Sample records for engine cooling water

  1. 75 FR 53567 - Gulf of the Farallones, Monterey Bay and Cordell Bank National Marine Sanctuaries Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... matter from a cruise ship except clean vessel engine cooling water, clean vessel generator cooling water, vessel engine or generator exhaust, clean bilge water, or anchor wash. * * * * * 0 3. Appendix A to... matter from a cruise ship except clean vessel engine cooling water, clean vessel generator cooling water...

  2. 15 CFR 922.112 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... generator cooling water, clean bilge water, or anchor wash; or (D) Vessel engine or generator exhaust. (ii... except clean vessel engine cooling water, clean vessel generator cooling water, vessel engine or generator exhaust, clean bilge water, or anchor wash. (iii) Discharging or depositing, from beyond the...

  3. 15 CFR 922.82 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cooling water, clean vessel generator cooling water, clean bilge water, or anchor wash; or (iv) Vessel... or other matter from a cruise ship except clean vessel engine cooling water, clean vessel generator cooling water, vessel engine or generator exhaust, clean bilge water, or anchor wash. (4) Discharging or...

  4. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head, block, and exhaust manifold must be water-jacketed and cooled by water from a pump that operates whenever the engine is operating. (2) A suitable...

  5. 15 CFR 922.112 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... generator cooling water, clean bilge water, or anchor wash; or (D) Vessel engine or generator exhaust. (ii... except clean vessel engine cooling water, clean vessel generator cooling water, clean bilge water, or... Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  6. 15 CFR 922.132 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., clean vessel generator cooling water, clean bilge water, or anchor wash; (D) For a vessel less than 300... except clean vessel engine cooling water, clean vessel generator cooling water, vessel engine or generator exhaust, clean bilge water, or anchor wash. (iii) Discharging or depositing from beyond the...

  7. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...'s internal or external surfaces except for water and air as prescribed in paragraphs (c) and (d) of this section. (c) For water-cooled engines, two types of cooling are permitted: (1) Water may be circulated through the engine's water coolant system. (i) The coolant may be flowed in either direction and...

  8. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  9. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  10. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  11. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  12. 46 CFR 119.420 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  13. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  14. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if...

  15. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  16. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  17. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if...

  18. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...

  19. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...

  20. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  1. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if...

  2. 46 CFR 182.420 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  3. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if...

  4. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...

  5. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...

  6. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  7. Knowledge Gained from Practical Experience in the Designing of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Kurtz, Oskar

    1933-01-01

    The present report examines a few important points of engine design such as: in-line water cooled engines, air-cooled in-line engines, and air-cooled radial engines. Subassemblies are also discussed like cylinder types, blower driving gears, pistons, valves, bearings, and crankshafts.

  8. 50 CFR 404.7 - Regulated activities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel engine cooling water, weather deck runoff, and vessel engine exhaust; (f) Discharging or... operations, or discharges incidental to vessel use such as deck wash, approved marine sanitation device effluent, cooling water, and engine exhaust; (g) Touching coral, living or dead; (h) Possessing fishing...

  9. Injected Water Augments Cooling In Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1989-01-01

    Report describes experiments in which water injected into compressor-bleed cooling air of aircraft turboshaft engine. Injection of water previously suggested as way to provide additional cooling needed to sustain operation at power levels higher than usual. Involves turbine-inlet temperatures high enough to shorten lives of first-stage high-pressure turbine blades. Latent heat of vaporization of injected water serves as additional heat sink to maintain blades at design operating temperatures during high-power operation.

  10. Crash-Fire Protection System for T-56 Turbopropeller Engine Using Water as Cooling and Inerting Agent

    NASA Technical Reports Server (NTRS)

    Busch, Arthur M.; Campbell, John A.

    1959-01-01

    A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  11. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  12. Study on the Effect of water Injection Momentum on the Cooling Effect of Rocket Engine Exhaust Plume

    NASA Astrophysics Data System (ADS)

    Yang, Kan; Qiang, Yanhui; Zhong, Chenghang; Yu, Shaozhen

    2017-10-01

    For the study of water injection momentum factors impact on flow field of the rocket engine tail flame, the numerical computation model of gas-liquid two phase flow in the coupling of high temperature and high speed gas flow and low temperature liquid water is established. The accuracy and reliability of the numerical model are verified by experiments. Based on the numerical model, the relationship between the flow rate and the cooling effect is analyzed by changing the water injection momentum of the water spray pipes. And the effective mathematical expression is obtained. What’s more, by changing the number of the water spray and using small flow water injection, the cooling effect is analyzed to check the application range of the mathematical expressions. The results show that: the impact and erosion of the gas flow field could be reduced greatly by water injection, and there are two parts in the gas flow field, which are the slow cooling area and the fast cooling area. In the fast cooling area, the influence of the water flow momentum and nozzle quantity on the cooling effect can be expressed by mathematical functions without causing bifurcation flow for the mainstream gas. The conclusion provides a theoretical reference for the engineering application.

  13. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...

  14. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...

  15. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...

  16. Investigation of Water-spray Cooling of Turbine Blades in a Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Freche, John C; Stelpflug, William J

    1953-01-01

    An analytical and experimental investigation was made with a J33-A-9 engine to determine the effectiveness of spray cooling as a means of increasing thrust by permitting engine operation at inlet-gas temperatures and speeds above rated. With the assumption of adequate spray cooling at a coolant-to-gas flow ratio of 3 percent, calculations for the sea-level static condition indicated a thrust may be achieved by engine operation at an inlet-gas temperature of 2000 degrees F and an overspeed of 10 percent. Of the water-injection configurations investigated experimentally, those located in the inner ring of the stator diaphragm provided the best cooling at rated engine speed.

  17. COOLING TOWER PUMP HOUSE, TRA606. THREE OF SIX SECTIONS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. THREE OF SIX SECTIONS OF COOLING TOWER ARE VISIBLE ABOVE RAILING. PUMP HOUSE IN FOREGROUND IS ON SOUTH SIDE OF COOLING TOWER. NOTE THREE PIPES TAKING WATER FROM PUMP HOUSE TO HOT DECK OF COOLING TOWER. EMERGENCY WATER SUPPLY TOWER IS ALSO IN VIEW. INL NEGATIVE NO. 6197. Unknown Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.

  19. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  20. Thermal Propulsion Capture System Heat Exchanger Design

    NASA Technical Reports Server (NTRS)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  1. 76 FR 65565 - Expansion of Fagatele Bay National Marine Sanctuary, Regulatory Changes, and Sanctuary Name Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... is made for clean vessel deck wash down, clean vessel engine cooling water, clean vessel generator cooling water, clean bilge water, anchor wash, or vessel engine or generator exhaust. Second, in the Muli... Atmospheric Administration 15 CFR Part 922 Expansion of Fagatele Bay National Marine Sanctuary, Regulatory...

  2. Feasibility Study of a Pressure-fed Engine for a Water Recoverable Space Shuttle Booster

    NASA Technical Reports Server (NTRS)

    Gerstl, E.

    1972-01-01

    Detailed mass properties are presented for a gimbaled, fixed thrust, regeneratively cooled engine having a coaxial pintle injector. The baseline design parameters for this engine are tabulated. Mass properties are also summarized for several other engine configurations i.e., a hinge nozzle using a Techroll seal, a gimbaled duct cooled engine and a regeneratively cooled engine using liquid injection thrust vector control (LITVC). Detailed engine analysis and design trade studies leading to the selection of a regeneratively cooled gimbaled engine and pertaining to the selection of the baseline design configuration are also given.

  3. 46 CFR 169.605 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false General. 169.605 Section 169.605 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical... engine cooling water temperature, exhaust cooling water temperature and engine lubricating oil pressure...

  4. Cooling system for radiator and condenser of vehicles with an air conditioner and method of operating the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Y.; Obata, Y.; Takeoka, T.

    1987-04-21

    A cooling system is described for radiator and condenser of vehicles with an air conditioner having a first blower and a second blower for cooling the radiator and the condenser so as to cool the engine cooling water and so as to condense the coolant, and a cooling cycle operation switch which comprises: (a) engine cooling water temperature switch (SW1) connected between a power supply and the first blower and turned on and off in accordance with high and low temperature conditions of the engine cooling water; (b) relay switching means for controlling the first and second blowers in accordancemore » with the on-off conditions of the cooling cycle operation switch; and (c) a control circuit having an on-off switch and a solenoid and connected between the relay switching means and either the first blower or the second blower, the solenoid of the control circuit being connected to switches (SW3, SW4 and SW5) for electrical equipment such as headlights, wipers; whereby, when any one of the switches for the electrical equipment of the vehicle is turned off, the first and second blowers are operated at normal speed through the relay switching means and the control circuit, upon the operation of the cooling cycle operation switch, while when any one of the switches for the electrical equipment is turned on, the first blower is on-off controlled through the engine cooling water temperature switch (SW1) and the second blower remains operated through the relay switching means.« less

  5. 40 CFR 125.86 - As an owner or operator of a new facility, what must I collect and submit when I apply for my new...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-cycle recirculating cooling water system and any engineering calculations, including documentation... subsequent industrial processes, you must provide documentation that the amount of cooling water that is not... provide the annual mean flow and any supporting documentation and engineering calculations to show that...

  6. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  7. Design Guidance for Command, Control, Communications, and Intelligence (C3I) Facility Cooling Systems

    DTIC Science & Technology

    1989-05-01

    Typical ranges are from 50 to 70 OF. If a chiller is dedicated to serving water-cooled electronic equipment, the chilled water temperature setpoint can...can be satisfied with 50 OF chilled water. The COP of the dedicated chiller is improved by raising the chilled water setpoint , and the total life-cycle...USACERL TECHNICAL REPORT E-89/10 May 1989 Studies in Optimizing HVAC Hardware for C31 Facilities US Army Corps of Engineers Construction Engineering

  8. How gas cools (or, apples can fall up)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This primer on gas cooling systems explains the basics of heat exchange within a refrigeration system, the principle of reverse-cycle refrigeration, and how a gas-engine-driven heat pump can provide cooling, additional winter heating capacity, and hot water year-round. Gas cooling equipment available or under development include natural gas chillers, engine-driven chillers, and absorption chillers. In cogeneration systems, heat recovered from an engine's exhaust and coolant may be used in an absorption chiller to provide air-conditioning. Gas desiccant cooling systems may be used in buildings and businesses that are sensitive to high humidity levels.

  9. 75 FR 65256 - Flower Garden Banks National Marine Sanctuary Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... vessel engine cooling water, clean vessel generator cooling water, clean bilge water, or anchor wash... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 15 CFR Part 922 [Docket No... National Marine Sanctuaries (ONMS), National Oceanic and Atmospheric Administration (NOAA), Department of...

  10. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  11. 76 FR 2611 - Olympic Coast National Marine Sanctuary Regulations Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... cooling water, clean vessel generator cooling water, clean bilge water, engine exhaust or anchor wash. (4... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 15 CFR Part 922 [Docket No... Atmospheric Administration (NOAA), Department of Commerce (DOC). ACTION: Proposed rule. SUMMARY: Pursuant to...

  12. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. ETR, TRA642. EASTWEST SECTION, LOOKING NORTH. PATH OF COOLING WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. EAST-WEST SECTION, LOOKING NORTH. PATH OF COOLING WATER PIPE TUNNEL. WORKING AND STORAGE CANAL. SUB-PILE ROOM. CONTROL ROD ACCESS ROOM. FLOOR NAMES. (THIS WAS A CONCEPT DRAWING.) KAISER ETR-5528-MTR-642-A-5, 11/1955. INL INDEX NO. 532-0642-00-486-100913. REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Engineering evaluation of magma cooling-tower demonstration at Nevada Power Company's Sunrise Station

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.

  15. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. Solid state engine with alternating motion

    DOEpatents

    Golestaneh, Ahmad A.

    1982-01-01

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  17. Solid state engine with alternating motion

    DOEpatents

    Golestaneh, A.A.

    1980-01-21

    Heat energy is converted to mechanical motion utilizing apparatus including a cylinder, a piston having openings therein reciprocable in the cylinder, inlet and outlet ports for warm water at one end of the cylinder, inlet and outlet ports for cool water at the other end of the cylinder, gates movable with the piston and slidably engaging the cylinder wall to alternately open and close the warm and cool water ports, a spring bearing against the warm water side of the piston and a double helix of a thermal shape memory material attached to the cool end of the cylinder and to the piston. The piston is caused to reciprocate by alternately admitting cool water and warm water to the cylinder.

  18. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  19. Cooling characteristics of air cooled radial turbine blades

    NASA Astrophysics Data System (ADS)

    Sato, T.; Takeishi, K.; Matsuura, M.; Miyauchi, J.

    The cooling design and the cooling characteristics of air cooled radial turbine wheels, which are designed for use with the gas generator turbine for the 400 horse power truck gas turbine engine, are presented. A high temperature and high speed test was performed under aerodynamically similar conditions to that of the prototype engine in order to confirm the metal temperature of the newly developed integrated casting wheels constructed of the superalloys INCO 713C. The test results compared with the analytical value, which was established on the basis of the results of the heat transfer test and the water flow test, are discussed.

  20. 46 CFR 182.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 177.405(b) and 177.970 of this chapter. (2) Horizontal dry exhaust pipes are permitted only if: (i) They do not pass through living or...

  1. 77 FR 60481 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-Accident...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing a revision to Regulatory Guide (RG) 1.52, ``Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Post-accident Engineered-Safety-Feature Atmosphere Cleanup Systems in Light-Water-Cooled Nuclear Power Plants.'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere cleanup systems in light-water-cooled nuclear power plants.

  2. The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock

    NASA Technical Reports Server (NTRS)

    Munger, Maurice; Wilsted, H D; Mulcahy, B A

    1942-01-01

    A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.

  3. Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1983-01-01

    A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.

  4. Advanced high pressure engine study for mixed-mode vehicle applications

    NASA Technical Reports Server (NTRS)

    Luscher, W. P.; Mellish, J. A.

    1977-01-01

    High pressure liquid rocket engine design, performance, weight, envelope, and operational characteristics were evaluated for a variety of candidate engines for use in mixed-mode, single-stage-to-orbit applications. Propellant property and performance data were obtained for candidate Mode 1 fuels which included: RP-1, RJ-5, hydrazine, monomethyl-hydrazine, and methane. The common oxidizer was liquid oxygen. Oxygen, the candidate Mode 1 fuels, and hydrogen were evaluated as thrust chamber coolants. Oxygen, methane, and hydrogen were found to be the most viable cooling candidates. Water, lithium, and sodium-potassium were also evaluated as auxiliary coolant systems. Water proved to be the best of these, but the system was heavier than those systems which cooled with the engine propellants. Engine weight and envelope parametric data were established for candidate Mode 1, Mode 2, and dual-fuel engines. Delivered engine performance data were also calculated for all candidate Mode 1 and dual-fuel engines.

  5. Internal-Film Cooling of Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Sloop, J L; Kinney, George R

    1948-01-01

    Experiments were conducted with 1000-pound-thrust rocket engine to determine feasibility of cooling convergent-divergent nozzle by internal film of water introduced at nozzle entrance. Water flow of 3 percent of propellant flow reduced heat flow into nozzle to 55 percent of uncooled heat flow. Introduction of water by porous ring before nozzle resulted in more uniform coverage of nozzle than water introduced by single arrangement of 36 jets directed along nozzle wall. Water flow through porous ring of 3.5 percent of propellant flow stabilized wall temperature in convergent section but did not adequately cool throat or divergent sections.

  6. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  7. Optimization of Cooling Water Flow Rate in Nuclear and Thermal Power Plants Based on a Mathematical Model of Cooling Systems{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru; Kochetkov, A. V.; Glazova, E. G.

    A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for themore » cooling system in all stages of the life cycle of a plant.« less

  8. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (2) Horizontal dry exhaust pipes are...) They are installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (b) The exhaust pipe...

  9. A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine

    NASA Technical Reports Server (NTRS)

    Campbell, John A.; Busch, Arthur M.

    1959-01-01

    A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  10. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  11. The development of a solar-powered residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  12. Environmental Assessment of 2005 Base Realignment and Closure Actions at Homestead Air Reserve Base, Florida

    DTIC Science & Technology

    2007-02-01

    permit, there are no guidelines for storm water quality , therefore Homestead ARB established a program with the State of Florida to test and monitor... storm water quality . Heating and Cooling Systems. Because of the humid Florida climate, engineers are considering an installation-wide Utility... storm water quality , negligible effects on the storm water system would be expected as a result of the Proposed Action. Heating and Cooling

  13. ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR AND MTR COMPLEXES IN CONTEXT. CAMERA FACING NORTHERLY. FROM BOTTOM TO TOP: ETR COOLING TOWER, ELECTRICAL BUILDING AND LOW-BAY SECTION OF ETR BUILDING, HEAT EXCHANGER BUILDING (WITH U SHAPED YARD), COMPRESSOR BUILDING. MTR REACTOR SERVICES BUILDING IS ATTACHED TO SOUTH WALL OF MTR. WING A IS ATTACHED TO BALCONY FLOOR OF MTR. NEAR UPPER RIGHT CORNER OF VIEW IS MTR PROCESS WATER BUILDING. WING B IS AT FAR WEST END OF COMPLEX. NEAR MAIN GATE IS GAMMA FACILITY, WITH "COLD" BUILDINGS BEYOND: RAW WATER STORAGE TANKS, STEAM PLANT, MTR COOLING TOWER PUMP HOUSE AND COOLING TOWER. INL NEGATIVE NO. 56-4101. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. PROCESS WATER BUILDING, TRA605. CAMERA LOOKING EAST AND TO WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. CAMERA LOOKING EAST AND TO WEST WALL NOW ENCLOSING FLASH EVAPORATORS. PIPES IN FOREGROUND WILL CARRY DEMINERALIZED COOLING WATER TO AND FROM THE MTR. INL NEGATIVE NO. 2937. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Analysis of economic and environmental benefits of a new heat pump air conditioning system with a heat recovery device

    NASA Astrophysics Data System (ADS)

    Li, lingxue

    2017-08-01

    The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.

  16. Why Do Objects Cool More Rapidly in Water than in Still Air?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    An Internet search for why objects, especially humans, cool more rapidly in water than in air, both at the same temperature, and by how much, yields off-the-cuff answers unsupported by experiment or analysis. To answer these questions in depth requires a smattering of engineering heat transfer, including radiative transfer, and the different…

  17. Wright R–2600–8 Engine in the Engine Propeller Research Building

    NASA Image and Video Library

    1943-03-21

    A Wright Aeronautical R–2600 Cyclone piston engine installed in the Engine Propeller Research Building, or Prop House, at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The R–2600 was among the most powerful engines that emerged during World War II. The engine, which was developed for commercial applications in 1939, was used to power the North American B–25 bomber and several other midsize military aircraft. The higher altitudes required by the military caused problems with the engine's cooling and fuel systems. The military requested that the Aircraft Engine Research Laboratory analyze the performance of the R–2600, improve its cooling system, and reduce engine knock. The NACA researchers subjected the engine to numerous tests in its Prop House. The R–2600 was the subject of the laboratory's first technical report, which was written by members of the Fuels and Lubricants Division. The Prop House contained soundproof test cells in which piston engines and propellers were mounted and operated at high powers. Electrically driven fans drew air through ducts to create a stream of cooling air over the engines. Researchers tested the performance of fuels, turbochargers, water-injection and cooling systems here during World War II. The facility was also investigated a captured German V–I buzz bomb during the war.

  18. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  19. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  20. Cooling systems for ultra-high temperature turbines.

    PubMed

    Yoshida, T

    2001-05-01

    This paper describes an introduction of research and development activities on steam cooling in gas turbines at elevated temperature of 1500 C and 1700 C level, partially including those on water cooling. Descriptions of a new cooling system that employs heat pipes are also made. From the view point of heat transfer, its promising applicability is shown with experimental data and engine performance numerical evaluation.

  1. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  2. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    NASA Astrophysics Data System (ADS)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  3. A Dynamic Neural Network Approach to CBM

    DTIC Science & Technology

    2011-03-15

    high efficiency water cooled heat exchanger positioned on the side of the engine. The air temperature was controlled at the desired set-point by...regulating the inlet water flow in the heat exchanger. The temperature of the cooling water was not regulated. The typical set-point for the air charge...temperature was 127 degF, as used in other durability tests carried out in these facilities. Because the heat exchanger controller was optimized for

  4. Review on Water Distribution of Cooling Tower in Power Station

    NASA Astrophysics Data System (ADS)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  5. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    NASA Astrophysics Data System (ADS)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  6. 14 CFR 33.67 - Fuel system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.67 Fuel system. (a) With... range with the fuel initially saturated with water at 80 °F (27 °C) and having 0.025 fluid ounces per gallon (0.20 milliliters per liter) of free water added and cooled to the most critical condition for...

  7. Liquid cooling of aircraft engines

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1931-01-01

    This report presents a method for solving the problem of liquid cooling at high temperatures, which is an intermediate method between water and air cooling, by experiments on a test-stand and on an airplane. A utilizable cooling medium was found in ethylene glycol, which has only one disadvantage, namely, that of combustibility. The danger, however is very slight. It has one decided advantage, that it simultaneously serves as protection against freezing.

  8. Comparative analysis of cooling systems for energy equipment of combined heat and power plants and nuclear power plants

    NASA Astrophysics Data System (ADS)

    Reutov, B. F.; Lazarev, M. V.; Ermakova, S. V.; Zisman, S. L.; Kaplanovich, L. S.; Svetushkov, V. V.

    2016-07-01

    In the 20th century, the thermal power engineering in this country was oriented toward oncethrough cooling systems. More than 50% of the CHPP and NPP capacities with once-through cooling systems put into operation before the 1990s were large-scale water consumers but with minimum irretrievable water consumption. In 1995, the Water Code of the Russian Federation was adopted in which restrictions on application of once-through cooling systems for newly designed combined heat and power plants (CHPPs) were introduced for the first time. A ban on application of once-through systems was imposed by the current Water Code of the Russian Federation (Federal law no. 74-FZ, Art. 60 Cl. 4) not only for new CHPPs but also for those to be modified. Clause 4 of Article 60 of the Water Code of the Russian Federation contravenes law no. 7-FZ "On Protection of the Environment" that has priority significance, since the water environment is only part of the natural environment and those articles of the Water Code of the Russian Federation that are related directly to electric power engineering, viz., Articles 46 and 62. In recent decades, the search for means to increase revenue charges and the economic pressure on the thermal power industry caused introduction by law of charges for use of water by cooling systems irrespective of the latter's impact on the water quality of the source, the environment, the economic efficiency of the power production, and the living conditions of the people. The long-range annual increase in the water use charges forces the power generating companies to switch transfer once-through service water supply installations to recirculating water supply systems and once-through-recirculating systems with multiple reuse of warm water, which drastically reduces the technical, economic, and ecological characteristic of the power plant operation and also results in increasing power rates for the population. This work comprehensively substantiates the demands of power engineering specialists that the ban on development and construction of once-through service water supply systems should be lifted and the proposals for new parameters, e.g., temperature and back pressure, for designing low-potential equipment of steam-gas and steam-power plants.

  9. The 'fine line' of heat rejection.

    PubMed

    Carruthers, Phillip

    2010-09-01

    Selection of heat rejection equipment has traditionally entailed a choice between the higher energy consumption of an air-cooled solution, and the high water consumption of a water-cooled solution. This paper examines advancement in heat rejection technology and the way it can be applied to air conditioning and refrigeration plant in healthcare and other facilities. It also examines field difficulties encountered in pipework design as the knowledge and experience levels of engineers designing systems with remote condensers diminish. With plant larger than 1,000 kW, the only option previously has been water-cooled solutions using an array of cooling towers, or perhaps an evaporative condenser, since air-cooled plant involved massive volumes of chemical refrigerant, which posed a problem ecologically. An additional hurdle was problems associated with limitations on pipe lengths for refrigeration plant. The advent of adiabatically pre-cooled closed circuit coolers and air-cooled condensers has introduced an alternative to cooling towers that offers the potential for "water-cooled performance" from an air-cooled solution with no serious threat of Legionella contamination. However, each application needs to be considered on a case-by-case basis. The paper examines, in detail, the impact of adiabatic pre-cooling, with recent examples of its application in sub-tropical Brisbane providing evidence of the potential performance achievable.

  10. PBF Cooling Tower (PER720). Camera faces east to show west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Camera faces east to show west facade. Sloped (louvered) panels in this and opposite facade allow air to enter tower and cool water falling on splash bars within. Date: August 2003. INEEL negative no. HD-35-10-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. PBF Cooling Tower detail. Camera facing southwest. Wood fill rises ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest. Wood fill rises from foundation piers of cold water basin. Photographer: Kirsh. Date: May 1, 1969. INEEL negative no. 69-2826 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  13. A Description and Test Results of a Spark-Ignition and a Compression-Ignition 2-Stroke-Cycle Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1935-01-01

    This report presents performance results of air cooled and water-cooled engines. The results obtained were sufficiently promising to warrant further investigation with fuel injection and spark ignition, with the same arrangement of inlet ports and exhaust valves at the bottom of the cylinder and the exhaust gases discharged through two poppet valves in the cylinder head. The displacement of the engine was 118 cubic inches. Optimum performance was obtained with the inlet air directed into the cylinder at an angle of 20 degrees to the radial.

  14. Multiphase Modeling of Water Injection on Flame Deflector

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Bachchan, Nili; Peroomian, Oshin; Akdag, Vedat

    2013-01-01

    This paper describes the use of an Eulerian Dispersed Phase (EDP) model to simulate the water injected from the flame deflector and its interaction with supersonic rocket exhaust from a proposed Space Launch System (SLS) vehicle. The Eulerian formulation, as part of the multi-phase framework, is described. The simulations show that water cooling is only effective over the region under the liquid engines. Likewise, the water injection provides only minor effects over the surface area under the solid engines.

  15. PBF Cooling Tower and it Auxiliary Building (PER624) to left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower and it Auxiliary Building (PER-624) to left of tower. Camera facing west and the east louvered face of the tower. Details include secondary coolant water riser piping and flow control valves (butterfly valves) to distribute water evenly to all sections of tower. Photographer: Holmes. Date: May, 20, 1970. INEEL negative no. 70-2322 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  18. 42. NORTHEAST VIEW OF BLOW ENGINE HOUSE No. 3, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. NORTHEAST VIEW OF BLOW ENGINE HOUSE No. 3, WITH FILTER CAKE HOSUE IN CENTER FOREGROUND, AND EVAPORATIVE WASTE WATER TREATMENT COOLING TOWER TO THE LEFT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  19. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overview is presented of the results of the analyses conducted in support of the selected engine system for the pressure-fed booster stage. During initial phases of the project, a gimbaled, regeneratively cooled, fixed thrust engine having a coaxial pintle injector was selected as optimum for this configuration.

  20. Refrigeration Compressors for the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-09-21

    These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.

  1. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  2. Chilled water study EEAP program for Walter Reed Army Medical Center. Book 1. Final Submission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons.« less

  3. Denver airport pumping systems achieve optimal [Delta] T's

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannion, G.F.; Krist, G.D.

    1994-07-01

    This article describes how the pumping and generating systems at the new Denver Airport operate efficiently with the user loops in the buildings producing design temperature rise at all load levels. Fifteen miles east of Denver's Stapleton International Airport lies the newly completed Denver International Airport (DIA)--the world's largest and most high-tech airport. Besides being one of the largest construction projects in the works, it has many of the latest technical innovations available. Of particular interest to the HVAC industry is the design of the heating and cooling water systems. These systems provide environmental cooling and heating water to themore » three concourses, the airport office building, and the main terminal. The mechanical engineers for the project were all from the Denver area. The central plant design was the work of Behrent Engineering Co.; the three concourses were designed by Swanson-Rink Associates; and the main terminal and administrative office building were designed by Abeyta Engineering Consultants. The overall system concept was developed during the initial design phase by engineers from these firms, members of the DIA staff, and application engineers from several manufacturers.« less

  4. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  5. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  6. PBF Cooling Tower detail. Camera facing southwest into north side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest into north side of Tower. Five horizontal layers of splash bars constitute fill decks, which will break up falling water into droplets, promoting evaporative cooling. Louvered faces, through which air enters tower, are on east and west sides. Louvers have been installed. Support framework for one of two venturi-shaped fan stacks (or "vents") is in center top. Orifices in hot basins (not in view) will distribute water over fill. Photographer: Kirsh. Date: May 15, 1969. INEEL negative no. 69-3032 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Energy conservation strategies, the ignored cooling towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1997-06-01

    Because of their apparent lack of sophistication, cooling towers are usually considered orphans of the facilities operation. Historically, cooling towers have been neglected in refrigeration air conditioning systems, electric power generating stations, manufacturing plants, and chemical process plants. Operators are aware of the importance of their sophisticated equipment but, they take the apparently simple cooling towers and cold water returning for granted, Since the box looks sturdy and the fans are rotating, the operators think all is well and ignore the quality of water coming off the tower. A cooling tower is purchased for Design Conditions of performance which aremore » specified. Design Conditions relate to the volume of circulating water (GPM), hot water temperature (HWT), cold water temperature (CWT) discharge, and wet bulb temperature (WBT). The WBT consisting of ambient temperature and relative humidity. After the tower is on line and the CWT becomes inadequate, many engineers look to solutions other than the obvious. All cooling towers are purchased to function at 100% of capability in accordance with Design Condition. In the real world of on-stream utilization, the level of operation is lower. It can be deficient as much as 30% due to a variety of reasons which are not necessarily due to the failure of the performance of the tower.« less

  8. Diesel Engine Technology Update

    DTIC Science & Technology

    1987-07-01

    AFWAL-TR-87-20 54 83-021-DET DIESEL ENGINE TECHNOLOGY UPDATE Kaupert, Andrew W., Lt. Col. USAFR Air Force Reserves Detroit Detachment 2 Ann Arbor, MI...sponsored adiabatic turbocompound diesel engine . One goal was the use of no water or air cooling for the engine to enable the minimized heat transfer from...sector with severe • impact on the stationary engine segment of the marketplace. The effect of this proposed legislation on Air Force fuel quality is

  9. PBF Cooling Tower (PER720) and its Auxiliary Building (PER625). Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720) and its Auxiliary Building (PER-625). Camera facing west shows east facades. Center pipe carried secondary coolant water from reactor. Building to distributor basin. Date: August 2003. INEEL negative no. HD-35-10-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.

    This article describes a petrol (gasoline) engine development project to combine the duel technologies of an Otto cycle engine with a modified cooling system and a high-tech processor-controlled bottoming cycle to harness not only the waste heat from the exhaust gases but also a significant proportion of the heat lost by a conventional petrol engine to the water coolant, resulting in a very substantial increase in energy conversion efficiency.

  11. Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.

    1976-01-01

    An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.

  12. Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less

  13. Decontamination of Water Containing Radiological Warfare Agents

    DTIC Science & Technology

    1975-03-01

    debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion

  14. Split radiator design for heat rejection optimization for a waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  15. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  16. 15 CFR 922.72 - Prohibited or otherwise regulated activities-Sanctuary-wide.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE... classification) approved in accordance with section 312 of the Federal Water Pollution Control Act, as amended...; (2) Vessel engine cooling water; (3) Graywater from a vessel less than 300 gross registered tons; (4...

  17. 15 CFR 922.72 - Prohibited or otherwise regulated activities-Sanctuary-wide.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE... classification) approved in accordance with section 312 of the Federal Water Pollution Control Act, as amended...; (2) Vessel engine cooling water; (3) Graywater from a vessel less than 300 gross registered tons; (4...

  18. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  19. Hydraulic design of a re-circulating water cooling system of a combined cycle power plant in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, C.K.; Pandit, D.R.; Kwon, S.G.

    The paper describes the hydraulic design and hydraulic transient analysis of the re-circulating water cooling system of the combined cyclo Sipco power cogeneration plant in Thailand. The power plant of 450 MW total capacity is proposed to be built in two stages. Stage one will produce 300 MW of power and will consist of two gas turbine generators (GTG) and one steam turbine generator (STG). Stage two will produce 150 MW of power and will consist of one GTG and one STG. The cooling system will consist of one GTG and one STG. The cooling system will consist of coolingmore » towers, a combined collecting basin and pump intake sump, pumps and motors, and separate conveyance systems and condensers for the generator units in the two stages. In a re-circulating water cooling system, cold water is pumped from the pump intake sump to the condensers through the conveyance system and hot water from the condensers is carried through the returning pipeline system to the cooling towers, whence the water after cooling is drained into the sump at the base of the towers. Total cooling water requirement for the system in stage one is estimated to be 112,000 gallons per minute (GPM), and that in stage two, 56,000 GPM. The sump is designed using the computer program HEC-2, developed by the US Army Corps of Engineers (COE) and the pump intake basin, following the recommendations of the Hydraulic Institute. The pumps were sized by computing the head loss in the system, and, the steady state and transient performances (during pump start-up and shut-down procedures and due to possible power or mechanical failure of one or all pumps) of the system were analyzed by mathematically modeling the system using the computer program WHAMO (Water Hammer nd Mass Oscillations), also developed by the COE.« less

  20. The Gonzaga desulfurization flue gas process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixedmore » to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.« less

  1. Credit WCT. Photographic copy of photograph, view of Test Stand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  2. 40 CFR 91.307 - Engine cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...

  3. 40 CFR 91.307 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at...

  4. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  5. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seokho H; Berry, Jan

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclearmore » pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.« less

  6. Correlation of the Characteristics of Single-Cylinder and Flight Engines in Tests of High-Performance Fuels in an Air-Cooled Engine I : Cooling Characteristics

    NASA Technical Reports Server (NTRS)

    Wilson, Robert W.; Richard, Paul H.; Brown, Kenneth D.

    1945-01-01

    Variable charge-air flow, cooling-air pressure drop, and fuel-air ration investigations were conducted to determine the cooling characteristics of a full-scale air-cooled single cylinder on a CUE setup. The data are compared with similar data that were available for the same model multicylinder engine tested in flight in a four-engine airplane. The cylinder-head cooling correlations were the same for both the single-cylinder and the flight engine. The cooling correlations for the barrels differed slightly in that the barrel of the single-cylinder engine runs cooler than the barrel of te flight engine for the same head temperatures and engine conditions.

  7. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  8. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  9. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  10. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  11. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  12. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    EPA Pesticide Factsheets

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  13. 46 CFR 112.50-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sounds on low oil pressure and high cooling water temperature. (i) If the prime mover is a gas turbine... Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-1 General. (a) The prime mover of a... thermostatically-controlled electric water-jacket heater connected to the final emergency bus is permitted. (e) The...

  14. 46 CFR 112.50-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sounds on low oil pressure and high cooling water temperature. (i) If the prime mover is a gas turbine... Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-1 General. (a) The prime mover of a... thermostatically-controlled electric water-jacket heater connected to the final emergency bus is permitted. (e) The...

  15. 46 CFR 112.50-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sounds on low oil pressure and high cooling water temperature. (i) If the prime mover is a gas turbine... Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-1 General. (a) The prime mover of a... thermostatically-controlled electric water-jacket heater connected to the final emergency bus is permitted. (e) The...

  16. A Combustion Research Facility for Testing Advanced Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bur, Michael J.

    2003-01-01

    The test facility presented herein uses a groundbased rocket combustor to test the durability of new ceramic composite and metallic materials in a rocket engine thermal environment. A gaseous H2/02 rocket combustor (essentially a ground-based rocket engine) is used to generate a high temperature/high heat flux environment to which advanced ceramic and/or metallic materials are exposed. These materials can either be an integral part of the combustor (nozzle, thrust chamber etc) or can be mounted downstream of the combustor in the combustor exhaust plume. The test materials can be uncooled, water cooled or cooled with gaseous hydrogen.

  17. KENNEDY SPACE CENTER, FLA. - Standing inside Discovery’s payload bay, Carol Scott (right), lead orbiter engineer, talks about her job as part of a special feature for the KSC Web. With his back to the camera is Bill Kallus, Media manager in the KSC Web Studio. Behind Scott can be seen the open hatch of the airlock, which provides support functions such as airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - Standing inside Discovery’s payload bay, Carol Scott (right), lead orbiter engineer, talks about her job as part of a special feature for the KSC Web. With his back to the camera is Bill Kallus, Media manager in the KSC Web Studio. Behind Scott can be seen the open hatch of the airlock, which provides support functions such as airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  18. Contingency power concepts for helicopter turboshaft engine

    NASA Technical Reports Server (NTRS)

    Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.

    1984-01-01

    Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.

  19. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    NASA Astrophysics Data System (ADS)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  20. High power cable with internal water cooling 400 kV

    NASA Astrophysics Data System (ADS)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  1. Knock-limited performance of several internal coolants

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  2. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be builtmore » at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.« less

  3. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  4. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  5. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  6. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  7. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  8. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  9. 40 CFR 89.329 - Engine cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine cooling system. 89.329 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Test Equipment Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity to...

  10. USSR Report, Engineering and Equipment, No. 98.

    DTIC Science & Technology

    1983-11-09

    Nonhomogeneous Cylinder During Convective Cooling (V. Ya. Belousov; PROBLEM PROCHNOSTI, No 5, May 83) 66 Deformation of Spherical Shells Under Wind...generator and turbine, condenser , deaerator, and tap-water or hot-water tank for heat storage. The electric power is regulated by varying the steam rate...indicators, relative to those of hybrid condensation - boiler atomic electric power plants already in existence, So far the VK-500 boiling^water

  11. Primary Exhaust Cooler at the Propulsion Systems Laboratory

    NASA Image and Video Library

    1952-09-21

    One of the two primary coolers at the Propulsion Systems Laboratory at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Engines could be run in simulated altitude conditions inside the facility’s two 14-foot-diameter and 24-foot-long test chambers. The Propulsion Systems Laboratory was the nation’s only facility that could run large full-size engine systems in controlled altitude conditions. At the time of this photograph, construction of the facility had recently been completed. Although not a wind tunnel, the Propulsion Systems Laboratory generated high-speed airflow through the interior of the engine. The air flow was pushed through the system by large compressors, adjusted by heating or refrigerating equipment, and de-moisturized by air dryers. The exhaust system served two roles: reducing the density of the air in the test chambers to simulate high altitudes and removing hot gases exhausted by the engines being tested. It was necessary to reduce the temperature of the extremely hot engine exhaust before the air reached the exhauster equipment. As the air flow exited through exhaust section of the test chamber, it entered into the giant primary cooler seen in this photograph. Narrow fins or vanes inside the cooler were filled with water. As the air flow passed between the vanes, its heat was transferred to the cooling water. The cooling water was cycled out of the system, carrying with it much of the exhaust heat.

  12. Description and cost analysis of a deluge dry/wet cooling system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, L.E.; Bamberger, J.A.; Braun, D.J.

    1978-06-01

    The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heatmore » exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)« less

  13. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine (approximately 1 GW) with a maximum burn time of 1 hour. The concept utilized lessons learned from NF-1. The strategy breaks down the exhaust into parallel paths to allow flexibility with engine size and mass flow of exhaust. Similar to NF-1, the exhaust is slowed down, cooled, filtered of particulates, filtered of noble gases, and then the clean hydrogen is flared to open air. Another concept proposed by Steve Howe (currently Director of the Center for Space Nuclear Research) to simplify the NTP exhaust filtering is to run the hydrogen exhaust into boreholes underground to filter the exhaust. The two borehole site locations proposed are at the NTS and at the Idaho National Laboratory (INL). At NTS, the boreholes are 8' diameter and 1200' deep. The permeability of hydrogen through the soil and its buoyancy will allow it to rise up through the soil and allow the filtering of noble gases and radioactive particulates. The exhaust needs to be cooled to 600C before entering the borehole to avoid soil glazing. Preliminary analysis shows a small buildup of back pressure with time which depends on permeability. Noble gases entering the borehole walls deep can take a long time before reaching the surface. Other factors affecting permeability include borehole pressure, water saturation, and turbulence. Also, a possible need to pump out contaminated water collected at the bottom of the borehole. At INL, the borehole concept is slightly different. The underground borehole has openings to the soil at special depths which have impermeable interbeds above the water table and below the surface to allow the exhaust to travel horizontal between the impermeable layers. Preliminary results indicate better permeability than at NTS. The last option is total containment of the exhaust during the test run. The concept involves slowing down the flow to subsonic in a water cooled diffuser. The hydrogen is burned off in an oxygen rich afterburner with the only products being steam, oxygen, and some noble gases. A heat exchanger and water spray pulls heat from the steam and lowers the temperature for condensation. The optimum ratio between the two is being investigated, with a goal to minimize the total volume of the water hold tanks. A water tank farm collects the contaminated water. The amount of water produced from burning the hydrogen is approximately 100,000 gallons (not including cooling water) for a 25k lbf engine operating for 50 minutes. Residual gases (e.g., oxygen and some noble gases) can be captured at cryogenic levels with a liquid nitrogen cooled dewar. After a few weeks post-test, the radiation levels can drop to more favorable levels before slowly draining each capture tank and using existing filters. With today's environmental regulations, the NTP exhaust is filtered to meet 10 mrem/year exposure to the general public (at a DOE site) or 100 mrem/year (via NRC when tested elsewhere), when natural background radiation exposure to the general public is 300- 600 mrem per year. The current society feels more comfortable with filtering even lower to as low as reasonably achievable (ALARA).

  14. Preparing to Test

    NASA Image and Video Library

    2015-03-26

    Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.

  15. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  16. Turfgrass varieties and when to use them

    USDA-ARS?s Scientific Manuscript database

    Turfgrass fulfills essential functions for athletics, cooling of urban heat zones, aesthetics, ground cover, weed suppression, and water filtration. As parks managers, landscapers, engineers, and municipalties select turfgrasses for building or renovation projects, they must consider needs such as ...

  17. PROCEEDINGS OF A SYMPOSIUM ON COOLING WATER INTAKE TECHNOLOGIES TO PROTECT AQUATIC ORGANISMS

    EPA Science Inventory

    This Symposium brought together professionals from federal, state, and tribal regulatory agencies; industry; environmental organizations; engineering consulting firms; science and research organizations; academia; and other organizations concerned with mitigating harm to the aqua...

  18. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  19. Heat-transfer processes in air-cooled engine cylinders

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin

    1938-01-01

    From a consideration of heat-transfer theory, semi-empirical expressions are set up for the transfer of heat from the combustion gases to the cylinder of an air-cooled engine and from the cylinder to the cooling air. Simple equations for the average head and barrel temperatures as functions of the important engine and cooling variables are obtained from these expressions. The expressions involve a few empirical constants, which may be readily determined from engine tests. Numerical values for these constants were obtained from single-cylinder engine tests for cylinders of the Pratt & Whitney 1535 and 1340-h engines. The equations provide a means of calculating the effect of the various engine and cooling variables on the cylinder temperatures and also of correlating the results of engine cooling tests. An example is given of the application of the equations to the correlation of cooling-test data obtained in flight.

  20. Effect of Different Cooling Regimes on the Mechanical Properties of Cementitious Composites Subjected to High Temperatures

    PubMed Central

    Yu, Jiangtao; Weng, Wenfang; Yu, Kequan

    2014-01-01

    The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens. PMID:25161392

  1. Development of methods for the decrease in instability of recycling water of conjugated closed-circuit cooling system of HPP

    NASA Astrophysics Data System (ADS)

    Chichirov, A. A.; Chichirova, N. D.; Vlasov, S. M.; Lyapin, A. I.; Misbakhov, R. Sh.; Silov, I. Yu.; Murtazin, A. I.

    2016-10-01

    On Russian HPPs, conjugated closed-circuit cooling systems, where purge water is used as initial for water-treatment facilities, are widespread. For this reason, it is impossible to use general methods for the stabilization treatment of recycling water in order to prevent scale formation in the units of a system, namely, turbine condensers and cooling towers. In this paper, the methods for the decrease in the instability of recycling water using the methods of chemical engineering, such as stabilization and synchronization of flows and organization of recycles, are suggested. The results of an industrial experiment on the implementation of stabilization treatment of recycling water by the organization of recycle are given. The experiment was carried out on Kazan CHPP-3. The flow scheme involved the recycle of chemically purified water (CPW) for the heat network make-up to the closed-circuit cooling system. The experiment was carried out at three stages with the gradual change of the consumption of the recycle, namely, 0, 50, and 100 t/h. According to the results of experiments, the reliable decrease in the rate of the sedimentation was recorded on the units of the system, namely, turbine condenser and chimney-type cooling tower. This is caused by two reasons. Firstly, this is periodic excessive concentration of recycling water due to the nonstationary character of inlet and outlet flows. Secondly, this is seasonal (particularly, in the summer period) exceeding of the evaporation coefficient. As a result of stabilization and synchronization of flows and organization of recycles, the quality of clarified and chemically purified water for the heat network make-up increases and the corrosion of iron- and copper-containing structural materials decreases. A natural decrease in temperature drop on the operating turbine condensers is mentioned.

  2. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.

  3. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  4. NREL Engineers Look for a Cool Way to Make AC Units an Affordable Snap |

    Science.gov Websites

    installing the components of the EcoSnap-AC. Photo by Dennis Schroeder Engineers Chuck Booten and Jon Winkler Booten drills a hole in the wall to mount the EcoSnap-AC. Photo by Dennis Schroeder The Evolution of an , and eliminating air leaks and water intrusion. Photo by Dennis Schroeder Looking Ahead to a Cooler

  5. ETR HEAT EXCHANGER BUILDING, TRA644. METAL FRAME OF BUILDING GOES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR HEAT EXCHANGER BUILDING, TRA-644. METAL FRAME OF BUILDING GOES UP IN BACKGROUND AS WORKERS PLACE A SECTION OF WATER LINE THAT WILL CARRY SECONDARY COOLANT BETWEEN HEAT EXCHANGER BUILDING AND THE COOLING TOWER. INL NEGATIVE NO. 56-2205. Jack L. Anderson, Photographer, 6/28/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  7. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  8. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    NASA Astrophysics Data System (ADS)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  9. 75 FR 47756 - Announcement of Grant Application Deadlines and Funding Levels for the Assistance to High Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... heating or cooling, water heating, cooking, and lighting. A household or community may have more than one... limited to, the expected costs of design and engineering and other professional services, personnel costs...

  10. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    NASA Astrophysics Data System (ADS)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  11. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  12. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  13. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  14. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  15. 14 CFR 33.21 - Engine cooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine cooling. 33.21 Section 33.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.21 Engine cooling. Engine design and...

  16. Development of the Technologies for Stabilization Treatment of the Water of the Recycling Cooling Systems at Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Vlasov, S. M.; Chichirova, N. D.; Chichirov, A. A.; Vlasova, A. Yu.; Filimonova, A. A.; Prosvirnina, D. V.

    2018-02-01

    A turbine-condensate cooling system is one of the less stable and most hard-to-control systems of maintaining optimal water chemistry. A laboratory recycling cooling water test facility, UVO-0.3, was developed for physical simulation of innovative zero-discharge water chemistry conditions and improvement of technological flowcharts of stabilization treatment of the initial and circulating water of the recycling cooling systems at thermal power plants. Experiments were conducted in the UVO-0.3 facility to investigate the processes that occur in the recycling water supply system and master new technologies of stabilization of the initial and circulating water. It is shown that, when using untreated initial water, scaling cannot be prevented even under low concentration levels. The main reason for the activation of scale depositing is the desorption of carbon dioxide that results in alkalization of the circulating water and, as a consequence, a displacement of the chemical reaction equilibrium towards the formation of slightly soluble hardness ions. Some techniques, viz., liming and alkalization of the initial water and the by-pass treatment of the circulating water, are considered. New engineering solutions have been developed for reducing the amount of scale-forming substances in the initial and circulating water. The best results were obtained by pretreating the initial water with alkalizing agents and simultaneously bypassing and treating part of the circulating water. The obtained experimental data underlie the process flowcharts of stabilization treatment of the initial and circulating TPP water that ensure scale-free and noncorrosive operation and meet the corresponding environmental requirements. Under the bypassing, the specific rates of the agents and the residual hardness are reduced compared with the conventional pretreatment.

  17. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jan; Ferrada, Juan J; Curd, Warren

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predictedmore » to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.« less

  18. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  19. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  20. Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Eian, Carroll S

    1945-01-01

    As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.

  1. 40 CFR 1042.230 - Engine families.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... example, raw-water vs. separate-circuit cooling). (3) Method of air aspiration. (4) Method of exhaust... (i.e., mechanical or electronic). (9) Application (commercial or recreational). (10) Numerical level... injection pressure. (17) The type of fuel injection system controls (i.e., mechanical or electronic). (18...

  2. Microtextured Surfaces for Turbine Blade Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  3. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  4. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  5. Systems-Level Energy Audit for Main Complex, Construction Engineering Research Laboratory

    DTIC Science & Technology

    2003-08-01

    gas-fired boilers. Cooling is provided by two York electric chillers housed in the Utilities Building. Electric- ity and gas are metered by...small “instant recovery” electric water heater with a 20-gal size tank. Cooling In the spring of 1993, two R-22 (HCFC) York chiller units (rated at 180...tons each, but which can be peaked at 230 tons under favorable conditions) were in- stalled to replace the old chiller in the Utilities Building

  6. Thermal Management of Vehicle Electronic Payloads Using Nanofluids and Thermoelectric Devices--Modeling and Analysis (PREPRINT)

    DTIC Science & Technology

    2011-03-01

    Transfer Engineering, Vol. 30, No. 14, pp. 1136-1150. Chang, Y.W., Chang, C.C., Ke, M.T. and Chen, S.L. (2009) ’ Thermoelectric air-cooling module for...2005) ’An assessment of module cooling enhancement with thermoelectric coolers’, Journal of Heat Transfer-Transactions of the Asme, Vol. 127, No. 1, pp...nanoparticle out outer loop p nanoparticle TEC thermoelectric module w water UNCLASSIFIED UNCLASSIFIED Page 23 of 28 Tables Table 1

  7. The feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    NASA Technical Reports Server (NTRS)

    Van Fossen, G. J.

    1983-01-01

    It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.

  8. Rotorcraft contingency power study

    NASA Technical Reports Server (NTRS)

    Hirschkron, R.; Haynes, J. F.; Goldstein, D. N.; Davis, R. H.

    1984-01-01

    Twin helicopter engines are often sized by the power requirement of a safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 Contingency Power rating, permitting an engine size reduction. The merits of water injection, turbine cooling airflow modulation, throttle push, and a propellant auxiliary power plant were evaluated using military Life Cycle Cost (LCC) and commercial helicopter Direct Operating Cost (DOC) merit factors in a rubber engine and a rubber aircraft scenario.

  9. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    NASA Technical Reports Server (NTRS)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  10. Energy Audit . . . Here's How.

    ERIC Educational Resources Information Center

    American School and University, 1983

    1983-01-01

    After establishing building use patterns and complaints, a consulting engineer's walkthrough energy audit begins with the exterior. Then heating/cooling system efficiency is checked with a flue gases kit. Efficient use of water heaters, lighting, teacher lounges, and food preparation and eating areas saves energy. Most effective conservation…

  11. Experimental Investigation on The Electromagnetic Clutch Water pump and Pneumatic Compressor for Improving the Efficiency of an Engine

    NASA Astrophysics Data System (ADS)

    Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.

    2017-05-01

    Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.

  12. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered...

  13. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered...

  14. Study on the Influence of the Cold-End Cooling Water Thickness on the Generative Performance of TEG

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Guo, Xuexun; Tan, Gangfeng; Ji, Kangping; Xiao, Longjie

    2017-05-01

    At present, about 40% of the fuel energy is discharged into air with the exhaust gas when an automobile is working, which is a big waste of energy. A thermoelectric generator (TEG) has the ability to harvest the waste heat energy in the exhaust gas. The traditional TEG cold-end is cooled by the engine cooling system, and although its structure is compact, the TEG weight and the space occupied are important factors restricting its application. In this paper, under the premise of ensuring the TEG maximum net output power and reducing the TEG water consumption as much as possible, the optimization of the TEG water thickness in the normal direction of the cold-end surface (WTNCS) is studied, which results in lighter weight, less space occupied and better automobile fuel economy. First, the thermal characteristics of the target diesel vehicle exhaust gas are evaluated based on the experimental data. Then, according to the thermoelectric generation model and the cold-end heat transfer model, the effect of the WTNCS on the cold-end temperature control stability and the system flow resistance are studied. The results show that the WTNCS influences the TEG cold-end temperature. When the engine works in a stable condition, the cold-end temperature decreases with the decrease of the WTNCS. The optimal value of the WTNCS is 0.02 m and the TEG water consumption is 8.8 L. Comparin it with the traditional vehicle exhaust TEG structure, the power generation increased slightly, but the water consumption decreased by about 39.5%, which can save fuel at0.18 L/h when the vehicle works at the speed of 60 km/h.

  15. Safe corrosion inhibitor for treating cooling water on heat power engineering plants

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Khasanova, D. I.; Mukhutdinova, E. R.; Safin, D. Kh.; Sharifullin, I. G.

    2017-08-01

    Heat power engineering (HPE) consumes significant volumes of water. There are, therefore, problems associated with corrosion, biological fouling, salt deposits, and sludge formation on functional surfaces of heat power equipment. One of the effective ways to solve these problems is the use of inhibitory protection. The development of new Russian import-substituting environmentally friendly inhibitors is very relevant. This work describes experimental results on the OPC-800 inhibitor (TU 2415-092-00206 457-2013), which was produced at Karpov Chemical Plant and designed to remove mineral deposits, scale, and biological fouling from the surfaces of water-rotation node systems on HPE objects. This reagent is successfully used as an effective corrosion inhibitor in the water recycling systems of Tatarstan petrochemical enterprises. To save fresh make-up water, the circulating system is operated in a no-blow mode, which is characterized by high evaporation and salt content coefficients. It was experimentally found that corrosion rate upon treatment of recycled water with the OPC-800 inhibitor is 0.08-0.10 mm/year. HPE mainly uses inhibitors based on oxyethylidene diphosphonic (OEDPA) and nitrilotrimethylphosphonic (NTMPA) acids. The comparative characteristic of inhibition efficiency for OPC-800 and OEDF-Zn-U2 is given. The results obtained indicate that OPC-800 can be used as an inhibitor for treatment of cooling water in HPE plants. In this case, it is necessary to take into account the features of water rotation of a thermal power plant.

  16. A Guide to Energy Savings - For the Dairy Farmers.

    ERIC Educational Resources Information Center

    Frank, Gary G.

    This booklet gives a brief overview of energy use patterns in a dairy farm and gives tips on cutting costs of water heating, ventilation and supplemental heat, milk cooling, vacuum pumps, electric motors, tractors, trucks, engines, and lighting. Finally, energy use recordkeeping is discussed. (BB)

  17. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    NASA Astrophysics Data System (ADS)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  18. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    NASA Astrophysics Data System (ADS)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2017-04-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  19. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    good distribution of cooling air, as well as minimum drag for the installation. The fact that these tests showed that the front recovery decreased...installations on engine cooling-air distribution indicates that good coin-elation of the cooling results of like engines in different installations...tests indicate that an important consider- ation in the design of cowlings and cowl flaps should be the obtaining of good distribution of cooling air

  20. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  1. Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Michel, R. W.

    1983-01-01

    An evaluation liquid oxygen (LOX) and various hydrocarbon fuels as low cost alternative propellants suitable for future space transportation system applications was done. The emphasis was directed toward low earth orbit maneuvering engine and reaction control engine systems. The feasibility of regeneratively cooling an orbit maneuvering thruster was analytically determined over a range of operating conditions from 100 to 1000 psia chamber pressure and 1000 to 10,000-1bF thrust, and specific design points were analyzed in detail for propane, methane, RP-1, ammonia, and ethanol; similar design point studies were performed for a film-cooled reaction control thruster. Heat transfer characteristics of propane were experimentally evaluated in heated tube tests. Forced convection heat transfer coefficients were determined. Seventy-seven hot firing tests were conducted with LOX/propane and LOX/ethanol, for a total duration of nearly 1400 seconds, using both heat sink and water-cooled calorimetric chambers. Combustion performance and stability and gas-side heat transfer characteristics were evaluated.

  2. A Model of Water Resources & Thermoelectric Plant Productivity Considering Changing Climates & Environmental Policy

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Stewart, R. J.; Wollheim, W. M.; Rosenzweig, B.

    2012-12-01

    In the Northeast US, approximately 80% of the available capacity of thermoelectric plants is dependent on the constant availability of water for cooling. Cooling is a necessary process whereby the waste thermal load of a power plant is released and the working fluid (typically steam) condensed to allow the continuation of the thermodynamic cycle and the extraction of electrical power through the action of turbines. Power plants rely on a minimum flow at a certain temperature, determined by the individual plant engineering design, to be sufficiently low for their cooling. Any change in quantity or temperature of water could reduce thermal efficiencies. As a result of the cooling process, power plants emit thermal pollution into receiving waters, which is harmful to freshwater aquatic ecosystems including its resident life forms and their biodiversity. The Clean Water Act of 1972 (CWA) was established to limit thermal pollution, particularly when rivers reach high temperatures. When river temperatures approach the threshold limit, the power plants that use freshwater for cooling are forced to reduce their thermal load and thus their output to comply with the regulations. Here we describe a model that quantifies, in a regional context, thermal pollution and estimates efficiency losses as a result of fluctuating river temperatures and flow. It does this using available data, standard engineering equations describing the heat cycle of power plants and their water use, and assumptions about the operations of the plant. In this presentation, we demonstrate the model by analyzing contrasting climates with and without the CWA, focusing on the productivity of 366 thermoelectric plants that rely on water for cooling in the Northeast between the years 2000-2010. When the CWA was imposed on all simulated power plants, the model shows that during the average winter and summer, 94% and 71% of required generation was met from the power plants, respectively. This suggests that if all power plants were to comply with the CWA and if temperatures do increase in the future as is expected under greenhouse warming, electric power generation in the Northeast may become limited, particularly in the summer. To avoid a potential energy gap, back-up generators and other electric infrastructure, such as hydropower, may have to come online in order to meet the total electric demand. Furthermore, it is clear that the methodology and steps taken in the model are required to more accurately understand, estimate and evaluate the relationship between energy production, environmental and energy policy and biodiversity under forecasted and historic climate conditions. Our ongoing work uses this model to explore various future scenarios of policy, climate and natural resource management in the Northeastern US for the period 2010-2100.

  3. The development of a solar residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  4. ENGINEERING ASPECTS OF COLLEGE PLANT DESIGN.

    ERIC Educational Resources Information Center

    DALTON, LIAM F.; SEGNER, MARVIN

    THE ARTICLE FOCUSES ON MECHANICAL AND ELECTRICAL FACILITIES THAT SHOULD BE CONSIDERED WHEN DEVELOPING A LONG RANGE MASTER PLAN. DEVELOPMENT OF THE MASTER PLAN SHOULD CONSIDER THE FOLLOWING--(1) COMPARATIVE FUEL COSTS, (2) POWER DISTRIBUTION, (3) HEATING PLANT, (4) CENTRAL PLANT SITE, (5) COOLING PLANT, (6) WATER SUPPLY, (7) STORM DRAINAGE, (8)…

  5. 49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stationary locomotives at load cells: (1) Each noise emission test shall begin after the engine of the locomotive has attained the normal cooling water operating temperature as prescribed by the locomotive manufacturer. (2) Noise emission testing in idle or maximum throttle setting shall start after a 40 second...

  6. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  7. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  8. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  9. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  10. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  11. STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.

    DTIC Science & Technology

    VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE

  12. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    NASA Astrophysics Data System (ADS)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  13. Wing-Nacelle-Propeller Tests - Comparative Tests of Liquid-Cooled and Air-Cooled Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Wood, Donald H.

    1934-01-01

    This report gives the results of measurements of the lift, drag, and propeller characteristics of several wing and nacelle combinations with a tractor propeller. The nacelles were so located that the propeller was about 31% of the wing chord directly ahead of the leading edge of the wing, a position which earlier tests (NASA Report No. 415) had shown to be efficient. The nacelles were scale models of an NACA cowled nacelle for a radial air-cooled engine, a circular nacelle with the V-type engine located inside and the radiator for the cooling liquid located inside and the radiator for the type, and a nacelle shape simulating the housing which would be used for an extension shaft if the engine were located entirely within the wing. The propeller used in all cases was a 4-foot model of Navy No. 4412 adjustable metal propeller. The results of the tests indicate that, at the angles of attack corresponding to high speeds of flight, there is no marked advantage of one type of nacelle over the others as far as low drag is concerned, since the drag added by any of the nacelles in the particular location ahead of the wing is very small. The completely cowled nacelle for a radial air-cooled engine appears to have the highest drag, the liquid-cooled engine appears to have the highest drag, the liquid-cooled engine nacelle with external radiator slightly less drag. The liquid-cooled engine nacelle with radiator in the cowling hood has about half the drag of the cowled radial air-cooled engine nacelle. The extension-shaft housing shows practically no increase in drag over that of the wing alone. A large part of the drag of the liquid-cooled engine nacelle appears to be due to the external radiator. The maximum propulsive efficiency for a given propeller pitch setting is about 2% higher for the liquid-cooled engine nacelle with the radiator in the cowling hood than that for the other cowling arrangements.

  14. Exploring the Use of Model-Based Systems Engineering (MBSE) to Develop Systems Architectures in Naval Ship Design

    DTIC Science & Technology

    2010-06-01

    data such as the NSMB B-series, or be based on hydrodynamic (lifting line) predict ions. The power including still air drag and any margin that is...Provide Fuel Function 3.6 Fuel Oil System Component REQ.1.4 Fuel Efficiency Requirement 1.1 Generate Mechanical En... Function 1.1 Prime Mover Component...3.3 Provide Lubrication Function 3.7 Lube Oil System Component 3.4 Provide Cooling Water Function 3.3 Cooling System Component 3.5 Provide Combust ion

  15. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  16. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  17. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  18. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of surface temperature of engine and... temperature of engine and components of the cooling system. (a) The surface temperatures of the engine... components shall have reached their respective equilibrium temperatures. The exhaust cooling system shall be...

  19. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    DOE PAGES

    Im, Piljae; Liu, Xiaobing; Henderson, Hugh

    2018-01-16

    The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less

  20. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Liu, Xiaobing; Henderson, Hugh

    The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less

  1. Development and modification of a single overhead camshaft 4-valve 4-stroke 135 cc formula varsity race car engine

    NASA Astrophysics Data System (ADS)

    Abdullah, M. A.; Tamaldin, N.; Rusnandi, H.; Manoharan, T.; Samsir, M. A.

    2013-12-01

    The engine that was chosen to be developed and modified is Yamaha LC 135 Single Overhead Camshaft (SOHC) 4-valve 4-stroke 135cc liquid-cooled engine. The engine selection is based on the specification, rule and regulation in UTeM Formula Varsity 2012 (FV 2012). The engine performance is determined by engine operating characteristics. The engine air flow affects the filtration, intake and exhaust systems. The heat from the engine rejected to the surrounding through the active cooling system which has radiator and fan. The selection of the engine is based on weighted decision matrix which consists of reliability, operating and maintenance cost, fuel consumption and weight. The score of the matrix is formulated based on relative weighted factor among the selections. It been compared between Yamaha LC 135 Single Overhead Camshaft (SOHC) 4-valve 4-stroke 135cc liquid-cooled engine, Honda Wave 125 X Air Cooled, 4 Cycle Engine Overhead Camshaft (OHC) and Suzuki Shogun RR 4 stroke air cooled Single Overhead Camshaft (SOHC). The modification is applied to the engine through the simulation and tuning of Capacitor Discharge Ignition (CDI).

  2. ME8373 Spring 2015 ICME Proposal ICME Analysis of Fatigue Crack Growth Through a Weld in SA-516 Grade 70 Plate

    NASA Technical Reports Server (NTRS)

    Woods, Jody L.

    2015-01-01

    This paper describes work accomplished to predict the service life of a flexure joint design which is a component of a diffuser duct in the A3 Test Stand, an altitude simulation rocket engine test facility at NASA's Stennis Space Center. The duct has two pressure shells separated by cooling water passages and connected by stiffening ribs and flexure joints. Rocket exhaust flows within the duct and heats the inner pressure shell while the outer pressure shell remains at ambient temperature. The flexure joints allow for differential thermal expansion of the inner and outer pressure shells and are subject to in-service loading by this thermal expansion along with water pressure in the cooling water passage, atmospheric pressure outside the duct, near vacuum conditions within the duct, and vibrational loads from operation of the facility and rocket engine. Figure 1 shows a schematic axisymmetric cross section of the diffuser pressure shells and flexure joints with a zoomed in view of the flexure joint. The flexure joints are expected to eventually fail by fatigue cracking leading to leaks from the cooling water passages to the outside. The zoomed in view in Figure 1 indicates where cracking is expected to occur, namely through a weld bead between two plates of SA-516 Grade 70 steel. This weld bead acts as the fulcrum of the flexure joint and it is clear from inspection of the geometry and loading represented in the zoomed in portion of Figure 1 that inherent in the design there is a severe notch formed between the flexure plate, weld bead, and stiffening ring that will be the site of crack initiation and location from which the crack grows to the outer surface of the weld bead.

  3. Piston Temperatures in an Air-Cooled Engine for Various Operating Conditions

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J

    1940-01-01

    As part of a program for the study of piston cooling, this report presents the results of tests conducted on a single-cylinder, air-cooled, carburetor engine to determine the effect of engine operating conditions on the temperatures at five locations on the piston.

  4. CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL CONSOLE FOR MTR FISSION PRODUCT MONITOR, USED TO DETECT BREAKS IN CLADDING OF FUEL ELEMENTS. COUNT-RATE METER IN TOP PANEL INDICATES AMOUNT OF RADIOACTIVITY. LOWER PANELS SUPPLY POWER AND AMPLIFICATION OF SIGNALS GENERATED BY SCINTILLATION COUNTER/PHOTOMULTIPLIER TUBE COMBINATION IN RESPONSE TO RADIOACTIVITY IN A SAMPLE OF THE COOLING WATER. INL NEGATIVE NO. 56-771. Jack L. Anderson, Photographer, 3/15/1956. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. A Balanced Diaphragm Type of Maximum Cylinder Pressure Indicator

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Collins, John H , Jr

    1930-01-01

    A balanced diaphragm type of maximum cylinder pressure indicator was designed to give results consistent with engine operating conditions. The apparatus consists of a pressure element, a source of controlled high pressure and a neon lamp circuit. The pressure element, which is very compact, permits location of the diaphragm within 1/8 inch of the combustion chamber walls without water cooling. The neon lamp circuit used for indicating contact between the diaphragm and support facilitates the use of the apparatus with multicylinder engines.

  6. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Bourassa, Norm; Rainer, Leo

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  7. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Bourassa, Norm; Rainer, Leo

    2016-04-22

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  8. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  9. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  10. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup.more » The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)« less

  11. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... temperature indicator, for each— (1) Air cooled engine; (2) Rotorcraft with cooling shutters; and (3... condition with respect to cooling. (c) A fuel pressure indicator, for each pump-fed engine. (d) A fuel...

  12. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... temperature indicator, for each— (1) Air cooled engine; (2) Rotorcraft with cooling shutters; and (3... condition with respect to cooling. (c) A fuel pressure indicator, for each pump-fed engine. (d) A fuel...

  13. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... temperature indicator, for each— (1) Air cooled engine; (2) Rotorcraft with cooling shutters; and (3... condition with respect to cooling. (c) A fuel pressure indicator, for each pump-fed engine. (d) A fuel...

  14. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... temperature indicator, for each— (1) Air cooled engine; (2) Rotorcraft with cooling shutters; and (3... condition with respect to cooling. (c) A fuel pressure indicator, for each pump-fed engine. (d) A fuel...

  15. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... not one during which component and the engine fluid temperatures would stabilize (in which case... cooling test must be preceded by a period during which the powerplant component and engine fluid temperatures are stabilized with the engines at ground idle. (c) Cooling tests for each stage of flight must be...

  16. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOEpatents

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  17. AUTOMOTIVE DIESEL MAINTENACE 1. UNIT XV, I--MAINTAINING THE COOLING SYSTEM, CUMMINS DIESEL ENGINE, I--UNIT INSTALLATION--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND THE PROCEDURES FOR TRANSMISSION INSTALLATION. TOPICS ARE (1) IMPORTANCE OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) EVALUATING COOLING SYSTEM FAILURES, (4) CARING FOR THE COOLING SYSTEM,…

  18. Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water

    NASA Astrophysics Data System (ADS)

    Tan, L.; Allen, T. R.; Barringer, E.

    2009-10-01

    Silicon carbide (SiC) is an important engineering material being studied for potential use in multiple nuclear energy systems including high-temperature gas-cooled reactors and water-cooled reactors. The corrosion behavior of SiC exposed to supercritical water (SCW) is critical for examining its applications in nuclear reactors. Although the hydrothermal corrosion of SiC has been the subject of many investigations, the study on the microstructural effects on the corrosion is limited. This paper presents the effect of residual strain, grain size, grain boundary types, and surface orientations on the corrosion of chemical vapor deposited (CVD) β-SiC exposed to SCW at 500 °C and 25 MPa. Weight loss occurred on all the samples due to localized corrosion. Residual strains associated with small grains showed the most significant effect on the corrosion compared to the other factors.

  19. Acoustic measurements in a jet engine test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, V.R.

    1982-01-01

    The US Air Force has had problems with aircraft engine noise generated during ground run-up. These operations have resulted in many community complaints and serious restrictions being placed on ground run-up activity which affected training and fleet readiness. A program of noise abatement was undertaken to suppress ground run-up noise. The original designs included water-cooled noise suppressors which were peculiar to a single aircraft. This made each usable only with the aircraft for which it was designed. Noise surveys indicated that the close-coupled suppressor did not address the problem of noise radiated from unenclosed portions of the fuselage. To alleviatemore » this situation, the approach adopted was to use a complete aircraft enclosure, called a hush house, and a large augmenter tube which is totally air-cooled.« less

  20. Turbofan Engine Technology Evaluation System, User’s Guide.

    DTIC Science & Technology

    1984-04-01

    MOL I GROUP I SUL O. Gas Turbine Engine Parametric Computer Program 2105 2101 2103I Simulation Design & off design Turbofan Engine LComputer...show the high pressure turbine and the two cooling air ducts highlighted in the engine drawing. H$ANGE UALUE (S) HIGH PRESSURE TURBINE COOLING VANE ...ducted off to be used for high and low pressure vane and rotor cooling in the turbines before it enters the burner section of the engine at station 31

  1. Saving Humanity from Catastrophic Cooling with Geo-Engineering

    NASA Astrophysics Data System (ADS)

    Haapala, K.; Singer, S. F.

    2016-02-01

    There are two kinds of ice ages; they are fundamentally different and therefore require different methods of mitigation: (i) Major (Milankovitch-style) glaciations occur on a 100,000-year time-scale and are controlled astronomically. (ii) "Little" ice ages were discovered in ice cores; they have been occurring on an approx. 1000-1500-yr cycle and are likely controlled by the Sun [Ref: Singer & Avery 2007. Unstoppable Global Warming: Every 1500 years]. The current cycle's cooling phase may be imminent - hence there may be urgent need for action. To stop onset of a major (Milankovitch) glaciation 1. Locate a "trigger" - a growing perennial snow/ice field - using satellites 2. Spread soot, to lower the albedo, and use Sun to melt 3. How much soot? How to apply soot? Learn by experimentation To lessen (regional, intermittent) cooling of DOB (Dansgaard-Oeschger-Bond) cycles1. Use greenhouse effect of manmade cirrus (ice particles) [Ref: Singer 1988. Meteorology and Atmospheric Physics 38:228 - 239]2. Inject water droplets (mist) near tropopause 3. Trace dispersion of cirrus cloud by satellite and observe warming at surface 4. How much water; over what area? How often to inject? Learn by experimentation Many scientific questions remain. While certainly interesting and important, there is really no need to delay the crucial and urgent tests of geo-engineering, designed to validate schemes of mitigation. Such proposed tests involve only minor costs and present negligible risks to the environment.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  3. Cooling Tests of an Airplane Equipped with an NACA Cowling and a Wing-duct Cooling System

    NASA Technical Reports Server (NTRS)

    Turner, L I , Jr; Bierman, David; Boothy, W B

    1941-01-01

    Cooling tests were made of a Northrop A-17A attack airplane successively equipped with a conventional.NACA cowling and with a wing-duct cooling system. The method of cooling the engine by admitting air from the propeller slipstream into wing ducts, passing it first through the accessory compartment and then over the engine from rear to front, appeared to offer possibilities for improved engine cooling, increased cooling of the accessories, and better fairing of the power-plant installation. The results showed that ground cooling for the wing duct system without cowl flap was better than for the NACA cowling with flap; ground cooling was appreciably improved by installing a cowl flap. Satisfactory temperatures were maintained in both climb and high-speed flight, but, with the use of conventional baffles, a greater quantity of cooling air appeared to be required for the wing duct system.

  4. CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. CAMERA FACING EASTERLY. FOREGROUND CORNER CONTAINS OIL STORAGE TANKS. WATER TANKS AND WELL HOUSES ARE BEYOND THEM TO THE LEFT. LARGE LIGHT-COLORED BUILDING IN CENTER OF VIEW IS STEAM PLANT. DEMINERALIZER AND WATER STORAGE TANK ARE BEYOND. SIX-CELL COOLING TOWER AND ITS PUMP HOUSE ARE ABOVE IT IN VIEW. SERVICE BUILDINGS INCLUDING CANTEEN ARE ON NORTH SIDE OF ROAD. "EXCLUSION" AREA IS BEYOND ROAD. COMPARE LOCATION OF EXCLUSION-AREA GATE WITH PHOTO ID-33-G-202. INL NEGATIVE NO. 3608. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    NASA Astrophysics Data System (ADS)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  6. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  7. Defense Acquisition Programs: Status of Selected Systems

    DTIC Science & Technology

    1989-12-01

    Separation Fyout Events I Chute Deployment a r Broach Events Torpedo Search/Attack Tp WtEr . Guidance Limits Torl Water Entry * Engine Start Floatup * Chute...100 general purpose AN/UK-4450 special purpose Power 138 kilowatts Tomahawk ____________________Weight 32 tons Cooling Water 150 gallons/minute Req I...operated outsid(’ V’s. waters . V - (’ lin , t" {I li’,X;I%. 1 il , 77,1 h’Iod 12 t~lwpc( w ’ %.% ith 119 tli d i a ’ .’]H I cf 41 ll i.( lff;il( I;k

  8. Integrated exhaust gas recirculation and charge cooling system

    DOEpatents

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  9. Effect of Several Factors on the Cooling of a Radial Engine in Flight

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin

    1936-01-01

    Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.

  10. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrada, Juan J; Reiersen, Wayne T

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C andmore » 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment with no field experience and lowers specific costs while providing higher reliability. This paper presents a brief description of the TCWS conceptual design and the application of RAMI tools to optimize the design at different stages during the project.« less

  11. Practical problems relating to the hovercraft application of marine gas turbines

    NASA Astrophysics Data System (ADS)

    Jin-Zhang, Z.

    Design specifications of the marine gas turbine in a hovercraft application are discussed, in addition to the requirements for load distribution of the turbine power in this application. The effective load of the gas turbine is found to be about 57 percent higher than that of the air-cooled diesel engine, and a comparison between the two engines indicates that the effective load of the diesel-driven boat becomes advantageous only when the endurance is more than 26 hours. A multistage filter for air-water separation could reduce the salt content to less than 0.01 ppm where the pressure loss is less than 100 mm water head, and a low profile-resistance ejector without a mixing section could be developed to reduce the engine room pressure to the 45-50 C range.

  12. Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1940-01-01

    The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed.

  13. The Prediction of Nozzle Performance and Heat Transfer in Hydrogen/Oxygen Rocket Engines with Transpiration Cooling, Film Cooling, and High Area Ratios

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Hoffman, Joe D.

    1994-01-01

    An advanced engineering computational model has been developed to aid in the analysis of chemical rocket engines. The complete multispecies, chemically reacting and diffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and Dufour energy transfer terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film-cooled nozzle, and a transpiration-cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film-cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. It is demonstrated that thermal diffusion has a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle and was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration-cooled rocket engine.

  14. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  15. Illustrating Thermodynamic Concepts Using a Hero's Engine

    NASA Astrophysics Data System (ADS)

    Muiño, Pedro L.; Hodgson, James R.

    2000-05-01

    A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. The engine is a boiler made of Pyrex with two off-center nozzles. Upon boiling, the vapor exits the nozzles, creating two opposite, off-center forces that result in a circular motion by the engine around the vertical axis. The engine is suspended from a horizontal bar by means of two parallel threads. The rotation of the engine results in the twisting of the threads, with two important effects: the engine is raised vertically, and potential energy is stored in the coiling of the threads. When the engine is raised, it is removed from the heating source. This stops the boiling. The stored potential energy is then released into kinetic energy; that is, the threads uncoil, and the engine rotates in the opposite direction. This lowers the engine into the flame, so the water resumes boiling and the engine can be raised again. This cycle continues until all the liquid water is vaporized. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion (Joule-Thompson experiment), conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.

  16. Two-dimensional model studies of the effect of supersonic aircraft operations on the stratospheric ozone content

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Poppoff, I. G.; Latt, L.; Widhopf, G. F.; Capone, L. A.; Reigel, C. A.

    1981-01-01

    For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone.

  17. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  18. New Research on the Cowling and Cooling of Radial Engines

    NASA Technical Reports Server (NTRS)

    Molloy, Richard C.; Brewster, James H., III

    1943-01-01

    An extensive series of wind-tunnel tests on a half-scale conventional, nacelle model were made by the United Aircraft Corporation to determine and correlate the effects of many variables on cooling air flow and nacelle drag. The primary investigation was concerned with the reaction of these factors to varying conditions ahead of, across, and behind the engine. In the light of this investigation, common misconceptions and factors which are frequently overlooked in the cooling and cowling of radial engines are considered in some detail. Data are presented to support certain design recommendations and conclusions which should lead toward the improvement of present engine installations. Several charts are included to facilitate the estimation of cooling drag, available cooling pressure, and cowl exit area.

  19. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    DOEpatents

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  20. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  1. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  2. Heat pipe cooling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  3. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  4. JT90 thermal barrier coated vanes

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.

    1982-01-01

    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.

  5. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  6. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  7. Effects of Pulsing on Film Cooling of Gas Turbine Airfoils

    DTIC Science & Technology

    2005-05-09

    turbine engine . 15. NUMBER OF PAGES 70 14. SUBJECT TERMS: Turbine blade ; Film cooling ; Pulsed jet 16. PRICE CODE 17...with additional research, ultimately allowing for an increased efficiency in a gas turbine engine . 2 Keywords Turbine blade Film cooling Pulsed jet ... engine for aircraft propulsion…………………. 11 Figure 2: Thermodynamic cycle of a general turbine engine . ………………………..…… 11

  8. Investigation of Engine Oil-cooling Problem during Idle Conditions on Pusher Type Turbo Prop Aircraft

    NASA Astrophysics Data System (ADS)

    Premkumar, P. S.; Chakravarthy, S. Bhaskar; Jayagopal, S.; Radhakrishnan, P.; Pillai, S. Nadaraja; Senthil Kumar, C.

    2017-11-01

    Aircraft engines need a cooling system to keep the engine oil well within the temperature limits for continuous operation. The aircraft selected for this study is a typical pusher type Light Transport Aircraft (LTA) having twin turbo prop engines mounted at the aft end of the fuselage. Due to the pusher propeller configuration, effective oil cooling is a critical issue, especially during low-speed ground operations like engine idling and also in taxiing and initial climb. However, the possibility of utilizing the inflow induced by the propeller for oil cooling is the subject matter of investigation in this work. The oil cooler duct was designed to accommodate the required mass flow, estimated using the oil cooler performance graph. A series of experiments were carried out with and without oil cooler duct attached to the nacelle, in order to investigate the mass flow induced by the propeller and its adequacy to cool the engine oil. Experimental results show that the oil cooler positioned at roughly 25 % of the propeller radius from the nacelle center line leads to adequate cooling, without incorporating additional means. Furthermore, it is suggested to install a NACA scoop to minimize spillage drag by increasing pressure recovery.

  9. A Study on the Role of Grain-Boundary Engineering in Promoting High-Cycle Fatigue Resistance and Improving Reliability in Metallic Alloys for Propulsion Systems

    DTIC Science & Technology

    2005-04-30

    in addition, air cooling instead of water or oil quenching was adopted to avoid quench cracking. Based on a series of preliminary multi -parametric...microstructures were then grain- boundary engineered using four cycles of strain and high-temperature annealing of the single- phase alloy, specifically...automated load- shedding at a normalized K-gradient of -0.08 mm-, as specified in the standard. Multi -sample tests were conducted to verify the effect of

  10. SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  11. NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  12. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW. (3) If cooling causes aqueous condensation, do not...

  13. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW. (3) If cooling causes aqueous condensation, do not...

  14. 14. ENGINE TEST CELL BUILDING ROOF. VENTILATION AND COOLING TOWERS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. ENGINE TEST CELL BUILDING ROOF. VENTILATION AND COOLING TOWERS. LOOKING EAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  15. Computing Cooling Flows in Turbines

    NASA Technical Reports Server (NTRS)

    Gauntner, J.

    1986-01-01

    Algorithm developed for calculating both quantity of compressor bleed flow required to cool turbine and resulting decrease in efficiency due to cooling air injected into gas stream. Program intended for use with axial-flow, air-breathing, jet-propulsion engines with variety of airfoil-cooling configurations. Algorithm results compared extremely well with figures given by major engine manufacturers for given bulk-metal temperatures and cooling configurations. Program written in FORTRAN IV for batch execution.

  16. Water Vapor Permeability of the Advanced Crew Escape Suit

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuznetz, Larry; Gillis, David; Jones, Jeffery; Daniel, Brian; Gernhardt, Michael; Hamilton, Douglas

    2009-01-01

    Crew Exploration Vehicle (CEV) crewmembers are expected to return to earth wearing a suit similar to the current Advanced Crew Escape Suit (ACES). To ensure optimum cognitive performance, suited crewmembers must maintain their core body temperature within acceptable limits. There are currently several options for thermal maintenance in the post-landing phase. These include the current baseline, which uses an ammonia boiler, purge flow using oxygen in the suit, accessing sea water for liquid cooling garment (LCG) cooling and/or relying on the evaporative cooling capacity of the suit. These options vary significantly in mass, power, engineering and safety factors, with relying on the evaporative cooling capacity of the suit being the least difficult to implement. Data from previous studies indicates that the evaporative cooling capacity of the ACES was much higher than previously expected, but subsequent tests were performed for longer duration and higher metabolic rates to better define the water vapor permeability of the ACES. In these tests five subjects completed a series of tests performing low to moderate level exercise in order to control for a target metabolic rate while wearing the ACES in an environmentally controlled thermal chamber. Four different metabolic profiles at a constant temperature of 95 F and relative humidity of 50% were evaluated. These tests showed subjects were able to reject about twice as much heat in the permeable ACES as they were in an impermeable suit that had less thermal insulation. All of the heat rejection differential is attributed to the increased evaporation capability through the Gortex bladder of the suit.

  17. STEAM PLANT, TRA609. SECTION A SHOWS FEATURES OF NORTH/SOUTH AXIS: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEAM PLANT, TRA-609. SECTION A SHOWS FEATURES OF NORTH/SOUTH AXIS: STEAM GENERATOR AND CATWALK, STACK, DEGREASER FEED WATER HEATER IN PENTHOUSE, MEZZANINE, SURGE TANK PIT (BELOW GROUND LEVEL). UTILITY ROOM SHOWS DIESEL ENGINE GENERATORS, AIR TANKS, STARTING AIR COMPRESSORS. OUTSIDE SOUTH END ARE EXHAUST MUFFLER, AIR INTAKE OIL FILTER, RADIATOR COOLING UNIT, AIR SURGE TANK. SECTION B CROSSES WEST TO EAST NEAR SOUTH END OF BUILDING TO SHOW ARRANGEMENT OF DIESEL ENGINE GENERATOR, AIR DRIER, AFTER COOLER, AIR COMPRESSOR, AND BLOWDOWN TANK. BLAW-KNOX 3150-9-2, 6/1950. INL INDEX NO. 431-0609-00-098-100018, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Complete modeling for systems of a marine diesel engine

    NASA Astrophysics Data System (ADS)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  19. 40 CFR 1065.230 - Raw exhaust flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sample NMHC downstream of the cooling for compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW. (3) The cooling must not cause aqueous...

  20. Preliminary MIPCC Enhanced F-4 and F-15 Preformance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Clark, Casie M.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  1. Preliminary MIPCC Enhanced F-4 and F-15 Performance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  2. CFCS and electric chillers: Selection of large-capacity water chillers in the 1990s. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niess, R.C.

    1992-03-01

    This handbook offers a single source of useful information for understanding CFC and HCFC phaseout issues and selecting large-capacity water chillers for cooling commercial buildings. It evaluates the performance of electric, absorption, and natural-gas-engine driven water chillers. An economic evaluation checklist and example are included, using the EPRI COMTECH screening tool. Peak shaving with gas chillers and load shifting with chilled water storage are examined. The handbook, written for a diverse audience, covers chiller hardware, function, performance, and typical installed costs. It provides guidelines and checklists for chiller selection, economic comparison, and operation and maintenance.

  3. CFCS and electric chillers: Selection of large-capacity water chillers in the 1990s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niess, R.C.

    1992-03-01

    This handbook offers a single source of useful information for understanding CFC and HCFC phaseout issues and selecting large-capacity water chillers for cooling commercial buildings. It evaluates the performance of electric, absorption, and natural-gas-engine driven water chillers. An economic evaluation checklist and example are included, using the EPRI COMTECH screening tool. Peak shaving with gas chillers and load shifting with chilled water storage are examined. The handbook, written for a diverse audience, covers chiller hardware, function, performance, and typical installed costs. It provides guidelines and checklists for chiller selection, economic comparison, and operation and maintenance.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXV, I--CATERPILLAR DIESEL ENGINE COOLING SYSTEM D-8 AND 824 MODELS, II--TIRES AND TIRE HARDWARE.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND TO PROVIDE A DESCRIPTION OF HEAVY TIRES AND WHEELS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THEORY OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) MAINTENANCE TIPS (COOLING SYSTEM), (4)…

  5. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  6. Dew Point Evaporative Comfort Cooling

    DTIC Science & Technology

    2012-11-01

    assisting with the installation of the data acquisition system and multiyear performance testing. Fort Carson engineers worked with the project...partners to design and integrate the Coolerado units into five facilities and designed an innovative rain water catchment system for four units at the...Theater. Mountain Energy Partnership provided invaluable assistance with the design and installation of the data acquisition system , as well as data

  7. Everyday Engineering: Should Ice Be Cubed?

    ERIC Educational Resources Information Center

    Moyer, Richard H.; Everett, Susan A.

    2012-01-01

    While ice is usually referred to as ice cubes, indeed, most are not really cubes at all. In this 5E learning-cycle lesson, students will investigate different shapes of ice and how shape affects the speed of melting and the rate of cooling a glass of water. Students will compare three different shapes of ice with the same volume but different…

  8. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  9. Analytical methods to predict liquid congealing in ram air heat exchangers during cold operation

    NASA Astrophysics Data System (ADS)

    Coleman, Kenneth; Kosson, Robert

    1989-07-01

    Ram air heat exchangers used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.

  10. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective is to provide turbine-cooling technologies to meet Propulsion 21 goals related to engine fuel burn, emissions, safety, and reliability. Specifically, the GE Aviation (GEA) Advanced Turbine Cooling and Thermal Management program seeks to develop advanced cooling and flow distribution methods for HP turbines, while achieving a substantial reduction in total cooling flow and assuring acceptable turbine component safety and reliability. Enhanced cooling techniques, such as fluidic devices, controlled-vortex cooling, and directed impingement jets, offer the opportunity to incorporate both active and passive schemes. Coolant heat transfer enhancement also can be achieved from advanced designs that incorporate multi-disciplinary optimization of external film and internal cooling passage geometry.

  11. Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report

    NASA Technical Reports Server (NTRS)

    Biermann, David; Valentine, E. Floyd

    1939-01-01

    Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.

  12. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling test procedures for reciprocating engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION.... 23-51, 61 FR 5137, Feb. 9, 1996] Liquid Cooling ...

  13. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling test procedures for reciprocating engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION.... 23-51, 61 FR 5137, Feb. 9, 1996] Liquid Cooling ...

  14. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling test procedures for reciprocating engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION.... 23-51, 61 FR 5137, Feb. 9, 1996] Liquid Cooling ...

  15. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cooling test procedures for reciprocating engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION.... 23-51, 61 FR 5137, Feb. 9, 1996] Liquid Cooling ...

  16. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cooling test procedures for reciprocating engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION.... 23-51, 61 FR 5137, Feb. 9, 1996] Liquid Cooling ...

  17. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display.

    PubMed

    Khatun, M Mahfuza; Liu, Chen-Guang; Zhao, Xin-Qing; Yuan, Wen-Jie; Bai, Feng-Wu

    2017-02-01

    Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.

  18. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  19. The prediction of nozzle performance and heat transfer in hydrogen/oxygen rocket engines with transpiration cooling, film cooling, and high area ratios

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.; Hoffman, Joe D.

    1993-01-01

    An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.

  20. Personal Cooling for Extra-Vehicular Activities on Mars

    NASA Technical Reports Server (NTRS)

    Pu, Zhengxiang; Kapat, Jay; Chow, Louis; Recio, Jose; Rini, Dan; Trevino, Luis

    2004-01-01

    Extra-vehicular activities (EVA) on Mars will require suits with sophisticated thermal control systems so that astronauts can work comfortably for extended periods of time. Any use of consumables such as water that cannot be easily replaced should be of particular concern. In this aspect the EVA suits for Mars environment need to be different from the current Space Shuttle Extra Vehicular Mobility Units (EMU) that depend on water sublimation into space for removing heat from suits. Moreover, Mars environment is quite different from what a typical EMU may be exposed to. These variations call for careful analysis and innovative engineering for design and fabrication of an appropriate thermal control system. This paper presents a thermal analysis of astronaut suits for EVA with medium metabolic intensity under a typical hot and a nominal cold environment on Mars. The paper also describes possible options that would allow conservation of water with low usage of electrical power. The paper then presents the conceptual design of a portable cooling unit for one such solution.

  1. Credit BG. View looking northeast down from the tower onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking northeast down from the tower onto the two horizontal test stations at Test Stand "D." Station Dy is at the far left (Dy vacuum cell out of view), with in-line exhaust gas cooling sections and steam-driven "air ejector" (or evacuator) discharging engine exhausts to the east. The Dd cell is visible at the lower left, and the Dd exhaust train has the same functions as at Dy. The spherical tank is an electrically heated "accumulator" which supplies steam to the ejectors at Dv, Dd, and Dy stations. Other large piping delivered cooling water to the horizontal train cooling sections. The horizontal duct at the "Y" branch in the Dd train connects the Dd ejector to the Dv and Cv vacuum duct system (a blank can be bolted into this duct to isolate the Dd system). The shed roof for the Dpond test station appears at bottom center of this image. The open steel frame to the lower left of the image supports a hoist and crane for installing or removing test engines from the Dd test cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  2. Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan J.

    Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.

  3. Influence of the cooling degree upon performances of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Grǎdinariu, Andrei Cristian; Mihai, Ioan

    2016-12-01

    Up to present, air cooling systems still raise several unsolved problems due to conditions imposed by the environment in terms of temperature and pollution levels. The present paper investigates the impact of the engine cooling degree upon its performances, as important specific power is desired for as low as possible fuel consumption. A technical solution advanced by the authors[1], consists of constructing a bi-flux compressor, which can enhance the engine's performances. The bi-flux axial compressor accomplishes two major functions, that is it cools down the engine and it also turbocharges it. The present paper investigates the temperature changes corresponding to the fresh load, during the use of a bi-flux axial compressor. This compressor is economically simple, compact, and offers an optimal response at low rotational speeds of the engine, when two compression steps are used. The influence of the relative coefficient of air temperature drop upon working agent temperature at the intercooler exit is also investigated in the present work. The variation of the thermal load coefficient by report to the working agent temperature is also investigated during engine cooling. The variation of the average combustion temperature is analyzed in correlation to the thermal load coefficient and the temperatures of the working fluid at its exit from the cooling system. An exergetic analysis was conducted upon the influence of the cooling degree on the motor fluid and the gases resulted from the combustion process.

  4. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charron, Richard; Pierce, Daniel

    2015-02-24

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates amore » transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.« less

  5. Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant

    NASA Astrophysics Data System (ADS)

    AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.

    2017-08-01

    This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.

  6. Automotive Stirling Engine Mod 1 Design Review, volume 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.

  7. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    NASA Technical Reports Server (NTRS)

    Nguyen, Dalton

    2002-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, an C-SiC composites heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and thermal models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  8. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    NASA Technical Reports Server (NTRS)

    Nguyen, Dalton; Turner, Larry D. (Technical Monitor)

    2001-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, a C-SiC composite heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on-going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and therma models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  9. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  10. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  11. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  12. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  13. An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.

    1977-01-01

    A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.

  14. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    NASA Astrophysics Data System (ADS)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  15. Waste-heat-powered icemaker for isolated fishing villages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.

    1995-08-01

    A high-lift absorption refrigeration cycle called the ``vapor exchange`` cycle has been applied to the problem of producing refrigeration from low-temperature waste heat. Diesel engine jacket cooling water at 75 C is used as the heat source to produce 10 tons per day of flake ice for a remote community. The icemaker has successfully operated for two fishing seasons at Kotzebue, Alaska.

  16. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  17. Rocketdyne Development of RBCC Engine for Low Cost Access to Space

    NASA Technical Reports Server (NTRS)

    Ortwerth, P.; Ratekin, G.; Goldman, A.; Emanuel, M.; Ketchum, A.; Horn, M.

    1997-01-01

    Rocketdyne is pursuing the conceptual design and development of a Rocket Based Combined Cycle (RBCC) engine for booster and SSTO, advanced reusable space transportation ARTT systems under contract with NASA Marshall Space Flight Center. The Rocketdyne concept is fixed geometry integrated Rocket, Ram Scramjet which is Hydrogen fueled and uses Hydrogen regenerative cooling. Vision vehicle integration studies have determined that scramjet operation to Mach 12 has high payoff for low cost reusable space transportation. Rocketdyne is internally developing versions of the concept for other applications in high speed aircraft and missiles with Hydrocarbon fuel systems. Subscale engine ground testing is underway for all modes of operation from takeoff to Mach 8. High altitude Rocket only mode tests will be completed as part of the ground test program to validate high expansion ratio performance. A unique feature of the ground test series is the inclusion of dynamic trajectory simulation with real time Mach number, altitude, engine throttling, and RBCC mode changes in a specially modified freejet test facility at GASL. Preliminary cold flow Air Augmented Rocket mode test results and Short Combustor tests have met program goals and have been used to integrate all modes of operation in a single combustor design with a fixed geometry inlet for design confirmation tests. A water cooled subscale engine is being fabricated and installed for test beginning the last quarter of 1997.

  18. Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines

    NASA Technical Reports Server (NTRS)

    Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)

    2001-01-01

    This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.

  19. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  20. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be the minimum grade approved for the engines, and the mixture settings... engine fluids and powerplant components (except cylinder barrels) for which temperature limits are...

  1. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be the minimum grade approved for the engines, and the mixture settings... engine fluids and powerplant components (except cylinder barrels) for which temperature limits are...

  2. Oxygen-hydrogen thrusters for Space Station auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Berkman, D. K.

    1984-01-01

    The feasibility and technology requirements of a low-thrust, high-performance, long-life, gaseous oxygen (GO2)/gaseous hydrogen (GH2) thruster were examined. Candidate engine concepts for auxiliary propulsion systems for space station applications were identified. The low-thrust engine (5 to 100 lb sub f) requires significant departure from current applications of oxygen/hydrogen propulsion technology. Selection of the thrust chamber material and cooling method needed or long life poses a major challenge. The use of a chamber material requiring a minimum amount of cooling or the incorporation of regenerative cooling were the only choices available with the potential of achieving very high performance. The design selection for the injector/igniter, the design and fabrication of a regeneratively cooled copper chamber, and the design of a high-temperature rhenium chamber were documented and the performance and heat transfer results obtained from the test program conducted at JPL using the above engine components presented. Approximately 115 engine firings were conducted in the JPL vacuum test facility, using 100:1 expansion ratio nozzles. Engine mixture ratio and fuel-film cooling percentages were parametrically investigated for each test configuration.

  3. Climate and water resource change impacts and adaptation potential for US power supply

    DOE PAGES

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.; ...

    2017-10-30

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  4. Climate and water resource change impacts and adaptation potential for US power supply

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  5. Climate and water resource change impacts and adaptation potential for US power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  6. Cooling system operation efficiency of locomotive diesel engine

    NASA Astrophysics Data System (ADS)

    Ovcharenko, Sergey; Balagin, Oleg; Balagin, Dmitry

    2017-10-01

    A theoretical model for the calculation of the heat parameters of locomotive diesel engine cooling system in case of using heating agent bypass between the circuits is represented. The influence of the cooling fluid on the bypass from “hot” circuit to the “cold” circuit at different ambient air temperature is studied.

  7. Evaluation of Foam Coolants.

    DTIC Science & Technology

    HYPERGOLIC ROCKET PROPELLANTS, * FOAM , FILM COOLING, FILM COOLING, LIQUID COOLING, LIQUID ROCKET FUELS, ADDITIVES, HEAT TRANSFER, COOLANTS, LIQUID PROPELLANT ROCKET ENGINES, LIQUID COOLING, CAPTIVE TESTS, FEASIBILITY STUDIES.

  8. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  9. Effects of turbine cooling assumptions on performance and sizing of high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Senick, Paul F.

    1992-01-01

    The analytical study presented examines the effects of varying turbine cooling assumptions on the performance of a high speed civil transport propulsion system as well as the sizing sensitivity of this aircraft to these performance variations. The propulsion concept employed in this study was a two spool, variable cycle engine with a sea level thrust of 55,000 lbf. The aircraft used for this study was a 250 passenger vehicle with a cruise Mach number of 2.4 and 5000 nautical mile range. The differences in turbine cooling assumptions were represented by varying the amount of high pressure compressor bleed air used to cool the turbines. It was found that as this cooling amount increased, engine size and weight increased, but specific fuel consumption (SFC) decreased at takeoff and climb only. Because most time is spent at cruise, the SFC advantage of the higher bleed engines seen during subsonic flight was minimized and the lower bleed, lighter engines led to the lowest takeoff gross weight vehicles. Finally, the change in aircraft takeoff gross weight versus turbine cooling level is presented.

  10. Cooled Water Production System,

    DTIC Science & Technology

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  11. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be of the minimum grade approved for the engines, and the mixture settings... applies, temperatures of engine fluids and power-plant components (except cylinder barrels) for which...

  12. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be of the minimum grade approved for the engines, and the mixture settings... applies, temperatures of engine fluids and power-plant components (except cylinder barrels) for which...

  13. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.

    1978-01-01

    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.

  14. Engine management during NTRE start up

    NASA Technical Reports Server (NTRS)

    Bulman, Mel; Saltzman, Dave

    1993-01-01

    The topics are presented in viewgraph form and include the following: total engine system management critical to successful nuclear thermal rocket engine (NTRE) start up; NERVA type engine start windows; reactor power control; heterogeneous reactor cooling; propellant feed system dynamics; integrated NTRE start sequence; moderator cooling loop and efficient NTRE starting; analytical simulation and low risk engine development; accurate simulation through dynamic coupling of physical processes; and integrated NTRE and mission performance.

  15. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  16. Transpiration cooled throat for hydrocarbon rocket engines

    NASA Technical Reports Server (NTRS)

    May, Lee R.; Burkhardt, Wendel M.

    1991-01-01

    The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.

  17. System and method for conditioning intake air to an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellnau, Mark C.

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. Themore » valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.« less

  18. AP1000{sup R} severe accident features and post-Fukushima considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G.

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, themore » AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)« less

  19. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water consumption, high-water level when the system sprays excess water, and low-water level when the... cooling water shall be filled with the quantity of water recommended by the applicant. No cooling air... saturation, if this temperature is lower. (d) Water consumed in cooling the exhaust gas under the test...

  20. Deep Water Cooling | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    the Cornell website. Additional examples of research campus geothermal cooling projects include Deep Water Cooling Deep Water Cooling Research campuses that are located near a deep lake or deep plan for your research campus. Considerations Sample Project Related Links Deep water cooling involves

  1. Plug cluster module demonstration

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1978-01-01

    The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.

  2. Heat-Transfer Characteristics of Partially Film Cooled Plug Nozzle on a J-85 Afterburning Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.; Straight, D. M.

    1976-01-01

    Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe.

  3. Altitude-wind-tunnel investigation of tail-pipe burning with a Westinghouse X24C-4B axial-flow turbojet engine

    NASA Technical Reports Server (NTRS)

    Fleming, William A; Wallner, Lewis E

    1948-01-01

    Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

  4. Cooled High-Temperature Radial Turbine Program. Phase 2

    DTIC Science & Technology

    1992-05-01

    proposed for advanced engines with high power-to-weight and inproved SFC requirements. The addition of cooling to the blades of a metal radial turbine ...4 secl/2 ) 62.2 Blade - jet Speed Ratio 0.66 Adiabatic Efficiency (T-to-T, %) 87.0 Cooling flows for the gasifier turbine section are set at 5.7%. The...Way Cincinnati, OH 45215-6301 85 COOLED HIGH-TEMPERATURE RADIAL TURBINE PROGRAM DISTRIBUTION LIST Number Qf Copies General Electric Aircraft Engines

  5. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  6. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.

    1943-01-01

    A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  7. Neutron diffraction study of water freezing on aircraft engine combustor soot.

    PubMed

    Tishkova, V; Demirdjian, B; Ferry, D; Johnson, M

    2011-12-14

    The study of the formation of condensation trails and cirrus clouds on aircraft emitted soot particles is important because of its possible effects on climate. In the present work we studied the freezing of water on aircraft engine combustor (AEC) soot particles under conditions of pressure and temperature similar to the upper troposphere. The microstructure of the AEC soot was found to be heterogeneous containing both primary particles of soot and metallic impurities (Fe, Cu, and Al). We also observed various surface functional groups such as oxygen-containing groups, including sulfate ions, that can act as active sites for water adsorption. Here we studied the formation of ice on the AEC soot particles by using neutron diffraction. We found that for low amount of adsorbed water, cooling even up to 215 K did not lead to the formation of hexagonal ice. Whereas, larger amount of adsorbed water led to the coexistence of liquid water (or amorphous ice) and hexagonal ice (I(h)); 60% of the adsorbed water was in the form of ice I(h) at 255 K. Annealing of the system led to the improvement of the crystal quality of hexagonal ice crystals as demonstrated from neutron diffraction.

  8. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  9. Experimentally-determined external heat loss of automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  10. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  11. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...

  12. Performance Evaluation of a Mechanical Draft Cross Flow Cooling Towers Employed in a Subtropical Region

    NASA Astrophysics Data System (ADS)

    Muthukumar, Palanisamy; Naik, Bukke Kiran; Goswami, Amarendra

    2018-02-01

    Mechanical draft cross flow cooling towers are generally used in a large-scale water cooled condenser based air-conditioning plants for removing heat from warm water which comes out from the condensing unit. During this process considerable amount of water in the form of drift (droplets) and evaporation is carried away along with the circulated air. In this paper, the performance evaluation of a standard cross flow induced draft cooling tower in terms of water loss, range, approach and cooling tower efficiency are presented. Extensive experimental studies have been carried out in three cooling towers employed in a water cooled condenser based 1200 TR A/C plant over a period of time. Daily variation of average water loss and cooling tower performance parameters have been reported for some selected days. The reported average water loss from three cooling towers is 4080 l/h and the estimated average water loss per TR per h is about 3.1 l at an average relative humidity (RH) of 83%. The water loss during peak hours (2 pm) is about 3.4 l/h-TR corresponding to 88% of RH and the corresponding efficiency of cooling towers varied between 25% and 45%.

  13. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  14. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  15. Solar heating and cooling.

    PubMed

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  16. Heat Transfer Due to Unsteady Effects as Investigated in a High-Speed, Full-Scale, Fully-Cooled Turbine Vane and Rotor Stage

    DTIC Science & Technology

    2008-06-01

    the turbine stages of these engines have been established. The predominant method of cooling vane and rotor airfoils , having been used for over...INVESTIGATED IN A HIGH-SPEED, FULL-SCALE, FULLY-COOLED TURBINE VANE AND ROTOR STAGE THESIS Presented to the Faculty Department of Aeronautics and...reduce the effectiveness of film cooling in the vane and rotor stages of turbine engines . Even today, fairly little experimentation has been

  17. Design issues for lunar in situ aluminum/oxygen propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1992-01-01

    Design issues for lunar ascent and lunar descent rocket engines fueled by aluminum/oxygen propellant produced in situ at the lunar surface were evaluated. Key issues are discussed which impact the design of these rockets: aluminum combustion, throat erosion, and thrust chamber cooling. Four engine concepts are presented, and the impact of combustion performance, throat erosion and thrust chamber cooling on overall engine design are discussed. The advantages and disadvantages of each engine concept are presented.

  18. The effect of alcohol blends on the performance of an air cooled Rotary Trochoidal Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, M.; Iuster, I.

    Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.

  19. The effect of alcohol blends on the performance of an air cooled rotary trochoidal engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutman, M.; Iuster, I.

    Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.

  20. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    NASA Astrophysics Data System (ADS)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  1. Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.

    1946-01-01

    For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.

  2. Lockheed P–38J Lightning at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-03-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory acquired two Lockheed P–38J Lightning in October 1944 to augment their burgeoning icing research program. The P–38 was a high-altitude interceptor with a unique twin fuselage configuration. Lockheed designed the aircraft in 1938 and 1939. Its two Allison V–1710 engines carried the aircraft to altitudes up to 40,000 feet. The P–38 was used extensively during World War II in a variety of roles. In August 1943, Lockheed began producing an improved version, the P–38J that included better cockpit heating, engine cooling, and dive flaps. The military loaned the NACA two P–38Js to determine the amount of ice formation on the induction system of the turbosupercharger-equipped engines. In 1944 and 1945 one of the aircraft was subjected to ground tests using an engine blower on the hangar apron. The V–1710 was run over a full range of speeds as different levels of water were injected into the blower and sprayed onto the engine. The other P–38J was flown at 10,000 feet altitude with water sprayed into the engine to simulate rain. The tests confirmed that closing the intercooler flap added protection against the ice by blocking water ingestion and increasing engine heat. NACA pilot Joseph Walker joined the Cleveland laboratory in early 1945 as a physicist. Walker had flown P–38s during World, and later claimed that seeing the NACA’s two P–38Js inspired him to return to his earlier calling as a pilot, this time with the NACA. Walker was particularly active in the icing flight program during his five years of flying in Cleveland.

  3. A mathematical model for human brain cooling during cold-water near-drowning.

    PubMed

    Xu, X; Tikuisis, P; Giesbrecht, G

    1999-01-01

    A two-dimensional mathematical model was developed to estimate the contributions of different mechanisms of brain cooling during cold-water near-drowning. Mechanisms include 1) conductive heat loss through tissue to the water at the head surface and in the upper airway and 2) circulatory cooling to aspirated water via the lung and via venous return from the scalp. The model accounts for changes in boundary conditions, blood circulation, respiratory ventilation of water, and head size. Results indicate that conductive heat loss through the skull surface or the upper airways is minimal, although a small child-sized head will conductively cool faster than a large adult-sized head. However, ventilation of cold water may provide substantial brain cooling through circulatory cooling. Although it seems that water breathing is required for rapid "whole" brain cooling, it is possible that conductive cooling may provide some advantage by cooling the brain cortex peripherally and the brain stem centrally via the upper airway.

  4. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer

    NASA Astrophysics Data System (ADS)

    Shaw, Vince; Fatuzzo, Marco

    Increases in the performance demands of turbo machinery has stimulated the development many new technologies over the last half century. With applications that spread beyond marine, aviation, and power generation, improvements in gas turbine technologies provide a vast impact. High temperatures within the combustion chamber of the gas turbine engine are known to cause an increase in thermal efficiency and power produced by the engine. However, since operating temperatures of these engines reach above 1000 K within the turbine section, the need for advances in material science and cooling techniques to produce functioning engines under these high thermal and dynamic stresses is crucial. As with all research and development, costs related to the production of prototypes can be reduced through the use of computational simulations. By making use of Ansys Simulation Software, the effects of turbine cooling techniques were analyzed. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer.

  5. Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple

    NASA Technical Reports Server (NTRS)

    Sanders, J C; Wilsted, H D; Mulcahy, B A

    1943-01-01

    Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.

  6. Passive containment cooling water distribution device

    DOEpatents

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  7. Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.

    PubMed Central

    2013-01-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  8. Controls on water use for thermoelectric generation: case study Texas, US.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael

    2013-10-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000.

  9. A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Abdi, Yusuf

    2017-03-01

    Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.

  10. Experimental investigation on the flow around a simplified geometry of automotive engine compartment

    NASA Astrophysics Data System (ADS)

    D'Hondt, Marion; Gilliéron, Patrick; Devinant, Philippe

    2011-05-01

    In the current sustainable development context, car manufacturers have to keep doing efforts to reduce the aerodynamic drag of automotive vehicle in order to decrease their CO2 and greenhouse gas emissions. The cooling airflow, through the engine compartment of vehicles, contributes from 5 to 10% to the total aerodynamic drag. By means of simplified car geometry, equipped with an engine compartment, the configurations that favor a low contribution to total drag are identified. PIV (particle image velocimetry) velocity measurements in the wake of the geometry allow explaining these drag reductions. Besides, the cooling flow rate is also assessed and gives indications on the configurations that favor the engine cooling.

  11. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    DTIC Science & Technology

    1946-08-01

    in series with respect to the oil–flow, one on each corner of the fuselage at tt.erear of the engine. -. En@ne cooling-aL- ~ essure rneasnrements...Momentumloss (station 1 to station 2) (12) ‘enven Ah = ~ (’e’ - “n) ——. 20 9 . NACA TN No. 1089 or Exii-~ essure recovery (staticn 2 to station 3) or (13) ‘e

  12. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  13. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  14. PBF Reactor Building (PER620). Camera faces south along west wall. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Camera faces south along west wall. Gap between native lava rock and concrete basement walls is being backfilled and compacted. Wire mesh protects workers from falling rock. Note penetrations for piping that will carry secondary coolant water to Cooling Tower. Photographer: Holmes. Date: June 15, 1967. INEEL negative no. 67-3665 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. Integration of Nanofluids into Commercial Antifreeze Concentrates with ASTM D15 Corrosion Testing

    DTIC Science & Technology

    2013-05-01

    are also proprietary. Blending and Milling A Fisher Scientific Model 550 Sonic Disembrator was used in making nano dispersions. A horizontal 2L...Commercial Antifreeze Zerex/Water Three Zerex antifreeze concentrates were chosen: Zerex G-05: Phosphate free, long life hybrid formulation, mostly used ...for passenger cars. Zerex 618: Fully formulated with organic acid, mostly used for heavy duty diesel engines. Zerex Dex-Cool: Phosphate and silicate

  16. NASA Engineer Examines the Design of a Regeneratively-Cooled Rocket Engine

    NASA Image and Video Library

    1958-12-21

    An engineer at the National Aeronautics and Space Administration (NASA) Lewis Research Center examines a drawing showing the assembly and details of a 20,000-pound thrust regeneratively cooled rocket engine. The engine was being designed for testing in Lewis’ new Rocket Engine Test Facility, which began operating in the fall of 1957. The facility was the largest high-energy test facility in the country that was capable of handling liquid hydrogen and other liquid chemical fuels. The facility’s use of subscale engines up to 20,000 pounds of thrust permitted a cost-effective method of testing engines under various conditions. The Rocket Engine Test Facility was critical to the development of the technology that led to the use of hydrogen as a rocket fuel and the development of lightweight, regeneratively-cooled, hydrogen-fueled rocket engines. Regeneratively-cooled engines use the cryogenic liquid hydrogen as both the propellant and the coolant to prevent the engine from burning up. The fuel was fed through rows of narrow tubes that surrounded the combustion chamber and nozzle before being ignited inside the combustion chamber. The tubes are visible in the liner sitting on the desk. At the time, Pratt and Whitney was designing a 20,000-pound thrust liquid-hydrogen rocket engine, the RL-10. Two RL-10s would be used to power the Centaur second-stage rocket in the 1960s. The successful development of the Centaur rocket and the upper stages of the Saturn V were largely credited to the work carried out Lewis.

  17. Preliminary Tests of Blowers of Three Designs Operating in Conjunction with a Wing-Duct Cooling System for Radial Engines, Special Report

    NASA Technical Reports Server (NTRS)

    Biermann, David; Valentine, E. Floyd

    1939-01-01

    This paper is one of several dealing with methods intended to reduce the drag of present-day radial engine installations and improve the cooling at zero and low air speeds, The present paper describes model wind-tunnel tests of blowers of three designs tested in conjunction with a wing-nacelle combination. The principle of operation involved consists of drawing cooling air into ducts located in the wing root at the point of maximum slipstream velocity, passing the air through the engine baffles from rear to front, and exhausting the air through an annular slot located between the propeller and the engine with the aid of a blower mounted on the spinner. The test apparatus consisted essentially of a stub wing having a 5-foot chord and a 15-foot span, an engine nacelle of 20 inches diameter enclosing a 25-horsepower electric motor, and three blowers mounted on propeller spinners. Two of the blowers utilize centrifugal force while the other uses the lift from airfoils to force the air out radially through the exit slot. Maximum efficiencies of over 70 percent were obtained for the system as a whole. Pressures were measured over the entire flight range which were in excess of those necessary to cool present-day engines, The results indicated that blowers mounted on propeller spinners could be built sufficiently powerful and efficient to warrant their use as the only, or chief, means of forcing air through the cooling system, so that cooling would be independent of the speed of the airplane.

  18. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  19. A Regeneratively Cooled Thrust Chamber For The Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Sparks, Dave; Woodcock, Gordon

    2000-01-01

    Abstract This paper presents the development of a low-cost, regeneratively-cooled thrust chamber for the Fastrac engine. The chamber was fabricated using hydraformed copper tubing to form the coolant jacket and wrapped with a fiber reinforced polymer composite Material to form a structural jacket. The thrust chamber design and fabrication approach was based upon Space America. Inc.'s 12,000 lb regeneratively-cooled LOX/kerosene rocket engine. Fabrication of regeneratively cooled thrust chambers by tubewall construction dates back to the early US ballistic missile programs. The most significant innovations in this design was the development of a low-cost process for fabrication from copper tubing (nickel alloy was the usual practice) and use of graphite composite overwrap as the pressure containment, which yields an easily fabricated, lightweight pressure jacket around the copper tubes A regeneratively-cooled reusable thrust chamber can benefit the Fastrac engine program by allowing more efficient (cost and scheduler testing). A proof-of-concept test article has been fabricated and will he tested at Marshall Space Flight Center in the late Summer or Fall of 2000.

  20. Mid-section of a can-annular gas turbine engine with a cooling system for the transition

    DOEpatents

    Wiebe, David J.; Rodriguez, Jose L.

    2015-12-08

    A cooling system is provided for a transition (420) of a gas turbine engine (410). The cooling system includes a cowling (460) configured to receive an air flow (111) from an outlet of a compressor section of the gas turbine engine (410). The cowling (460) is positioned adjacent to a region of the transition (420) to cool the transition region upon circulation of the air flow within the cowling (460). The cooling system further includes a manifold (121) to directly couple the air flow (111) from the compressor section outlet to an inlet (462) of the cowling (460). The cowling (460) is configured to circulate the air flow (111) within an interior space (426) of the cowling (460) that extends radially outward from an inner diameter (423) of the cowling to an outer diameter (424) of the cowling at an outer surface.

  1. Economic analysis of condensers for water recovery in steam injected gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Paepe, M.; Huvenne, P.; Dick, E.

    1998-07-01

    Steam injection cycles are interesting for small power ranges because of the high efficiency and the relatively low investment costs. A big disadvantage is the consumption of water by the cycle. Water recovery is seldom realized in industrial practice. In this paper an analysis of the technical and economical possibilities of water recovery by condensation of water out of the exhaust gases is made. Three gas turbines are considered : the Kawasaki M1A-13CC (2.3 MWe), the Allison 501KH (6.8 MWe) and the General Electric LM1600 (17 MWe). For every gas turbine two types of condensers are designed. In the watermore » cooled condenser finned tubes are used to cool the exhaust gases, flowing at the outside of the tubes. The water itself flows at the inside of the tubes and is cooled by a water to air cooler. In the air cooled condenser the exhaust gases flow at the inside of the tubes and the cooling air at the outside. The investment costs of the condensers is compared to the costs of the total installation. The investment costs are relatively smaller if the produced power goes up. The water cooled condenser with water to air cooler is cheaper than the air cooled condenser. Using a condenser results in higher exploitation costs due to the fans and pumps. It is shown that the air cooled condenser has lower exploitation costs than the water cooled one. Pay back time of the total installation does not significantly vary compared to the installation without recovery. Water prices are determined for which water recovery is profitable. For the water cooled condenser the turning point lies at 2.2 Euro/m; for the air cooled condenser this is 0.6 Euro/m.« less

  2. Plasma arc welding repair of space flight hardware

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.

    1993-01-01

    A technique to weld repair the main combustion chamber of Space Shuttle Main Engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloy-Z, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloy-Z while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  3. Selective Brain Cooling Reduces Water Turnover in Dehydrated Sheep

    PubMed Central

    Strauss, W. Maartin; Hetem, Robyn S.; Mitchell, Duncan; Maloney, Shane K.; Meyer, Leith C. R.; Fuller, Andrea

    2015-01-01

    In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls. PMID:25675092

  4. NACA Conference on Turbojet Engines for Supersonic Propulsion. A Compilation of Technical Material Presented

    DTIC Science & Technology

    1953-10-01

    turbojet Pngine with a turbine cooled by compressor air involves several design pruilems that do not e~ist in an uncooled turbo - jet engine . Careful...facilitate testing the sheet-metal blades in the turbojet engine , bases were formed by removing the solid airfoil portion from the standard turbine blade ...OF TURBINE BLADES by J. C. Freche 6. APPLICATION AND OPERATION OF AIR-COOLED TURBINES IN TURBOJET ENGINES

  5. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.

    PubMed

    Yan, H; Guo, Hao

    2012-01-01

    We study a thermal engine model for which Newton's cooling law is obeyed during heat transfer processes. The thermal efficiency and its bounds at maximum output power are derived and discussed. This model, though quite simple, can be applied not only to Carnot engines but also to four other types of engines. For the long thermal contact time limit, new bounds, tighter than what were known before, are obtained. In this case, this model can simulate Otto, Joule-Brayton, Diesel, and Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle, the same efficiency bounds as that from Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] are derived. In both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working medium during heating and cooling stages increases. This might provide instructions for designing real engines. © 2012 American Physical Society

  6. Cooling system having reduced mass pin fins for components in a gas turbine engine

    DOEpatents

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  7. Plant engineers solar energy handbook. [Includes glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-21

    This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less

  8. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard is...

  9. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard is...

  10. High-Performance Computing Data Center Warm-Water Liquid Cooling |

    Science.gov Websites

    Computational Science | NREL Warm-Water Liquid Cooling High-Performance Computing Data Center Warm-Water Liquid Cooling NREL's High-Performance Computing Data Center (HPC Data Center) is liquid water Liquid cooling technologies offer a more energy-efficient solution that also allows for effective

  11. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Cooling water intake structures. 401... GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard is...

  12. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Cooling water intake structures. 401.14... AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water intake structures of any point source for which a standard is...

  13. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Cooling water intake structures. 401.14 Section 401.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water...

  14. Cooling system with compressor bleed and ambient air for gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Marra, John J.

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less

  15. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    NASA Technical Reports Server (NTRS)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  16. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  17. Turbulent heat transfer prediction method for application to scramjet engines

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1974-01-01

    An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.

  18. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  19. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  20. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  1. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  2. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  3. Recent advances in convectively cooled engine and airframe structures for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.

    1978-01-01

    A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.

  4. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  5. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -0.6%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  6. Thermal performance of Al2O3 in water - ethylene glycol nanofluid mixture as cooling medium in mini channel

    NASA Astrophysics Data System (ADS)

    Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu

    2015-08-01

    Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al2O3 in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.

  7. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  8. Thermal Load Considerations for Detonative Combustion-Based Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Perkins, H. Douglas

    2004-01-01

    An analysis was conducted to assess methods for, and performance implications of, cooling the passages (tubes) of a pulse detonation-based combustor conceptually installed in the core of a gas turbine engine typical of regional aircraft. Temperature-limited material stress criteria were developed from common-sense engineering practice, and available material properties. Validated, one-dimensional, numerical simulations were then used to explore a variety of cooling methods and establish whether or not they met the established criteria. Simulation output data from successful schemes were averaged and used in a cycle-deck engine simulation in order to assess the impact of the cooling method on overall performance. Results were compared to both a baseline engine equipped with a constant-pressure combustor and to one equipped with an idealized detonative combustor. Major findings indicate that thermal loads in these devices are large, but potentially manageable. However, the impact on performance can be substantial. Nearly one half of the ideally possible specific fuel consumption (SFC) reduction is lost due to cooling of the tubes. Details of the analysis are described, limitations are presented, and implications are discussed.

  9. 77 FR 19740 - Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant Accident

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0249] Water Sources for Long-Term Recirculation Cooling... Regulatory Guide (RG) 1.82, ``Water Sources for Long-Term Recirculation Cooling Following a Loss-of-Coolant... regarding the sumps and suppression pools that provide water sources for emergency core cooling, containment...

  10. Effect of propeller slipstream on the drag and performance of the engine cooling system for a general aviation twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Katz, J.; Corsiglia, V. R.; Barlow, P. R.

    1980-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was investigated experimentally. The semispan model was mounted vertically in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-flow configuration. It was found that the propeller slipstream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slipstream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack, that is, climb condition. For the cruise condition those improvements were more moderate.

  11. Summary report on effects at temperature, humidity, and fuel-air ratio on two air-cooled light aircraft engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    Five different engine models were tested to experimentally characterize emissions and to determine the effects of variation in fuel-air ratio and spark timing on emissions levels and other operating characteristics such as cooling, misfiring, roughness, power acceleration, etc. The results are given of two NASA reports covering the Avco Lycoming 0-320-D engine testing and the recently obtained results on the Teledyne Continental TSIO-360-C engine.

  12. Propulsion and Power Supplies for Unmanned Vehicles. Volume I. Engines for Small Propeller-Driven RPVS

    DTIC Science & Technology

    1977-11-01

    residual unbaiance. Mass production experience and availability of rotary piston engines -type WANKEL- refer basically to the automobile industry...production air cooled automobile engine in standard form can be ruled out on a specific weight basis. 4. In modified form, as used in many light aircr: Ct...the air cooled automobile engine appears to be a possibility. Availability, lcw initial cost; and good specific fuel consumption could make the unit

  13. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  14. Cool pool development. Quarterly technical report No. 1, April-June 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, K.

    1979-10-15

    The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. Itmore » is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.« less

  15. Effect of Propeller on Engine Cooling System Drag and Performance

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    The pressure recovery of incoming cooling air and the drag associated with engine cooling of a typical general aviation twin-engine aircraft was Investigated experimentally. The semispan model was mounted vertically in the 40 x 80-Foot Wind Tunnel at Ames Research Center. The propeller was driven by an electric motor to provide thrust with low vibration levels for the cold-now configuration. It was found that the propeller slip-stream reduces the frontal air spillage around the blunt nacelle shape. Consequently, this slip-stream effect promotes flow reattachment at the rear section of the engine nacelle and improves inlet pressure recovery. These effects are most pronounced at high angles of attack; that is, climb condition. For the cruise condition those improvements were more moderate.

  16. A simulation for predicting potential cooling effect on LPG-fuelled vehicles

    NASA Astrophysics Data System (ADS)

    Setiyo, M.; Soeparman, S.; Wahyudi, S.; Hamidi, N.

    2016-03-01

    Liquefied Petroleum Gas vehicles (LPG Vehicles) provide a potential cooling effect about 430 kJ/kg LPG consumption. This cooling effect is obtained from the LPG phase change from liquid to vapor in the vaporizer. In the existing system, energy to evaporate LPG is obtained from the coolant which is circulated around the vaporizer. One advantage is that the LPG (70/30 propane / butane) when expanded from 8 bar to at 1.2 bar, the temperature is less than -25 °C. These conditions provide opportunities to evaporate LPG with ambient air flow, then produce a cooling effect for cooling car's cabin. In this study, some LPG mix was investigated to determine the optimum condition. A simulation was carried out to estimate potential cooling effects of 2000 cc engine from 1000 rpm to 6000 rpm. In this case, the mass flow rate of LPG is a function of fuel consumption. The simulation result shows that the LPG (70/30 propane/butane) provide the greatest cooling effect compared with other mixtures. In conclusion, the 2000 cc engine fueled LPG at 3000 rpm provides potential cooling effect more than 1.3 kW, despite in the low engine speed (1000 rpm) only provides about 0.5 kW.

  17. Fuel supply device for supplying fuel to an engine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, M.H.; Kerr, W.B.

    1990-05-29

    This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less

  18. Potential use of ceramic coating as a thermal insulation on cooled turbine hardware

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1976-01-01

    An analysis was made to determine the potential benefits of using a ceramic thermal insulation coating of calcia-stabilized zirconia on cooled engine parts. The analysis was applied to turbine vanes of a high temperature and high pressure core engine and a moderate temperature and low pressure research engine. Measurements made during engine operation showed that the coating substantially reduced vane metal wall temperatures. Evaluation of the durability of the coating on turbine vanes and blades in a furnace and engine were encouraging.

  19. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  20. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  1. Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling

    NASA Technical Reports Server (NTRS)

    Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.

    1959-01-01

    An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.

  2. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    NASA Astrophysics Data System (ADS)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  3. Case Study for the ARRA-Funded Ground Source Heat Pump Demonstration at Ball State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Liu, Xiaobing; Henderson, Jr., Hugh

    With funding provided by the American Recovery and Reinvestment Act (ARRA), 26 ground-source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects is a district central GSHP system installed at Ball State University (BSU) in Muncie, IN. Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam plant with four coal-fired and three natural-gas-fired steam boilers. Cooling was provided by five water-cooled centrifugal chillers at the District Energy Station Southmore » (DESS). The new district GSHP system replaced the existing coal-fired steam boilers and conventional water-cooled chillers. It uses ground-coupled heat recovery (HR) chillers to meet the simultaneous heating and cooling demands of the campus. The actual performance of the GSHP system was analyzed based on available measured data from August 2015 through July 2016, construction drawings, maintenance records, personal communications, and construction costs. Since Phase 1 was funded in part by the ARRA grant, it is the focus of this case study. The annual energy consumption of the GSHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. A cost analysis was performed to evaluate the simple payback of the GSHP system. The following sections summarize the results of the analysis, the lessons learned, and recommendations for improvement in the operation of this district GSHP system.« less

  4. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  5. JPRS Report, Nuclear Developments

    DTIC Science & Technology

    1989-06-14

    personnel. Methods to purify, ated, genuine nuclear power plant dismantling will not detoxify, and desulfurize power plant flue gases are to be take...their homes temporarily, Let us look at Prithvi which is very much on its way to because of fear that "some poisonous gas was to be joining the...material cobalt 60-was measured 5 years mens engineers-a " gas -cooled, heavy-water-moderated, ago. Even if, due to the short half-life of cobalt 60, the

  6. Computer modeling and simulators as part of university training for NPP operating personnel

    NASA Astrophysics Data System (ADS)

    Volman, M.

    2017-01-01

    This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.

  7. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  8. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  9. Thrust Augmentation of a Turbojet Engine at Simulated Flight Conditions by Introduction of a Water-Alcohol Mixture into the Compressor

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Auble, Carmon M.; Harvey, Ray W., Sr.

    1952-01-01

    An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.

  10. Low-thrust Isp sensitivity study

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1982-01-01

    A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.

  11. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  12. Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants, volume 1

    NASA Technical Reports Server (NTRS)

    Michel, R. W.

    1983-01-01

    A program to evaluate liquid oxygen and various hydrocarbon fuel as low cost alternative propellants suitable for future space transportation system applications is discussed. The emphasis of the program is directed toward low earth orbit maneuvering engine and reaction control engine systems. The feasibility of regeneratively cooling an orbit maneuvering thruster was analytically determined over a range of operating conditions from 100 to 1000 psia chamber pressure and 1000 to 10,000-1bF thrust, and specific design points were analyzed in detail for propane, methane, RP-1, ammonia, and ethanol; similar design point studies were performed for a filmcooled reaction control thruster. Heat transfer characteristics of propate were experimentally evaluated in heated tube tests. Forced convection heat transfer coefficients were determined over the range of fluid conditions encompassed by 450 to 1800 psia, -250 to +250 F, and 50 to 150 ft/sec, with wall temperatures from ambient to 1200 F. Seventy-seven hot firing tests were conducted with LOX/propane and LOC/ethanol, for a total duration of nearly 1400 seconds, using both heat sink and water-cooled calorimetric chambers.

  13. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  14. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Ganio, Matthew S; Lopez, Rebecca M; Yeargin, Susan W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.

  15. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  16. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  17. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for all channels. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction for both the boiling and non-boiling regimes.

  18. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor liners are likely to be as critical as the turbine rotor blades.

  19. THE COOLING REQUIREMENTS AND PROCESS SYSTEMS OF THE SOUTH AFRICAN RESEARCH REACTOR, SAFARI 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, J.R.

    1962-12-01

    The SAFARI 1 research reactor is cooled and moderated by light water. There are three process systems, a primary water system which cools the reactor core and surroundings, a pool water system, and a secondary water system which removes the heat from the primary and pool systems. The cooling requirements for the reactor core and experimental facilities are outlined, and the cooling and purification functions of the three process systems are described. (auth)

  20. Mycobacteria in Finnish cooling tower waters.

    PubMed

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  1. J-2X Upper Stage Engine: Hardware and Testing 2009

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2009-01-01

    Mission: Common upper stage engine for Ares I and Ares V. Challenge: Use proven technology from Saturn X-33, RS-68 to develop the highest Isp GG cycle engine in history for 2 missions in record time . Key Features: LOX/LH2 GG cycle, series turbines (2), HIP-bonded MCC, pneumatic ball-sector valves, on-board engine controller, tube-wall regen nozzle/large passively-cooled nozzle extension, TEG boost/cooling . Development Philosophy: proven hardware, aggressive schedule, early risk reduction, requirements-driven.

  2. Investigation of the efficiency of regenerative cooling of the ramjet combustor by gasification products of energy-intensive material

    NASA Astrophysics Data System (ADS)

    Averkov, I. S.; Arefyev, K. Yu.; Baykov, A. V.; Yanovskiy, L. S.

    2017-01-01

    The results of mathematical modeling of the thermal state of combustion chambers with regenerative cooling for ramjet engines of promising flying vehicles are presented. The cooling of combustion chambers by the gasification products of a combined charge of the energy-intensive material is considered, where the polyethylene is used as a stuff, and the HMX-based compounds are used as the active substance. The flow rates of the cooling eneregy-intensive material are determined, which provide acceptable levels of temperatures of combustion chambers at various modes of engines operation are determined.

  3. 15 CFR 922.82 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cooling water, clean vessel generator cooling water, clean bilge water, or anchor wash; or (iv) Vessel... generator cooling water, clean bilge water, or anchor wash. (4) Discharging or depositing, from beyond the... Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  4. Near term application of water cooling

    NASA Astrophysics Data System (ADS)

    Horner, M. W.; Caruvana, A.; Cohn, A.; Smith, D. P.

    1980-03-01

    The paper presents studies of combined gas and steam-turbine cycles related to the near term application of water cooling technology to the commercial gas turbine operating on heavy residual oil or coal derived liquid fuels. Water cooling promises significant reduction of hot corrosion and ash deposition at the turbine first-stage nozzle. It was found that: (1) corrosion of some alloys in the presence of alkali contaminant was less as metal temperatures were lowered to the 800-1000 F range, (2) the rate of ash deposition is increased for air-cooled and water-cooled nozzles at the 2060 F turbine firing temperature compared to 1850 F, (3) the ash deposit for the water cooled nozzle was lighter and more easily removed at both 1850 and 2050 F, (4) on-line nutshelling was effective on the water-cooled nozzles even at 2050 F, and (5) the data indicates that the rate of ash deposition may be sensitive to surface wall temperatures.

  5. ASK Talks with Alex McCool

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As a charter member at Marshall, McCool was instrumental in the design of the propulsion systems for the Saturn launch vehicles that propelled Apollo to the Moon and directed project engineering for Skylab, the first space science laboratory. Alex McCool's 48-year career includes exceptional contributions to the vehicles that launched America into orbit and carried human beings to the moon. Presently, he is the manager of the Space Shuttle Projects Office at Marshall. Among his many honors he recently received the National Space Club's 2002 Astronautics Engineer Award. The award recognizes those who have made outstanding contributions in engineering management to the national space program.

  6. Use of cooling tower blow down in ethanol fermentation.

    PubMed

    Rajagopalan, N; Singh, V; Panno, B; Wilcoxon, M

    2010-01-01

    Reducing water consumption in bioethanol production conserves an increasingly scarce natural resource, lowers production costs, and minimizes effluent management issues. The suitability of cooling tower blow down water for reuse in fermentation was investigated as a means to lower water consumption. Extensive chemical characterization of the blow down water revealed low concentrations of toxic elements and total dissolved solids. Fermentation carried out with cooling tower blow down water resulted in similar levels of ethanol and residual glucose as a control study using deionized water. The study noted good tolerance by yeast to the specific scale and corrosion inhibitors found in the cooling tower blow down water. This research indicates that, under appropriate conditions, reuse of blow down water from cooling towers in fermentation is feasible.

  7. Fuel injector for use in a gas turbine engine

    DOEpatents

    Wiebe, David J.

    2012-10-09

    A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

  8. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Astrophysics Data System (ADS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-03-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  9. A summary of computational experience at GE Aircraft Engines for complex turbulent flows in gas turbines

    NASA Technical Reports Server (NTRS)

    Zerkle, Ronald D.; Prakash, Chander

    1995-01-01

    This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.

  10. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  11. Tests of Five Full-Scale Propellers in the Presence of a Radial and a Liquid-Cooled Engine Nacelle, Including Tests of Two Spinners

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P

    1938-01-01

    Wind-tunnel tests are reported of five 3-blade 10-foot propellers operating in front of a radial and a liquid-cooled engine nacelle. The range of blade angles investigated extended from 15 degrees to 45 degrees. Two spinners were tested in conjunction with the liquid-cooled engine nacelle. Comparisons are made between propellers having different blade-shank shapes, blades of different thickness, and different airfoil sections. The results show that propellers operating in front of the liquid-cooled engine nacelle had higher take-off efficiencies than when operating in front of the radial engine nacelle; the peak efficiency was higher only when spinners were employed. One spinner increased the propulsive efficiency of the liquid-cooled unit 6 percent for the highest blade-angle setting investigated and less for lower blade angles. The propeller having airfoil sections extending into the hub was superior to one having round blade shanks. The thick propeller having a Clark y section had a higher take-off efficiency than the thinner one, but its maximum efficiency was possibly lower. Of the three blade sections tested, Clark y, R.A.F. 6, and NACA 2400-34, the Clark y was superior for the high-speed condition, but the R.A.F. 6 excelled for the take-off condition.

  12. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  13. Preliminary design of an alternate high-temperature turbine. A topical report for Phase II of the High-Temperature-Turbine Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strough, R.I.

    The feasibility of designing a convectively air-cooled turbine to operate in the environment of a 3000/sup 0/F combustor exit temperature with maximum turbine airfoil metal temperatures held to 1500/sup 0/F was established. The United Technologies-Kraftwerk Union V84.3 gas turbine design was used as the basic configuration for the design of the 3000/sup 0/F turbine. Turbine cooling requirements were determined based on the use of the modified V84.3 type silo combustor with a pattern factor of 0.1. The convective air-cooling technology levels in terms of cooling effectiveness required to satisfy the airfoil cooling requirements were identified. Cooling schemes and fabrication technologiesmore » required are discussed. Turbine airfoil cooling technology levels required for the 3000/sup 0/F engine were selected. The performance of the 3000/sup 0/F convectively air-cooled gas turbine in simple and combined cycle was calculated. The 3000/sup 0/F gas turbine combined-cycle system provides an increase in power of 61% and a decrease in heat rate of 10% compared to a similar system with a combustor exit temperature of 2210/sup 0/F and the same airflow. The development of a successful 3000/sup 0/F convectively air-cooled turbine can be accomplished with a reasonable design and fabrication development effort on the cooled turbine airfoils. Use of the convectively air-cooled turbine provides the transfer of technology from extensive aircraft engines developed programs and operating experience to industrial gas turbines. It eliminates the requirement for large investments in alternate cooling techniques tailored specifically for industrial engines which offer no additional benefits.« less

  14. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    NASA Astrophysics Data System (ADS)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  15. The General Electric F404 - Engine of the RAAF’s New Fighter.

    DTIC Science & Technology

    1985-07-01

    turbine stages, high pressure and low pressure, stationary and rotating, are cooled, as well as rotors, cooling plates, blade and vane platforms and...such engine components as turbine rotor blading . disks and seals. This has led to the development of design methods that enable extended usage to...Scientific Adviser RAN Aircraft Maintenance and Flight Trials Unit Directorate of Naval Aircraft Engineering Directorate of Naval Aviation Policy

  16. Temporal Evolution of Water Use for Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.

    2013-12-01

    The long lifespan of power plants (30 - 50 yr) results in the current power plant fleet representing a legacy of past variations in fuel availability and costs, water availability and water rights, and advances in technologies, such as combined cycle plants, which impact trends in water consumption. The objective of this study was to reconstruct past water consumption and withdrawal of thermoelectric generation based on data on controls, including fuel types, generator technologies, and cooling systems, using Texas as a case study and comparing with the US. Fuel sources in Texas varied over time, from predominantly natural gas in the 1960s and early 1970s to coal and nuclear sources following the 1973 oil embargo and more recently to large increases in natural gas generation (85% increase 1998 - 2004) in response to hydraulic fracturing and low natural gas prices. The dominant generator technology in Texas was steam turbines until the early 1990s; however, combined cycle plants markedly increased in the late 1990s (400% increase 1998 - 2004). Proliferation of cooling ponds in Texas, mostly in the 1970s and 1980s (340% increase) reflects availability of large quantities of unappropriated surface water and increases in water rights permitting during this time and lower cost and higher cooling efficiency of ponds relative to wet cooling towers. Water consumption for thermoelectricity in Texas in 2010 totaled ~0.53 km3 (0.43 million acre feet, maf), accounting for ~4% of total state water consumption. High water withdrawals (32.3 km3, 26.2 maf) mostly reflect circulation between cooling ponds and power plants. About a third of the water withdrawals is not required for cooling and reflects circulation by idling plants being used as peaking plants. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system resulting in statewide consumption for natural gas combined cycle generators with mostly cooling towers being 60% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds. The primary control on water withdrawals is cooling system, with ~ two orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. A similar approach will be applied to thermoelectric generation throughout the US using information on fuel sources, generator technologies and cooling systems to better understand current water use for thermoelectric generation based on the legacy of past drivers and long lifespans of power plants. Understanding the historical evolution of water needs for thermoelectricity should allow us to better project future water needs.

  17. Solar-Cooled Hotel in the Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1982-01-01

    Performance of solar cooling system is described in 21-page report. System provides cooling for public areas including ball rooms, restaurant, lounge, lobby and shops. Chilled water from solar-cooling system is also used to cool hot water from hotel's desalinization plant.

  18. Thermal management of advanced fuel cell power systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J.

    1990-01-01

    It is shown that fuel cell devices are particularly attractive for the high-efficiency, high-reliability space hardware necessary to support upcoming space missions. These low-temperature hydrogen-oxygen systems necessarily operate with two-phase water. In either PEMFCs (proton exchange membrane fuel cells) or AFCs (alkaline fuel cells), engineering design must be critically focused on both stack temperature control and on the relative humidity control necessary to sustain appropriate conductivity within the ionic conductor. Water must also be removed promptly from the hardware. Present designs for AFC space hardware accomplish thermal management through two coupled cooling loops, both driven by a heat transfer fluid, and involve a recirculation fan to remove water and heat from the stack. There appears to be a certain advantage in using product water for these purposes within PEM hardware, because in that case a single fluid can serve both to control stack temperature, operating simultaneously as a heat transfer medium and through evaporation, and to provide the gas-phase moisture levels necessary to set the ionic conductor at appropriate performance levels. Moreover, the humidification cooling process automatically follows current loads. This design may remove the necessity for recirculation gas fans, thus demonstrating the long-term reliability essential for future space power hardware.

  19. Al2O3-based nanofluids: a review

    PubMed Central

    2011-01-01

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%. PMID:21762528

  20. Distinct difference of flaA genotypes of Legionella pneumophila between isolates from bath water and cooling tower water.

    PubMed

    Amemura-Maekawa, Junko; Kura, Fumiaki; Chang, Bin; Suzuki-Hashimoto, Atsuko; Ichinose, Masayuki; Endo, Takuro; Watanabe, Haruo

    2008-09-01

    To investigate the genetic difference of Legionella pneumophila in human-made environments, we collected isolates of L. pneumophila from bath water (n = 167) and cooling tower water (n = 128) primarily in the Kanto region in 2001 and 2005. The environmental isolates were serogrouped and sequenced for a target region of flaA. A total of 14 types of flaA genotypes were found: 10 from cooling tower water and nine from bath water. The flaA genotypes of isolates from cooling tower water were quite different from those of bath water.

  1. Silicon Nitride Plates for Turbine Blade Application: FEA and NDE Assessment

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Engine manufacturers are continually attempting to improve the performance and the overall efficiency of internal combustion engines. The thermal efficiency is typically improved by raising the operating temperature of essential engine components in the combustion area. This reduces the heat loss to a cooling system and allows a greater portion of the heat to be used for propulsion. Further improvements can be achieved by diverting part of the air from the compressor, which would have been used in the combustor for combustion purposes, into the turbine components. Such a process is called active cooling. Increasing the operating temperature, decreasing the cooling air, or both can improve the efficiency of the engine. Furthermore, lightweight, strong, tough hightemperature materials are required to complement efficiency improvement for nextgeneration gas turbine engines that can operate with minimum cooling. Because of their low-density, high-temperature strength, and thermal conductivity, ceramics are being investigated as potential materials for replacing ordinary metals that are currently used for engine hot section components. Ceramic structures can withstand higher operating temperatures and other harsh environmental factors. In addition, their low densities relative to metals helps condense component mass (ref. 1). The objectives of this program at the NASA Glenn Research Center are to develop manufacturing technology, a thermal barrier coating/environmental barrier coating (TBC/EBC), and an analytical modeling capability to predict thermomechanical stresses, and to do minimal burner rig tests of silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Furthermore, and in support of the latter objectives, an optimization exercise using finite element analysis and nondestructive evaluation (NDE) was carried out to characterize and evaluate silicon nitride plates with cooling channels.

  2. Analysis of Radiant Cooling System Configurations Integrated with Cooling Tower for Different Indian Climatic Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Jyotirmay; Bhandari, Mahabir S; Jain, Robin

    Radiant cooling system has proven to be a low energy consumption system for building cooling needs. This study describes the use of cooling tower in radiant cooling system to improve the overall system efficiency. A comprehensive simulation feasibility study of the application of cooling tower in radiant cooling system was performed for the fifteen cities in different climatic zones of India. It was found that in summer, the wet bulb temperature (WBT) of the different climatic zones except warm-humid is suitable for the integration of cooling tower with radiant cooling system. In these climates, cooling tower can provide on averagemore » 24 C to 27 C water In order to achieve the energy saving potential, three different configurations of radiant cooling system have been compared in terms of energy consumption. The different configurations of the radiant cooling system integrated with cooling tower are: (1) provide chilled water to the floor, wall and ceiling mounted tubular installation. (2) provide chilled water to the wall and ceiling mounted tabular installation. In this arrangement a separate chiller has also been used to provide chilled water at 16 C to the floor mounted tubular installation. (3) provide chilled water to the wall mounted tabular installation and a separate chiller is used to provide chilled water at 16 C to the floor and ceiling mounted tabular installation. A dedicated outdoor air system is also coupled for dehumidification and ventilation in all three configurations. A conventional all-air system was simulated as a baseline to compare these configurations for assessing the energy saving potential.« less

  3. Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling.

    PubMed

    Perano, Kristen M; Usack, Joseph G; Angenent, Largus T; Gebremedhin, Kifle G

    2015-08-01

    The objective of this research was to test the effectiveness of conductive cooling in alleviating heat stress of lactating dairy cows. A conductive cooling system was built with waterbeds (Dual Chamber Cow Waterbeds, Advanced Comfort Technology Inc., Reedsburg, WI) modified to circulate chilled water. The experiment lasted 7 wk. Eight first-lactation Holstein cows producing 34.4±3.7kg/d of milk at 166±28 d in milk were used in the study. Milk yield, dry matter intake (DMI), and rectal temperature were recorded twice daily, and respiration rate was recorded 5 times per day. During wk 1, the cows were not exposed to experimental heat stress or conductive cooling. For the remaining 6 wk, the cows were exposed to heat stress from 0900 to 1700h each day. During these 6 wk, 4 of the 8 cows were cooled with conductive cooling (experimental cows), and the other 4 were not cooled (control cows). The study consisted of 2 thermal environment exposures (temperature-humidity index mean ± standard deviation of 80.7±0.9 and 79.0±1.0) and 2 cooling water temperatures (circulating water through the water mattresses at temperatures of 4.5°C and 10°C). Thus, a total of 4 conductive cooling treatments were tested, with each treatment lasting 1 wk. During wk 6, the experimental and control cows were switched and the temperature-humidity index of 79.0±1.0 with 4.5°C cooling water treatment was repeated. During wk 7, waterbeds were placed directly on concrete stalls without actively cooling the water. Least squares means and P-values for the different treatments were calculated with multivariate mixed models. Conductively cooling the cows with 4.5°C water decreased rectal temperature by 1.0°C, decreased respiration rate by 18 breaths/min, increased milk yield by 5%, and increased DMI by 14% compared with the controls. When the results from the 2 cooling water temperatures (4.5°C and 10°C circulating water) were compared, we found that the rectal temperature from 4.5°C cooling water was 0.3°C lower than the rectal temperature with 10°C cooling water, but the other measurements (respiration rate, milk production, and DMI) did not show a statistically significant difference between the cooling water temperatures. Placing waterbeds on concrete stalls without additional cooling did not have a measurable effect in alleviating the heat stress of the cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  5. Monitoring and Mapping Off-Channel Water Quality in the Willamette River, Oregon

    NASA Astrophysics Data System (ADS)

    Buccola, N. L.; Rounds, S. A.; Smith, C.; Anderson, C.; Jones, K.; Mangano, J.; Wallick, R.

    2016-12-01

    The floodplain of the Willamette River in northwestern Oregon includes remnant slower-moving sloughs, side-channels, and alcoves that provide rearing habitat and potential cool-water sources for native cold-water fish species, such as the federally threatened Chinook salmon. The mapping and characterization of the hydraulics and water sources of these off-channel areas is the first step toward protecting and restoring these resources for future generations. A primary focus of this study is to determine how flow management can increase the habitat value of these off-channel areas, especially during summer low-flow periods when water temperatures in the main channel regularly exceed lethal temperatures for salmonids. The U.S. Geological Survey, in cooperation with U.S. Army Corps of Engineers and Oregon State University, has been measuring the characteristics of off-channel water quality in the Willamette River under a variety of water levels in summer 2015-16. About 30 diverse off-channel sites within the Willamette floodplain are being monitored and compared with conditions in the main channel. Hourly water temperature, conductivity, and dissolved oxygen (DO) data are being collected at a subset of these sites. Some deep off-channel pools have substantial, consistent cool-water inflows that can dominate locally, allowing them to function as cold-water refuges for salmonids at varying mainstem Willamette flows. Other sloughs have varying characteristics due to intermittent connections to the main channel, depending on river levels. A vibrant community of algae and aquatic macrophytes often coincide with thick layers of fine sediment or organic detritus near the bed, producing low DO zones (<5 mg/L) in many slower-moving off-channel areas. We propose some preliminary hydro-geomorphic categories to better explain cool inflows as sourced from regional groundwater aquifers or localized subsurface river features. A better understanding of the processes governing the presence, location, and type of cold-water refuge areas in a large gravel bed river such as the Willamette River will help inform and guide habitat management and restoration strategies.

  6. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1992-01-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  7. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Owen

    1992-05-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  8. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  9. Cooling Water Intakes

    EPA Pesticide Factsheets

    Industries use large volumes of water for cooling. The water intakes pull large numbers of fish and other organisms into the cooling systems. EPA issues regulations on intake structures in order to minimize adverse environmental impacts.

  10. Real-Time Closed Loop Modulated Turbine Cooling

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Culley, Dennis E.; Eldridge, Jeffrey; Jones, Scott; Woike, Mark; Cuy, Michael

    2014-01-01

    It has been noted by industry that in addition to dramatic variations of temperature over a given blade surface, blade-to-blade variations also exist despite identical design. These variations result from manufacturing variations, uneven wear and deposition over the life of the part as well as limitations in the uniformity of coolant distribution in the baseline cooling design. It is proposed to combine recent advances in optical sensing, actuation, and film cooling concepts to develop a workable active, closed-loop modulated turbine cooling system to improve by 10 to 20 the turbine thermal state over the flight mission, to improve engine life and to dramatically reduce turbine cooling air usage and aircraft fuel burn. A reduction in oxides of nitrogen (NOx) can also be achieved by using the excess coolant to improve mixing in the combustor especially for rotorcraft engines. Recent patents filed by industry and universities relate to modulating endwall cooling using valves. These schemes are complex, add weight and are limited to the endwalls. The novelty of the proposed approach is twofold 1) Fluidic diverters that have no moving parts are used to modulate cooling and can operate under a wide range of conditions and environments. 2) Real-time optical sensing to map the thermal state of the turbine has never been attempted in realistic engine conditions.

  11. Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes

    NASA Astrophysics Data System (ADS)

    Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu

    In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.

  12. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    NASA Astrophysics Data System (ADS)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  13. Effect of Dissolved NaC1 on Freezing Curves of Kaolinite, Montmorillonite, and Sand Pastes,

    DTIC Science & Technology

    1999-01-01

    test this procedure. Pastes of kaolinite clay, montmorillonite , and quartz sand were prepared by washing repeatedly with aque- ous solutions of 0.1...Cold Regions Research & Engineering Laboratory Effect of Dissolved NaCI on Freezing Curves of Kaolinite , Montmorillonite , and Sand Pastes S.A...of kaolinite pastes warmed from -66.6°C to 0°C 8 4. Unfrozen-water contents, as measured by pulsed NMR, of montmorillonite pastes cooled from 0

  14. 4. Credit GE. Photographic copy of photograph, looking northeast into ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit GE. Photographic copy of photograph, looking northeast into 'A' stand flame trench as seen from the southeast corner of 'A' stand foundation. The concrete construction at the bottom of the trench is a water pond with sump for cooling rocket engine plumes before they blow into the desert to the east. (JPL negative no. 383-940-B, 29 August 1945) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  15. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  16. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  17. Allison V–1710 Engine on a Dynamotor Stand in the Engine Research Building

    NASA Image and Video Library

    1943-03-21

    The first research assignment specifically created for the National Advisory Committee for Aeronautics’ (NACA) new Aircraft Engine Research Laboratory was the integration of a supercharger into the Allison V–1710 engine. The military was relying on the liquid-cooled V–1710 to power several types of World War II fighter aircraft and wanted to improve the engine's speed and altitude performance. Superchargers forced additional airflow into the combustion chamber, which increased the engine’s performance resulting in greater altitudes and speeds. They also generated excess heat that affected the engine cylinders, oil, and fuel. In 1943 the military tasked the new Aircraft Engine Research Laboratory to integrate the supercharger, improve the cooling system, and remedy associated engine knock. Three Allison engines were provided to the laboratory’s research divisions. One group was tasked with improving the supercharger performance, another analyzed the effect of the increased heat on knock in the fuel, one was responsible for improving the cooling system, and another would install the new components on the engine with minimal drag penalties. The modified engines were installed on this 2000-horsepower dynamotor stand in a test cell within the Engine Research Building. The researchers could run the engine at different temperatures, fuel-air ratios, and speeds. When the modifications were complete, the improved V–1710 was flight tested on a P–63A Kingcobra loaned to the NACA for this project.

  18. Influence of Cooling Channel Geometry on the Thermal Response in Silicon Nitride Plates Studied

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Baaklini, George Y.

    2002-01-01

    Engine manufacturers are continually attempting to improve the performance and efficiency of internal combustion engines. Usually they raise the operating temperature or reduce the cooling air requirement for the hot section turbine components. However, the success of these attempts depends on finding materials that are lightweight, are strong, and can withstand high temperatures. Ceramics are among the top candidate materials considered for such harsh applications. They hold low-density, high-temperature strength, and thermal conductivity, and they are undergoing investigation as potential materials for replacing nickel-base alloys and superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass. The long-term objectives of the High Temperature Propulsion Components (HOTPC) Project are to develop manufacturing technology, thermal and environmental barrier coatings (TBC/EBC), and the analytical modeling capability to predict thermomechanical stresses in minimally cooled silicon nitride turbine nozzle vanes under simulated engine conditions. Two- and three-dimensional finite element analyses with TBC were conducted at the NASA Glenn Research Center. Nondestructive evaluation was used to determine processing defects. The study included conducting preliminary parametric analytical runs of heat transfer and stress analyses under steady-state conditions to demonstrate the feasibility of using cooled Si3N4 parts for turbine applications. The influence of cooling-channel shapes (such as circular, square, and ascending-order cooling channels) on cooling efficiency and thermal stresses was investigated. Temperature distributions were generated for all cases considered under both cooling and no-cooling conditions, with air being the cooling medium. The table shows the magnitude of the maximum and minimum temperature obtained for the plates under air cooling. Each channel's cross-sectional shape delivered a different temperature; however, the two-dimensional analyses for circular and square or equal-side rectangular holes produced close results. Moreover, the model of the panel with ascending order cooling channels experienced the lowest temperature. A difference of near 260 C was found among the three cooling-hole configurations investigated. The ascending-order cooling channels arrangement showed superior performance by attaining the lowest temperature (1077 C) in comparison to the circular (1379 C) and square (1343 C) channels for the same cooling-hole size. This indicates that the panel with ascending-order cooling channels is the most suitable configuration regardless of the complexity involved in its manufacture. More details pertaining to this study are reported.

  19. A Comparison of Film Cooling Techniques in a High Speed, True Scale, Fully Cooled Turbine Vane Ring

    DTIC Science & Technology

    2007-06-01

    configurations in a true scale turbine vane for three proprietary airfoil designs. The measurements for this study were taken at the United States Air...and Background Gas Turbine Film Cooling Gas turbine engines have become an integral part of our society as we use them to propel our aircraft ...and naval vessels as well as generate electricity. Ever since Frank Whittle first applied for a patent on his turbojet engine in 1929, turbine

  20. Cooling techniques for turbojet pre-heater channels

    NASA Astrophysics Data System (ADS)

    Desaulty, M.; Troullot, P.; Coutor, S.

    1985-09-01

    Increases in the performance of turbojets with pre-heating are dependent upon technological research in the area of protection of the wall in pre-heater channels. The procedures used to cool the thermal protection jackets have undergone important improvements which have optimized performance, reduced weight and improved cooling efficiency. This report presents a comparison of the thermal protection jackets for several SNECMA engines, as well as the principal stages of development for the jacket from the design stages through static engines tests.

  1. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  2. Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardono, B.; Nelson, R.M.

    The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less

  3. Task 12 data dump (phase 2) OME integrated thrust chamber test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.; Pauckert, R. P.

    1974-01-01

    The characteristics and performance of the orbit maneuvering engine for the space shuttle are discussed. Emphasis is placed on the regeneratively cooled thrust chamber of the engine. Tests were conducted to determine engine operating parameters during the start, shutdown, and restart. Characteristics of the integrated thrust chamber and the performance and thermal conditions for blowdown operation without supplementary boundary layer cooling were investigated. The results of the test program are presented.

  4. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  5. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  6. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  7. An experimental investigation on liquid methane heat transfer enhancement through the use of longitudinal fins in cooling channels

    NASA Astrophysics Data System (ADS)

    Galvan, Manuel de Jesus

    In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not observed in the channel that had the fins with the highest height. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for the channels studies. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction factor for both the boiling and non-boiling regimes.

  8. Cooling Characteristics of a 2-Row Radial Engine

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Rollin, Vern G

    1937-01-01

    This report presents the results of cooling tests conducted on a calibrated GR-1535 Pratt and Whitney Wasp, Jr. Engine installed in a Vought X04U-2 airplane. The tests were made in the NACA full-scale tunnel at air speeds from 70 to 120 miles per hour, at engine speeds from 1,500 to 2,600 r.p.m., and at manifold pressures from 19 to 33 inches of mercury absolute. A Smith controllable propeller was used to facilitate obtaining the different combinations of engine speed, power, and manifold pressure.

  9. Liner cooling research at NASA Lewis Research Center. [for gas turbine combustion chambers

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.

    1987-01-01

    Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.

  10. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  11. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  12. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  13. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  14. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  15. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number turbulence model to accurately predict details of heat transfer.

  16. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  17. Liquid rocket engine nozzles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.

  18. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  19. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  20. The effects of cooling systems on CO2-lased human enamel.

    PubMed

    Lian, H J; Lan, W H; Lin, C P

    1996-12-01

    The thermal effects on dentin during CO2 laser irradiation on human enamel were investigated. To simulate the clinical practice, two cooling methods (air and water spray) were applied immediately after laser exposure, whereas one group without cooling was served as control. Three hundred and sixty uniform tooth blocks were obtained from freshly extracted human third molars. Temperature change measurements were made via electrical thermocouple implanted within the tooth block 2 mm away from the enamel surface. Experimental treatments consisted of lasing without cooling, lasing with 0.5-ml/sec water cooling, and lasing with 15-psi air cooling. Our results indicated that (1) both air- and water-cooling groups could reduce temperature elevation significantly; (2) the larger power energy resulted in the higher temperature elevation. In conclusion, for CO2 laser irradiation on human enamel both water- and air-cooling methods may be effective on prevention of thermal damage of pulp.

Top