing. While continued optimization of the AO system is ongoing, we have already successfully commissioned five back-end instruments and begun a major exoplanet characterization survey, Project 1640.« less
NASA Technical Reports Server (NTRS)
Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.
1993-01-01
Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.
Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.
Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B
2010-01-01
This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.
1997-03-06
Workers take off the protective covering on the propulsion module for the Cassini spacecraft after uncrating the module at KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The extended journey of 6.7 years to Saturn and the 4-year mission for Cassini once it gets there will require the spacecraft to carry a large amount of propellant for inflight trajectory-correction maneuvers and attitude control, particularly during the science observations. The propulsion module has redundant 445-newton main engines that burn nitrogen tetraoxide and monomethyl-hydrazine for main propulsion and 16 smaller 1-newton engines that burn hydrazine to control attitude and to correct small deviations from the spacecraft flight path. Cassini will be launched on a Titan IVB/Centaur expendable launch vehicle. Liftoff is targeted for October 6 from Launch Complex 40, Cape Canaveral Air Station
Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft
NASA Technical Reports Server (NTRS)
Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.
1972-01-01
The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.
Presearch Data Conditioning in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.
2010-01-01
We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Thurman, Douglas R.
2011-01-01
Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.
Johnson, David R.; Methner, Mark M.; Kennedy, Alan J.; Steevens, Jeffery A.
2010-01-01
Background The potential exists for laboratory personnel to be exposed to engineered carbon-based nanomaterials (CNMs) in studies aimed at producing conditions similar to those found in natural surface waters [e.g., presence of natural organic matter (NOM)]. Objective The goal of this preliminary investigation was to assess the release of CNMs into the laboratory atmosphere during handling and sonication into environmentally relevant matrices. Methods We measured fullerenes (C60), underivatized multiwalled carbon nanotubes (raw MWCNT), hydroxylated MWCNT (MWCNT-OH), and carbon black (CB) in air as the nanomaterials were weighed, transferred to beakers filled with reconstituted freshwater, and sonicated in deionized water and reconstituted freshwater with and without NOM. Airborne nanomaterials emitted during processing were quantified using two hand-held particle counters that measure total particle number concentration per volume of air within the nanometer range (10–1,000 nm) and six specific size ranges (300–10,000 nm). Particle size and morphology were determined by transmission electron microscopy of air sample filters. Discussion After correcting for background particle number concentrations, it was evident that increases in airborne particle number concentrations occurred for each nanomaterial except CB during weighing, with airborne particle number concentrations inversely related to particle size. Sonicating nanomaterial-spiked water resulted in increased airborne nanomaterials, most notably for MWCNT-OH in water with NOM and for CB. Conclusion Engineered nanomaterials can become airborne when mixed in solution by sonication, especially when nanomaterials are functionalized or in water containing NOM. This finding indicates that laboratory workers may be at increased risk of exposure to engineered nanomaterials. PMID:20056572
Conditions of Confinement: Juvenile Detention and Corrections Facilities. Research Summary.
ERIC Educational Resources Information Center
Parent, Dale G.; And Others
The most comprehensive nationwide research ever conducted on the juvenile detention and corrections field was a study by the Office of Juvenile Justice and Delinquency Prevention (OJJDP) assessing conditions of confinement for juveniles and determining the extent to which those conditions conform to recognized national professional standards. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
... Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114 Reciprocating Engines AGENCY: Federal Aviation... unsafe condition on an aviation product. The MCAI describes the unsafe condition as: In-flight engine shutdown incidents have been reported on aeroplanes equipped with TAE 125 engines. Preliminary...
ERIC Educational Resources Information Center
Neu, Jessica Adele
2013-01-01
I conducted two studies on the comparative effects of the observation of learn units during (a) reinforcement or (b) correction conditions on the acquisition of math objectives. The dependent variables were the within-session cumulative numbers of correct responses emitted during observational sessions. The independent variables were the…
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
Altrock, Philipp M; Brendel, Christian; Renella, Raffaele; Orkin, Stuart H; Williams, David A; Michor, Franziska
2016-09-01
Recent advances in gene therapy and genome-engineering technologies offer the opportunity to correct sickle cell disease (SCD), a heritable disorder caused by a point mutation in the β-globin gene. The developmental switch from fetal γ-globin to adult β-globin is governed in part by the transcription factor (TF) BCL11A. This TF has been proposed as a therapeutic target for reactivation of γ-globin and concomitant reduction of β-sickle globin. In this and other approaches, genetic alteration of a portion of the hematopoietic stem cell (HSC) compartment leads to a mixture of sickling and corrected red blood cells (RBCs) in periphery. To reverse the sickling phenotype, a certain proportion of corrected RBCs is necessary; the degree of HSC alteration required to achieve a desired fraction of corrected RBCs remains unknown. To address this issue, we developed a mathematical model describing aging and survival of sickle-susceptible and normal RBCs; the former can have a selective survival advantage leading to their overrepresentation. We identified the level of bone marrow chimerism required for successful stem cell-based gene therapies in SCD. Our findings were further informed using an experimental mouse model, where we transplanted mixtures of Berkeley SCD and normal murine bone marrow cells to establish chimeric grafts in murine hosts. Our integrative theoretical and experimental approach identifies the target frequency of HSC alterations required for effective treatment of sickling syndromes in humans. Our work replaces episodic observations of such target frequencies with a mathematical modeling framework that covers a large and continuous spectrum of chimerism conditions. Am. J. Hematol. 91:931-937, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Generalization of turbojet and turbine-propeller engine performance in windmilling condition
NASA Technical Reports Server (NTRS)
Wallner, Ewis E; Welna, Henry J
1951-01-01
Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.
Computational design and engineering of polymeric orthodontic aligners.
Barone, S; Paoli, A; Razionale, A V; Savignano, R
2016-10-05
Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.
Development of Advanced Stirling Radioisotope Generator for Space Exploration
NASA Technical Reports Server (NTRS)
Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.
2007-01-01
Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 to 7 We/kg, along with a 25 percent reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.
NASA Technical Reports Server (NTRS)
Thorman, H. Carl; Dupree, David T.
1947-01-01
The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slogar, G.A.; Holder, R.C.
1976-03-01
Full scale engine testswere conducted on a GTCP85-98CK Auxiliary Power Unit and a TPE331-5-251M Turboprop engine. The purpose of this program was to measure exhaust emission of HC, CO, CO/sub 2/, NO/sub x/, and smoke at controlled (temperature, humidity, and pressure) engine inlet conditions. This data along with other available data will provide the data base for the determination of the effects of ambient conditions on gas turbine engines. This volume contains the computer programs for volume 2 data. (GRA)
NASA Astrophysics Data System (ADS)
Cook, L. M.; Samaras, C.; Anderson, C.
2016-12-01
Engineers generally use historical precipitation trends to inform assumptions and parameters for long-lived infrastructure designs. However, resilient design calls for the adjustment of current engineering practice to incorporate a range of future climate conditions that are likely to be different than the past. Despite the availability of future projections from downscaled climate models, there remains a considerable mismatch between climate model outputs and the inputs needed in the engineering community to incorporate climate resiliency. These factors include differences in temporal and spatial scales, model uncertainties, and a lack of criteria for selection of an ensemble of models. This research addresses the limitations to working with climate data by providing a framework for the use of publicly available downscaled climate projections to inform engineering resiliency. The framework consists of five steps: 1) selecting the data source based on the engineering application, 2) extracting the data at a specific location, 3) validating for performance against observed data, 4) post-processing for bias or scale, and 5) selecting the ensemble and calculating statistics. The framework is illustrated with an example application to extreme precipitation-frequency statistics, the 25-year daily precipitation depth, using four publically available climate data sources: NARCCAP, USGS, Reclamation, and MACA. The attached figure presents the results for step 5 from the framework, analyzing how the 24H25Y depth changes when the model ensemble is culled based on model performance against observed data, for both post-processing techniques: bias-correction and change factor. Culling the model ensemble increases both the mean and median values for all data sources, and reduces range for NARCCAP and MACA ensembles due to elimination of poorer performing models, and in some cases, those that predict a decrease in future 24H25Y precipitation volumes. This result is especially relevant to engineers who wish to reduce the range of the ensemble and remove contradicting models; however, this result is not generalizable for all cases. Finally, this research highlights the need for the formation of an intermediate entity that is able to translate climate projections into relevant engineering information.
Masino, Johannes; Foitzik, Michael-Jan; Frey, Michael; Gauterin, Frank
2017-06-01
Tire road noise is the major contributor to traffic noise, which leads to general annoyance, speech interference, and sleep disturbances. Standardized methods to measure tire road noise are expensive, sophisticated to use, and they cannot be applied comprehensively. This paper presents a method to automatically classify different types of pavement and the wear condition to identify noisy road surfaces. The methods are based on spectra of time series data of the tire cavity sound, acquired under normal vehicle operation. The classifier, an artificial neural network, correctly predicts three pavement types, whereas there are few bidirectional mis-classifications for two pavements, which have similar physical characteristics. The performance measures of the classifier to predict a new or worn out condition are over 94.6%. One could create a digital map with the output of the presented method. On the basis of these digital maps, road segments with a strong impact on tire road noise could be automatically identified. Furthermore, the method can estimate the road macro-texture, which has an impact on the tire road friction especially on wet conditions. Overall, this digital map would have a great benefit for civil engineering departments, road infrastructure operators, and for advanced driver assistance systems.
Synchronization in complex oscillator networks and smart grids.
Dörfler, Florian; Chertkov, Michael; Bullo, Francesco
2013-02-05
The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.
Dynamics of a macroscopic model characterizing mutualism of search engines and web sites
NASA Astrophysics Data System (ADS)
Wang, Yuanshi; Wu, Hong
2006-05-01
We present a model to describe the mutualism relationship between search engines and web sites. In the model, search engines and web sites benefit from each other while the search engines are derived products of the web sites and cannot survive independently. Our goal is to show strategies for the search engines to survive in the internet market. From mathematical analysis of the model, we show that mutualism does not always result in survival. We show various conditions under which the search engines would tend to extinction, persist or grow explosively. Then by the conditions, we deduce a series of strategies for the search engines to survive in the internet market. We present conditions under which the initial number of consumers of the search engines has little contribution to their persistence, which is in agreement with the results in previous works. Furthermore, we show novel conditions under which the initial value plays an important role in the persistence of the search engines and deduce new strategies. We also give suggestions for the web sites to cooperate with the search engines in order to form a win-win situation.
Test and evaluation of the HIDEC engine uptrim algorithm
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Determination of PM mass emissions from an aircraft turbine engine using particle effective density
NASA Astrophysics Data System (ADS)
Durdina, L.; Brem, B. T.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K. A.; Smallwood, G. J.; Hagen, D. E.; Sierau, B.; Wang, J.
2014-12-01
Inventories of particulate matter (PM) emissions from civil aviation and air quality models need to be validated using up-to-date measurement data corrected for sampling artifacts. We compared the measured black carbon (BC) mass and the total PM mass determined from particle size distributions (PSD) and effective density for a commercial turbofan engine CFM56-7B26/3. The effective density was then used to calculate the PM mass losses in the sampling system. The effective density was determined using a differential mobility analyzer and a centrifugal particle mass analyzer, and increased from engine idle to take-off by up to 60%. The determined mass-mobility exponents ranged from 2.37 to 2.64. The mean effective density determined by weighting the effective density distributions by PM volume was within 10% of the unit density (1000 kg/m3) that is widely assumed in aircraft PM studies. We found ratios close to unity between the PM mass determined by the integrated PSD method and the real-time BC mass measurements. The integrated PSD method achieved higher precision at ultra-low PM concentrations at which current mass instruments reach their detection limit. The line loss model predicted ∼60% PM mass loss at engine idle, decreasing to ∼27% at high thrust. Replacing the effective density distributions with unit density lead to comparable estimates that were within 20% and 5% at engine idle and high thrust, respectively. These results could be used for the development of a robust method for sampling loss correction of the future PM emissions database from commercial aircraft engines.
Quantum subsystems: Exploring the complementarity of quantum privacy and error correction
NASA Astrophysics Data System (ADS)
Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Plosker, Sarah
2014-09-01
This paper addresses and expands on the contents of the recent Letter [Phys. Rev. Lett. 111, 030502 (2013), 10.1103/PhysRevLett.111.030502] discussing private quantum subsystems. Here we prove several previously presented results, including a condition for a given random unitary channel to not have a private subspace (although this does not mean that private communication cannot occur, as was previously demonstrated via private subsystems) and algebraic conditions that characterize when a general quantum subsystem or subspace code is private for a quantum channel. These conditions can be regarded as the private analog of the Knill-Laflamme conditions for quantum error correction, and we explore how the conditions simplify in some special cases. The bridge between quantum cryptography and quantum error correction provided by complementary quantum channels motivates the study of a new, more general definition of quantum error-correcting code, and we initiate this study here. We also consider the concept of complementarity for the general notion of a private quantum subsystem.
Systems engineering process and organization assessment
NASA Technical Reports Server (NTRS)
Batson, Robert G.
1992-01-01
The purpose of this report is to briefly summarize the results of an eight week assessment of NASA/MSFC Phase A and Phase B systems engineering processes, methodologies, and activities. Specifically, fourteen inconsistencies or weaknesses were identified and recommendations for corrective action were generated. A 1.5 hour briefing on these results was given in EL51 on 8-11-92; that documentation is available from the author or either NASA Colleague.
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Cowings, P. S.; Toscano, W. B.; Arlashchenko, N. I.; Korneev, D. Iu; Ponomarenko, A. V.; Salagovich, S. V.; Sarantseva, A. V.; Kozlovskaia, I. B.
2000-01-01
Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.
The difference engine: a model of diversity in speeded cognition.
Myerson, Joel; Hale, Sandra; Zheng, Yingye; Jenkins, Lisa; Widaman, Keith F
2003-06-01
A theory of diversity in speeded cognition, the difference engine, is proposed, in which information processing is represented as a series of generic computational steps. Some individuals tend to perform all of these computations relatively quickly and other individuals tend to perform them all relatively slowly, reflecting the existence of a general cognitive speed factor, but the time required for response selection and execution is assumed to be independent of cognitive speed. The difference engine correctly predicts the positively accelerated form of the relation between diversity of performance, as measured by the standard deviation for the group, and task difficulty, as indexed by the mean response time (RT) for the group. In addition, the difference engine correctly predicts approximately linear relations between the RTs of any individual and average performance for the group, with the regression lines for fast individuals having slopes less than 1.0 (and positive intercepts) and the regression lines for slow individuals having slopes greater than 1.0 (and negative intercepts). Similar predictions are made for comparisons of slow, average, and fast subgroups, regardless of whether those subgroups are formed on the basis of differences in ability, age, or health status. These predictions are consistent with evidence from studies of healthy young and older adults as well as from studies of depressed and age-matched control groups.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1107; Special Conditions No. 25-447-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation Administration (FAA...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
... dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b) Separately... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. NM454 Special Conditions No. 25-11-11-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque...
An Evaluation of the Pavement Condition Index Prediction Model for Rigid Airfield Pavements
1982-09-01
UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGO(I*%A Data Entotoi) The United States Army Corps of Engineers, Construction Engineering Research Laboratory...Condition . . . 31 Pavement Design/ Construction ....... . 82 Aircraft Traffic ........ .............. 82 Climate Conditions ........ ............. 84...PATTERSON AFB . . . . . . . . . . . . . . . . . . . . . . . . . 155 C. DATA OBTAINED FROM THE CONSTRUCTION ENGINEERING RESEARCH LABORATORY. .. .. 168 D
The Effect of Altitude Conditions on the Particle Emissions of a J85-GE-5L Turbojet Engine
NASA Technical Reports Server (NTRS)
Rickey, June Elizabeth
1995-01-01
Particles from a J85-GE-5L turbojet engine were measured over a range of engine speeds at simulated altitude conditions ranging from near sea level to 45,000 ft and at flight Mach numbers of 0.5 and 0.8. Samples were collected from the engine by using a specially designed probe positioned several inches behind the exhaust nozzle. A differential mobility particle sizing system was used to determine particle size. Particle data measured at near sea-level conditions were compared with Navy Aircraft Environmental Support Office (AESO) particle data taken from a GE-J85-4A engine at a sea-level static condition. Particle data from the J85 engine were also compared with particle data from a J85 combustor at three different simulated altitudes.
Fatigue Strength of Airplane and Engine Materials
NASA Technical Reports Server (NTRS)
Matthaes, Kurt
1934-01-01
This report was undertaken to give a brief summary of the laws governing the fatigue stresses and of the most important strength coefficients necessary for the correct dimensioning of the structural members.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1981-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1984-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 10 years of service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 422 K (300 F) service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 79,568 hours, with one ship set having nearly 28,000 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history obtained in this program indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.
NASA Technical Reports Server (NTRS)
Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.
1974-01-01
Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.
Surface acoustical intensity measurements on a diesel engine
NASA Technical Reports Server (NTRS)
Mcgary, M. C.; Crocker, M. J.
1980-01-01
The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1974-01-01
Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1974-01-01
Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.
Neural Network-Based Sensor Validation for Turboshaft Engines
NASA Technical Reports Server (NTRS)
Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei
1998-01-01
Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.
40 CFR 90.804 - Voluntary emissions recall.
Code of Federal Regulations, 2010 CFR
2010-07-01
... procedure to be followed by engine owners to obtain correction of the nonconformity. This may include designation of the date on or after which the owner can have the nonconformity remedied, the time reasonably...
Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel
NASA Astrophysics Data System (ADS)
Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.
2018-01-01
When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.
1988-01-01
A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.
78 FR 19982 - Special Conditions: Turbomeca Ardiden 3K Turboshaft Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... novel or unusual design feature that is a 30-minute all engines operating (AEO) power rating for... appropriate safety standards for this design feature. These special conditions contain the additional safety... Ardiden 3K engine is the first variant in the new Ardiden 3 series. This engine incorporates a two-stage...
NASA Technical Reports Server (NTRS)
Tolmei, V. R.
1982-01-01
Proposed circuit would monitor vibration spectrum of engines under test or in service. It could detect subtle out-of-specification conditions and could be programed to shut down engine if an out-of-limits condition develops. Possible uses of monitor are in bench testing automobiles and outboard motors and as a safety device in very critical engine applications.
75 FR 22693 - Airworthiness Directives; Turbomeca Makila 2A Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... Airworthiness Directives; Turbomeca Makila 2A Turboshaft Engines AGENCY: Federal Aviation Administration (FAA... condition on an aviation product. The MCAI describes the unsafe condition as: Some digital engine control units (DECUs) used to control MAKILA 2A and MAKILA 2A1 engines have an ambient pressure (P0) sensor with...
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Empathy among students in engineering programmes
NASA Astrophysics Data System (ADS)
Rasoal, Chato; Danielsson, Henrik; Jungert, Tomas
2012-10-01
Engineers face challenges when they are to manage project groups and be leaders for organisations because such positions demand skills in social competence and empathy. Previous studies have shown that engineers have low degrees of social competence skills. In this study, the level of empathy as measured by the four subscales of the Interpersonal Reactivity Index, perspective taking, fantasy, empathic distress and empathic concern, among engineering students was compared to students in health care profession programmes. Participants were undergraduate students at Linköping University, 365 students from four different health care profession programmes and 115 students from two different engineering programmes. When the empathy measures were corrected for effects of sex, engineering students from one of the programmes had lower empathy than psychology and social worker students on the fantasy and perspective-taking subscales. These results raise questions regarding opportunities for engineering students to develop their empathic abilities. It is important that engineering students acquire both theoretical and practical knowledge and skills regarding empathy.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Conditions No. 25-441-SC] Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for... transient dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and (b...;Federal Register / Vol. 76, No. 142 / Monday, July 25, 2011 / Rules and Regulations#0;#0; [[Page 44245...
A novel algorithm for validating peptide identification from a shotgun proteomics search engine.
Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J
2013-03-01
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.
FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization
Jonkman, Jason M.; Jonkman, Bonnie J.
2016-10-03
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. Here, this paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
FAST modularization framework for wind turbine simulation: full-system linearization
NASA Astrophysics Data System (ADS)
Jonkman, J. M.; Jonkman, B. J.
2016-09-01
The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.
Historical flight qualifications of space nuclear systems
NASA Astrophysics Data System (ADS)
Bennett, Gary L.
1997-01-01
An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems.
Fatigue of internal combustion engines
NASA Technical Reports Server (NTRS)
Dumanois, P
1924-01-01
The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.
NASA Technical Reports Server (NTRS)
Stone, R. H.
1979-01-01
Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after five years' service. There are six Kevlar-49 panels on each aircraft: a left-hand and right-hand set of a wing-body sandwich fairing; a solid laminate under-wing fillet panel; and a 150 C (300 F) service aft engine fairing. The fairings have accumulated a total of 40,534 hours, with one ship set having 16,091 hours service as of Feb. 11, 1979. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings.
Prediction of nearfield jet entrainment by an interactive mixing/afterburning model
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.; Wilmoth, R. G.
1978-01-01
The development of a computational model (BOAT) for calculating nearfield jet entrainment, and its application to the prediction of nozzle boattail pressures, is discussed. BOAT accounts for the detailed turbulence and thermochemical processes occurring in the nearfield shear layers of jet engine (and rocket) exhaust plumes while interfacing with the inviscid exhaust and external flowfield regions in an overlaid, interactive manner. The ability of the model to analyze simple free shear flows is assessed by detailed comparisons with fundamental laboratory data. The overlaid methodology and the entrainment correction employed to yield the effective plume boundary conditions are assessed via application of BOAT in conjunction with the codes comprising the NASA/LRC patched viscous/inviscid model for determining nozzle boattail drag for subsonic/transonic external flows. Comparisons between the predictions and data on underexpanded laboratory cold air jets are presented.
Contractors Road Heavy Equipment Area SWMU 055 Corrective Measures Implementation Progress Report
NASA Technical Reports Server (NTRS)
Dorman, Lane
2015-01-01
This Corrective Measures Implementation (CMI) Progress Report, Revision 1, for Contractor's Road Heavy Equipment (CRHE) Area Solid Waste Management Unit (SWMU) Number 055 was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B, Delivery Order NNK09CA62D and Project Number PCN ENV-2324. This CMI Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site.
Measured far-field flight noise of a counterrotation turboprop at cruise conditions
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.
1989-01-01
Modern high speed propeller (advanced turboprop) aircraft are expected to operate on 50 to 60 percent less fuel than the 1980 vintage turbofan fleet while at the same time matching the flight speed and performance of those aircraft. Counterrotation turboprop engines offer additional fuel savings by means of upstream propeller swirl recovery. This paper presents acoustic sideline results for a full-scale counterrotation turboprop engine at cruise conditions. The engine was installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Acoustic data were taken from an instrumented Learjet chase plane. Sideline acoustic results are presented for 0.50 and 0.72 Mach cruise conditions. A scale model of the engine propeller was tested in a wind tunnel at 0.72 Mach cruise conditions. The model data were adjusted to flight acquisition conditions and were in general agreement with the flight results.
Solar array model corrections from Mars Pathfinder lander data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewell, R.C.; Burger, D.R.
1997-12-31
The MESUR solar array power model initially assumed values for input variables. After landing early surface variables such as array tilt and azimuth or early environmental variables such as array temperature can be corrected. Correction of later environmental variables such as tau versus time, spectral shift, dust deposition, and UV darkening is dependent upon time, on-board science instruments, and ability to separate effects of variables. Engineering estimates had to be made for additional shadow losses and Voc sensor temperature corrections. Some variations had not been expected such as tau versus time of day, and spectral shift versus time of day.more » Additions needed to the model are thermal mass of lander petal and correction between Voc sensor and temperature sensor. Conclusions are: the model works well; good battery predictions are difficult; inclusion of Isc and Voc sensors was valuable; and the IMP and MAE science experiments greatly assisted the data analysis and model correction.« less
Presearch data conditioning in the Kepler Science Operations Center pipeline
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.
2010-07-01
We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) Science Processing Pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and removal of excess flux due to aperture crowding. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples from Kepler flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.
The Relative Contribution of Interaural Time and Magnitude Cues to Dynamic Sound Localization
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Null, Cynthia H. (Technical Monitor)
1995-01-01
This paper presents preliminary data from a study examining the relative contribution of interaural time differences (ITDs) and interaural level differences (ILDs) to the localization of virtual sound sources both with and without head motion. The listeners' task was to estimate the apparent direction and distance of virtual sources (broadband noise) presented over headphones. Stimuli were synthesized from minimum phase representations of nonindividualized directional transfer functions; binaural magnitude spectra were derived from the minimum phase estimates and ITDs were represented as a pure delay. During dynamic conditions, listeners were encouraged to move their heads; the position of the listener's head was tracked and the stimuli were synthesized in real time using a Convolvotron to simulate a stationary external sound source. ILDs and ITDs were either correctly or incorrectly correlated with head motion: (1) both ILDs and ITDs correctly correlated, (2) ILDs correct, ITD fixed at 0 deg azimuth and 0 deg elevation, (3) ITDs correct, ILDs fixed at 0 deg, 0 deg. Similar conditions were run for static conditions except that none of the cues changed with head motion. The data indicated that, compared to static conditions, head movements helped listeners to resolve confusions primarily when ILDs were correctly correlated, although a smaller effect was also seen for correct ITDs. Together with the results for static conditions, the data suggest that localization tends to be dominated by the cue that is most reliable or consistent, when reliability is defined by consistency over time as well as across frequency bands.
Acute Effects of Posture Shirts on Rounded-Shoulder and Forward-Head Posture in College Students.
Manor, John; Hibberd, Elizabeth; Petschauer, Meredith; Myers, Joseph
2016-12-01
Rounded-shoulder and forward-head posture can be contributing factors to shoulder pain. Corrective techniques such as manual therapy and exercise have been shown to improve these altered postures, but there is little evidence that corrective garments such as posture shirts can alter posture. To determine the acute effects of corrective postureshirt use on rounded-shoulder and forward-head posture in asymptomatic college students. Repeated-measures intervention study with counterbalanced conditions. Research laboratory. 24 members of the general student body of a university, 18-25 y old, with a forward shoulder angle (FSA) >52° and no history of upper-extremity surgery, scoliosis, active shoulder pain, or shoulder pain in the previous 3 mo that restricted participation for 3 consecutive days. Photographic posture assessment under a control condition, under a sham or treatment condition (counterbalanced), under another control condition, and treatment or sham. FSA and forward head angle (FHA) calculated from a lateral photograph. FSA decreased relative to the control condition while participants wore the sham shirt (P = .029) but not the corrective posture shirt (P = 1.00). FHA was unchanged between groups (P = .371). Application of a corrective posture shirt did not acutely alter FSA or FHA, while application of a sham shirt may decrease FSA at rest.
Organizational Systems Theory and Command and Control Concepts
2013-03-01
Decentralized C2 • Problem is determinable • Many solutions • Predictable results • Low Risk • Slow feedback loop • Plans: Engineered or designed • C2...of these concepts in the Art of Command and the Science of Control, but lacks a proper model to assist commanders in determining how to correctly...commanders in determining how to correctly apply the concepts based on the operational environment. The paper concludes with a recommendation that the
1978-01-01
consequently accelerating the drainage of surface water into the Mississippi and its tributaries. 16 77 Although he considered levees responsible for the ...creation of the Mississippi River Commission in 1879. Its assigned functions included making surveys, plans, and estimates for improve- ments to "correct...along those great transportation arteries, St. Louis continues to depend on waterborne commerce for a large measure
Domain and Specification Models for Software Engineering
NASA Technical Reports Server (NTRS)
Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui
1992-01-01
This paper discusses our approach to representing application domain knowledge for specific software engineering tasks. Application domain knowledge is embodied in a domain model. Domain models are used to assist in the creation of specification models. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model. One aspect of the system-hierarchical organization is described in detail.
GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks
NASA Astrophysics Data System (ADS)
Kong, Changduk; Koo, Youngju
2011-04-01
The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.
Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.
2005-01-01
The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.
Heffel, James W [Lake Matthews, CA; Scott, Paul B [Northridge, CA; Park, Chan Seung [Yorba Linda, CA
2011-11-01
An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.
Heffel, James W.; Scott, Paul B.
2003-09-02
An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.
NASA Astrophysics Data System (ADS)
Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł
2011-06-01
The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.
Anticipatory phase correction in sensorimotor synchronization.
Repp, Bruno H; Moseley, Gordon P
2012-10-01
Studies of phase correction in sensorimotor synchronization often introduce timing perturbations that are unpredictable with regard to direction, magnitude, and position in the stimulus sequence. If participants knew any or all of these parameters in advance, would they be able to anticipate perturbations and thus regain synchrony more quickly? In Experiment 1, we asked musically trained participants to tap in synchrony with short isochronous tone sequences containing a phase shift (PS) of -100, -40, 40, or 100 ms and provided advance information about its direction, position, or both (but not about its magnitude). The first two conditions had little effect, but in the third condition participants shifted their tap in anticipation of the PS, though only by about ±40 ms on average. The phase correction response to the residual PS was also enhanced. In Experiment 2, we provided complete advance information about PSs of various magnitudes either at the time of the immediately preceding tone ("late") or at the time of the tone one position back ("early") while also varying sequence tempo. Anticipatory phase correction was generally conservative and was impeded by fast tempo in the "late" condition. At fast tempi in both conditions, advancing a tap was more difficult than delaying a tap. The results indicate that temporal constraints on anticipatory phase correction resemble those on reactive phase correction. While the latter is usually automatic, this study shows that phase correction can also be controlled consciously for anticipatory purposes. Copyright © 2011 Elsevier B.V. All rights reserved.
77 FR 22187 - Technical Amendment; Airworthiness Standards-Aircraft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... in nature, and none will impose any additional burden on any person. DATE: Effective Date: This.... None of the corrections are substantive in nature, and none will impose any additional burden on any...
PEMFs: new post-surgical management in dentristry
NASA Astrophysics Data System (ADS)
Tonetti, Luca
2014-01-01
Aim of study: the possible effects on dental postsurgical management using small and not invasive devices: RecoveryRx or ActiPatch producted by Bioelectronics company (USA) Materials and methods: review of literature using searching engines Keywords: PEMFs, postsurgical treatment, pain, wound healing, RecoveryRx, ActiPatch Results: Pulsed Electro Magnetic Fields have been used extensively for decades for many conditions and medical disciplines. Imperceptible cell dysfunction that is not corrected early can lead to disease. Fine-tuning can be done daily in only minutes, using pulsed electromagnetic fields (PEMFs). In addition, when there is a known imbalance (when symptoms are present) or there is a known disease or condition, PEMF treatments, used either alone or along with other therapies, can often help cells rebalance dysfunction faster. It is seen in literature that RecoveryRX and ActiPatch improve the cell metabolism, rebalance the membrane potential difference, improve the circulation and the oxigenation of the tissues, acceleration of osteogenesis, acceleration repair of soft tissues, reduce pain. Conclusion: the RecoveryRX and ActiPatch devices could improve the postsurgical healing reducing the patient discomfort.
Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Shi, Wen; Zhang, Chengjiao
2015-10-01
In this serial study, 486 thermal manikin tests were carried out to examine the effects of air velocity and walking speed on both total and local clothing thermal insulations. Seventeen clothing ensembles with different layers (i.e., one, two, or three layers) were selected for the study. Three different wind speeds (0.15, 1.55, 4.0 m/s) and three levels of walking speed (0, 0.75, 1.2 m/s) were chosen. Thus, there are totally nine different testing conditions. The clothing total insulation and local clothing insulation at different body parts under those nine conditions were determined. In part I, empirical equations for estimating total resultant clothing insulation as a function of the static thermal insulation, relative air velocity, and walking speed were developed. In part II, the local thermal insulation of various garments was analyzed and correction equations on local resultant insulation for each body part were developed. This study provides critical database for potential applications in thermal comfort study, modeling of human thermal strain, and functional clothing design and engineering.
Boundary pint corrections for variable radius plots - simulation results
Margaret Penner; Sam Otukol
2000-01-01
The boundary plot problem is encountered when a forest inventory plot includes two or more forest conditions. Depending on the correction method used, the resulting estimates can be biased. The various correction alternatives are reviewed. No correction, area correction, half sweep, and toss-back methods are evaluated using simulation on an actual data set. Based on...
Jump conditions in transonic equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guazzotto, L.; Betti, R.; Jardin, S. C.
2013-04-15
In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches aremore » described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.« less
Technician Career Opportunities in Engineering Technology.
ERIC Educational Resources Information Center
Engineers' Council for Professional Development, New York, NY.
Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…
Control Architecture for Robotic Agent Command and Sensing
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel
2008-01-01
Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to be accomplished by the vehicle(s).
Gálvez, Jorge A; Pappas, Janine M; Ahumada, Luis; Martin, John N; Simpao, Allan F; Rehman, Mohamed A; Witmer, Char
2017-10-01
Venous thromboembolism (VTE) is a potentially life-threatening condition that includes both deep vein thrombosis (DVT) and pulmonary embolism. We sought to improve detection and reporting of children with a new diagnosis of VTE by applying natural language processing (NLP) tools to radiologists' reports. We validated an NLP tool, Reveal NLP (Health Fidelity Inc, San Mateo, CA) and inference rules engine's performance in identifying reports with deep venous thrombosis using a curated set of ultrasound reports. We then configured the NLP tool to scan all available radiology reports on a daily basis for studies that met criteria for VTE between July 1, 2015, and March 31, 2016. The NLP tool and inference rules engine correctly identified 140 out of 144 reports with positive DVT findings and 98 out of 106 negative reports in the validation set. The tool's sensitivity was 97.2% (95% CI 93-99.2%), specificity was 92.5% (95% CI 85.7-96.7%). Subsequently, the NLP tool and inference rules engine processed 6373 radiology reports from 3371 hospital encounters. The NLP tool and inference rules engine identified 178 positive reports and 3193 negative reports with a sensitivity of 82.9% (95% CI 74.8-89.2) and specificity of 97.5% (95% CI 96.9-98). The system functions well as a safety net to screen patients for HA-VTE on a daily basis and offers value as an automated, redundant system. To our knowledge, this is the first pediatric study to apply NLP technology in a prospective manner for HA-VTE identification.
Artificial intelligence techniques for ground test monitoring of rocket engines
NASA Technical Reports Server (NTRS)
Ali, Moonis; Gupta, U. K.
1990-01-01
An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.
A retrieval-based approach to eliminating hindsight bias.
Van Boekel, Martin; Varma, Keisha; Varma, Sashank
2017-03-01
Individuals exhibit hindsight bias when they are unable to recall their original responses to novel questions after correct answers are provided to them. Prior studies have eliminated hindsight bias by modifying the conditions under which original judgments or correct answers are encoded. Here, we explored whether hindsight bias can be eliminated by manipulating the conditions that hold at retrieval. Our retrieval-based approach predicts that if the conditions at retrieval enable sufficient discrimination of memory representations of original judgments from memory representations of correct answers, then hindsight bias will be reduced or eliminated. Experiment 1 used the standard memory design to replicate the hindsight bias effect in middle-school students. Experiments 2 and 3 modified the retrieval phase of this design, instructing participants beforehand that they would be recalling both their original judgments and the correct answers. As predicted, this enabled participants to form compound retrieval cues that discriminated original judgment traces from correct answer traces, and eliminated hindsight bias. Experiment 4 found that when participants were not instructed beforehand that they would be making both recalls, they did not form discriminating retrieval cues, and hindsight bias returned. These experiments delineate the retrieval conditions that produce-and fail to produce-hindsight bias.
Comparison of Physics Frameworks for WebGL-Based Game Engine
NASA Astrophysics Data System (ADS)
Yogya, Resa; Kosala, Raymond
2014-03-01
Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.
Villanueva-Cab, J; Anta, J A; Oskam, G
2016-05-28
Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.