Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Cargos Rotate at Microtubule Intersections during Intracellular Trafficking.
Gao, Yuan; Anthony, Stephen M; Yu, Yanqi; Yi, Yi; Yu, Yan
2018-06-19
Intracellular cargos are transported by molecular motors along actin and microtubules, but how their dynamics depends on the complex structure of the cytoskeletal network remains unclear. In this study, we investigated this longstanding question by measuring simultaneously the rotational and translational dynamics of cargos at microtubule intersections in living cells. We engineered two-faced particles that are fluorescent on one hemisphere and opaque on the other and used their optical anisotropy to report the rotation of cargos. We show that cargos undergo brief episodes of unidirectional and rapid rotation while pausing at microtubule intersections. Probability and amplitude of the cargo rotation depend on the geometry of the intersecting filaments. The cargo rotation is not random motion due to detachment from microtubules, as revealed by statistical analyses of the translational and rotational dynamics. Instead, it is an active rotation driven by motor proteins. Although cargos are known to pause at microtubule intersections, this study reveals a different dimension of dynamics at this seemingly static state and, more importantly, provides direct evidence showing the correlation between cargo rotation and the geometry of underlying microtubule intersections. Copyright © 2018 Biophysical Society. All rights reserved.
Local synaptic signaling enhances the stochastic transport of motor-driven cargo in neurons
NASA Astrophysics Data System (ADS)
Newby, Jay; Bressloff, Paul C.
2010-09-01
The tug-of-war model of motor-driven cargo transport is formulated as an intermittent trapping process. An immobile trap, representing the cellular machinery that sequesters a motor-driven cargo for eventual use, is located somewhere within a microtubule track. A particle representing a motor-driven cargo that moves randomly with a forward bias is introduced at the beginning of the track. The particle switches randomly between a fast moving phase and a slow moving phase. When in the slow moving phase, the particle can be captured by the trap. To account for the possibility that the particle avoids the trap, an absorbing boundary is placed at the end of the track. Two local signaling mechanisms—intended to improve the chances of capturing the target—are considered by allowing the trap to affect the tug-of-war parameters within a small region around itself. The first is based on a localized adenosine triphosphate (ATP) concentration gradient surrounding a synapse, and the second is based on a concentration of tau—a microtubule-associated protein involved in Alzheimer's disease—coating the microtubule near the synapse. It is shown that both mechanisms can lead to dramatic improvements in the capture probability, with a minimal increase in the mean capture time. The analysis also shows that tau can cause a cargo to undergo random oscillations, which could explain some experimental observations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pierced by fixed lights, drive shafts, and pump-engine control rods, provided that the shafts and rods are... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo handling devices or cargo pump rooms handling... OSVs § 111.106-13 Cargo handling devices or cargo pump rooms handling flammable or combustible cargoes...
Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments
Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Månsson, Alf; Kocer, Armagan
2013-01-01
Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments (“side-attached”) or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10–50 streptavidin molecules, 1–10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy. PMID:23437074
Tsai, Wen-Chyan; Rizvi, Syed S H
2017-06-01
A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.
Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin
2015-08-28
In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two "legs" for walking. The hydrogel walkers can reversibly bend and stretch via repeated "on/off" electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two "legs" to achieve one-directional walking motion on a rough surface via repeated "on/off" electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.
Engineered tug-of-war between kinesin and dynein controls direction of microtubule transport in vivo
Rezaul, Karim; Gupta, Dipika; Semenova, Irina; Ikeda, Kazuho; Kraikivski, Pavel; Yu, Ji; Cowan, Ann; Zaliapin, Ilya; Rodionov, Vladimir
2017-01-01
Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug-of-war between opposing MT motors alone, by attaching large number of kinesin-1 motors to organelles transported by dynein to minus-ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus-end-directed dynein-dependent MT runs, leading to a reversal of the overall direction of dynein-driven organelles in vivo. Therefore in the absence of external regulators tug-of-war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo. PMID:26843027
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... Pollution Control Standards; Mobile Cargo Handling Equipment Regulation at Ports and Intermodal Rail Yards... EPA that it has adopted regulations for mobile cargo handling equipment at ports and intermodal rail yards (Mobile Cargo [[Page 5587
Launch Deployment Assembly Human Engineering Analysis
NASA Technical Reports Server (NTRS)
Loughead, T.
1996-01-01
This report documents the human engineering analysis performed by the Systems Branch in support of the 6A cargo element design. The human engineering analysis is limited to the extra vehicular activities (EVA) which are involved in removal of various cargo items from the LDA and specific activities concerning deployment of the Space Station Remote Manipulator System (SSRMS).
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Barreiro, Amelia; Rurali, Riccardo; Hernández, Eduardo R.; Moser, Joel; Pichler, Thomas; Forró, László; Bachtold, Adrian
2008-05-01
An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.
46 CFR 153.525 - Special requirements for unusually toxic cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... from the weatherdeck. (d) A heat transfer system for the cargo must: (1) Be independent of other ship service systems, except for other cargo heat transfer systems, and not enter the engine room; (2) Be...
46 CFR 153.525 - Special requirements for unusually toxic cargoes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... from the weatherdeck. (d) A heat transfer system for the cargo must: (1) Be independent of other ship service systems, except for other cargo heat transfer systems, and not enter the engine room; (2) Be...
46 CFR 151.05-1 - Explanation of column headings in Table 151.05.
Code of Federal Regulations, 2010 CFR
2010-10-01
... cargo by the temperature of the cargo during transit. (1) Ambient temperature. Cargo which is carried at... engineering) of this chapter. (p) Temperature control installations. This column refers to systems which are...
2011-03-19
A team of engineers from NASA's John C. Stennis Space Center, Orbital Sciences Corporation and Aerojet conduct a successful test of an Aerojet AJ26 rocket engine on March 19. Stennis is testing AJ26 engines for Orbital Sciences to power commercial cargo missions to the International Space Station. Orbital has partnered with NASA through the Commercial Orbital Transportation Services initiative to carry out eight cargo missions to the space station by 2015, using Taurus II rockets.
Characterizing Complexity of Containerized Cargo X-ray Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guangxing; Martz, Harry; Glenn, Steven
X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.
46 CFR 64.89 - Cargo pump unit.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c) The...
46 CFR 64.89 - Cargo pump unit.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c) The...
46 CFR 64.89 - Cargo pump unit.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c) The...
46 CFR 64.89 - Cargo pump unit.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c) The...
NanoShuttles: Harnessing Motor Proteins to Transport Cargo in Synthetic Environments
NASA Astrophysics Data System (ADS)
Vogel, V.; Hess, H.
Motors have become a crucial commodity in our daily lives, from transportation to driving conveyor belts that enable the sequential assembly of cars and other industrial machines. For the sequential assembly of building blocks at the nanoscale that would not assemble spontaneously into larger functional systems, however, active transport systems are not yet available. In contrast, cells have evolved sophisticated molecular machinery that drives movement and active transport. Driven by the conversion of chemical into mechanical energy, namely through hydrolysis of the biological fuel ATP, molecular motors enable cells to operate far away from equilibrium by transporting organelles and molecules to designated locations within the cell, often against concentration gradients. Inspired by the biological concept of active transport, major efforts are underway to learn how to build nanoscale transport systems that are driven by molecular motors. Emerging engineering principles are discussed of how to build tracks and junctions to guide such nanoshuttles, how to load them with cargo and control their speed, how to use active transport to assemble mesoscopic structures that would otherwise not assemble spontaneously and what polymeric materials to choose to integrate motors into MEMS and other biohybrid devices. Finally, two applications that exploit the physical properties of microtubules are discussed, surface imaging by a swarm of microtubules and a self-assembled picoNewton force meter to probe receptor-ligand interactions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... composed solely of container or refrigerated cargo vessels making fewer than twenty-five (25) visits to the.... \\7\\ ``Fleet'' means ``all container, passenger, and refrigerated cargo vessels, visiting a specific... of nitrogen and particulate matter from auxiliary diesel engines on container vessels, passenger...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
..., rents or leases any container vessel, passenger vessel, or refrigerated cargo vessel that visits any of...-Berth Regulation requires fleets of container vessels, passenger vessels and refrigerated cargo vessels... and particulate matter from auxiliary diesel engines on container vessels, passenger vessels and...
Polymers for Drug Delivery Systems
Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.
2012-01-01
Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577
46 CFR 162.050-25 - Cargo monitor: Design specification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Cargo monitor: Design specification. 162.050-25 Section 162.050-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-25 Cargo monitor: Design specification. (...
46 CFR 162.050-25 - Cargo monitor: Design specification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Cargo monitor: Design specification. 162.050-25 Section 162.050-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-25 Cargo monitor: Design specification. (...
46 CFR 13.509 - Eligibility: Cargo course.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Eligibility: Cargo course. 13.509 Section 13.509... TANKERMEN Requirements for âTankerman-Engineerâ Endorsement § 13.509 Eligibility: Cargo course. Each... course in DL or LG, appropriate for tankships and the endorsement applied for, approved by the Commandant...
46 CFR 13.509 - Eligibility: Cargo course.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Eligibility: Cargo course. 13.509 Section 13.509... TANKERMEN Requirements for âTankerman-Engineerâ Endorsement § 13.509 Eligibility: Cargo course. Each... course in DL or LG, appropriate for tankships and the endorsement applied for, approved by the Commandant...
46 CFR 13.509 - Eligibility: Cargo course.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Eligibility: Cargo course. 13.509 Section 13.509... TANKERMEN Requirements for âTankerman-Engineerâ Endorsement § 13.509 Eligibility: Cargo course. Each... course in DL or LG, appropriate for tankships and the endorsement applied for, approved by the Commandant...
46 CFR 13.509 - Eligibility: Cargo course.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Eligibility: Cargo course. 13.509 Section 13.509... TANKERMEN Requirements for âTankerman-Engineerâ Endorsement § 13.509 Eligibility: Cargo course. Each... course in DL or LG, appropriate for tankships and the endorsement applied for, approved by the Commandant...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... requirement for allowable peak secondary stresses for MC 331 cargo tanks. 4. Rational Design of Non-circular... the design, construction, and certification of cargo tank motor vehicles, cryogenic portable tanks and... CTMV: Cargo Tank Motor Vehicle DCE: Design Certifying Engineer FMCSA: Federal Motor Carrier Safety...
2010-12-17
John C. Stennis Space Center engineers conduct a 55-second test fire of Aerojet's liquid-fuel AJ26 rocket engine that will power the first stage of Orbital Sciences Corporation's Taurus II space launch vehicle. The Dec. 17, 2010 test was conducted on the E-1 Test Stand at Stennis in support of NASA's Commercial Transportation Services partnerships to enable commercial cargo flights to the International Space Station. Orbital is under contract with NASA to provide eight cargo missions to the space station through 2015.
Project LOCOST: Laser or Chemical Hybrid Orbital Space Transport
NASA Technical Reports Server (NTRS)
Dixon, Alan; Kost, Alicia; Lampshire, Gregory; Larsen, Rob; Monahan, Bob; Wright, Geoff
1990-01-01
A potential mission in the late 1990s is the servicing of spacecraft assets located in GEO. The Geosynchronous Operations Support Center (GeoShack) will be supported by a space transfer vehicle based at the Space Station (SS). The vehicle will transport cargo between the SS and the GeoShack. A proposed unmanned, laser or chemical hybrid orbital space transfer vehicle (LOCOST) can be used to efficiently transfer cargo between the two orbits. A preliminary design shows that an unmanned, laser/chemical hybrid vehicle results in the fuel savings needed while still providing fast trip times. The LOCOST vehicle receives a 12 MW laser beam from one Earth orbiting, solar pumped, iodide Laser Power Station (LPS). Two Energy Relay Units (ERU) provide laser beam support during periods of line-of-sight blockage by the Earth. The baseline mission specifies a 13 day round trip transfer time. The ship's configuration consist of an optical train, one hydrogen laser engine, two chemical engines, a 18 m by 29 m box truss, a mission-flexible payload module, and propellant tanks. Overall vehicle dry mass is 8,000 kg. Outbound cargo mass is 20,000 kg, and inbound cargo mass is 6,000 kg. The baseline mission needs 93,000 kg of propellants to complete the scenario. Fully fueled, outbound mission mass is 121,000 kg. A regeneratively cooled, single plasma, laser engine design producing a maximum of 768 N of thrust is utilized along with two traditional chemical engines. The payload module is designed to hold 40,000 kg of cargo, though the baseline mission specifies less. A proposed design of a laser/chemical hybrid vehicle provides a trip time and propellant efficient means to transport cargo from the SS to a GeoShack. Its unique, hybrid propulsion system provides safety through redundancy, allows baseline missions to be efficiently executed, while still allowing for the possibility of larger cargo transfers.
Diffusion-Limited Cargo Loading of an Engineered Protein Container.
Zschoche, Reinhard; Hilvert, Donald
2015-12-30
The engineered bacterial nanocompartment AaLS-13 is a promising artificial encapsulation system that exploits electrostatic interactions for cargo loading. In order to study its ability to take up and retain guests, a pair of fluorescent proteins was developed which allows spectroscopic determination of the extent of encapsulation by Förster resonance energy transfer (FRET). The encapsulation process is generally complete within a second, suggesting low energetic barriers for proteins to cross the capsid shell. Formation of intermediate aggregates upon mixing host and guest in vitro complicates capsid loading at low ionic strength, but can be sidestepped by increasing salt concentrations or diluting the components. Encapsulation of guests is completely reversible, and the position of the equilibrium is easily tuned by varying the ionic strength. These results, which challenge the notion that AaLS-13 is a continuous rigid shell, provide valuable information about cargo loading that will guide ongoing efforts to engineer functional host-guest complexes. Moreover, it should be possible to adapt the protein FRET pair described in this report to characterize functional capsid-cargo complexes generated by other encapsulation systems.
A Flight Examination of Operating Problems of V/STOL Aircraft in STOL-Type Landing and Approach
NASA Technical Reports Server (NTRS)
Innis, Robert C.; Quigley, Hervey C.
1961-01-01
A flight investigation has been conducted using a large twin-engine cargo aircraft to isolate the problems associated with operating propeller-driven aircraft in the STOL speed range where appreciable engine power is used to augment aerodynamic lift. The problems considered would also be representative of those of a large overloaded VTOL aircraft operating in an STOL manner with comparable thrust-to-weight ratios. The study showed that operation at low approach speeds was compromised by the necessity of maintaining high thrust to generate high lift and yet achieving the low lift-drag ratios needed for steep descents. The useable range of airspeed and flight path angle was limited by the pilot's demand for a positive climb margin at the approach speed, a suitable stall margin, and a control and/or performance margin for one engine inoperative. The optimum approach angle over an obstacle was found to be a compromise between obtaining the shortest air distance and the lowest touchdown velocity. In order to realize the greatest low-speed potential from STOL designs, the stability and control characteristics must be satisfactory.
IP-1 Certification of Cargo Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagler, Lisle
The purpose and scope of this engineering note is to demonstrate that the structural design of the cargo container complies with the IP-1 container requirements of 49 CFR 173.410 as required by CFR 173.411.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of rating or cadet service on deck or in the engine department on oil tankers; or (iii) A combination... advanced oil tanker cargo operations. 13.603 Section 13.603 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Endorsements § 13.603 Requirements to qualify for an STCW endorsement for advanced oil tanker cargo operations...
NASA Technical Reports Server (NTRS)
Byrd, Thomas D.; Kynard, Michael .
2007-01-01
NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.
A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.
Hung, Michelle E; Leonard, Joshua N
2016-01-01
Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.
NASA Technical Reports Server (NTRS)
Bryant, Rodney (Compiler); Dillon, Jennifer (Compiler); Grewe, George (Compiler); Mcmorrow, Jim (Compiler); Melton, Craig (Compiler); Rainey, Gerald (Compiler); Rinko, John (Compiler); Singh, David (Compiler); Yen, Tzu-Liang (Compiler)
1990-01-01
A design for a manned Mars mission, PROJECT EXODUS is presented. PROJECT EXODUS incorporates the design of a hypersonic waverider, cargo ship and NIMF (nuclear rocket using indigenous Martian fuel) shuttle lander to safely carry out a three to five month mission on the surface of Mars. The cargo ship transports return fuel, return engine, surface life support, NIMF shuttle, and the Mars base to low Mars orbit (LMO). The cargo ship is powered by a nuclear electric propulsion (NEP) system which allows the cargo ship to execute a spiral trajectory to Mars. The waverider transports ten astronauts to Mars and back. It is launched from the Space Station with propulsion provided by a chemical engine and a delta velocity of 9 km/sec. The waverider performs an aero-gravity assist maneuver through the atmosphere of Venus to obtain a deflection angle and increase in delta velocity. Once the waverider and cargo ship have docked the astronauts will detach the landing cargo capsules and nuclear electric power plant and remotely pilot them to the surface. They will then descend to the surface aboard the NIMF shuttle. A dome base will be quickly constructed on the surface and the astronauts will conduct an exploratory mission for three to five months. They will return to Earth and dock with the Space Station using the waverider.
Coupling of active motion and advection shapes intracellular cargo transport.
Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E
2012-07-13
Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.
How neurosecretory vesicles release their cargo.
Scalettar, Bethe A
2006-04-01
Neurons and related cell types often contain two major classes of neurosecretory vesicles, synaptic vesicles (SVs) and dense-core granules (DCGs), which store and release distinct cargo. SVs store and release classic neurotransmitters, which facilitate propagation of action potentials across the synaptic cleft, whereas DCGs transport, store, and release hormones, proteins, and neuropeptides, which facilitate neuronal survival, synaptic transmission, and learning. Over the past few years, there has been a major surge in our understanding of many of the key molecular mechanisms underlying cargo release from SVs and DCGs. This surge has been driven largely by the use of fluorescence microscopy (especially total internal reflection fluorescence microscopy) to visualize SVs or DCGs in living cells. This review highlights some of the recent insights into cargo release from neurosecretory vesicles provided by fluorescence microscopy, with emphasis on DCGs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous... cargoes. (a) This section applies to locations surrounding the storage and handling of combustible liquid... hazardous locations in § 111.106-9 of this subpart apply. ...
Acting Administrator Lightfoot Visits Sierra Nevada Corporation
2017-04-06
Acting NASA Deputy Administrator Lesa Roe, left, and acting NASA Administrator Robert Lightfoot, right, listen as Alec Devereaux, a systems engineer with Sierra Nevada Corporation, right, discusses the Flight Control Integration Lab (FCIL), Thursday, April 6, 2017 during a visit to Sierra Nevada Corporation in Louisville, Colo. Sierra Nevada Corporation, with their Dream Chaser Cargo System, was one of three companies to be awarded Commercial Resupply Services (CRS-2) contracts designed to obtain cargo delivery services to the space station, disposal of unneeded cargo, and the return of research samples and other cargo from the station back to NASA. Photo Credit: (NASA/Joel Kowsky)
2011-02-07
NASA Administrator Charles Bolden (l) and John C. Stennis Space Center Director Patrick Scheuermann watch the successful test of the first Aerojet AJ26 flight engine Feb. 7, 2011. The test was conducted on the E-1 Test Stand at Stennis. The engine now will be sent to Wallops Flight Facility in Virginia, where it will be used to power the first stage of Orbital Sciences Corporation's Taurus II space vehicle. The Feb. 7 test supports NASA's commitment to partner with companies to provide commercial cargo flights to the International Space Station. NASA has partnered with Orbital to carry out the first of eight cargo missions to the space station in early 2012.
ADP SYSTEMS ANALYSIS - COMMITTED VS. AVAILABLE MILITARY TRANSPORTATION (LMI T1).
LOGISTICS , * MANAGEMENT ENGINEERING), (*DATA PROCESSING, LOGISTICS), INFORMATION RETRIEVAL, SYSTEMS ENGINEERING, MILITARY TRANSPORTATION, CARGO VEHICLES, SCHEDULING, COMPUTER PROGRAMMING, MANAGEMENT PLANNING AND CONTROL
Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells.
Mondal, Payel; Khamo, John S; Krishnamurthy, Vishnu V; Cai, Qi; Zhang, Kai
2017-01-01
Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer's disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, K. M.; Santini, D. J.; Anderson, J. L.
2008-01-01
This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination).more » Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
..., measured parallel to the centerline. \\2\\ Subchapters E (Load Lines), F (Marine Engineering), J (Electrical Engineering), N (Dangerous Cargoes), S (Subdivision and Stability), and W (Lifesaving Appliances and...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING..., U.S. Coast Guard Marine Safety Center, receives an application for approval on or before May 1, 1991. (b) Subpart F of this part also applies to portable tanks and to cargo-handling systems for portable...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS General § 64.3 Applicability. (a) This part applies to each MPT for which the Commanding Officer.... (b) Subpart F of this part also applies to portable tanks and to cargo-handling systems for portable...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS General § 64.3 Applicability. (a) This part applies to each MPT for which the Commanding Officer.... (b) Subpart F of this part also applies to portable tanks and to cargo-handling systems for portable...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS General § 64.3 Applicability. (a) This part applies to each MPT for which the Commanding Officer.... (b) Subpart F of this part also applies to portable tanks and to cargo-handling systems for portable...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS General § 64.3 Applicability. (a) This part applies to each MPT for which the Commanding Officer.... (b) Subpart F of this part also applies to portable tanks and to cargo-handling systems for portable...
Microemulsion-Based Soft Bacteria-Driven Microswimmers for Active Cargo Delivery.
Singh, Ajay Vikram; Hosseinidoust, Zeinab; Park, Byung-Wook; Yasa, Oncay; Sitti, Metin
2017-10-24
Biohybrid cell-driven microsystems offer unparalleled possibilities for realization of soft microrobots at the micron scale. Here, we introduce a bacteria-driven microswimmer that combines the active locomotion and sensing capabilities of bacteria with the desirable encapsulation and viscoelastic properties of a soft double-micelle microemulsion for active transport and delivery of cargo (e.g., imaging agents, genes, and drugs) to living cells. Quasi-monodisperse double emulsions were synthesized with an aqueous core that encapsulated the fluorescence imaging agents, as a proof-of-concept cargo in this study, and an outer oil shell that was functionalized with streptavidin for specific and stable attachment of biotin-conjugated Escherichia coli. Motile bacteria effectively propelled the soft microswimmers across a Transwell membrane, actively delivering imaging agents (i.e., dyes) encapsulated inside of the micelles to a monolayer of cultured MCF7 breast cancer and J744A.1 macrophage cells, which enabled real-time, live-cell imaging of cell organelles, namely mitochondria, endoplasmic reticulum, and Golgi body. This in vitro model demonstrates the proof-of-concept feasibility of the proposed soft microswimmers and offers promise for potential biomedical applications in active and/or targeted transport and delivery of imaging agents, drugs, stem cells, siRNA, and therapeutic genes to live tissue in in vitro disease models (e.g., organ-on-a-chip devices) and stagnant or low-flow-velocity fluidic regions of the human body.
Effect of fuel concentration on cargo transport by a team of Kinesin motors
NASA Astrophysics Data System (ADS)
Takshak, Anjneya; Mishra, Nirvantosh; Kulkarni, Aditi; Kunwar, Ambarish
2017-02-01
Eukaryotic cells employ specialized proteins called molecular motors for transporting organelles and vesicles from one location to another in a regulated and directed manner. These molecular motors often work collectively in a team while transporting cargos. Molecular motors use cytoplasmic ATP as fuel, which is hydrolyzed to generate mechanical force. While the effect of ATP concentration on cargo transport by single Kinesin motor function is well understood, it is still unexplored, both theoretically and experimentally, how ATP concentration would affect cargo transport by a team of Kinesin motors. For instance, how does fuel concentration affect the travel distances and travel velocities of cargo? How cooperativity of Kinesin motors engaged on a cargo is affected by ATP concentration? To answer these questions, here we develop mechano-chemical models of cargo transport by a team of Kinesin motors. To develop these models we use experimentally-constrained mechano-chemical model of a single Kinesin motor as well as earlier developed mean-field and stochastic models of load sharing for cargo transport. Thus, our new models for cargo transport by a team of Kinesin motors include fuel concentration explicitly, which was not considered in earlier models. We make several interesting predictions which can be tested experimentally. For instance, the travel distances of cargos are very large at limited ATP concentrations in spite of very small travel velocity. Velocities of cargos driven by multiple Kinesin have a Michaelis-Menten dependence on ATP concentration. Similarly, cooperativity among the engaged Kinesin motors on the cargo shows a Michaelis-Menten type dependence, which attains a maximum value near physiological ATP concentrations. Our new results can be potentially useful in controlling artificial nano-molecular shuttles precisely for targeted delivery in various nano-technological applications.
1989-01-01
In this 1989 artist's concept, the Shuttle-C floats in space with its cargo bay doors open. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Oribiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay length of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
Space Station Crew Bids Farewell to U.S. Commercial Cargo Spaceship
2017-12-06
Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA used the Canadian-built robotic arm to release the Orbital ATK Cygnus resupply spacecraft three weeks after its arrival to bring some three tons of supplies and experiments to the orbital complex. Dubbed the "SS Gene Cernan," the Cygnus cargo ship will remain in orbit for almost two weeks conducting engineering tests before it is deorbited on Dec. 18 to burn up harmlessly in the Earth's atmosphere over the Pacific Ocean.
2011-11-17
A team of engineers at Stennis Space Center conducted a test firing of an Aerojet AJ26 flight engine Nov. 17, providing continued support to Orbital Sciences Corporation as it prepares to launch commercial cargo missions to the International Space Station. AJ26 engines will power Orbital's Taurus II rocket on the missions.
2012-06-25
NASA engineers tested an Aerojet AJ26 rocket engine on the E-1 Test Stand at Stennis Space Center on June 25, 2012, against the backdrop of the B-1/B-2 Test Stand. The engine will be used by Orbital Sciences Corporation to power commercial cargo flights to the International Space Station.
GSK-3 regulates transport of kinesin-1 driven cargos in vivo
NASA Astrophysics Data System (ADS)
Leidel, Christina; Weaver, Carole; Szpankowski, Lukasz; Goldstein, Lawrence S. B.; Shubeita, George T.; CenterNonlinear Dynamics, Department of Physics, University of Texas At Austin Collaboration; Hhmi, Department of Cellular; Molecular Medicine, Univ. Of California Collaboration
2011-03-01
The Glycogen Synthase Kinase 3 (GSK-3) has been linked to many aspects of the development of Alzheimer's disease and was proposed to play a role in the transport of the Amyloid Precursor Protein (APP) by kinesin-1 motors. Using Drosophila embryos and larvae with altered GSK-3 expression, we characterize motor transport of cargos including APP and lipid droplets using DIC microscopy, high-resolution video tracking, fluorescence, and in vivo stall force measurements with optical tweezers. By comparing cargo velocities and run lengths we find that GSK-3 is a required negative regulator of in vivo transport. Stall force measurements on lipid droplets reveal that enhanced transport under conditions of reduced GSK-3 is a result of a larger number of active motors hauling the cargo. Our findings have implications on the use of GSK-3 inhibitors in treatment of Alzheimer's disease.
A Hopping Mechanism for Cargo Transport by Molecular Motors on Crowded Microtubules
NASA Astrophysics Data System (ADS)
Goldman, Carla
2010-05-01
Most models designed to study the bidirectional movement of cargos as they are driven by molecular motors rely on the idea that motors of different polarities can be coordinated by external agents if arranged into a motor-cargo complex to perform the necessary work Gross, Hither and yon: a review of bidirectional microtubule-based transport (Gross in Phys. Biol. 1:R1-R11, 2004). Although these models have provided us with important insights into these phenomena, there are still many unanswered questions regarding the mechanisms through which the movement of the complex takes place on crowded microtubules. For example (i) how does cargo-binding affect motor motility? and in connection with that - (ii) how does the presence of other motors (and also other cargos) on the microtubule affect the motility of the motor-cargo complex? We discuss these questions from a different perspective. The movement of a cargo is conceived here as a hopping process resulting from the transference of cargo between neighboring motors. In the light of this, we examine the conditions under which cargo might display bidirectional movement even if directed by motors of a single polarity. The global properties of the model in the long-time regime are obtained by mapping the dynamics of the collection of interacting motors and cargos into an asymmetric simple exclusion process (ASEP) which can be resolved using the matrix ansatz introduced by Derrida (Derrida and Evans in Nonequilibrium Statistical Mechanics in One Dimension, pp. 277-304, 1997; Derrida et al. in J. Phys. A 26:1493-1517, 1993).
Code of Federal Regulations, 2010 CFR
2010-10-01
... transported under deck, provided the following requirements are met: (1) The cargo space shall be provided... in accordance with the requirements under which they were manufactured. (7) Electrical circuits in the cargo spaces must meet the hazardous area requirements in subchapter J (Electrical Engineering...
Integrated regulation of motor-driven organelle transport by scaffolding proteins.
Fu, Meng-meng; Holzbaur, Erika L F
2014-10-01
Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acting Administrator Lightfoot Visits Sierra Nevada Corporation
2017-04-06
Associate administrator of NASA's Office of International and Interagency Relations Al Condes, left, acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, center, listen as Jude Vrazel, a senior systems engineer at Sierra Nevada Corporation, right, discusses the Vehicle Avionics Integration Lab (VAIL), Thursday, April 6, 2017 during a visit to Sierra Nevada Corporation in Louisville, Colo. Sierra Nevada Corporation, with their Dream Chaser Cargo System, was one of three companies to be awarded Commercial Resupply Services (CRS-2) contracts designed to obtain cargo delivery services to the space station, disposal of unneeded cargo, and the return of research samples and other cargo from the station back to NASA. Photo Credit: (NASA/Joel Kowsky)
AJ26 engine testing moves forward
2010-07-19
Stennis employees at the E-1 Test Stand position an Aerojet AJ26 rocket engine in preparation for a series of early tests. Stennis has partnered with Orbital Sciences Corporation to test the rocket engine for the company's commercial cargo flights to the International Space Station.
40 CFR 63.11132 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... an internal combustion engine (including the fuel system) that is not used in a motor vehicle or a... internal combustion engines. Gasoline cargo tank means a delivery tank truck or railcar which is loading or... motor vehicle, motor vehicle engine, nonroad vehicle, or nonroad engine, including a nonroad vehicle or...
Advanced cargo aircraft may offer a potential renaissance in freight transportation
NASA Technical Reports Server (NTRS)
Morris, Shelby J.; Sawyer, Wallace C.
1993-01-01
The increasing demand for air freight transportation has prompted studies of large, aerodynamically efficient cargo-optimized aircraft capable of carrying intermodal containers, which are typically 8 x 8 x 20 ft. Studies have accordingly been conducted within NASA to ascertain the specifications and projected operating costs of such a vehicle, as well as to identify critical, development-pacing technologies. Attention is here given not only to the rather conventional, 10-turbofan engined configuration thus arrived at, but numerous innovative configurations featuring such concepts as spanloading, removable cargo pods, and ground effect.
Efficient in vitro encapsulation of protein cargo by an engineered protein container.
Wörsdörfer, Bigna; Pianowski, Zbigniew; Hilvert, Donald
2012-01-18
An engineered variant of lumazine synthase, a nonviral capsid protein with a negatively charged luminal surface, is shown to encapsulate up to 100 positively supercharged green fluorescent protein (GFP) molecules in vitro. Packaging can be achieved starting either from intact, empty capsids or from capsid fragments by incubation with cargo in aqueous buffer. The yield of encapsulated GFP correlates directly with the host/guest mixing ratio, providing excellent control over packing density. Facile in vitro loading highlights the unusual structural dynamics of this novel nanocontainer and should facilitate diverse biotechnological and materials science applications. © 2011 American Chemical Society
2017-01-01
Conspectus Microencapsulation is a fundamental concept behind a wide range of daily applications ranging from paints, adhesives, and pesticides to targeted drug delivery, transport of vaccines, and self-healing concretes. The beauty of microfluidics to generate microcapsules arises from the capability of fabricating monodisperse and micrometer-scale droplets, which can lead to microcapsules/particles with fine-tuned control over size, shape, and hierarchical structure, as well as high reproducibility, efficient material usage, and high-throughput manipulation. The introduction of supramolecular chemistry, such as host–guest interactions, endows the resultant microcapsules with stimuli-responsiveness and self-adjusting capabilities, and facilitates hierarchical microstructures with tunable stability and porosity, leading to the maturity of current microencapsulation industry. Supramolecular architectures and materials have attracted immense attention over the past decade, as they open the possibility to obtain a large variety of aesthetically pleasing structures, with myriad applications in biomedicine, energy, sensing, catalysis, and biomimicry, on account of the inherent reversible and adaptive nature of supramolecular interactions. As a subset of supramolecular interactions, host–guest molecular recognition involves the formation of inclusion complexes between two or more moieties, with specific three-dimensional structures and spatial arrangements, in a highly controllable and cooperative manner. Such highly selective, strong yet dynamic interactions could be exploited as an alternative methodology for programmable and controllable engineering of supramolecular architectures and materials, exploiting reversible interactions between complementary components. Through the engineering of molecular structures, assemblies can be readily functionalized based on host–guest interactions, with desirable physicochemical characteristics. In this Account, we summarize the current state of development in the field of monodisperse supramolecular microcapsules, fabricated through the integration of traditional microfluidic techniques and interfacial host–guest chemistry, specifically cucurbit[n]uril (CB[n])-mediated host–guest interactions. Three different strategies, colloidal particle-driven assembly, interfacial condensation-driven assembly and electrostatic interaction-driven assembly, are classified and discussed in detail, presenting the methodology involved in each microcapsule formation process. We highlight the state-of-the-art in design and control over structural complexity with desirable functionality, as well as promising applications, such as cargo delivery stemming from the assembled microcapsules. On account of its dynamic nature, the CB[n]-mediated host–guest complexation has demonstrated efficient response toward various external stimuli such as UV light, pH change, redox chemistry, and competitive guests. Herein, we also demonstrate different microcapsule modalities, which are engineered with CB[n] host–guest chemistry and also can be disrupted with the aid of external stimuli, for triggered release of payloads. In addition to the overview of recent achievements and current limitations of these microcapsules, we finally summarize several perspectives on tunable cargo loading and triggered release, directions, and challenges for this technology, as well as possible strategies for further improvement, which will lead to substainitial progress of host–guest chemistry in supramolecular architectures and materials. PMID:28075551
46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure... (Marine Engineering) of this chapter, insofar as they relate to tests and inspection of cargo vessels...
46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure... (Marine Engineering) of this chapter, insofar as they relate to tests and inspection of cargo vessels...
Collinear swimmer propelling a cargo sphere at low Reynolds number.
Felderhof, B U
2014-11-01
The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes equations in the presence of a sphere with a no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.
Code of Federal Regulations, 2014 CFR
2014-10-01
... engineering officer on chemical tankers; (ii) At least 90 days of rating or cadet service on deck or in the... advanced chemical tanker cargo operations. 13.605 Section 13.605 Shipping COAST GUARD, DEPARTMENT OF... Tankerman Endorsements § 13.605 Requirements to qualify for an STCW endorsement for advanced chemical tanker...
Peroxidase-mediated Biodegradation of Carbon Nanotubes in vitro and in vivo
Kotchey, Gregg P.; Zhao, Yong; Kagan, Valerian E.; Star, Alexander
2013-01-01
As a result of their unique electronic, optical, and mechanical properties, carbon nanotubes (CNTs) have been implemented in therapeutic and imaging applications. In an idealized situation, CNTs would be disposed of after they transport their theranostic payloads. Biodegradation represents an attractive pathway for the eliminating of CNT carriers post-delivery and may be integral in catalyzing the release of the cargo from the delivery vehicle. Accordingly, recent research efforts have focused on peroxidase-driven biodegradation of CNTs. In this review, we not only summarize recent efforts to biodegrade CNTs in the test tube, in vitro, and in vivo, but also attempt to explore the fundamental parameters underlying degradation. Encouraged by the in vivo results obtained to date, we envision a future, where carbon-based nano-containers, which are specifically designed to target organs/cells, deliver their cargo, and biodegrade via peroxidase-driven mechanism, will represent an attractive therapeutic delivery option in nanomedicine. PMID:23856412
Optical effects produced by running onboard engines of low-earth-orbit spacecraft
NASA Astrophysics Data System (ADS)
Beletskiy, A. B.; Mihalev, A. V.; Hahinov, V. V.; Lebedev, V. P.
2016-12-01
This paper presents results of optical observations made during Radar-Progress Experiment performed on April 17, 2013 and July 30, 2014 after approach-correction engines (ACE) of Progress M-17M and Progress M-23M cargo spacecraft in the thermosphere had been started. A region of enhanced emission intensity was recorded during engine operation. This may have been related to the scatter of twilight solar emission along the cargo spacecraft exhaust and to the emergence of additional atomic oxygen [OI] emission at 630 nm. The maximum dimension of the observed emission region was ~330-350 km and ~250-270 km along and across the orbit respectively. For the first time after ACE had been started, an expansion rate of emission region was ~ 7 and ~ 3.5 km/s along and across the orbit respectively. The maximum intensity of the disturbance area for Progress M-17M is estimated as ~40-60 R at 2 nm. Progress M-23M Space Experiment recorded a minor disturbance of atmospheric [OI] 630.0 nm emissions, both in near and in far cargo spacecraft flight paths, which might have been associated with the ACE exhaust gas injection.
2011-12-15
Stennis Space Center test-fired Aerojet AJ26 flight engine No. 8 on Dec. 15, continuing a commercial partnership with Orbital Services Corporation. Orbital has partnered with NASA to provide commercial cargo flights to the International Space Station. The AJ26 engines tested at Stennis will power the company's Taurus II space launch vehicle on the flights.
49 CFR 177.840 - Class 2 (gases) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... complied with. (c) [Reserved] (d) Engine to be stopped in cargo tank motor vehicles, except for transfer... tank motor vehicles with the engine running unless the engine is used for the operation of the transfer... left without the power unit attached unless the vehicle is chocked or equivalent means are provided to...
Microtubule defects influence kinesin-based transport in vitro.
NASA Astrophysics Data System (ADS)
Xu, Jing
Microtubules are protein polymers that form ``molecular highways'' for long-range transport within living cells. Molecular motors actively step along microtubules to shuttle cellular materials between the nucleus and the cell periphery; this transport is critical for the survival and health of all eukaryotic cells. Structural defects in microtubules exist, but whether these defects impact molecular motor-based transport remains unknown. Here, we report a new, to our knowledge, approach that allowed us to directly investigate the impact of such defects. Using a modified optical-trapping method, we examined the group function of a major molecular motor, conventional kinesin, when transporting cargos along individual microtubules. We found that microtubule defects influence kinesin-based transport in vitro. The effects depend on motor number: cargos driven by a few motors tended to unbind prematurely from the microtubule, whereas cargos driven by more motors tended to pause. To our knowledge, our study provides the first direct link between microtubule defects and kinesin function. The effects uncovered in our study may have physiological relevance in vivo. Supported by the UC Merced (to J.X.), NIH (NS048501 to S.J.K.), NSF (EF-1038697 to A.G.), and the James S. McDonnell Foundation (to A.G.). Work carried out at the Aspen Center for Physics was supported by NSF Grant PHY-1066293.
High Resolution Visualization Applied to Future Heavy Airlift Concept Development and Evaluation
NASA Technical Reports Server (NTRS)
FordCook, A. B.; King, T.
2012-01-01
This paper explores the use of high resolution 3D visualization tools for exploring the feasibility and advantages of future military cargo airlift concepts and evaluating compatibility with existing and future payload requirements. Realistic 3D graphic representations of future airlifters are immersed in rich, supporting environments to demonstrate concepts of operations to key personnel for evaluation, feedback, and development of critical joint support. Accurate concept visualizations are reviewed by commanders, platform developers, loadmasters, soldiers, scientists, engineers, and key principal decision makers at various stages of development. The insight gained through the review of these physically and operationally realistic visualizations is essential to refining design concepts to meet competing requirements in a fiscally conservative defense finance environment. In addition, highly accurate 3D geometric models of existing and evolving large military vehicles are loaded into existing and proposed aircraft cargo bays. In this virtual aircraft test-loading environment, materiel developers, engineers, managers, and soldiers can realistically evaluate the compatibility of current and next-generation airlifters with proposed cargo.
Low-thrust chemical rocket engine study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1981-01-01
Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.
Navigating the plant cell: intracellular transport logistics in the green kingdom
Geitmann, Anja; Nebenführ, Andreas
2015-01-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. PMID:26416952
Bi-stability in cooperative transport by ants in the presence of obstacles
Pinkoviezky, Itai; Feinerman, Ofer
2018-01-01
To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle. PMID:29746457
Bi-stability in cooperative transport by ants in the presence of obstacles.
Ron, Jonathan E; Pinkoviezky, Itai; Fonio, Ehud; Feinerman, Ofer; Gov, Nir S
2018-05-01
To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle.
Airlift Cargo Hub Port Hold Times: Controlling Variations in Defense Supply Chain Delivery
2010-06-01
AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...process for a seamless flow of cargo onto the aircraft segment (AMC and DDC , 24 Sep 08). Figure 6 AMC Velocity Efforts (Anderson D. , 2009) While
U.S. Commercial Cargo Spacecraft Departs International Space Station
2018-01-13
After spending a month at the International Space Station and delivering several tons of supplies and scientific experiments, the SpaceX Dragon cargo craft departed Jan. 13, headed for a parachute-assisted splashdown in the Pacific Ocean southwest of Long Beach, California. Ground controllers at NASA’s Johnson Space Center in Houston sent commands to release Dragon from the Canadarm2 robotic arm while Expedition 54 Flight Engineers Joe Acaba and Scott Tingle of NASA monitored the activity from the station’s cupola. Loaded with scientific samples and other cargo, Dragon was scheduled to conduct a deorbit burn a few hours after its release for its descent back to Earth.
1989-01-01
This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
Covered Storage. Design Manual 32.2.
1982-06-01
laboratories, snack bars, stairways, etc., are covered in the PBS Mechanical and Elec’rical Engineering Handbook and/or the Illuminating Engineering...laid. Scuttles shall be gasketed and fitted with inside and outside locks. d. Doors. Active cargo doors shall be gasketed by means of extruded
Design of a spanloader cargo aircraft
NASA Technical Reports Server (NTRS)
Weisshaar, Terrence A.
1989-01-01
The design features of an aircraft capable of fulfilling a long haul, high capacity cargo mission are described. This span-loading aircraft, or flying wing, is capable of carrying extremely large payloads and is expected to be in demand to replace the slow-moving cargo ships currently in use. The spanloader seeks to reduce empty weight by eliminating the aircraft fuselage. Disadvantages are the thickness of the cargo-containing wing, and resulting stability and control problems. The spanloader presented here has a small fuselage, low-aspect ratio wings, winglets, and uses six turbofan engines for propulsion. It will have a payload capacity of 300,000 pounds plus 30 first class passengers and 6 crew members. Its projected market is transportation of freight from Europe and the U.S.A. to countries in the Pacific Basin. Cost estimates support its economic feasibility.
Cargo-Positioning System for Next-Generation Spacecraft
NASA Technical Reports Server (NTRS)
Holladay, Jon; Colton, Jonathan
2006-01-01
A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.
Elimination of Coast Guard plan review for non-critical engineering systems and cargo barges
DOT National Transportation Integrated Search
1994-06-21
The purpose of this Circular is to publish policy that provides for the elimination of Coast Guard review and approval of certain engineering system drawings for all vessels as well as structural drawings for Coast Guard inspected non-self propelled ...
14 CFR 23 - Certification and Balance Sheet Elements
Code of Federal Regulations, 2012 CFR
2012-01-01
... consideration received shall be reported. (2) “Other Paid-In Capital” shall include the difference between the... cross-referenced to the affected account or accounts. Schedule B-7 Airframe and Aircraft Engine... both passengers and cargo in combination. Data pertaining to aircraft engines shall be reported in...
Active and passive transport of cargo in a corrugated channel: A lattice model study
NASA Astrophysics Data System (ADS)
Dey, Supravat; Ching, Kevin; Das, Moumita
2018-04-01
Inside cells, cargos such as vesicles and organelles are transported by molecular motors to their correct locations via active motion on cytoskeletal tracks and passive, Brownian diffusion. During the transportation of cargos, motor-cargo complexes (MCCs) navigate the confining and crowded environment of the cytoskeletal network and other macromolecules. Motivated by this, we study a minimal two-state model of motor-driven cargo transport in confinement and predict transport properties that can be tested in experiments. We assume that the motion of the MCC is directly affected by the entropic barrier due to confinement if it is in the passive, unbound state but not in the active, bound state where it moves with a constant bound velocity. We construct a lattice model based on a Fokker Planck description of the two-state system, study it using a kinetic Monte Carlo method and compare our numerical results with analytical expressions for a mean field limit. We find that the effect of confinement strongly depends on the bound velocity and the binding kinetics of the MCC. Confinement effectively reduces the effective diffusivity and average velocity, except when it results in an enhanced average binding rate and thereby leads to a larger average velocity than when unconfined.
46 CFR 32.65-20 - Pumprooms-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... bulkhead between the pumproom and the pump-engine compartment may be pierced by fixed lights, drive shaft and pump-engine control rods, provided that the shafts and rods are fitted with stuffing boxes where... their cargo pumps isolated from all sources of vapor ignition by gastight bulkheads. Totally enclosed...
46 CFR 32.65-20 - Pumprooms-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... bulkhead between the pumproom and the pump-engine compartment may be pierced by fixed lights, drive shaft and pump-engine control rods, provided that the shafts and rods are fitted with stuffing boxes where... their cargo pumps isolated from all sources of vapor ignition by gastight bulkheads. Totally enclosed...
46 CFR 32.65-20 - Pumprooms-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... bulkhead between the pumproom and the pump-engine compartment may be pierced by fixed lights, drive shaft and pump-engine control rods, provided that the shafts and rods are fitted with stuffing boxes where... their cargo pumps isolated from all sources of vapor ignition by gastight bulkheads. Totally enclosed...
46 CFR 32.65-20 - Pumprooms-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... bulkhead between the pumproom and the pump-engine compartment may be pierced by fixed lights, drive shaft and pump-engine control rods, provided that the shafts and rods are fitted with stuffing boxes where... their cargo pumps isolated from all sources of vapor ignition by gastight bulkheads. Totally enclosed...
46 CFR 32.65-20 - Pumprooms-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... bulkhead between the pumproom and the pump-engine compartment may be pierced by fixed lights, drive shaft and pump-engine control rods, provided that the shafts and rods are fitted with stuffing boxes where... their cargo pumps isolated from all sources of vapor ignition by gastight bulkheads. Totally enclosed...
2011-09-28
NASA conducted a Sept. 28 test of an Aerojet AJ26 flight engine that will power the first stage of Orbital Sciences Corporation's Taurus II space launch vehicle, continuing progress in a key commercial space transport partnership. Orbital is scheduled to begin commercial cargo flights to the International Space Station in 2012.
Engineer Aviation Units in the Southwest Pacific Theater During World War II
2005-06-17
of sorting and distributing cargoes, and a lack of port facilities, particularly in Brisbane, Sidney, and Auckland . 89 Finally, if engineer equipment... workforce provided the Army much needed labor at USASOS supply depots and the Australian Commonwealth provided many critical supplies to U.S. forces
2012-06-25
A frame grab from a mounted video camera on the E-3 Test Stand at Stennis Space Center documents testing of the new Project Morpheus engine. The new liquid methane, liquid oxygen engine will power the Morpheus prototype lander, which could one day evolve to carry cargo safely to the moon, asteroids or Mars surfaces.
14 CFR Section 23 - Certification and Balance Sheet Elements
Code of Federal Regulations, 2014 CFR
2014-01-01
... consideration received shall be reported. (2) “Other Paid-In Capital” shall include the difference between the... cross-referenced to the affected account or accounts. Schedule B-7 Airframe and Aircraft Engine... both passengers and cargo in combination. Data pertaining to aircraft engines shall be reported in...
14 CFR Section 23 - Certification and Balance Sheet Elements
Code of Federal Regulations, 2013 CFR
2013-01-01
... consideration received shall be reported. (2) “Other Paid-In Capital” shall include the difference between the... cross-referenced to the affected account or accounts. Schedule B-7 Airframe and Aircraft Engine... both passengers and cargo in combination. Data pertaining to aircraft engines shall be reported in...
46 CFR 153.208 - Ballast equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel... engine room or accommodation space. (b) Piping used only to fill a dedicated ballast tank adjacent to a cargo tank may enter an engine room or accommodation space if the piping has a valve or valving...
46 CFR 153.208 - Ballast equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel... engine room or accommodation space. (b) Piping used only to fill a dedicated ballast tank adjacent to a cargo tank may enter an engine room or accommodation space if the piping has a valve or valving...
46 CFR 153.208 - Ballast equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment General Vessel... engine room or accommodation space. (b) Piping used only to fill a dedicated ballast tank adjacent to a cargo tank may enter an engine room or accommodation space if the piping has a valve or valving...
NASA Technical Reports Server (NTRS)
Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)
1978-01-01
The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.
Bouzat, Sebastián; Levi, Valeria; Bruno, Luciana
2012-01-01
In this work, we explored theoretically the transport of organelles driven along microtubules by molecular motors of opposed polarities using a stochastic model that considers a Langevin dynamics for the cargo, independent cargo-motor linkers and stepping motion for the motors. It has been recently proposed that the stiffness of the motor plays an important role when multiple motors collectively transport a cargo. Therefore, we considered in our model the recently reported values for the stiffness of the cargo-motor linker determined in living cells (∼0.01 pN/nm, [1]) which is significantly lower than the motor stiffness obtained in in vitro assays and used in previous studies. Our model could reproduce the multimodal velocity distributions and typical trajectory characteristics including the properties of the reversions in the overall direction of motion observed during melanosome transport along microtubules in Xenopus laevis melanophores. Moreover, we explored the contribution of the different motility states of the cargo-motor system to the different modes of the velocity distributions and could identify the microscopic mechanisms of transport leading to trajectories compatible with those observed in living cells. Finally, by changing the attachment and detachment rates, the model could reproduce the different velocity distributions observed during melanosome transport along microtubules in Xenopus laevis melanophores stimulated for aggregation and dispersion. Our analysis suggests that active tug-of-war processes with loose mechanical coupling can account for several aspects of cargo transport along microtubules in living cells. PMID:22952716
Systems Engineering Management Guide,
1990-01-01
6•’-&-S- A -i-2-- -4-$-6-7-6-I SPEED AN0 INDURA6Ca CARGO CAPACITY ,- .- ,-,-,-$-- -,-$-4-,-,-7-,-U LOOISTICSR&M CARGO CAPACITY -- - - - -3.2- - 3-4...only subjective and to predict a level of performance with ( high , medium, low) evaluation is possible. respect to each attribute for each alternative For...criterion; evaluated as having an expected speed of however, some fixed plan for scoring 31.5 knots would receive a score of .50, while performance
MW-Class Electric Propulsion System Designs for Mars Cargo Transport
NASA Technical Reports Server (NTRS)
Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee
2011-01-01
Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.
Yildiz, Ibrahim; Lee, Karin L.; Chen, Kevin; Shukla, Sourabh; Steinmetz, Nicole F.
2013-01-01
This work is focused on the development of a plant virus-based carrier system for cargo delivery, specifically 30 nm-sized cowpea mosaic virus (CPMV). Whereas previous reports described the engineering of CPMV through genetic or chemical modification, we report a non-covalent infusion technique that facilitates efficient cargo loading. Infusion and retention of 130–155 fluorescent dye molecules per CPMV using DAPI (4’,6-diamidino-2-phenylindole dihydrochloride), propidium iodide (3,8-diamino-5-[3-(diethylmethylammonio)propyl]-6-phenylphenanthridinium diiodide), and acridine orange (3,6-bis(dimethylamino)acridinium chloride), as well as 140 copies of therapeutic payload proflavine (PF, acridine-3,6-diamine hydrochloride), is reported. Loading is achieved through interaction of the cargo with the CPMV’s encapsidated RNA molecules. The loading mechanism is specific; empty RNA-free eCPMV nanoparticles could not be loaded. Cargo-infused CPMV nanoparticles remain chemically active, and surface lysine residues were covalent modified with dyes leading to the development of dual-functional CPMV carrier systems. We demonstrate cargo-delivery to a panel of cancer cells (cervical, breast, and colon): CPMV nanoparticles enter cells via the surface marker vimentin, the nanoparticles target the endolysosome, where the carrier is degraded and the cargo released allowing imaging and/or cell killing. In conclusion, we demonstrate cargo-infusion and delivery to cells; the methods discussed provide a useful means for functionalization of CPMV toward its application as drug and/or contrast agent delivery vehicle. PMID:23665254
Kinesin expands and stabilizes the GDP-microtubule lattice
NASA Astrophysics Data System (ADS)
Peet, Daniel R.; Burroughs, Nigel J.; Cross, Robert A.
2018-05-01
Kinesin-1 is a nanoscale molecular motor that walks towards the fast-growing (plus) ends of microtubules, hauling molecular cargo to specific reaction sites in cells. Kinesin-driven transport is central to the self-organization of eukaryotic cells and shows great promise as a tool for nano-engineering1. Recent work hints that kinesin may also play a role in modulating the stability of its microtubule track, both in vitro2,3 and in vivo4, but the results are conflicting5-7 and the mechanisms are unclear. Here, we report a new dimension to the kinesin-microtubule interaction, whereby strong-binding state (adenosine triphosphate (ATP)-bound and apo) kinesin-1 motor domains inhibit the shrinkage of guanosine diphosphate (GDP) microtubules by up to two orders of magnitude and expand their lattice spacing by 1.6%. Our data reveal an unexpected mechanism by which the mechanochemical cycles of kinesin and tubulin interlock, and so allow motile kinesins to influence the structure, stability and mechanics of their microtubule track.
NASA Engineering Design Challenges: Spacecraft Structures. EP-2008-09-121-MSFC
ERIC Educational Resources Information Center
Haddad, Nick; McWilliams, Harold; Wagoner, Paul
2007-01-01
NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…
14 CFR 25.857 - Cargo compartment classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...
14 CFR 25.857 - Cargo compartment classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...
14 CFR 25.857 - Cargo compartment classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...
14 CFR 25.857 - Cargo compartment classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...
14 CFR 25.857 - Cargo compartment classification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... detector or fire detector system to give warning at the pilot or flight engineer station. (c) Class C. A... compartment but in which— (1) There is a separate approved smoke detector or fire detector system to give... a separate approved smoke or fire detector system to give warning at the pilot or flight engineer...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... safety factors (including the potential increased risk of burn or fire) associated with compliance with... that improper sizing of VDECS with engines may be occurring. This coupled with a lack of concrete... available, etc.). Based on the lack of concrete evidence from the commenters that it has incurred...
The Coast Artillery Journal. Volume 86, Number 1, January-February 1943
1943-02-01
the typing portion of the identincation system. Figure 3A portrays a ship that might be a freighter, passenger ship, or collier , as far as its typing...classified as type NOF-MKKM. Ships ’with engines aft may be coastal cargo vessels, colliers , ore carriers, or tankers. Figure 4A gives an example of a ship...of this class, which might be a cargo vessel, collier , or ore carrier. Of course, vessels as large and complex as modern merchantmen have distinguish
Prepping Orbital Sciences? Cygnus commercial cargo spacecraft for undock
2013-10-21
ISS037-E-016758 (21 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, gives a thumbs up signal after closing the hatch between the International Space Station’s Harmony node and the Orbital Sciences’ Cygnus commercial cargo spacecraft in preparation for its release after completing a successful demonstration mission to the space station. Cygnus delivered 1,300 pounds of gear on Sept. 29 when it arrived and was captured by Canadarm2 and berthed to the Harmony node.
Raffaello is offloaded from a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
At the Shuttle Landing Facility, the one-piece, upward-hinged main cargo door of the Airbus Industrie A300-600ST 'Beluga' Super Transporter is open to offload its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
NASA Technical Reports Server (NTRS)
Hooker, John R.; Wick, Andrew T.; Hardin, Christopher J.
2017-01-01
LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development.
]U.S. Commercial Cargo Ship Departs Space Station
2017-09-17
The SpaceX/Dragon cargo craft departed the International Space Station Sept. 17, one month after delivering more than three tons of supplies and scientific experiments for the station’s residents. Expedition 53 Flight Engineer Paolo Nespoli of the European Space Agency and station Commander Randy Bresnik used the Cnadarm2 robotic arm to release Dragon after it was detached from the Earth-facing port of the Harmony module. Dragon was scheduled to move to a safe distance away from the station for its engine to conduct a deorbit burn, enabling it to drop out of orit for a parachute-assisted splashdown in the Pacific southwest of Long Beach, California. Dragon was launched on a SpaceX Falcon 9 rocket from the Kennedy Space Center on Aug. 14, arriving at the orbital outpost Aug. 16.
AJ26 rocket engine testing news briefing
NASA Technical Reports Server (NTRS)
2010-01-01
Operators at NASA's John C. Stennis Space Center are completing modifications to the E-1 Test Stand to begin testing Aerojet AJ26 rocket engines in early summer of 2010. Modifications include construction of a 27-foot-deep flame deflector trench. The AJ26 rocket engines will be used to power Orbital Sciences Corp.'s Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. Stennis has partnered with Orbital to test all engines for the transport missions.
2010-11-10
Fire and steam signal a successful test firing of Orbital Sciences Corporation's Aerojet AJ26 rocket engine at John C. Stennis Space Center. AJ26 engines will be used to power Orbital's Taurus II space vehicle on commercial cargo flights to the International Space Station. On Nov. 10, operators at Stennis' E-1 Test Stand conducted a 10-second test fire of the engine, the first of a series of three verification tests. Orbital has partnered with NASA to provide eight missions to the ISS by 2015.
Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.
Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian
2015-12-22
The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.
Yildiz, Ibrahim; Lee, Karin L; Chen, Kevin; Shukla, Sourabh; Steinmetz, Nicole F
2013-12-10
This work is focused on the development of a plant virus-based carrier system for cargo delivery, specifically 30nm-sized cowpea mosaic virus (CPMV). Whereas previous reports described the engineering of CPMV through genetic or chemical modification, we report a non-covalent infusion technique that facilitates efficient cargo loading. Infusion and retention of 130-155 fluorescent dye molecules per CPMV using DAPI (4',6-diamidino-2-phenylindole dihydrochloride), propidium iodide (3,8-diamino-5-[3-(diethylmethylammonio)propyl]-6-phenylphenanthridinium diiodide), and acridine orange (3,6-bis(dimethylamino)acridinium chloride), as well as 140 copies of therapeutic payload proflavine (PF, acridine-3,6-diamine hydrochloride), is reported. Loading is achieved through interaction of the cargo with the CPMV's encapsidated RNA molecules. The loading mechanism is specific; empty RNA-free eCPMV nanoparticles could not be loaded. Cargo-infused CPMV nanoparticles remain chemically active, and surface lysine residues were covalent modified with dyes leading to the development of dual-functional CPMV carrier systems. We demonstrate cargo-delivery to a panel of cancer cells (cervical, breast, and colon): CPMV nanoparticles enter cells via the surface marker vimentin, the nanoparticles target the endolysosome, where the carrier is degraded and the cargo is released allowing imaging and/or cell killing. In conclusion, we demonstrate cargo-infusion and delivery to cells; the methods discussed provide a useful means for functionalization of CPMV toward its application as drug and/or contrast agent delivery vehicle. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire...
NASA Engineering Design Challenges: Thermal Protection Systems. EP-2008-09-122-MSFC
ERIC Educational Resources Information Center
Haddad, Nick; McWilliams, Harold; Wagoner, Paul
2007-01-01
National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, and their partners at other NASA centers and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles--the Ares I and Ares V launch…
Alternative Fuel Fleet Vehicle Evaluations | Transportation Research | NREL
renewable resources. The renewable diesel under study, produced by Solazyme, is an algae-derived drop-in on the engines and fuel systems of Ford cargo vans and Mack tractor trucks. The results of this study International Truck and Engine Corporation. The results of this study are featured in the Final Operability and
Environmental Assessment Construction of a New Hazardous Cargo Pad Davis-Monthan AFB
2002-11-07
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 355th Civil Engineer Squadron (CES/CEVA),710 Third Street,Davis-Monthan AFB,AZ,85707 8. PERFORMING...agency for certain projects. Details of the preparation of this EA are mandated by the Council of Enviromental Quality (CEQ) in the series of...Base, Tucson, Arizona." October 1996. James M. Montgomery, Consulting Engineers for US army Corps of Engineers , Omaha Dist., Apri11990
Docking of the SpaceX Dragon Commercial cargo craft
2012-10-10
ISS033-E-011170 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station's Harmony node. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the Canadarm2 robotic arm to berth Dragon to Harmony Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon?s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.
The Ares Projects: Building America's Future in Space
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2009-01-01
NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.
Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Alexander, Stephen W.
1995-01-01
Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
Yurchikhin and Parmitano in U.S. Laboratory
2013-09-18
ISS037-E-001901 (18 Sept. 2013) --- In the International Space Station’s Destiny laboratory, Russian cosmonaut Fyodor Yurchikhin (right), Expedition 37 commander; and European Space Agency astronaut Luca Parmitano, flight engineer, watch the launch of the Orbital Sciences Corporation Antares rocket, with the Cygnus cargo spacecraft aboard, from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) NASA Wallops Flight Facility, Virginia. Cygnus is on its way to rendezvous with the space station and will deliver about 1,300 pounds (589 kilograms) of cargo, including food and clothing, to the Expedition 37 crew.
1969-01-01
This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.
OA-7 Mate Service Module to Cargo Module
2017-02-14
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers mate a Cygnus spacecraft's pressurized cargo module to its service module. Cygnus is being prepared to deliver thousands of pounds of supplies, equipment and scientific research materials on the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use.
Cheung, G S P; Bian, Z; Shen, Y; Peng, B; Darvell, B W
2007-03-01
To compare the type of defects and mode of material failure of engine-driven and hand-operated ProTaper instruments after clinical use. A total of 401 hand-operated and 325 engine-driven ProTaper instruments were discarded from an endodontic clinic over 17 months. Those that had fractured were examined for plastic deformation in lateral view and remounted for fractographical examination in scanning electron microscope. The mode of fracture was classified as 'fatigue' or 'shear' failure. The lengths of fractured segments in both instruments were recorded. Any distortion in hand instrument was noted. Data were analysed using chi-square, Fisher's exact or Student's t-test, where appropriate. Approximately 14% of all discarded hand-operated instruments and 14% of engine-driven instruments were fractured. About 62% of hand instruments failed because of shear fracture, compared with approximately 66% of engine-driven instruments as a result of fatigue (P < 0.05). Approximately 16% of hand instruments were affected by shear, and either remained intact or was fractured, compared with 5% of engine-driven instruments (P < 0.05). The length of the broken fragment was significantly shorter in hand versus engine-driven group (P < 0.05). Approximately 7% of hand instruments were discarded intact but distorted (rarely for engine-driven instruments); all were in the form of unscrewing of the flutes. The location of defects in hand Finishing instruments was significantly closer to the tip than that for Shaping instruments (P < 0.05). Under the conditions of this study (possibly high usage), the failure mode of ProTaper engine-driven and hand-operated instruments appeared to be different, with shear failure being more prevalent in the latter.
Creamer uses communication equipment in the FGB during Expedition 22
2010-01-14
ISS022-E-025400 (14 Jan. 2010) --- NASA astronaut T.J. Creamer, Expedition 22 flight engineer, uses a communication system in the Zarya Functional Cargo Block (FGB) of the International Space Station.
Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2007-01-01
Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less
NASA Technical Reports Server (NTRS)
Grishin, S. D.; Chekalin, S. V.
1984-01-01
Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.
Ryazanskiy unpacks Storage Containers
2014-02-08
ISS038-E-043150 (8 Feb. 2014) --- Russian cosmonaut Sergey Ryazanskiy, Expedition 38 flight engineer, unpacks storage containers from the ISS Progress 54 cargo spacecraft, which docked to the Pirs docking compartment of the International Space Station on Feb. 5, 2014.
Bioenvironmental Engineering Guide for Composite Materials
2014-03-31
Russell J. Advanced composite cargo aircraft proves large structure practicality. High- Performance Composites 2010 Jan. Retrieved 3 January 2014 from...fuel or hydraulic fluid; location of radioactive components associated with the aircraft, such as depleted uranium counterweights, isotopes
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine hauls its cargo toward Titusville, Fla. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with one self-priming power-driven fire pump capable of delivering a single stream of water from the..., the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power independent of the engine. (e...
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. James Clayton, Ph.D., Varian Medical Systems-Security & Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas
The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security & Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a "next-generation" mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possiblemore » the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the "next-generation" Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible.« less
Cargo transportation by airships: a systems study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.J.; Dalton, C.
1976-05-01
A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic andmore » technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.« less
Cargo transportation by airships: A systems study
NASA Technical Reports Server (NTRS)
Huang, C. J.; Dalton, C.
1976-01-01
A systems engineering study of a lighter than air airship transportation system was conducted. The feasibility of the use of airships in hauling cargo was demonstrated. Social, legal, environmental and political factors were considered as well as the technical factors necessary to design an effective airship transportation system. In order to accomplish an effective airship transportation program two phases of implementation were recommended. Phase I would involve a fleet of rigid airships of 3.5 million cubic feet displacement capable of carrying 25 tons of cargo internal to the helium-filled gas bag. The Phase I fleet would demonstrate the economic and technical feasibility of modern-day airships while providing a training capability for the construction and operation of larger airships. The Phase II portion would be a fleet of rigid airships of 12 million cubic feet displacement capable of carrying a cargo of 100 tons a distance of 2,000 miles at a cruising speed of 60 mph. An economic analysis is given for a variety of missions for both Phase I and Phase II airships.
Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast
Huckaba, Thomas M.; Lipkin, Thomas; Pon, Liza A.
2006-01-01
Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport. PMID:17178912
NASA Astrophysics Data System (ADS)
Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan
A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.
Performance estimates of a Boeing 747-100 transport mated with an outsize cargo pod
NASA Technical Reports Server (NTRS)
Jernell, L. S.
1980-01-01
The design mission performance of a Boeing 747-100 aircraft mated with an outsize cargo pod was studied. The basic design requirement was the rapid deployment of a combat loaded mobile bridge launcher from a United States east coast staging base to Europe. Weight was minimized by stripping the aircraft of unneeded, quick removal items and by utilizing graphite-epoxy composite materials for most pod components. The mission analysis was based on wind tunnel data and full scale carrier aircraft and engine data. The results are presented in tabular and graphic form.
Economic Impacts of the Category 3 Marine Rule on Great ...
This is a scenario-based economic assessment of the impacts of EPA’s Category 3 Marine Diesel Engines Rule on certain cargo movements in the Great Lakes shipping network. During the proposed phase of the rulemaking, Congress recommended that EPA conduct such a study, and EPA will docket the final peer-reviewed product at EPA-HQ-OAR-2007-0121. The objective is to assess how the requirement to switch to cleaner, more expensive fuel will affect certain shippers and operators on the Great Lakes, including the likelihood of cargo movements shifting away from marine transport.
Fire safety evaluation of aircraft lavatory and cargo compartments
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.; Hilado, C. J.; Anderson, R. A.; Tustin, E.; Arnold, D. B.; Gaume, J. G.; Binding, A. T.; Mikeska, J. L.
1976-01-01
A program of experimental fires has been carried out to assess fire containment and other fire hazards in lavatory and cargo compartments of wide-body jet aircraft by evaluation of ignition time, burn-through time, fire spread rate, smoke density, evolution of selected combustible and toxic gases, heat flux, and detector response. Two tests were conducted: one involving a standard Boeing 747 lavatory and one involving a simulated DC-10 cargo compartment. A production lavatory module was furnished with conventional materials and was installed in an enclosure. The ignition load was four polyethylene bags containing paper and plastic waste materials representive of a maximum flight cabin waste load. Standard aircraft ventilation conditions were utilized and the lavatory door was closed during the test. Lavatory wall and ceiling panels contained the fire spread during the 30-minute test. Smoke was driven into the enclosure primarily through the ventilation grille in the door and through the gaps between the bifold door and the jamb where the door distorted from the heat earlier in the test. The interior of the lavatory was almost completely destroyed by the fire.
Chemically generated convective transport in microfluidic system
NASA Astrophysics Data System (ADS)
Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman
High precision manipulation of small volumes of fluid, containing suspended micron sized objects like cells, viruses, and large molecules, is one of the main goals in designing modern lab-on-a-chip devices which can find a variety of chemical and biological applications. To transport the cargo toward sensing elements, typical microfluidic devices often use pressure driven flows. Here, we propose to use enzymatic chemical reactions which decompose reagent into less dense products and generate flows that can transport particles. Density variations that lead to flow in the assigned direction are created between the place where reagent is fed into the solution and the location where it is decomposed by enzymes attached to the surface of the microchannel. When the reagent is depleted, the fluid motion stops and particles sediment to the bottom. We demonstrate how the choice of chemicals, leading to specific reaction rates, can affect the transport properties. In particular, we show that the intensity of the fluid flow, the final location of cargo, and the time for cargo delivery are controlled by the amount and type of reagent in the system.
2013-06-18
ISS036-E-009246 (18 June 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, takes inventory of cargo in the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" currently docked to the Zvezda Service Module of the International Space Station.
Kuipers works with Stowage in ATV3
2012-05-15
ISS031-E-084591 (15 May 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, is pictured during cargo operations in ESA?s "Edoardo Amaldi" Automated Transfer Vehicle-3 (ATV-3) currently docked with the International Space Station.
Mathew, Mohit P; Donaldson, Julie G
2018-05-11
Clathrin-independent endocytosis (CIE) is a form of endocytosis that lacks a defined cytoplasmic machinery. Here, we asked whether glycan interactions, acting from the outside, could be a part of that endocytic machinery. We show that the perturbation of global cellular patterns of protein glycosylation by modulation of metabolic flux affects CIE. Interestingly, these changes in glycosylation had cargo-specific effects. For example, in HeLa cells, GlcNAc treatment, which increases glycan branching, increased major histocompatibility complex class I (MHCI) internalization but inhibited CIE of the glycoprotein CD59 molecule (CD59). The effects of knocking down the expression of galectin 3, a carbohydrate-binding protein and an important player in galectin-glycan interactions, were also cargo-specific and stimulated CD59 uptake. By contrast, inhibition of all galectin-glycan interactions by lactose inhibited CIE of both MHCI and CD59. None of these treatments affected clathrin-mediated endocytosis, implying that glycosylation changes specifically affect CIE. We also found that the galectin lattice tailors membrane fluidity and cell spreading. Furthermore, changes in membrane dynamics mediated by the galectin lattice affected macropinocytosis, an altered form of CIE, in HT1080 cells. Our results suggest that glycans play an important and nuanced role in CIE, with each cargo being affected uniquely by alterations in galectin and glycan profiles and their interactions. We conclude that galectin-driven effects exist on a continuum from stimulatory to inhibitory, with distinct CIE cargo proteins having unique response landscapes and with different cell types starting at different positions on these conceptual landscapes.
Wang, Cynthia X; Utech, Stefanie; Gopez, Jeffrey D; Mabesoone, Mathijs F J; Hawker, Craig J; Klinger, Daniel
2016-07-06
Well-defined microgel particles were prepared by combining coacervate-driven cross-linking of ionic triblock copolymers with the ability to control particle size and encapsulate functional cargos inherent in microfluidic devices. In this approach, the efficient assembly of PEO-based triblock copolymers with oppositely charged end-blocks allows for bioinspired cross-linking under mild conditions in dispersed aqueous droplets. This strategy enables the integration of charged cargos into the coacervate domains (e.g., the loading of anionic model compounds through electrostatic association with cationic end-blocks). Distinct release profiles can be realized by systematically varying the chemical nature of the payload and the microgel dimensions. This mild and noncovalent assembly method represents a promising new approach to tunable microgels as scaffolds for colloidal biomaterials in therapeutics and regenerative medicine.
Navy Irregular Warfare and Counterterrorism Operations: Background and Issues for Congress
2016-05-27
ordnance disposal (counter- IED), combat construction engineering , cargo handling, combat logistics, maritime security, detainee operations, customs...Rutherford, “Navy’s Maritime Domain Awareness System ‘Up And Running’,” Defense Daily, September 4, 2008; and Dan Taylor , “New Network Allows Navy To...with twin diesel engines and water jets. It has a range of 600 nautical miles. 34 Other Organizational Initiatives Other Navy initiatives in recent
Jet Engines - The New Masters of Advanced Flight Control
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2018-05-01
ANTICIPATED UNITED STATES CONGRESS ACT should lead to reversing a neglected duty to the people by supporting FAA induced bill to civilize classified military air combat technology to maximize flight safety of airliners and cargo jet transports, in addition to FAA certifying pilots to master Jet-Engine Steering ("JES") as automatic or pilot recovery when Traditional Aerodynamic-only Flight Control ("TAFC") fails to prevent a crash and other related damages
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer
2012-05-22
CAPE CANAVERAL, Fla. – The nine Merlin engines beneath the SpaceX Falcon 9 rocket roar to life at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer
2012-05-22
CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
Plant viruses and bacteriophages for drug delivery in medicine and biotechnology.
Czapar, Anna E; Steinmetz, Nicole F
2017-06-01
There are a wide variety of synthetic and naturally occurring nanomaterials under development for nanoscale cargo-delivery applications. Viruses play a special role in these developments, because they can be regarded as naturally occurring nanomaterials evolved to package and deliver cargos. While any nanomaterial has its advantage and disadvantages, viral nanoparticles (VNPs), in particular the ones derived from plant viruses and bacteriophages, are attractive options for cargo-delivery as they are biocompatible, biodegradable, and non-infectious to mammals. Their protein-based structures are often understood at atomic resolution and are amenable to modification with atomic-level precision through chemical and genetic engineering. Here we present a focused review of the emerging technology development of plant viruses and bacteriophages targeting human health and agricultural applications. Key target areas of development are their use in chemotherapy, photodynamic therapy, pesticide-delivery, gene therapy, vaccine carriers, and immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-06-18
ISS036-E-009256 (18 June 2013) --- NASA astronauts Chris Cassidy and Karen Nyberg, both Expedition 36 flight engineers, perform cargo operations in the European Space Agency's Automated Transfer Vehicle-4 (ATV-4) "Albert Einstein" currently docked to the Zvezda Service Module of the International Space Station.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur
2015-01-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
NASA Astrophysics Data System (ADS)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur
2015-06-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.
Summit Station Skiway Cost Analysis
2016-07-01
Laboratory (CRREL) U.S. Army Engineer Research and Development Center (ERDC) 72 Lyme Road Hanover, NH 03755-1290 Final Report Approved for...cargo loads. To explore further skiway improvement and cost saving techniques, this report reviews alternative maintenance and construction options...3 2.2 Maintenance
46 CFR 95.01-2 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) NFPA 13-1996, Standard for the Installation of Sprinkler Systems, incorporation by reference approved... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE... and Engineering Systems, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE...
46 CFR 95.01-2 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) NFPA 13-1996, Standard for the Installation of Sprinkler Systems, incorporation by reference approved... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE... and Engineering Systems, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr. Avenue SE...
Helms in FGB/Zarya with cameras
2001-06-08
ISS002-E-6526 (8 June 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). The image was recorded with a digital still camera.
Personnel and Cargo Transport in Antarctica: Analysis of Current U.S. Transport System
1991-03-01
George L. Blaisdell March 1991 ,i . . 1 U - I I Prepared for DIVISION OF DOLAR PROGRAMS NATIONAL SCIENCE FOUNDATION Approved for public release...Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding was provided by the Division of Polar Programs, National Science Foundation . A...Current U.S. Transport System GEORGE L. BLAISDELL INTRODUCTION The National Science Foundation (NSF), operator of the U.S. Antarctic program, has
Solar electric propulsion cargo spacecraft for Mars missions
NASA Technical Reports Server (NTRS)
1991-01-01
One of the topics available to the 1990-91 Aerospace Engineering senior class was the development of a preliminary design of an unmanned cargo ferry that would support the Mars mission by bringing equipment and supplies from a low Earth orbit (LEO) to a low Mars orbit (LMO). Several previous studies initiated by NASA have indicated that low-thrust transportation systems seem to offer the best performance for Mars missions. Such systems are characterized by long spiral times during escape and capture maneuvers, high payload mass fractions, and, typically, low propellant mass fractions. Of two main low-thrust candidates, nuclear electric propulsion (NEP) and solar electric propulsion (SEP), only the first one received extensive consideration because it seemed to represent the most promising concept for a manned mission to Mars. However, any sustained Mars initiative will have to include an unmanned cargo transportation system, for which an SEP concept deserves very careful consideration. The key assumptions and requirements established in cooperation with the Space Exploration Initiative office at the NASA Langley Research Center were (1) vehicle is assembled at the Space Station Freedom (SSF); (2) Earth-to-orbit delivery of the vehicle components, propellant, and payload is via shuttle-C; (3) vehicle's cargo mass is 61,000 kg; (4) vehicle delivers cargo to LMO at an altitude of 500 km and inclination of 70 deg; (5) vehicle returns (without cargo) to SSF; (6) vehicle should be reusable for at least three missions; and (7) vehicle is powered by ion argon thrusters. Two configurations were developed by two student teams, working mostly independently.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2009-01-01
This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with approximately 50 kW(sub e) of electrical power in Mars orbit for crew life support and spacecraft subsystem needs. Vehicle assembly involves autonomous Earth orbit rendezvous and docking between the propulsion stages, in-line propellant tanks and payload elements. Nine Ares-V launches -- five for the two cargo MTVs and four for the crewed MTV -- deliver the key components for the three MTVs. Details on mission, payload, engine and vehicle characteristics and requirements are presented and the results of key trade studies are discussed.
2011-10-27
At the Baikonur Cosmodrome in Kazakhstan, the Soyuz booster and its ISS Progress 45 cargo craft rolled to the launch pad in bone-chilling weather on October 28, 2011 in preparation for launch October 31 to send the unmanned Russian resupply vehicle to the International Space Station. The launch will be the first for this configuration of the Soyuz booster rocket since a third-stage engine failure in flight August 24 that resulted in the loss of the previous Progress cargo craft, the ISS Progress 44. ISS Progress 45 is loaded with almost three tons of food, fuel and supplies for the residents of the orbital laboratory. Credit: NASA
2011-10-27
At the Baikonur Cosmodrome in Kazakhstan, the Soyuz booster and its ISS Progress 45 cargo craft rolled to the launch pad in bone-chilling weather on October 28, 2011 in preparation for launch October 31 to send the unmanned Russian resupply vehicle to the International Space Station. The launch will be the first for this configuration of the Soyuz booster rocket since a third-stage engine failure in flight August 24 that resulted in the loss of the previous Progress cargo craft, the ISS Progress 44. ISS Progress 45 is loaded with almost three tons of food, fuel and supplies for the residents of the orbital laboratory. Credit: NASA
2011-10-27
At the Baikonur Cosmodrome in Kazakhstan, the Soyuz booster and its ISS Progress 45 cargo craft rolled to the launch pad in bone-chilling weather on October 28, 2011 in preparation for launch October 31 to send the unmanned Russian resupply vehicle to the International Space Station. The launch will be the first for this configuration of the Soyuz booster rocket since a third-stage engine failure in flight August 24 that resulted in the loss of the previous Progress cargo craft, the ISS Progress 44. ISS Progress 45 is loaded with almost three tons of food, fuel and supplies for the residents of the orbital laboratory. Credit: NASA
Three orbital transfer vehicles
NASA Technical Reports Server (NTRS)
1990-01-01
Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.
Sunmaster: An SEP cargo vehicle for Mars missions
NASA Technical Reports Server (NTRS)
Chiles, Aleasa; Fraser, Jennifer; Halsey, Andy; Honeycutt, David; Madden, Michael; Mcgough, Brian; Paulsen, David; Spear, Becky; Tarkenton, Lynne; Westley, Kevin
1991-01-01
Options are examined for an unmanned solar powered electric propulsion cargo vehicle for Mars missions. The 6 prime areas of study include: trajectory, propulsion system, power system, supporting structure, control system, and launch consideration. Optimization of the low thrust trajectory resulted in a total round trip mission time just under 4 years. The argon propelled electrostatic ion thruster system consists of seventeen 5 N engines and uses a specific impulse of 10,300 secs. At Earth, the system uses 13 engines to produce 60 N of thrust; at Mars, five engines are used, producing 25 N thrust. The thrust of the craft is varied between 60 N at Earth and 24 N at Mars due to reduced solar power available. Solar power is collected by a Fresnel lens concentrator system using a multistacked cell. This system provides 3.5 MW to the propulsion system after losses. Control and positioning to the craft are provided by a system of three double gimballed control moment gyros. Four shuttle 'C' launches will be used to transport the unassembled vehicle in modular units to low Earth orbit where it will be assembled using the Mobile Transporter of the Space Station Freedom.
Building and Leading the Next Generation of Exploration Launch Vehicles
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Vanhooser, Teresa
2010-01-01
NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.
2012-10-10
ISS033-E-011151 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the International Space Station’s Canadarm2 robotic arm. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing port of the Harmony node Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon’s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.
2012-10-10
ISS033-E-011160 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the International Space Station’s Canadarm2 robotic arm. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing port of the Harmony node Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon’s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.
2012-10-10
ISS033-E-011146 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the International Space Station’s Canadarm2 robotic arm. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing port of the Harmony node Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon’s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.
2012-01-12
CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a technician oversees the closure of a transportation canister containing a Pratt Whitney Rocketdyne space shuttle main engine (SSME). This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Gianni Woods
Traffic Flow of Interacting Self-Driven Particles: Rails and Trails, Vehicles and Vesicles
NASA Astrophysics Data System (ADS)
Chowdhury, Debashish
One common feature of a vehicle, an ant and a kinesin motor is that they all convert chemical energy, derived from fuel or food, into mechanical energy required for their forward movement; such objects have been modelled in recent years as self-driven particles. Cytoskeletal filaments, e.g., microtubules, form a rail network for intra-cellular transport of vesicular cargo by molecular motors like, for example, kinesins. Similarly, ants move along trails while vehicles move along lanes. Therefore, the traffic of vehicles and organisms as well as that of molecular motors can be modelled as systems of interacting self-driven particles; these are of current interest in non-equilibrium statistical mechanics. In this paper we point out the common features of these model systems and emphasize the crucial differences in their physical properties.
An analytical study of hybrid ejector/internal combustion engine-driven heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.
1988-01-01
Because ejectors can combine high reliability with low maintenance cost in a package requiring little capital investment, they may provide attractive heat pumping capability in situations where the importance of their inefficiencies is minimized. One such concept, a hybrid system in which an ejector driven by engine reject heat is used to increase the performance of an internal combustion engine-driven heat pump, was analyzed by modifying an existing ejector heat pump model and combining it with generic compressor and internal combustion engine models. Under the model assumptions for nominal cooling mode conditions, the results showed that hybrid systems could providemore » substantial performance augmentation/emdash/up to 17/percent/ increase in system coefficient of performance for a parallel arrangement of an enhanced ejector with the engine-driven compressor. 4 refs., 4 figs., 4 tabs.« less
46 CFR 56.50-85 - Tank-vent piping.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-control systems or other, equivalent means, together with gauging devices and procedures for filling cargo... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-85 Tank-vent piping. (a) This section...
Tyurin and Ryazanskiy unpacks Storage Containers
2014-02-08
ISS038-E-043144 (8 Feb. 2014) --- Russian cosmonauts Mikhail Tyurin and Sergey Ryazanskiy (background), both Expedition 38 flight engineers, unpack storage containers from the ISS Progress 54 cargo spacecraft, which docked to the Pirs docking compartment of the International Space Station on Feb. 5, 2014.
Tyurin and Ryazanskiy unpacks Storage Containers
2014-02-08
ISS038-E-043146 (8 Feb. 2014) --- Russian cosmonauts Mikhail Tyurin and Sergey Ryazanskiy (background), both Expedition 38 flight engineers, unpack storage containers from the ISS Progress 54 cargo spacecraft, which docked to the Pirs docking compartment of the International Space Station on Feb. 5, 2014.
Radiated noise characteristics of a modern cargo ship
Arveson; Vendittis
2000-01-01
Extensive measurements were made of the radiated noise of M/V OVERSEAS HARRIETTE, a bulk cargo ship (length 173 m, displacement 25 515 tons) powered by a direct-drive low-speed diesel engine-a design representative of many modern merchant ships. The radiated noise data show high-level tonal frequencies from the ship's service diesel generator, main engine firing rate, and blade rate harmonics due to propeller cavitation. Radiated noise directionality measurements indicate that the radiation is generally dipole in form at lower frequencies, as expected. There are some departures from this pattern that may indicate hull interactions. Blade rate source level (174 dB re 1 microPa/m at 9 Hz, 16 knots) agrees reasonably well with a model of fundamental blade rate radiation previously reported by Gray and Greeley, but agreement for blade rate harmonics is not as good. Noise from merchant ships elevates the natural ambient by 20-30 dB in many areas; the effects of this noise on the biological environment have not been widely investigated.
Space transfer vehicle concepts and requirements, volume 2, book 1
NASA Technical Reports Server (NTRS)
1991-01-01
The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine backs up with its cargo of containers in order to change tracks. The containers enclose segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Zhao, Jing; Wang, Yi; Xu, Huan; Fu, Yuan; Qian, Ting; Bo, Deng; Lu, Yan-Xin; Xiong, Yi; Wan, Jun; Zhang, Xiang; Dong, Qiang; Chen, Xiang-Jun
2016-07-01
Sprawling (Swl) is a radiation-induced mutation which has been identified to have a nine base pair deletion in dynein heavy chain 1 (DYNC1H1: encoded by a single gene Dync1h1). This study is to investigate the phenotype and the underlying mechanism of the Dync1h1 mutant. To display the phenotype of Swl mutant mice, we examined the embryos of homozygous (Swl/Swl) and heterozygous (Swl/+) mice and their postnatal dorsal root ganglion (DRG) of surviving Swl/+ mice. The Swl/+ mice could survive for a normal life span, while Swl/Swl could only survive till embryonic (E) 8.5 days. Excessive apoptosis of Swl/+ DRG neurons was revealed during E11.5-E15.5 days, and the peak rate was at E13.5 days. In vitro study of mutated DRG neurons showed impaired retrograde transport of dynein-driven nerve growth factor (NGF). Mitochondria, another dynein-driven cargo, demonstrated much slower retrograde transport velocity in Swl/+ neurons than in wild-type (WT) neurons. Nevertheless, the Swl, Loa, and Cra mutations did not affect homodimerization of DYNC1H1. The Swl/Swl mutation of Dync1h1 gene led to embryonic mal-development and lethality, whereas the Swl/+ DRG neurons demonstrated deficient retrograde transport in dynein-driven cargos and excessive apoptosis during mid- to late-developmental stages. The underlying mechanism of the mutation may not be due to impaired homodimerization of DYNC1H1. © 2016 John Wiley & Sons Ltd.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; ...
2015-06-16
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less
46 CFR 64.35 - Bottom filling or discharge connection.
Code of Federal Regulations, 2010 CFR
2010-10-01
....35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.35 Bottom filling or discharge... the product, and a manually operated valve that is located— (a) Inside the tank and operated outside...
Matsuura, Yoshiyuki
2016-05-22
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes
NASA Technical Reports Server (NTRS)
Wolowicz, C. H.; Yancey, R. B.
1972-01-01
Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, Trevor
The central focus of the work performed under this award has been to develop the bacteriophage P22 viral capsid as a vehicle for the encapsulation of catalyticaly active cargo materials and study their utility towards economic energy harvesting systems. We have demonstrated that the capsid of the bacteriophage P22 can be used to genetically program the assembly and encapsulation of a range of inorganic nanoparticles and protein cargoes. The P22 capsid uses a scaffold protein (SP) to direct the assembly of its coat protein (CP) into icosahedral capsids. By creating a genetic fusion of a desired cargo enzyme or amore » small peptide that can act as a nucleation site for subsequent NP growth, we have demonstrated the co-assembly of these SP-fusions and CP into stable “nano-reactors”. The cargo is sequestered inside the engineered capsid and can either be used directly as a nanocatalyst or for the nucleation and growth of inorganic or organic nanoparticles or polymers. The synthetic cargos (NP or polymers) were shown to have photocatalytic activity. The time dependent photophysics of a select few of these systems were studied to determine the underlying mechanisms and efficiency of light harversting. Enzyme cargos encapsulated within the P22 were thermally activated catalysts and their kinetic behavior was characterized. During the course of this work we have demonstrated that the method is a robust means to harness biology for materials applications and have initiated work into assembling the P22 nanoreactors into hierarchically ordered materials. The successful implementation of the work performed under this DOE grant provides us with a great deal of knowledge and a library of components to go forward towards the development of bioinspired catalytic materials for energy harvesting.« less
Initial results from a multiple monoenergetic gamma radiography system for nuclear security
NASA Astrophysics Data System (ADS)
O'Day, Buckley E.; Hartwig, Zachary S.; Lanza, Richard C.; Danagoulian, Areg
2016-10-01
The detection of assembled nuclear devices and concealed special nuclear materials (SNM) such as plutonium or uranium in commercial cargo traffic is a major challenge in mitigating the threat of nuclear terrorism. Currently available radiographic and active interrogation systems use ∼1-10 MeV bremsstrahlung photon beams. Although simple to build and operate, bremsstrahlung-based systems deliver high radiation doses to the cargo and to potential stowaways. To eliminate problematic issues of high dose, we are developing a novel technique known as multiple monoenergetic gamma radiography (MMGR). MMGR uses ion-induced nuclear reactions to produce two monoenergetic gammas for dual-energy radiography. This allows us to image the areal density and effective atomic number (Zeff) of scanned cargo. We present initial results from the proof-of-concept experiment, which was conducted at the MIT Bates Research and Engineering Center. The purpose of the experiment was to assess the capabilities of MMGR to measure areal density and Zeff of container cargo mockups. The experiment used a 3.0 MeV radiofrequency quadrupole accelerator to create sources of 4.44 MeV and 15.11 MeV gammas from the 11B(d,nγ)12C reaction in a thick natural boron target; the gammas are detected by an array of NaI(Tl) detectors after transmission through cargo mockups . The measured fluxes of transmitted 4.44 MeV and 15.11 MeV gammas were used to assess the areal density and Zeff. Initial results show that MMGR is capable of discriminating the presence of high-Z materials concealed in up to 30 cm of iron shielding from low- and mid-Z materials present in the cargo mockup.
Lai, Charles P.; Kim, Edward Y.; Badr, Christian E.; Weissleder, Ralph; Mempel, Thorsten R.; Tannous, Bakhos A.; Breakefield, Xandra O.
2015-01-01
Accurate spatiotemporal assessment of extracellular vesicle (EV) delivery and cargo RNA translation requires specific and robust live-cell imaging technologies. Here we engineer optical reporters to label multiple EV populations for visualization and tracking of tumour EV release, uptake and exchange between cell populations both in culture and in vivo. Enhanced green fluorescence protein (EGFP) and tandem dimer Tomato (tdTomato) were fused at NH2-termini with a palmitoylation signal (PalmGFP, PalmtdTomato) for EV membrane labelling. To monitor EV-RNA cargo, transcripts encoding PalmtdTomato were tagged with MS2 RNA binding sequences and detected by co-expression of bacteriophage MS2 coat protein fused with EGFP. By multiplexing fluorescent and bioluminescent EV membrane reporters, we reveal the rapid dynamics of both EV uptake and translation of EV-delivered cargo mRNAs in cancer cells that occurred within 1-hour post-horizontal transfer between cells. These studies confirm that EV-mediated communication is dynamic and multidirectional between cells with delivery of functional mRNA. PMID:25967391
LRP-1-mediated intracellular antibody delivery to the Central Nervous System
NASA Astrophysics Data System (ADS)
Tian, Xiaohe; Nyberg, Sophie; S. Sharp, Paul; Madsen, Jeppe; Daneshpour, Nooshin; Armes, Steven P.; Berwick, Jason; Azzouz, Mimoun; Shaw, Pamela; Abbott, N. Joan; Battaglia, Giuseppe
2015-07-01
The blood-brain barrier (BBB) is by far the most important target in developing new approaches to improve delivery of drugs and diagnostic tools into the Central Nervous System (CNS). Here we report the engineering of pH- sensitive polymersomes (synthetic vesicles formed by amphiphilic copolymers) that exploit endogenous transport mechanisms to traverse the BBB, enabling delivery of large macromolecules into both the CNS parenchyma and CNS cells. We achieve this by targeting the Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1) receptor. We show that LRP-1 is associated with endothelial transcytosis that does not involve acidification of cargo in membrane-trafficking organelles. By contrast, this receptor is also associated with traditional endocytosis in CNS cells, thus aiding the delivery of relevant cargo within their cytosol. We prove this using IgG as a model cargo, thus demonstrating that the combination of appropriate targeting combined with pH-sensitive polymersomes enables the efficient delivery of macromolecules into CNS cells.
Technical and Economic Assessment of Span-Loaded Cargo Aircraft Concepts
NASA Technical Reports Server (NTRS)
1976-01-01
The benefits are assessed of span distributed loading concepts as applied to future commercial air cargo operations. A two phased program is used to perform this assessment. The first phase consists of selected parametric studies to define significant configuration, performance, and economic trends. The second phase consists of more detailed engineering design, analysis, and economic evaluations to define the technical and economic feasibility of a selected spanloader design. A conventional all-cargo aircraft of comparable technology and size is used as a comparator system. The technical feasibility is demonstrated of the spanloader concept with no new major technology efforts required to implement the system. However, certain high pay-off technologies such as winglets, airfoil design, and advanced structural materials and manufacturing techniques need refinement and definition prior to application. In addition, further structural design analysis could establish the techniques and criteria necessary to fully capitalize upon the high degree of structural commonality and simplicity inherent in the spanloader concept.
Winged cargo return vehicle conceptual design
NASA Technical Reports Server (NTRS)
1990-01-01
NASA is committed to placing a permanent space station in Earth orbit in the 1990's. Space Station Freedom (SSF) will be located in a 220 n.m. orbit at 28.5 degrees inclination. The Winged Cargo Return Vehicle's (CRV) primary mission is to support SSF crew by flying regular resupply missions. The winged CRV is designed to be reusable, dry land recoverable, and unmanned. The CRV will be launched inline on three liquid hydrogen/oxygen rocket boosters with a payload capacity of 113,000 lbs. The three boosters will take the CRV to an orbit of 50 by 110 n.m. From this altitude the orbital manuevering engine will place the vehicle in synchronous orbit with the space station. The winged CRV will deliver cargo modules to the space station by direct docking or by remaining outside the SSF command zone and using the Orbital Maneuvering Vehicle (OMV) to transfer cargo. After unloading/loading, the CRV will deorbit and fly back to Kennedy Space Center. The CRV has a wing span of 57.8 feet, a length of 76.0 feet, and a dry weight of 61.5 klb. The cargo capacity of the vehicle is 44.4 klb. The vehicle has a lift-drag ratio of 1.28 (hypersonic) and 6.0 (subsonic), resulting in a 1351 n.m. cross range. The overall mission length ranges between 18.8 and 80.5 hr. The operational period will be the years 2000 to 2020.
NASA Technical Reports Server (NTRS)
Harthoorn, R.
1975-01-01
As future LTA vehicles will be doomed right from the start if they do not fill a real need, some differences in transport philosophy between design engineers on the one hand and freight forwarders on the other are discussed. Watching rising costs of energy necessary to transport our cargo from A to B, and realizing that this price of energy is always included in the product's selling price at B, the apparent correlation between installed specific tractive force per unit of cargo weight and pure freighting cost are contemplated. Very speedy and progressive Airship designs are mistrusted, because the key to any low cost transport tool is to design it for its given task only, without any unnecessary sophistication.
Raffaello Multi-Purpose Logistics Module (MPLM) in Discovery Cargo Bay
NASA Technical Reports Server (NTRS)
2005-01-01
Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. Back dropped by popcorn-like clouds, the MPLM can be seen in the cargo bay as Discovery undergoes rendezvous and docking operations. Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft from the International Space Station (ISS).
Raffaello Multi-Purpose Logistics Module (MPLM) in Discovery Cargo Bay
NASA Technical Reports Server (NTRS)
2005-01-01
Launched on July 26 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. Back dropped by popcorn-like clouds, the MPLM can be seen in the cargo bay as Discovery undergoes rendezvous and docking operations. Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft from the International Space Station (ISS).
2017-01-09
Still sealed in its environmentally controlled shipping container, the Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) has arrived inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Once the Cygnus spacecraft is removed from its shipping container, engineers and technicians will begin preparing for launch scheduled for March 2017. Orbital ATK CRS-7 will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
Aero Spacelines B377PG Pregnant Guppy on ramp in preparation for flight tests and pilot evaluation
NASA Technical Reports Server (NTRS)
1962-01-01
The Aero Spacelines B377PG Pregnant Guppy was flown by Aero Spacelines pilots to Dryden for tests and evaluation by pilots Joe Vensel and Stan Butchart in October 1962. The outsized cargo aircraft incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The modified aircraft was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. Later versions of the aircraft, including the Super Guppy and the Super Guppy Turbine, are still in use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Location. 111.40-7 Section 111.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-7 Location. Each panelboard must be accessible but not in a bunker or a cargo hold...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Location. 111.40-7 Section 111.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-7 Location. Each panelboard must be accessible but not in a bunker or a cargo hold...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Location. 111.40-7 Section 111.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-7 Location. Each panelboard must be accessible but not in a bunker or a cargo hold...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Location. 111.40-7 Section 111.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-7 Location. Each panelboard must be accessible but not in a bunker or a cargo hold...
2001-08-20
STS105-714-028 (20 August 2001) --- Backdropped by Lake Michigan, this distant view shows the recently deployed small science satellite called Simplesat, which is an engineering satellite, designed to evaluate the use of inexpensive commercial hardware for spacecraft. It was spring-ejected from a canister at the rear of the Shuttle's cargo bay.
46 CFR 154.34 - Special approval: Requests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Special approval: Requests. 154.34 Section 154.34 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY...), Attn: Office of Design and Engineering Systems, U.S. Coast Guard Stop 7509, 2703 Martin Luther King Jr...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...
What is the Use(s) and Mission(s) of the C-27J?
2010-06-01
heavier equipment throughout the cargo compartment at a position most advantageous to the aircraft’s weight and balance – unlike limitations which exist...Graduate Research Project, AFIT/ENS/ GMO /04-01. School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson Air
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Material. 64.21 Section 64.21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.21 Material. The material for a tank must meet the requirements in...
46 CFR 64.33 - Pipe connection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.33 Pipe connection. Each pipe connection that is not a pressure relief device must be fitted with a manually operated stop valve or closure located as close to the tank...
Economic Impacts of the Category 3 Marine Rule on Great Lakes Shipping
This is a scenario-based economic assessment of the impacts of EPA’s Category 3 Marine Diesel Engines Rule on certain cargo movements in the Great Lakes shipping network. During the proposed phase of the rulemaking, Congress recommended that EPA conduct such a study, and EPA wil...
Reiter during maintenance tasks in the FGB
2006-08-10
ISS013-E-65721 (10 Aug. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 13 flight engineer, replaces the number two replaceable pump panel (SPN) in the number one loop (VGK1) of the International Space Station's Zarya functional cargo block (FGB) thermal control system with a new spare from stowage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Location. 111.40-7 Section 111.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-7 Location. Each panelboard must be accessible but not in a bunker or a cargo hold...
NASA Astrophysics Data System (ADS)
Seamster, Pamela E.; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L.
2012-10-01
The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer’s, Huntington and Parkinson's diseases.
AJ26 rocket engine testing news briefing
NASA Technical Reports Server (NTRS)
2010-01-01
NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.
STDCE, Payload Specialist Fred Leslie works at the STDCE rack in USML-2 Spacelab
1995-11-05
STS073-103-015 (20 October-5 November 1995) --- Payload specialist Fred W. Leslie works with the Surface Tension Driven Convection Experiment (STDCE) aboard the science module in the cargo bay of the Earth-orbiting Space Shuttle Columbia. Leslie joined another guest researcher and five NASA astronauts for 16 full days of in-space research in support of the United States Microgravity Laboratory (USML-2) mission.
Navigating the plant cell: intracellular transport logistics in the green kingdom.
Geitmann, Anja; Nebenführ, Andreas
2015-10-01
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin-myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions. © 2015 Geitmann and Nebenführ. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
On the Mysterious Propulsion of Synechococcus
Ehlers, Kurt; Oster, George
2012-01-01
We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus. PMID:22567124
Liang, Yingkai; Kiick, Kristi L
2016-02-08
Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.
Eggenberger, Kai; Mink, Christian; Wadhwani, Parvesh; Ulrich, Anne S; Nick, Peter
2011-01-03
The delivery of externally applied macromolecules or nanoparticles into living cells still represents a critically limiting step before the full capabilities of chemical engineering can be explored. Molecular transporters such as cell-penetrating peptides, peptoids, and other mimetics can be used to carry cargo across the cellular membrane, but it is still difficult to find suitable sequences that operate efficiently for any particular type of cell. Here we report that BP100 (KKLFKKILKYL-amide), originally designed as an antimicrobial peptide against plant pathogens, can be employed as a fast and efficient cell-penetrating agent to transport fluorescent test cargoes into the cytosol of walled plant cells. The uptake of BP100 proceeds slightly more slowly than the endocytosis of fluorescent dextranes, but BP100 accumulates more efficiently and to much higher levels (by an order of magnitude). The entry of BP100 can be efficiently blocked by latrunculin B; this suggests that actin filaments are essential to the uptake mechanism. To test whether this novel transporter can also be used to deliver functional cargoes, we designed a fusion construct of BP100 with the actin-binding Lifeact peptide (MGVADLIKKFESISKEE). We demonstrated that the short BP100 could transport the attached 17-residue sequence quickly and efficiently into tobacco cells. The Lifeact construct retained its functionality as it successfully labeled the actin bundles that tether the nucleus in the cell center.
The Need and Challenges for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.
2013-01-01
The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.
The sciences and applications of the Electron LINAC-driven neutron source in Argentina
NASA Astrophysics Data System (ADS)
Granada, J. R.; Mayer, R. E.; Dawidowski, J.; Santisteban, J. R.; Cantargi, F.; Blostein, J. J.; Rodríguez Palomino, L. A.; Tartaglione, A.
2016-06-01
The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present "bremsstrahlung" radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students' experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunlop, J.W.
1970-09-01
The 500-pound CACS is an electronically guided, gliding cargo airdrop system that can deliver critical materials and supplies to troops in remote or hostile areas at any time of day or night under a wide range of weather and terrain conditions. Because the drop aircraft does not have to fly directly over the target area, the aircrew conducting the drop is assured greater safety because the delivery aircraft can remain out of danger zones while making the drop. The CACS is currently in the Engineering Test phase. The system consists of a parawing glider, a control unit that receives signalsmore » from a transmitter and steers the glider, the payload, and the transmitter on which the glider homes. The system is capable of automatically delivering 300 to 600 pounds of cargo to within 200 feet of a ground radio transmitter from altitudes of 500 to 25,000 feet. The airborne portion, consisting of the parawing and the control unit, weighs approximately 80 pounds (excluding payload) and can be dropped from any cargo-carrying aircraft. The payload hits the ground with approximately the same impact as a parachute-dropped load, approximately 20 fps in vertical descent. Its horizontal velocity approaches 50 fps. (GRA)« less
Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts
NASA Technical Reports Server (NTRS)
Johnston, W. M.; Muehlbauer, J. C.; Eudaily, R. R.; Farmer, B. T.; Monrath, J. F.; Thompson, S. G.
1976-01-01
A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons.
Aspects of the BPRIM Language for Risk Driven Process Engineering
NASA Astrophysics Data System (ADS)
Sienou, Amadou; Lamine, Elyes; Pingaud, Hervé; Karduck, Achim
Nowadays organizations are exposed to frequent changes in business environment requiring continuous alignment of business processes on business strategies. This agility requires methods promoted in enterprise engineering approaches. Risk consideration in enterprise engineering is getting important since the business environment is becoming more and more competitive and unpredictable. Business processes are subject to the same quality requirements as material and human resources. Thus, process management is supposed to tackle value creation challenges but also the ones related to value preservation. Our research considers risk driven business process design as an integral part of enterprise engineering. A graphical modelling language for risk driven business process engineering was introduced in former research. This paper extends the language and handles questions related to modelling risk in organisational context.
Performance of Blowdown Turbine driven by Exhaust Gas of Nine-Cylinder Radial Engine
1944-12-01
blade speed to mean jet speed FIQUBE 6.—Variation of mean turbine efficiency with ratio of blade speed to moan Jot speed. Engine speed, 2000 rpm; full...conventional turbo - supercharger axe used in series, the blowdown turbine may be geared to the engine . Aircraft engines are operated at high speed for...guide vanes in blowdown-turblno noule box. PERFORMANCE OF BLOWDOWN TURBINE DRIVEN BT EXHAUST GAS OF RADIAL ENGINE 245 (6) Diaphragm
The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering
ERIC Educational Resources Information Center
Cabot, Jordi; Tisi, Massimo
2011-01-01
Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…
46 CFR 11.901 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...
46 CFR 11.901 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...
46 CFR 11.901 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...
Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D
2001-03-01
This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.
Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D
2000-01-01
We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as a real-time dosimeter to indicate when respiratory protection is advisable. PMID:11017890
Bio-inspired polymer composite actuator and generator driven by water gradients.
Ma, Mingming; Guo, Liang; Anderson, Daniel G; Langer, Robert
2013-01-11
Here we describe the development of a water-responsive polymer film. Combining both a rigid matrix (polypyrrole) and a dynamic network (polyol-borate), strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion. The film actuator can generate contractile stress up to 27 megapascals, lift objects 380 times heavier than itself, and transport cargo 10 times heavier than itself. We have assembled a generator by associating this actuator with a piezoelectric element. Driven by water gradients, this generator outputs alternating electricity at ~0.3 hertz, with a peak voltage of ~1.0 volt. The electrical energy is stored in capacitors that could power micro- and nanoelectronic devices.
Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass
NASA Technical Reports Server (NTRS)
Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)
2016-01-01
A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.
NASA Technical Reports Server (NTRS)
Snoddy, Jim
2006-01-01
The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
Department of Defense In-House RDT and E Activities Report for Fiscal Year 1990
1990-01-01
equipment systems. Advanced personnel and cargo airdrop system. 1FUNCTIONS/EQUIPMENT!/FACI LITIES Biotechnology lab, materials characterization lab...4 Airworthines. Qualification Test Directorate ..... .................................... 5 Armament Rrsearch . Developaent & Eaguiecring Center...1), exploratory development (6.2), advanced development (6.3), engineering development (6.4), management support (6.5), operational systems support
What is the Best Use(s) and Mission(s) of the C-27J?
2010-06-01
cargo compartment at a position most advantageous to the aircraft’s weight and balance – unlike limitations which exist in the legacy C-130 Hercules...ENS/ GMO /04-01. School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base OH, May 2004
46 CFR 64.41 - Stop valve closure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Stop valve closure. 64.41 Section 64.41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.41 Stop valve closure. A stop valve that operates by a screwed...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Base. 64.27 Section 64.27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.27 Base. The base of an MPT must be as wide and as long as the tank. ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Base. 64.27 Section 64.27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.27 Base. The base of an MPT must be as wide and as long as the tank. ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Base. 64.27 Section 64.27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.27 Base. The base of an MPT must be as wide and as long as the tank. ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Base. 64.27 Section 64.27 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.27 Base. The base of an MPT must be as wide and as long as the tank. ...
49 CFR 541.5 - Requirements for passenger motor vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Engine. (2) Transmission. (3) Right front fender. (4) Left front fender. (5) Hood. (6) Right front door. (7) Left front door. (8) Right rear door. (9) Left rear door. (10) Sliding or cargo door(s). (11) Front bumper. (12) Rear bumper. (13) Right rear quarter panel (passenger cars). (14) Left rear quarter...
49 CFR 541.5 - Requirements for passenger motor vehicles.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Engine. (2) Transmission. (3) Right front fender. (4) Left front fender. (5) Hood. (6) Right front door. (7) Left front door. (8) Right rear door. (9) Left rear door. (10) Sliding or cargo door(s). (11) Front bumper. (12) Rear bumper. (13) Right rear quarter panel (passenger cars). (14) Left rear quarter...
Structural basis for nuclear import complex dissociation by RanGTP.
Lee, Soo Jae; Matsuura, Yoshiyuki; Liu, Sai Man; Stewart, Murray
2005-06-02
Nuclear protein import is mediated mainly by the transport factor importin-beta that binds cytoplasmic cargo, most often via the importin-alpha adaptor, and then transports it through nuclear pore complexes. This active transport is driven by disassembly of the import complex by nuclear RanGTP. The switch I and II loops of Ran change conformation with nucleotide state, and regulate its interactions with nuclear trafficking components. Importin-beta consists of 19 HEAT repeats that are based on a pair of antiparallel alpha-helices (referred to as the A- and B-helices). The HEAT repeats stack to yield two C-shaped arches, linked together to form a helicoidal molecule that has considerable conformational flexibility. Here we present the structure of full-length yeast importin-beta (Kap95p or karyopherin-beta) complexed with RanGTP, which provides a basis for understanding the crucial cargo-release step of nuclear import. We identify a key interaction site where the RanGTP switch I loop binds to the carboxy-terminal arch of Kap95p. This interaction produces a change in helicoidal pitch that locks Kap95p in a conformation that cannot bind importin-alpha or cargo. We suggest an allosteric mechanism for nuclear import complex disassembly by RanGTP.
Drerup, Catherine M.; Nechiporuk, Alex V.
2013-01-01
Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants (jip3nl7) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3nl7, whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3–JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3nl7, as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein. PMID:23468645
A Shuttle Derived Vehicle launch system
NASA Technical Reports Server (NTRS)
Tewell, J. R.; Buell, D. N.; Ewing, E. S.
1982-01-01
This paper describes a Shuttle Derived Vehicle (SDV) launch system presently being studied for the NASA by Martin Marietta Aerospace which capitalizes on existing Shuttle hardware elements to provide increased accommodations for payload weight, payload volume, or both. The SDV configuration utilizes the existing solid rocket boosters, external tank and the Space Shuttle main engines but replaces the manned orbiter with an unmanned, remotely controlled cargo carrier. This cargo carrier substitution more than doubles the performance capability of the orbiter system and is realistically achievable for minimal cost. The advantages of the SDV are presented in terms of performance and economics. Based on these considerations, it is concluded that an unmanned SDV offers a most attractive complement to the present Space Transportation System.
The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
An Airbus Industrie A300-600ST 'Beluga' Super Transporter touches down at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077666 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077562 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
The Raffaello, a Multi-Purpose Logistics Module, arrives at KSC aboard a Beluga super transporter
NASA Technical Reports Server (NTRS)
1999-01-01
An Airbus Industrie A300-600ST 'Beluga' Super Transporter lands in the rain at the Shuttle Landing Facility to deliver its cargo, the second Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). One of Italy's major contributions to the ISS program, the MPLM, named Raffaello, is a reusable logistics carrier and the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Weighing nearly 4.5 tons, the module measures 21 feet long and 15 feet in diameter. Raffaello will join Leonardo, the first Italian-built MPLM, in the Space Station Processing Facility for testing. NASA, Boeing, the Italian Space Agency and Alenia Aerospazio will provide engineering support.
Variable speed gas engine-driven air compressor system
NASA Astrophysics Data System (ADS)
Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.
1992-11-01
Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.
Evaluation of a Shuttle Derived Vehicle (SDV) for Cargo Transportation
NASA Technical Reports Server (NTRS)
Roman, Jose M.; Meacham, Stephen B.; Krupp, Donald R.; Threet, G. E.; Best, Joel; Davis, Stephan R.; Crumbly, Christopher; Olsen, Ronald A.; Engler, Leah M.; Garner, Tim
2005-01-01
In this new era of space exploration, a host of launch vehicles are being examined for possible use in transporting cargo and crew to low Earth orbit and beyond. Launch vehicles derived from the Space Shuttle Program (SSP), known as Shuttle Derived Vehicles (SDVs), are prime candidates for heavy-lift duty because of their potential to minimize non-recurring costs and because the Shuttle can leverage off proven high-performance flight systems with established ground and flight support. To determine the merits of SDVs, a detailed evaluation was performed. This evaluation included a trade study and risk assessment of options based on performance, safety reliability, cost, operations, and evolution. The purpose of this paper is to explain the approach, processes, and tools used to evaluate launch vehicles for heavy lift cargo transportation. The process included defining the trade space, characterizing the concepts, analyzing the systems, and scoring the options. The process also included a review by subject experts from NASA and industry to compare past and recent study data and assess the risks. A set of technical performance measures (TPMs) was generated based on the study requirements and constraints. Tools such as INTROS and POST were used to calculate performance, FIRST was used for prediction of reliability, and other software packages, both commercial and NASA-owned, were applied to study the trade space. By following a clear process and using the right tools a thorough assessment was performed. An SDV can be classified as either a side-mount vehicle (SMV) or an in-line vehicle OLV). An SMV is a Space Shuttle where the Orbiter is replaced by a cargo carrier. An ILV is comprised of a modified Shuttle External Tank (ET) with engines mounted to the bottom and cargo mounted atop. For both families of vehicles, Solid Rocket Boosters (SRBs) are attached to the ET. The first derivate of Shuttle is defined as the vehicle with minimum changes necessary to transform the Space Shuttle into an SDV. Deltas from the first derivate were also formulated to study more SDV options. Examples of deltas include replacing the SRBs with larger and/or more SRBs, adding an upper stage, increasing the size of the ET, changing the engines, and modifying the elements. Challenges for SDV range from tailoring infrastructure to meeting the exploration schedule. Although SDV is based on the Space Shuttle, it still includes development risk for designing and building a Cargo Carrier. There are also performance challenges in that Shuttle is not optimized for cargo-only missions, but it is a robust system built on reusability. Balancing the strengths and weaknesses of the Shuttle to meet Lunar and Mars mission objectives provides the framework for an informative trade study. SDV was carefully analyzed and the results of the study provide invaluable data for use in the new exploration initiative.
Solis, Kyle J.; Martin, James E.
2017-07-06
In recent years a rich variety of emergent phenomena have been observed when suspensions of magnetic particles are subjected to alternating magnetic fields. These particle assemblies often exhibit vigorous dynamics due to the injection of energy from the field. These include surface and interface phenomena, such as highly organized, segmented “snakes” that can be induced to swim by structural symmetry breaking, and “asters” and “anti-asters,” particle assemblies that can be manipulated to capture and transport cargo. In bulk suspensions of magnetic platelets subjected to multiaxial alternating fields, advection lattices and even vortex lattices have been created, and a variety ofmore » biomimetic dynamics – serpents, bees and amoebas – have been discovered in magnetic fluids suspended in an immiscible liquid. In this paper several new driven phases are presented, including flying chevrons, dense spinning clusters, filaments, and examples of phase coexistence in driven phases. These observations broaden the growing field of driven magnetic suspensions and present new challenges to those interested in simulating the dynamics of these complex systems.« less
Event-driven management algorithm of an Engineering documents circulation system
NASA Astrophysics Data System (ADS)
Kuzenkov, V.; Zebzeev, A.; Gromakov, E.
2015-04-01
Development methodology of an engineering documents circulation system in the design company is reviewed. Discrete event-driven automatic models using description algorithms of project management is offered. Petri net use for dynamic design of projects is offered.
Consistent Evolution of Software Artifacts and Non-Functional Models
2014-11-14
induce bad software performance)? 15. SUBJECT TERMS EOARD, Nano particles, Photo-Acoustic Sensors, Model-Driven Engineering ( MDE ), Software Performance...Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy Email: vittorio.cortellessa@univaq.it Web : http: // www. di. univaq. it/ cortelle/ Phone...Model-Driven Engineering ( MDE ), Software Performance Engineering (SPE), Change Propagation, Performance Antipatterns. For sake of readability of the
NASA Astrophysics Data System (ADS)
Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem
2017-06-01
Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.
NASA Astrophysics Data System (ADS)
Dalah, Entesar; Fakhry, Angham; Mukhtar, Asma; Al Salti, Farah; Bader, May; Khouri, Sara; Al-Zahmi, Reem
2017-11-01
Based on security issues and regulations airports are provided with luggage cargo scanners. These scanners utilize ionizing radiation that in principle present health risks toward humans. The study aims to investigate the amount of backscatter produced by passenger luggage and cargo toward airport personnel who are located at different distances from the scanners. To approach our investigation a Thermo Electron Radeye-G probe was used to quantify the backscattered radiation measured in terms of dose-rate emitted from airport scanners, Measurements were taken at the entrance and exit positions of the X-ray tunnel at three different distances (0, 50, and 100 cm) for two different scanners; both scanners include shielding curtains that reduce scattered radiation. Correlation was demonstrated using the Pearson coefficient test. Measurements confirmed an inverse relationship between dose rate and distance. An estimated occupational accumulative dose of 0.88 mSv/y, and 2.04 mSv/y were obtained for personnel working in inspection of carry-on, and cargo, respectively. Findings confirm that the projected dose of security and engineering staff are being well within dose limits.
Engineering adeno-associated viruses for clinical gene therapy.
Kotterman, Melissa A; Schaffer, David V
2014-07-01
Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.
Engineering adeno-associated viruses for clinical gene therapy
Kotterman, Melissa A.; Schaffer, David V.
2015-01-01
Clinical gene therapy has been increasingly successful, due both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among the latter, delivery vectors based on adeno-associated virus (AAV) have emerged as safe and effective – in one recent case leading to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers. PMID:24840552
Ferraz, C C; Gomes, N V; Gomes, B P; Zaia, A A; Teixeira, F B; Souza-Filho, F J
2001-07-01
To evaluate the weight of debris and irrigant volume extruded apically from extracted teeth in vitro after endodontic instrumentation using the balanced force technique, a hybrid hand instrumentation technique, and three engine-driven techniques utilizing nickel-titanium instruments (ProFile .04, Quantec 2000 and Pow-R). Five groups of 20 extracted human teeth with single canals were instrumented using one or other of five techniques: balanced force, hybrid, Quantec 2000, ProFile .04, or Pow-R. Debris extruded from the apical foramen during instrumentation were collected into preweighed 1.5 mL tubes. Following instrumentation, the volume of extruded irrigant fluid was determined by visual comparison to control centrifuge tubes filled with 0.25 mL increments of distilled water. The weight of dry extruded dentine debris was also established. Overall, the engine-driven techniques extruded less debris than the manual ones. However, there was no statistical difference between the balanced force technique and the engine-driven methods. The volume of irrigant extruded through the apex was directly associated with the weight of extruded debris, except within the ProFile group. The hybrid technique was associated with the greatest extrusion of both debris and irrigant. Overall, the engine-driven nickel-titanium systems were associated with less apical extrusion.
Space-based laser-powered orbital transfer vehicle (Project SLICK)
NASA Technical Reports Server (NTRS)
1988-01-01
A conceptual design study of a laser-powered orbital transfer vehicle (LOTV) is presented. The LOTV, nicknamed SLICK (Space Laser Interorbital Cargo Kite), will be utilized for the transfer of 16000 kg of cargo between Low Earth Orbit (LEO) and either Geosynchronous Earth Orbit (GEO) or Low Lunar Orbit (LLO). This design concentrates primarily on the LEO/GEO scenario, which will have typical LEO-to-GEO trip time of 6 days and two return versions. One version uses an all propulsive return while the other utilizes a ballute aerobrake for the return trip. Furthermore, three return cargo options of 16000 kg, 5000 kg (standard option), and 1600 kg are considered for this scenario. The LEO/LLO scenario uses only a standard, aerobraked version. The basic concept behind the LOTV is that the power for the propulsion system is supplied by a source separate from the LOTV itself. For the LEO/GEO scenario the LOTV utilizes a direct solar-pumped iodide laser and possibly two relay stations, all orbiting at an altitude of one Earth radius and zero inclination. An additional nuclear-powered laser is placed on the Moon for the LEO/LLO scenario. The propulsion system of the LOTV consists of a single engine fueled with liquid hydrogen. The laser beam is captured and directed by a four mirror optical system through a window in the thrust chamber of the engine. There, seven plasmas are created to convert the laser beam energy into thermal energy at an efficiency of at least 50 percent. For the LEO/LLO scenario the laser propulsion is supplemented by LH2/LOX chemical thrusters.
NASA Technical Reports Server (NTRS)
Greene, WIlliam
2007-01-01
The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
NASA Technical Reports Server (NTRS)
Greene, William D.; Snoddy, Jim
2007-01-01
The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
2017-02-21
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
NASA Astrophysics Data System (ADS)
Popov, E. P.; Iurevich, E. I.
The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.
Transportable Pumps Could Save Oil Cargoes
NASA Technical Reports Server (NTRS)
Burns, R.
1984-01-01
Transportable pumps designed for firefighting used to salvage crude oil from tankships leaking, burning, or grounded. Pump incorporated into self-contained transportable module along with engine and controls. Module carried by helicopter, boat, or van to site of fire provides large quantities of water at high pressure in firefighting mode or pump oil into barge in salvage mode.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the engine department on liquefied gas tankers; or (iii) A combination of the service in paragraphs (c)(3)(i) and (c)(3)(ii) of this section. (d) Applicants holding an endorsement in advanced oil tanker... any appropriate limitations, without meeting the requirements of paragraph (a) of this section...
NASA Astrophysics Data System (ADS)
Creswick, F. A.
Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.
Hybrid biosynthetic gene therapy vector development and dual engineering capacity.
Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A
2014-08-26
Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1994-01-01
The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.
Bio-inspired Polymer Composite Actuator and Generator Driven by Water Gradients
Ma, Mingming; Guo, Liang; Anderson, Daniel G.; Langer, Robert
2013-01-01
Here we describe the development of a water-responsive polymer film; combining both a rigid matrix (polypyrrole) and a dynamic network (polyol-borate), strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion. The film actuator can generate contractile stress up to 27 MPa, lift objects 380 times heavier than itself, and transport cargo 10 times heavier than itself. We have assembled a generator by associating this actuator with a piezoelectric element. Driven by water gradients, this generator outputs alternating electricity at ∼0.3 Hz, with a peak voltage of ∼1.0 V. The electrical energy is stored in capacitors that could power micro- and nano-electronic devices. PMID:23307738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, Kyle J.; Martin, James E.
In recent years a rich variety of emergent phenomena have been observed when suspensions of magnetic particles are subjected to alternating magnetic fields. These particle assemblies often exhibit vigorous dynamics due to the injection of energy from the field. These include surface and interface phenomena, such as highly organized, segmented “snakes” that can be induced to swim by structural symmetry breaking, and “asters” and “anti-asters,” particle assemblies that can be manipulated to capture and transport cargo. In bulk suspensions of magnetic platelets subjected to multiaxial alternating fields, advection lattices and even vortex lattices have been created, and a variety ofmore » biomimetic dynamics – serpents, bees and amoebas – have been discovered in magnetic fluids suspended in an immiscible liquid. In this paper several new driven phases are presented, including flying chevrons, dense spinning clusters, filaments, and examples of phase coexistence in driven phases. These observations broaden the growing field of driven magnetic suspensions and present new challenges to those interested in simulating the dynamics of these complex systems.« less
Heat-driven thermoacoustic cryocooler operating at liquid hydrogen temperature with a unique coupler
NASA Astrophysics Data System (ADS)
Hu, J. Y.; Luo, E. C.; Li, S. F.; Yu, B.; Dai, W.
2008-05-01
A heat-driven thermoacoustic cryocooler is constructed. A unique coupler composed of a tube, reservoir, and elastic diaphragm is introduced to couple a traveling-wave thermoacoustic engine (TE) and two-stage pulse tube refrigerator (PTR). The amplitude of the pressure wave generated in the engine is first amplified in the coupler and the wave then passes into the refrigerator to pump heat. The TE uses nitrogen as its working gas and the PTR still uses helium as its working gas. With this coupler, the efficiency of the system is doubled. The engine and coupler match at a much lower operating frequency, which is of great benefit for the PTR to obtain a lower cooling temperature. The coupling place between the coupler and engine is also optimized. The onset problem is effectively solved. With these improvements, the heat-driven thermoacoustic cryocooler reaches a lowest temperature of 18.1K, which is the demonstration of heat-driven thermoacoustic refrigeration technology used for cooling at liquid hydrogen temperatures.
Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.
2008-01-01
The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
Schultz-Altmann, Alexander G T
2008-01-01
The author outlines the principles underlying the standards employed by the Australian Marine Safety Authority to regulate live animal carriers, vessels used for sea transport of livestock, that operate from Australia. The standards are contained in regulations adopted by the Australian Maritime Safety Authority known as Marine Orders. The Cargo and Cargo Handling-Livestock Marine Order has evolved over time with subsequent 'issues' of the order as a consequence of operational experience and specific research. Recent changes have focused on the need to have adequate redundancy in systems and equipment of ships. A history of the development of these regulations is given and is followed by a description of the principles employed to develop the provisions contained in the regulations.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070804 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS for Grapple
2012-05-25
ISS031-E-071143 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070799 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS for Grapple
2012-05-25
ISS031-E-071146 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is about to be grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070730 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071121 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071534 (25 May 2012) --- With clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071135 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070790 (25 May 2012) --- With clouds and land forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071134 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070663 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070798 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071075 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Random intermittent search and the tug-of-war model of motor-driven transport
NASA Astrophysics Data System (ADS)
Newby, Jay; Bressloff, Paul C.
2010-04-01
We formulate the 'tug-of-war' model of microtubule cargo transport by multiple molecular motors as an intermittent random search for a hidden target. A motor complex consisting of multiple molecular motors with opposing directional preference is modeled using a discrete Markov process. The motors randomly pull each other off of the microtubule so that the state of the motor complex is determined by the number of bound motors. The tug-of-war model prescribes the state transition rates and corresponding cargo velocities in terms of experimentally measured physical parameters. We add space to the resulting Chapman-Kolmogorov (CK) equation so that we can consider delivery of the cargo to a hidden target at an unknown location along the microtubule track. The target represents some subcellular compartment such as a synapse in a neuron's dendrites, and target delivery is modeled as a simple absorption process. Using a quasi-steady-state (QSS) reduction technique we calculate analytical approximations of the mean first passage time (MFPT) to find the target. We show that there exists an optimal adenosine triphosphate (ATP) concentration that minimizes the MFPT for two different cases: (i) the motor complex is composed of equal numbers of kinesin motors bound to two different microtubules (symmetric tug-of-war model) and (ii) the motor complex is composed of different numbers of kinesin and dynein motors bound to a single microtubule (asymmetric tug-of-war model).
NASA Technical Reports Server (NTRS)
1977-01-01
Concepts developed for both LEO and GEO construction of photovoltaic and thermal engine satellites are analyzed. Topics discussed include: satellite construction; crew scheduling; crew jobs and organizations; operator productivity rating; constructability rating; transportation systems for cargo launch, refueling operations, personnel transport, and orbit transfer; collision analysis, cost analysis, and radiation evironment and effects.
International Space Station (ISS)
2001-06-08
Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.
NASA Astrophysics Data System (ADS)
Erickson, Robert R.
Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.
A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN
2014-09-01
AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream
System and method of vehicle operating condition management
Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.
2015-10-20
A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.
Ceramics and composites for rocket engines and space structures
NASA Astrophysics Data System (ADS)
Upadhya, Kamleshwar
1992-05-01
The use of ceramic and other nonmetallic composites is considered for engine and structural elements of the National Aerospace Plane (NASP), the Space Shuttle, and space stations. Attention is given to the application of refractory composites with protective coatings for oxidation and hydrogen contamination to the NASP to address the high-temperature environments the vehicle is expected to encounter. Existing applications of metal-matrix composite struts and Gr-Ep cargo-bay doors on the Space Shuttle are reviewed, and the need for more data on the service life and failure modes of the materials is identified.
The J-2X Upper Stage Engine: From Design to Hardware
NASA Technical Reports Server (NTRS)
Byrd, Thomas
2010-01-01
NASA is well on its way toward developing a new generation of launch vehicles to support of national space policy to retire the Space Shuttle fleet, complete the International Space Station, and return to the Moon as the first step in resuming this nation s exploration of deep space. The Constellation Program is developing the launch vehicles, spacecraft, surface systems, and ground systems to support those plans. Two launch vehicles will support those ambitious plans the Ares I and Ares V. (Figure 1) The J-2X Upper Stage Engine is a critical element of both of these new launchers. This paper will provide an overview of the J-2X design background, progress to date in design, testing, and manufacturing. The Ares I crew launch vehicle will lift the Orion crew exploration vehicle and up to four astronauts into low Earth orbit (LEO) to rendezvous with the space station or the first leg of mission to the Moon. The Ares V cargo launch vehicle is designed to lift a lunar lander into Earth orbit where it will be docked with the Orion spacecraft, and provide the thrust for the trans-lunar journey. While these vehicles bear some visual resemblance to the 1960s-era Saturn vehicles that carried astronauts to the Moon, the Ares vehicles are designed to carry more crew and more cargo to more places to carry out more ambitious tasks than the vehicles they succeed. The government/industry team designing the Ares rockets is mining a rich history of technology and expertise from the Shuttle, Saturn and other programs and seeking commonality where feasible between the Ares crew and cargo rockets as a way to minimize risk, shorten development times, and live within the budget constraints of its original guidance.
A Decision Fusion Framework for Treatment Recommendation Systems.
Mei, Jing; Liu, Haifeng; Li, Xiang; Xie, Guotong; Yu, Yiqin
2015-01-01
Treatment recommendation is a nontrivial task--it requires not only domain knowledge from evidence-based medicine, but also data insights from descriptive, predictive and prescriptive analysis. A single treatment recommendation system is usually trained or modeled with a limited (size or quality) source. This paper proposes a decision fusion framework, combining both knowledge-driven and data-driven decision engines for treatment recommendation. End users (e.g. using the clinician workstation or mobile apps) could have a comprehensive view of various engines' opinions, as well as the final decision after fusion. For implementation, we leverage several well-known fusion algorithms, such as decision templates and meta classifiers (of logistic and SVM, etc.). Using an outcome-driven evaluation metric, we compare the fusion engine with base engines, and our experimental results show that decision fusion is a promising way towards a more valuable treatment recommendation.
Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven
2017-03-13
Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH 2 , which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
Pollution reduction technology program for class T4(JT8D) engines
NASA Technical Reports Server (NTRS)
Roberts, R.; Fiorentino, A. J.; Diehl, L. A.
1977-01-01
The technology required to develop commercial gas turbine engines with reduced exhaust emissions was demonstrated. Can-annular combustor systems for the JT8D engine family (EPA class T4) were investigated. The JT8D turbofan engine is an axial-flow, dual-spool, moderate-bypass-ratio design. It has a two-stage fan, a four-stage low-pressure compressor driven by a three-stage low-pressure turbine, and a seven-stage high-pressure compressor driven by a single-stage high-pressure turbine. A cross section of the JT8D-17 showing the mechanical configuration is given. Key specifications for this engine are listed.
NASA Technical Reports Server (NTRS)
1980-01-01
Characteristics of the U.S. domestic fleet were evaluated to determine the mission characteristics that would have the most impact on U. S. transport fuel use in the future. This resulted in selection of a 197-passenger (plus cargo), about 3710-km (2000 nmi) mission. The existing data base was reviewed and additional analysis was conducted as necessary to complete the technical descriptions. The resulting baseline configuration utilizes a double-lobe, but nearly circular, body with seven-abreast seating. External characteristics feature an 8.71 aspect ratio, 31.5-degree sweep wing, a T-tail empennage, and a dual CF6-6D2, wing-mounted engine arrangement. It provides for 22 LD-2 or 11 LD-3 containers plus bulk cargo in the lower lobe. Passenger/cargo loading, servicing provisions, taxi/takeoff speeds, and field length characteristics are all compatible with accepted airline operations and regulatory provisions. The baseline configuration construction uses conventional aluminum structure except for advanced aluminum alloys and a limited amount of graphite epoxy secondary structure. Modern systems are used, including advanced guidance, navigation, and controls which emphasize application of digital electronics and advanced displays.
Biconic cargo return vehicle with an advanced recovery system
NASA Technical Reports Server (NTRS)
1990-01-01
The current space exploration initiative is focused around the development of the Space Station Freedom (SSF). Regular resupply missions must support a full crew on the station. The present mission capability of the shuttle is insufficient, making it necessary to find an alternative. One alternative is a reusable Cargo Return Vehicle (CRV). The suggested design is a biconic shaped, dry land recovery CRV with an advance recovery system (ARC). A liquid rocket booster will insert the CRV into a low Earth orbit. Three onboard liquid hydrogen/liquid oxygen engines are used to reach the orbit of the station. The CRV will dock to the station and cargo exchange will take place. Within the command and control zone (CCZ), the CRV will be controlled by a gaseous nitrogen reaction control system (RCS). The CRV will have the capability to exchange the payload with the Orbital Maneuvering Vehicle (OMV). The bent biconic shape will give the CRV sufficient crossrange to reach Edwards Air Force Base and several alternative sites. Near the landing site, a parafoil-shaped ARS is deployed. The CRV is designed to carry a payload of 40 klb, and has an unloaded weight of 35 klb.
STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma.
Miloudi, Hadjer; Leroy, Karen; Jardin, Fabrice; Sola, Brigitte
2018-06-01
Primary mediastinal B-cell lymphoma (PMBL) is a distinct B-cell lymphoma subtype with unique clinicopathological and molecular features. PMBL cells are characterised by several genetic abnormalities that conduct to the constitutive activation of the Janus kinase 2/signal transducer and activator of transcription 6 (JAK2/STAT6) signalling pathway. Among recurrent genetic changes in PMBL, we previously reported that the XPO1 gene encoding exportin 1 that controls the nuclear export of cargo proteins and RNAs, is mutated (p.E571K) in about 25% of PMBL cases. We therefore hypothesized that STAT6 could be a cargo of XPO1 and that STAT6 cytoplasm/nucleus shuttle could be altered in a subset of PMBL cells. Using immunocytochemistry techniques as well as the proximity ligation assay, we showed that STAT6 bound XPO1 in PBML cell lines and in HEK-293 cells genetically engineered to produce STAT6. Moreover, XPO1-mediated export of STAT6 occurs in cells expressing either a wild-type or the E571K mutated XPO1 protein. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
2007-01-01
Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.
2007-06-13
Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.
Installation, Operation, and Operator's Maintenance of Diesel-Engine-Driven Generator Sets.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, contains three study units dealing with the skills needed by individuals responsible for the installation, operation, and maintenance of diesel engine-driven generator sets. The first two units cover…
DOT National Transportation Integrated Search
2014-02-01
This report contains the results of a study describing the development of resistance factors for use : with the Kansas Department of Transportation (KDOT) Engineering News Record (ENR) formula for driven : piles. KDOT has verified driven pile resista...
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077669 (25 May 2012) --- With rays of sunshine and the thin blue atmosphere of Earth serving as a backdrop, the SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070772 (25 May 2012) --- With darkness, Earth's horizon and thin line of atmosphere forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070774 (25 May 2012) --- With darkness, Earth's horizon and thin line of atmosphere forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071199 (25 May 2012) --- With clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is photographed during grappling operations with the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft on Approach to the ISS
2012-05-25
ISS031-E-070745 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft on Approach to the ISS
2012-05-25
ISS031-E-071140 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071203 (25 May 2012) --- With the blackness of space and clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077670 (25 May 2012) --- With rays of sunshine and the thin blue atmosphere of Earth serving as a backdrop, the SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval
SpaceX_CRS14_Release_2018_125_1300_649273
2018-05-07
U.S. COMMERCIAL CARGO SHIP DEPARTS THE INTERNATIONAL SPACE STATION The upiloted SpaceX Dragon cargo craft departed the International Space Station May 5 after a four-week delivery run in which thousands of pounds of supplies and science experiments arrived at the orbiting laboratory. Robotic ground controllers sent commands to release Dragon from the grasp of the Canadarm2 robotic arm, after which several firings of the Dragon’s engine sent the vehicle to a safe distance from the station. Later in the day, SpaceX flight controllers conducted a deorbit burn for Dragon, enabling it to return to Earth for a splashdown in the Pacific some 400 miles southwest of Long Beach, California. Dragon returned some two tons of vital science experiments for researchers and other critical components from the station for refurbishment.
Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization
Peng, Huan-Kai; Lee, Hao-Chih; Pan, Jia-Yu; Marculescu, Radu
2016-01-01
In this paper, we define a new problem related to social media, namely, the data-driven engineering of social dynamics. More precisely, given a set of observations from the past, we aim at finding the best short-term intervention that can lead to predefined long-term outcomes. Toward this end, we propose a general formulation that covers two useful engineering tasks as special cases, namely, pattern matching and profit maximization. By incorporating a deep learning model, we derive a solution using convex relaxation and quadratic-programming transformation. Moreover, we propose a data-driven evaluation method in place of the expensive field experiments. Using a Twitter dataset, we demonstrate the effectiveness of our dynamics engineering approach for both pattern matching and profit maximization, and study the multifaceted interplay among several important factors of dynamics engineering, such as solution validity, pattern-matching accuracy, and intervention cost. Finally, the method we propose is general enough to work with multi-dimensional time series, so it can potentially be used in many other applications. PMID:26771830
Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization.
Peng, Huan-Kai; Lee, Hao-Chih; Pan, Jia-Yu; Marculescu, Radu
2016-01-01
In this paper, we define a new problem related to social media, namely, the data-driven engineering of social dynamics. More precisely, given a set of observations from the past, we aim at finding the best short-term intervention that can lead to predefined long-term outcomes. Toward this end, we propose a general formulation that covers two useful engineering tasks as special cases, namely, pattern matching and profit maximization. By incorporating a deep learning model, we derive a solution using convex relaxation and quadratic-programming transformation. Moreover, we propose a data-driven evaluation method in place of the expensive field experiments. Using a Twitter dataset, we demonstrate the effectiveness of our dynamics engineering approach for both pattern matching and profit maximization, and study the multifaceted interplay among several important factors of dynamics engineering, such as solution validity, pattern-matching accuracy, and intervention cost. Finally, the method we propose is general enough to work with multi-dimensional time series, so it can potentially be used in many other applications.
FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C-Language and has been implemented on DEC VAX series computers running VMS. The program is distributed in executable form. The source code is also provided, but it cannot be compiled without the Tree Manipulation Based Routines (TMBR) package from the Jet Propulsion Laboratory, which is not currently available from COSMIC. The main memory requirement is based on the data used to drive the FAST program. All applications should easily run on an installation with 10Mb of main memory. FAST was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation.
Jung, Gyu-Un; Kim, Jun Hwan; Lim, Nam Hun; Yoon, Gil Ho; Han, Ji-Young
2017-06-01
Ridge splitting techniques are used for horizontal ridge augmentation in implant dentistry. Recently, a novel engine-driven ridge splitting technique was introduced. This study compared the mechanical forces produced by conventional and engine-driven ridge splitting techniques in porcine mandibles. In 33 pigs, mandibular premolar areas were selected for the ridge splitting procedures, designed as a randomized split-mouth study. The conventional group underwent a chisel-and-mallet procedure (control group, n = 20), and percussive impulse (Newton second, Ns) was measured using a sensor attached to the mallet. In the engine-driven ridge spreader group (test group, n = 23), a load cell was used to measure torque values (Newton centimeter, Ncm). Horizontal acceleration generated during procedures (control group, n = 10 and test group, n = 10) was compared between the groups. After ridge splitting, the alveolar crest width was significantly increased both in the control (1.23 ± 0.45 mm) and test (0.98 ± 0.41 mm) groups with no significant differences between the groups. The average impulse of the control group was 4.74 ± 1.05 Ns. Torque generated by rotation in the test group was 9.07 ± 2.15 Ncm. Horizontal acceleration was significantly less in the test group (0.82 ± 1.05 g) than the control group (64.07 ± 42.62 g) (P < 0.001). Narrow edentulous ridges can be expanded by novel engine-driven ridge spreaders. Within the limits of this study, the results suggested that an engine-driven ridge splitting technique may be less traumatic and less invasive than a conventional ridge splitting technique. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
1986-11-12
a correction of its trajectory of movement has been executed using the engine unit of the cargo ship . On the day...8217 (KRASNAYA ZVEZDA, 7 Jun 86) 12 - a ’Mariya,’ ’Sport’ Experiments Performed (IZVESTIYA, 11 Jun 86) 13 Kizim and Solovyev Pass Three Month Mark in...Communication Equipment for Shipping ( A . Knop; IZVESTIYA, 19 Jul 86) 168 - k - ’Intersputnik* Ground Station Commissioned in Nicaragua
1974-07-18
concepts which, when de - veloped, will provide for the combination of new structural design concepts with the new developments in airframe fabri- cation...19-20 9. Cargo aircraft design for special applications ------ 20 10. Advanced fighter concepts------------------------ 21 11-12. Hypersonic...Research, De - velopment and Engineering. U.S. Army Aviation Systems Command -------------------------------------------- 172 Appendix: Statement on behalf
Launching to the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Shivers, C. Herbert
2008-01-01
This viewgraph presentation reviews the planned launching to the Moon, and Mars. It is important to build beyond the capacity to ferry astronauts and cargo to low Earth orbit. NASA is starting to design new vehicles using the past lessons to minimize cost, and technical risks. The training and education of engineers that will continue the work of designing, testing and flying the vehicles is important to NASA.
CG Vessel Traffic Service Program.
1980-06-01
Corps of Engineers and the Maritime Administration have forecast that total commercial cargo transported through U.S. ports and waterways will increase... electronic navigation and surveillance equipment since the early 1960’s to evaluate various concepts by which vessel traffic safety could be enhanced...relatively complete data base on vessel traffic. On the other hand, the addition of radar and other electronic surveillance should: --Prevent vessel
Seamster, Pamela E; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L
2013-01-01
The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer’s, Huntington and Parkinson’s diseases. PMID:23011729
The NASA-JPL advanced propulsion program
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1994-01-01
The NASA Advanced Propulsion Concepts (APC) program at the Jet Propulsion Laboratory (JPL) consists of two main areas: The first involves cooperative modeling and research activities between JPL and various universities and industry; the second involves research at universities and industry that is directly supported by JPL. The cooperative research program consists of mission studies, research and development of ion engine technology using C-60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry- supported research includes research (modeling and proof-of-concept experiments) in advanced, long-life electric propulsion, and in fusion propulsion. These propulsion concepts were selected primarily to cover a range of applications from near-term to far-term missions. For example, the long-lived pulsed-xenon thruster research that JPL is supporting at Princeton University addresses the near-term need for efficient, long-life attitude control and station-keeping propulsion for Earth-orbiting spacecraft. The C-60-propellant ion engine has the potential for good efficiency in a relatively low specific impulse (Isp) range (10,000 - 30,000 m/s) that is optimum for relatively fast (less than 100 day) cis-lunar (LEO/GEO/Lunar) missions employing near-term, high-specific mass electric propulsion vehicles. Research and modeling on the C-60-ion engine are currently being performed by JPL (engine demonstration), Caltech (C-60 properties), MIT (plume modeling), and USC (diagnostics). The Li-propellant LFA engine also has good efficiency in the modest Isp range (40,000 - 50,000 m/s) that is optimum for near-to-mid-term megawatt-class solar- and nuclear-electric propulsion vehicles used for Mars missions transporting cargo (in support of a piloted mission). Research and modeling on the Li-LFA engine are currently being performed by JPL (cathode development), Moscow Aviation Institute (engine testing), Thermacore (electrode development), as well as at MIT (plume modeling), and USC (diagnostics). Also, the mission performance of a nuclear-electric propulsion (NEP) Li-LFA Mars cargo vehicle is being modeled by JPL (mission analysis; thruster and power processor modeling) and the Rocketdyne Energy Technology and Engineering Center (ETEC) (power system modeling). Finally, the fusion propulsion research activities that JPL is supporting at Pennsylvania State University (PSU) and at Lawrenceville Plasma Physics (LPP) are aimed at far-term fast (less than 100 day round trip) piloted Mars missions and, in the very far term, interstellar missions.
Model-driven Service Engineering with SoaML
NASA Astrophysics Data System (ADS)
Elvesæter, Brian; Carrez, Cyril; Mohagheghi, Parastoo; Berre, Arne-Jørgen; Johnsen, Svein G.; Solberg, Arnor
This chapter presents a model-driven service engineering (MDSE) methodology that uses OMG MDA specifications such as BMM, BPMN and SoaML to identify and specify services within a service-oriented architecture. The methodology takes advantage of business modelling practices and provides a guide to service modelling with SoaML. The presentation is case-driven and illuminated using the telecommunication example. The chapter focuses in particular on the use of the SoaML modelling language as a means for expressing service specifications that are aligned with business models and can be realized in different platform technologies.
Low-thrust chemical propulsion system pump technology
NASA Technical Reports Server (NTRS)
Sabiers, R. L.; Siebenhaar, A.
1981-01-01
Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.
Main propulsion system test requirements for the two-engine Shuttle-C
NASA Technical Reports Server (NTRS)
Lynn, E. E.; Platt, G. K.
1989-01-01
The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.
STS-114 Discovery's approach for docking
2005-07-28
ISS011-E-11255 (28 July 2005) --- Space shuttle Discovery was about 600 feet from the international space station when cosmonaut Sergei K. Krikalev, Expedition 11 commander, and astronaut John L. Phillips, NASA science officer and flight engineer, photographed the spacecraft as it approached the station and performed a backflip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 commander, guided the shuttle through the flip. The photos will be analyzed by engineers on the ground as additional data to evaluate the condition of Discoverys heat shield. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is visible in the cargo bay.
Verification and Implementation of Operations Safety Controls for Flight Missions
NASA Technical Reports Server (NTRS)
Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.
2010-01-01
Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.
Rocket Engine Innovations Advance Clean Energy
NASA Technical Reports Server (NTRS)
2012-01-01
During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.
Directed and persistent movement arises from mechanochemistry of the ParA/ParB system
Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian
2015-01-01
The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183
Photonuclear-based Detection of Nuclear Smuggling in Cargo Containers
NASA Astrophysics Data System (ADS)
Jones, J. L.; Haskell, K. J.; Hoggan, J. M.; Norman, D. R.; Yoon, W. Y.
2003-08-01
The Idaho National Engineering and Environmental Laboratory (INEEL) and the Los Alamos National Laboratory (LANL) have performed experiments in La Honda, California and at the Idaho Accelerator Center in Pocatello, Idaho to assess and develop a photonuclear-based detection system for shielded nuclear materials in cargo containers. The detection system, measuring photonuclear-related neutron emissions, is planned for integration with the ARACOR Eagle Cargo Container Inspection System (Sunnyvale, CA). The Eagle Inspection system uses a nominal 6-MeV electron accelerator and operates with safe radiation exposure limits to both container stowaways and to its operators. The INEEL has fabricated custom-built, helium-3-based, neutron detectors for this inspection application and is performing an experimental application assessment. Because the Eagle Inspection system could not be moved to LANL where special nuclear material was available, the response of the Eagle had to be determined indirectly so as to support the development and testing of the detection system. Experiments in California have successfully matched the delayed neutron emission performance of the ARACOR Eagle with that of the transportable INEEL electron accelerator (i.e., the Varitron) and are reported here. A demonstration test is planned at LANL using the Varitron and shielded special nuclear materials within a cargo container. Detector results are providing very useful information regarding the challenges of delayed neutron counting near the photofission threshold energy of 5.5 - 6.0 MeV, are identifying the possible utilization of prompt neutron emissions to allow enhanced signal-to-noise measurements, and are showing the overall benefits of using higher electron beam energies.
Photogated humidity-driven motility
Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče
2015-01-01
Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day–night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min−1. The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids. PMID:26067649
Photogated humidity-driven motility.
Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče
2015-06-11
Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min(-1). The element can lift objects ∼85 times heavier and can transport cargos ∼20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.
Photogated humidity-driven motility
NASA Astrophysics Data System (ADS)
Zhang, Lidong; Liang, Haoran; Jacob, Jolly; Naumov, Panče
2015-06-01
Hygroinduced motion is a fundamental process of energy conversion that is essential for applications that require contactless actuation in response to the day-night rhythm of atmospheric humidity. Here we demonstrate that mechanical bistability caused by rapid and anisotropic adsorption and desorption of water vapour by a flexible dynamic element that harnesses the chemical potential across very small humidity gradients for perpetual motion can be effectively modulated with light. A mechanically robust material capable of rapid exchange of water with the surroundings is prepared that undergoes swift locomotion in effect to periodic shape reconfiguration with turnover frequency of <150 min-1. The element can lift objects ~85 times heavier and can transport cargos ~20 times heavier than itself. Having an azobenzene-containing conjugate as a photoactive dopant, this entirely humidity-driven self-actuation can be controlled remotely with ultraviolet light, thus setting a platform for next-generation smart biomimetic hybrids.
Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane
NASA Technical Reports Server (NTRS)
Strack, W. C.
1971-01-01
Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.
Ultra-efficient Engine Diameter Study
NASA Technical Reports Server (NTRS)
Daggett, David L.; Brown, Stephen T.; Kawai, Ron T.
2003-01-01
Engine fan diameter and Bypass Ratio (BPR) optimization studies have been conducted since the beginning of the turbofan age with the recognition that reducing the engine core jet velocity and increasing fan mass flow rate generally increases propulsive efficiency. However, performance tradeoffs limit the amount of fan flow achievable without reducing airplane efficiency. This study identifies the optimum engine fan diameter and BPR, given the advanced Ultra-Efficient Engine Technology (UEET) powerplant efficiencies, for use on an advanced subsonic airframe. Engine diameter studies have historically focused on specific engine size options, and were limited by existing technology and transportation infrastructure (e.g., ability to fit bare engines through aircraft doors and into cargo holds). This study is unique in defining the optimum fan diameter and drivers for future 2015 (UEET) powerplants while not limiting engine fan diameter by external constraints. This report follows on to a study identifying the system integration issues of UEET engines. This Engine Diameter study was managed by Boeing Phantom Works, Seattle, Washington through the NASA Glenn Revolutionary Aero Space Engine Research (RASER) contract under task order 10. Boeing Phantom Works, Huntington Beach, completed the engine/airplane sizing optimization, while the Boeing Commercial Airplane group (BCA) provided design oversight. A separate subcontract to support the overall project was issued to Tuskegee University.
2011-07-12
S135-E-007656 (12 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, waits at an International Space Station's pressurized mating adapter (PMA-2) docked to the space shuttle Atlantis, as the station's robotic system moves the failed pump module (out of frame) over to the spacewalking astronaut and the shuttle's cargo bay. Fossum and crewmate Ron Garan sent six hours and 31 minutes on their July 12 spacewalk. Photo credit: NASA
Temperature of aircraft cargo flame exposure during accidents involving fuel spills
NASA Astrophysics Data System (ADS)
Mansfield, J. A.
1993-01-01
This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident: collisions into an alert aircraft by an aircraft that is on landing or take-off; and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.
Temperature of aircraft cargo flame exposure during accidents involving fuel spills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansfield, J.A.
1993-01-01
This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.
Astronaut Susan J. Helms Mounts a Videao Camera in Zarya
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.
Securing the U.S. Transportation Command
2016-03-11
sink as many of the cargo ships as possible [2]. As the battle raged in the Atlantic Ocean, Allied bombers were destroying German access to oil ...refineries and synthetic fuel factories. By 1944, the Germans did not have enough fuel for aircraft to protect the oil facilities that remained or for...electrical engineering, all from the University of Michigan. Kajal T. Claypool is currently the assistant leader for the Informatics and Decision
Takshak, Anjneya; Kunwar, Ambarish
2016-05-01
Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team. © 2016 The Protein Society.
O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma
2018-04-01
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Tsai, Wen-Chyan; Rizvi, Syed S H
2017-09-01
Organic solvent residues are always a concern with the liposomes produced by traditional techniques. Our objectives were to encapsulate hydrophilic and lipophilic compounds in liposomes using a newly designed supercritical fluid process coupled with vacuum-driven cargo loading. Supercritical carbon dioxide was chosen as the phospholipid-dissolving medium and an ecofriendly substitute for organic solvents. Liposomal microencapsulation was conducted via a 1000-μm expansion nozzle at 12.41MPa, 90°C, and aqueous cargo loading rate of 0.25ml/s. Vitamins C and E were selected as model hydrophilic and lipophilic compounds encapsulated in the integrated liposomes. The average vesicle size was 951.02nm with a zeta potential of -51.87mV. The encapsulation efficiency attained was 32.97% for vitamin C and 99.32% for vitamin E. Good emulsion stability was maintained during storage at 4°C for 20days. Simultaneous microencapsulation in the liposomes was successfully achieved with this supercritical fluid process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
DeLoache, William C.; Russ, Zachary N.; Dueber, John E.
2016-03-30
Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less
Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLoache, William C.; Russ, Zachary N.; Dueber, John E.
Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzymemore » pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. Lastly, this work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less
Main Propulsion for the Ares Projects
NASA Technical Reports Server (NTRS)
Sumrall, Phil
2009-01-01
The goal of this slide presentation is to provide an update on the status of the Ares propulsion systems. The Ares I is the vehicle to launch the crew and the Ares V is a heavy lift vehicle that is being designed to launch cargo into Low Earth Orbit (LEO) and transfer cargo and crews to the moon. The Ares propulsion systems are based on the heritage hardware and experiences from the Apollo project to the Space Shuttle and also to current expendable launch vehicles (ELVs). The presentation compares the various launch vehicles from the Saturn V to the space shuttle, including the planned details of the Ares I and V. There are slides detailing the elements of the Ares I and the Ares V, including views of the J2X upper stage engine that is to serve both the Ares I and V. The extent of the progress is reviewed.
Fourth-generation Mars vehicle concepts
NASA Astrophysics Data System (ADS)
Sherwood, Brent
1994-09-01
Conceptual designs for fourth-generation crew-carrying Mars transfer and excursion vehicles, fully integrated to state-of-the-art standards, are presented. The resulting vehicle concepts are sized for six crew members, and can support all opposition and conjunction opportunities in or after 2014. The modular, reusable transfer ship is launched to Earth orbit on six 185-ton-class boosters and assembled there robotically. Its dual nuclear-thermal rocket engines use liquid hydrogen propollant. The payload consists of a microgravity habitation system and an expendable lift-to-drag = 1.6 lander capable of aeromaneuvering to sites within +/- 20 deg of the equator. This lander can deliver either an expendable, storable-bipropellant crew-carrying ascent vehicle, or 40 tons of cargo, and it is capable of limited surface mobility to support base buildup. Multiple cargo landers sent ahead on robotic transfer vehicles deliver the supplies and equipment required for long-duration surface missions.
Descent Assisted Split Habitat Lunar Lander Concept
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.
2008-01-01
The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs
Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.
Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G
2016-03-09
Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.
Pricing of NASA Space Shuttle transportation system cargo
NASA Technical Reports Server (NTRS)
Hale, C. W.
1979-01-01
A two-part pricing policy is investigated as the most feasible method of pricing the transportation services to be provided by NASA's SSTS. Engineering cost estimates and a deterministic operating cost model generate a data base and develop a procedure for pricing the services of the SSTS. It is expected that the SSTS will have a monopoly on space material processing in areas of crystal growth, glass processing, metallurgical space applications, and biomedical processes using electrophoresis which will require efficient pricing. Pricing problems, the SSTS operating costs based on orbit elevation, number of launch sites, and number of flights, capital costs of the SSTS, research and development costs, allocation of joint transportation costs of the SSTS to a particular space processing activity, and rates for the SSTS are discussed. It is concluded that joint costs for commercial cargoes carried in the SSTS can be most usefully handled by making cost allocations based on proportionate capacity utilization.
Vitol, Elina A.; Rozhkova, Elena A.; Rose, Volker; ...
2014-06-06
Temperature-responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this paper, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm-co-AAm)-b-PCL core-shell were loaded with a hydrophobic Pt(IV) complex and Fe 3O 4 nanoparticles though self-assembly.more » The distribution of a platinum complex on subcellular level is visualized using hard X-ray fluorescence microscopy with unprecedented level of detail at sub-100 nm spatial resolution. We then study the cytotoxic effects of platinum complex-loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. In conclusion, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.« less
46 CFR 154.315 - Cargo pump and cargo compressor rooms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pump and cargo compressor rooms. 154.315 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Ship Arrangements § 154.315 Cargo pump and cargo compressor rooms. (a) Cargo pump rooms and cargo...
Zhang, Xin; Yan, Qi; Mulatihan, Di Naer; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun
2018-06-22
The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.
NASA Astrophysics Data System (ADS)
Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun
2018-06-01
The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.
Change control microcomputer device for vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-08-19
A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less
Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.
1995-01-01
The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.
Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes
NASA Technical Reports Server (NTRS)
Wolowicz, C. H.; Yancey, R. B.
1972-01-01
Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... engine design certification, and the certification requirements for engine control systems are driven by... following novel or unusual design features: Electronic engine control system. Discussion As discussed above...; Electronic Engine Control (EEC) System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...
NASA Astrophysics Data System (ADS)
Ng, Simon K. W.; Loh, Christine; Lin, Chubin; Booth, Veronica; Chan, Jimmy W. M.; Yip, Agnes C. K.; Li, Ying; Lau, Alexis K. H.
2013-09-01
A new exhaust emission inventory of ocean-going vessels (OGVs) was compiled for Hong Kong by using Automatic Identification System (AIS) data for the first time to determine typical main engine load factors, through vessel speed and operation mode characterization. It was found that in 2007, container vessel was the top emitting vessel type, contributing 9,886, 11,480, 1,173, 521 and 1166 tonnes of SO2, NOx, PM10, VOC and CO, respectively, or about 80%-82% of the emissions. The top five, which also included ocean cruise, oil tanker, conventional cargo vessel and dry bulk carrier, accounted for about 98% of emissions. Emission maps, which add a new spatial dimension to the inventory, show the key emission hot spots in Hong Kong and suggest that a significant portion of emissions were emitted at berth. Scientific evidence about the scale and distribution of ship emissions has contributed in raising public awareness and facilitating stakeholder engagement about the issue. Fair Winds Charter, the world's first industry-led voluntary emissions reduction initiative, is a perfect example of how careful scientific research can be used in public engagement and policy deliberation to help drive voluntary industry actions and then government proposals to control and regulate marine emissions in Hong Kong and the Pearl River Delta region.
46 CFR 154.534 - Cargo pumps and cargo compressors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps and...
Light-energy conversion in engineered microorganisms.
Johnson, Ethan T; Schmidt-Dannert, Claudia
2008-12-01
Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.
Automotive and Construction Equipment for Arctic Use: Heating and Cold Starting
1991-04-01
heater. Catalytic combustion heaters similar to that shown in Figure 12 produce flameless heat using gasoline, benzene or a similar fuel and have... combustion chamber; physical scientist, is a • engine compartment air; and member of CRREL’s * personnel and cargo compartments. Applied Research Wind...component warping and thermal cracking. When coolant is pumped, heat is not only provided to the cylinders, thereby warming the combustion cha iber and the
2012-10-10
ISS033-E-011279 (10 Oct. 2012) --- NASA astronaut Sunita Williams, Expedition 33 commander; and Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, work the controls at the robotics workstation in the International Space Station’s seven-windowed Cupola during the rendezvous and berthing of the SpaceX Dragon commercial cargo craft. Using the Canadarm2 robotic arm, Williams and Hoshide captured and berthed Dragon to the Earth-facing side of the Harmony node Oct. 10, 2012.
2013-02-01
distribution managemen t operations to include managing cargo distribution functions such as receiving, inspecting, tracing, tracking, packaging, and...Production Management DE CDE ABCDEFG Scheduling DE ADEF ABCDEF T ie r 2 Flightline Operations E BDE Systems Engineering D ABDEG Table 19: 21R...logistics units/ elements and as members of general or executive s t affs in t he operating forces, supporting establishment, and joint staffs . They
Environmental Testing and Thermal Analysis of the NPS Solar Cell Array Tester (NPS-SCAT) CubeSat
2011-06-01
BCR Battery Charge Regulator C&DH Command and Data Handling CAD Computer Aided Design CDR Critical Design Review CFT Comprehensive Functional Test ...CPT Comprehensive Performance Test CoM Center of Mass COTS Commercial Off-the-Shelf CTB Cargo Transfer Bag EDU Engineering Design Unit EPS...and inexpensive solution. 2 C. ENVIRONMENTAL TESTING Environmental testing is an important element of the design and testing of a satellite. By
Use of Synthetic Antibodies Targeted to the Jak/Stat Pathway in Breast Cancer
2011-03-01
substance P ( SP ), a neuropeptide that is rapidly internalized upon interaction with the neurokinin-1 receptor ( NK1R ). Cargos in the form of...based on substance P ( SP ), an 11 amino acid neuropeptide that is rapidly internalized through specific interaction with the neurokinin-1 receptor...EM IS TR Y Results Engineering a Delivery Vehicle Based on Substance P . Substance P ( SP ) is an 11 amino acid neuropeptide that is
DUKW 21 - Amphibious Cargo Transfer from Ship to Shore
2007-08-10
issue of the pontoons and propulsors not being fully immersed is not as easily solved , but may be acceptable as is. The increased resistance of the...AGP1500 through improved fuel efficiency and reduced maintenance costs. The 1,500 shaft horsepower ( SHP ) engine is very power dense, and, since it uses a...Lawlor, 2006) The navigation method used by DARPA is also significant to this project. The DARPA Grand Challenge had a comprehensive mapping
Heat engine driven by purely quantum information.
Park, Jung Jun; Kim, Kang-Hwan; Sagawa, Takahiro; Kim, Sang Wook
2013-12-06
The key question of this Letter is whether work can be extracted from a heat engine by using purely quantum mechanical information. If the answer is yes, what is its mathematical formula? First, by using a bipartite memory we show that the work extractable from a heat engine is bounded not only by the free energy change and the sum of the entropy change of an individual memory but also by the change of quantum mutual information contained inside the memory. We then find that the engine can be driven by purely quantum information, expressed as the so-called quantum discord, forming a part of the quantum mutual information. To confirm it, as a physical example we present the Szilard engine containing a diatomic molecule with a semipermeable wall.
McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold
2016-01-01
Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896
McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold
2016-10-18
Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.
2008-12-01
A SYSTEMS ENGINEERING PROCESS SUPPORTING THE DEVELOPMENT OF OPERATIONAL REQUIREMENTS DRIVEN FEDERATIONS Andreas Tolk & Thomas G. Litwin ...c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Tolk, Litwin and Kewley Executive Office (PEO...capabilities and their relative changes 1297 Tolk, Litwin and Kewley based on the system to be evaluated as well, in particular when it comes to
NASA Astrophysics Data System (ADS)
Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.
2015-07-01
This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.
A simple tagging system for protein encapsulation.
Seebeck, Florian P; Woycechowsky, Kenneth J; Zhuang, Wei; Rabe, Jürgen P; Hilvert, Donald
2006-04-12
Molecular containers that encapsulate specific cargo can be useful for many natural and non-natural processes. We report a simple system, based on charge complementarity, for the encapsulation of appropriately tagged proteins within an engineered, proteinaceous capsid. Four negative charges per monomer were added to the lumazine synthase from Aquifex aeolicus (AaLS). The capsids formed by the engineered AaLS associate with green fluorescent protein bearing a positively charged deca-arginine tag upon coproduction in Escherichia coli. Analytical ultracentrifugation and scanning force microscopy studies indicated that the engineered AaLS retains the ability to form capsids, but that their average size was substantially increased. The success of this strategy demonstrates that both the container and guest components of protein-based encapsulation systems can be convergently designed in a straightforward manner, which may help to extend their versatility.
ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.
2011-01-01
As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A power-take-off from the wheel actuates the tools, so that they can take advantage of the 1+ horsepower motor in each wheel to enable drilling, gripping or other power-tool functions. Architectural studies have indicated that one useful role for ATHLETE in planetary (moon or Mars) exploration is to "walk" cargo off the payload deck of a lander and transport it across the surface. Recent architectural approaches are focused on the concept that the lander descent stage will use liquid hydrogen as a propellant. This is the highest performance chemical fuel, but it requires very large tanks. A natural geometry for the lander is to have a single throttleable rocket engine on the centerline at the bottom, and to have the propellant tanks arranged as compactly as possible around and above that engine, with nearly-straight structural load paths that carry the heavy LO2 tanks as well as the ascent stage or cargo on a top deck. (The requirement for exactly one descent engine stems from the need to avoid symmetry planes in the exhaust plume that can entrain surface particles and loft them up into the system at hypervelocity.) This geometry is especially attractive since abort considerations drive the ascent stage to have as much open space around it as possible, in case the ascent stage needs to fire away from an out-of-control descent stage. These considerations lead to a configuration where the cargo deck of the lander is relatively high off the ground (over 6 meters in current concepts, using a 10-meter diameter launch shroud). These considerations have led some observers to presume that there is a "lander offloading problem". ATHLETE has been demonstrated as a solution to this problem, walking cargo off the high deck. This paper describes the applicability of the ATHLETE concept to exploration of the moon, Mars and even to Near- Earth Objects. Recent field test results for long-range traverse are described, along with plans for testing in the simulated microgravity environment of a NEO.
Engine balance apparatus and accessory drive device
NASA Technical Reports Server (NTRS)
Brogdon, James William (Inventor); Gill, David Keith (Inventor)
2000-01-01
A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.
How gas cools (or, apples can fall up)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This primer on gas cooling systems explains the basics of heat exchange within a refrigeration system, the principle of reverse-cycle refrigeration, and how a gas-engine-driven heat pump can provide cooling, additional winter heating capacity, and hot water year-round. Gas cooling equipment available or under development include natural gas chillers, engine-driven chillers, and absorption chillers. In cogeneration systems, heat recovered from an engine's exhaust and coolant may be used in an absorption chiller to provide air-conditioning. Gas desiccant cooling systems may be used in buildings and businesses that are sensitive to high humidity levels.
Ares V: New Opportunities for Scientific Payloads
NASA Technical Reports Server (NTRS)
Creech, Steve
2009-01-01
What if scientists and payload planners had access to three to five times the volume and five to nine times the mass provided by today's launch vehicles? This simple question can lead to numerous exciting possibilities, all involving NASA's new Ares V cargo launch vehicle now on the drawing board. Multiple scientific fields and payload designers have that opportunity with the Ares V cargo launch vehicle, being developed at NASA as the heavy-lift component of the U.S. Space Exploration Policy. When the Ares V begins flying late next decade, its capabilities will significantly exceed the 1960s-era Saturn V or the current Space Shuttle, while it benefits from their engineering, manufacturing, and infrastructure heritage. It will send more crew and cargo to more places on the lunar surface than Apollo and provide ongoing support to a permanent lunar outpost. Moreover, it will restore a strategic heavy-lift U.S. asset, which can support human and robotic exploration and scientific ventures for decades to come. Assessment of astronomy payload requirements since Spring 2008 has indicated that Ares V has the potential to support a range of payloads and missions. Some of these missions were impossible in the absence of Ares V's capabilities. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. A 2008 study by a National Research Council (NRC) panel, as well as analyses presented by astronomers and planetary scientists at two weekend conferences in 2008, support the position that Ares V has benefit to a broad range of planetary and astronomy missions. This early dialogue with Ares V engineers is permitting the greatest opportunity for payload/transportation/mission synergy and the least financial impact to Ares V development. In addition, independent analyses suggest that Ares V has the opportunity to enable more cost-effective mission design.
Quasi-steady state reduction of molecular motor-based models of directed intermittent search.
Newby, Jay M; Bressloff, Paul C
2010-10-01
We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets.
Human factors opportunities to improve Ohio's transportation system : executive summary report.
DOT National Transportation Integrated Search
2005-06-01
Human factors engineering or ergonomics is the : area of engineering concerned with the humanmachine : interface. As Ohios road systems are : driven on by people, human factors engineering : is certainly relevant. However, human factors : have oft...
A Project-Based Cooperative Approach to Teaching Sustainable Energy Systems
ERIC Educational Resources Information Center
Verbic, Gregor; Keerthisinghe, Chanaka; Chapman, Archie C.
2017-01-01
Engineering education is undergoing a restructuring driven by the needs of an increasingly multidisciplinary engineering profession. At the same time, power systems are transitioning toward future smart grids that will require power engineers with skills outside of the core power engineering domain. Since including new topics in the existing…
Decontamination of Water Containing Radiological Warfare Agents
1975-03-01
debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion
Data driven propulsion system weight prediction model
NASA Astrophysics Data System (ADS)
Gerth, Richard J.
1994-10-01
The objective of the research was to develop a method to predict the weight of paper engines, i.e., engines that are in the early stages of development. The impetus for the project was the Single Stage To Orbit (SSTO) project, where engineers need to evaluate alternative engine designs. Since the SSTO is a performance driven project the performance models for alternative designs were well understood. The next tradeoff is weight. Since it is known that engine weight varies with thrust levels, a model is required that would allow discrimination between engines that produce the same thrust. Above all, the model had to be rooted in data with assumptions that could be justified based on the data. The general approach was to collect data on as many existing engines as possible and build a statistical model of the engines weight as a function of various component performance parameters. This was considered a reasonable level to begin the project because the data would be readily available, and it would be at the level of most paper engines, prior to detailed component design.
Rethinking chiller plant design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1998-07-01
While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiency (because of transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and, therefore, are economically viable alternatives. Recent advances in gas engine-driven and DFA absorption chillers, and in commercially viable solid and liquid desiccant-cooling systems, suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less
Rethinking chiller plant design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1998-01-01
While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiently (due to transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and therefore are economically viable alternatives. Recent advances in gas engine-driven and direct-fired absorption chillers and in commercially viable solid- and liquid-desiccant cooling systems suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less
Engine having multiple pumps driven by a single shaft
Blass, James R.
2001-01-01
An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.
Advanced space engine preliminary design
NASA Technical Reports Server (NTRS)
Cuffe, J. P. B.; Bradie, R. E.
1973-01-01
A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... For purposes of this part only: (a) Commercial cargo means cargo other than military cargo and civilian preference cargo. (b) Military cargo means that cargo required to be carried on a U.S.-flag vessel... by law to be carried on a U.S.-flag vessel, including, but not limited to, cargo required to be...
1982-05-01
Ohio. General Merkling , fZ" and graduated from Hamilton High School, Los Angeles. He has a bachelor of science degree in mechanical engineering...navigation, navigation radar and doppler radar systems on bomber, cargo , fighter, and drone aircraft. He also performed duties as maintenance debriefer...measure supply support for those items. ihe model will also project future performance and provide a cost/support relationship. 11-13
View of EV Crewmember during Russian EVA 29
2011-08-03
ISS028-E-020969 (3 Aug. 2011) --- Russian cosmonauts Sergei Volkov and Alexander Samokutyaev (out of frame), both Expedition 28 flight engineers, attired in Russian Orlan spacesuits, participate in a session of extravehicular activity (EVA) on the Russian segment of the International Space Station. During the six-hour, 23-minute spacewalk, Volkov and Samokutyaev moved a cargo boom from one airlock to another, installed a prototype laser communications system and deployed an amateur radio micro-satellite.
NASA Technical Reports Server (NTRS)
Jernell, L. S.
1978-01-01
The effects of laminar flow control (LFC) on the performance of a large span-distributed-load flying-wing cargo airplane concept having a design payload of 2.669 MN and range of 5.93 Mm were determined. Two configurations were considered. One employed laminarized flow over the entire surfaces of the wing and vertical tails, with the exception of the estimated areas of interference due to the fuselage and engines. The other case differed only in that laminar flow was not applied to the flaps, elevons, spoilers, or rudders. The two cases are referred to as the 100 percent and 80 percent laminar configurations, respectively. The utilization of laminar flow control results in reductions in the standard day, sea level installed maximum static thrust per engine from 240 kN for the non-LFC configuration to 205 kN for the 100 percent laminar configuration and 209 kN for the 80 percent case. Weight increases due to the LFC systems cause increases in the operating empty weights of approximately 3 to 4 percent. The design takeoff gross weights decrease approximately 3 to 5 percent. The FAR-25 takeoff field distances for the LFC configurations are greater by about 6 to 7 percent. Fuel efficiencies for the respective configurations are increased 33 percent and 23 percent.
Space-based laser-powered orbital transfer vehicle (Project SLICK)
NASA Technical Reports Server (NTRS)
1988-01-01
The project SLICK (Space Laser Interorbital Cargo Kite) involves conceptual designs of reusable space-based laser-powered orbital transfer vehicle (LOTV) for ferrying 16,000 kg cargo primarily between low Earth orbit (LEO) and geosynchronous earth orbit (GEO). The power of LOTV is beamed by a single 32-MW solar-pumped iodide laser orbiting the Earth at an altitude of one Earth radius. The laser engine selected for the LOTV is based on a continuous-wave, steady-state propulsion scheme and uses an array of seven discrete plasmas in a flow of hydrogen propellant. Both all-propulsive and aerobraked LOTV configurations were analyzed and developed. The all-propulsive vehicle uses a rigid 11.5-m aperture primary mirror and its engine produces a thrust of 2000 N at a specific impulse of 1500 sec. For the LEO-to-GEO trip, the payload ratio, m(sub payload/m(sub propellant)+m(sub dry vehicle) = 1.19 and the trip time is about 6 days. The aerobraked version uses a lightweight, retractable wrapped-rib primary mirror which is folded for aerobraking and a 20-m-diameter inflatable-ballute aeroshield which is jettisoned after aeromaneuver. Lifecycle cost analysis shows that the aerobraked configuration may have an economic advantage over the all-propulsive configuration as long as the cost of launching the propellant to LEO is higher than about $500/kg in current dollars.
CO2 laser-driven Stirling engine. [space power applications
NASA Technical Reports Server (NTRS)
Lee, G.; Perry, R. L.; Carney, B.
1978-01-01
A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.
Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Jones, Carl P.
2008-01-01
The National Aeronautics and Space Administration (NASA) delivers space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides U.S. capability for both crew and cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010, as outlined in the 2006 NASA Strategic Plan. I In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle/Orion Crew Exploration Vehicle and the Ares V Cargo Launch Vehicle/Altair Lunar Lander. The goals for this new system include increased safety and reliability, coupled with lower operations costs that promote sustainable space exploration over a multi-decade schedule. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity against predictions made by modern modeling and simulation analysis. It also will give information about the work in progress for the Ares I-X developmental test flight planned in 2009 to provide key data before the Ares I Critical Design Review. Activities such as these will help prove and refine mission concepts of operation, while supporting the spectrum of design and development tasks being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments. Ultimately, the work performed will lead to the fielding of a robust space transportation solution that will carry international explorers and essential payloads for sustainable scientific discovery beyond planet Earth.
a Thermoacoustically-Driven Pulse Tube Cryocryocooler Operating around 300HZ
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Zhu, S. L.; Dai, W.; Luo, E. C.
2008-03-01
High frequency operation of the thermoacoustic cryocooler system, i.e. pulse tube cryocooler driven by thermoacoustic engine, leads to reduced size, which is quite attractive to small-scale cryogenic applications. In this work, a no-load coldhead temperature of 77.8 K is achieved on a 292 Hz pulse tube cryocooler driven by a standing-wave thermoacoustic engine with 3.92 MPa helium gas and 1750 W heat input. To improve thermal efficiency, a high frequency thermoacoustic-Stirling heat engine is also built to drive the same pulse tube cryocooler, and a no-load temperature of 109 K was obtained with 4.38 MPa helium gas, 292 Hz working frequency and 400W heating power. Ideas such as tapered resonators, acoustic amplifier tubes and simple thin tubes without reservoir are used to effectively suppress harmonic modes, amplify the acoustic pressure wave available to the pulse tube cryocooler and provide desired acoustic impedance for the pulse tube cryocooler, respectively. Comparison of systems with different thermoacoustic engines is made. Numerical simulations based on the linear thermoacoustic theory have also been done for comparison with experimental results, which shows reasonable agreement.
NASA Technical Reports Server (NTRS)
Seiler, James; Brasfield, Fred; Cannon, Scott
2008-01-01
Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.
46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...
46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...
46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...
46 CFR 150.130 - Loading a cargo on vessels carrying cargoes with which it is incompatible.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Loading a cargo on vessels carrying cargoes with which it is incompatible. 150.130 Section 150.130 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.130 Loading a cargo on vessels...
46 CFR 97.12-1 - Bulk ores and similar cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk ores and similar cargoes. 97.12-1 Section 97.12-1... OPERATIONS Cargo Stowage § 97.12-1 Bulk ores and similar cargoes. (a) The owners or operators of general cargo vessels which carry bulk cargoes such as ore, ore concentrates, and similar cargoes shall furnish...
Code of Federal Regulations, 2012 CFR
2012-10-01
... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2012-10-01 2012-10-01 false Access to cargo and cargo screening: Security...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2014-10-01 2014-10-01 false Access to cargo and cargo screening: Security...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2013-10-01 2013-10-01 false Access to cargo and cargo screening: Security...
Code of Federal Regulations, 2011 CFR
2011-10-01
... cargo enters an airport Security Identification Display Area or is transferred to another TSA-regulated... program accepts the cargo until the cargo— (A) Enters an airport Security Identification Display Area; (B... 49 Transportation 9 2011-10-01 2011-10-01 false Access to cargo and cargo screening: Security...
Knowledge-based decision support for Space Station assembly sequence planning
NASA Astrophysics Data System (ADS)
1991-04-01
A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.
Knowledge-based decision support for Space Station assembly sequence planning
NASA Technical Reports Server (NTRS)
1991-01-01
A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.
Lunar Lander Offloading Operations Using a Heavy-Lift Lunar Surface Manipulator System
NASA Technical Reports Server (NTRS)
Jefferies, Sharon A.; Doggett, William R.; Chrone, Jonathan; Angster, Scott; Dorsey, John T.; Jones, Thomas C.; Haddad, Michael E.; Helton, David A.; Caldwell, Darrell L., Jr.
2010-01-01
This study investigates the feasibility of using a heavy-lift variant of the Lunar Surface Manipulator System (LSMS-H) to lift and handle a 12 metric ton payload. Design challenges and requirements particular to handling heavy cargo were examined. Differences between the previously developed first-generation LSMS and the heavy-lift version are highlighted. An in-depth evaluation of the tip-over risk during LSMS-H operations has been conducted using the Synergistic Engineering Environment and potential methods to mitigate that risk are identified. The study investigated three specific offloading scenarios pertinent to current Lunar Campaign studies. The first involved offloading a large element, such as a habitat or logistics module, onto a mobility chassis with a lander-mounted LSMS-H and offloading that payload from the chassis onto the lunar surface with a surface-mounted LSMS-H. The second scenario involved offloading small pressurized rovers with a lander-mounted LSMS-H. The third scenario involved offloading cargo from a third-party lander, such as the proposed ESA cargo lander, with a chassis-mounted LSMS-H. In all cases, the analyses show that the LSMS-H can perform the required operations safely. However, Chariot-mounted operations require the addition of stabilizing outriggers, and when operating from the Lunar surface, LSMS-H functionality is enhanced by adding a simple ground anchoring system.
Herzig, Yonatan; Sharpe, Hayley J; Elbaz, Yael; Munro, Sean; Schuldiner, Maya
2012-01-01
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they recognize remain poorly understood. We present here an approach we term "PAIRS" (pairing analysis of cargo receptors), which combines systematic genetic manipulations of yeast with automated microscopy screening, to map the spectrum of cargo for a known receptor or to uncover a novel receptor for a particular cargo. Using PAIRS we followed the fate of ∼150 cargos on the background of mutations in nine putative cargo receptors and identified novel cargo for most of these receptors. Deletion of the Erv14 cargo receptor affected the widest range of cargo. Erv14 substrates have a wide array of functions and structures; however, they are all membrane-spanning proteins of the late secretory pathway or plasma membrane. Proteins residing in these organelles have longer transmembrane domains (TMDs). Detailed examination of one cargo supported the hypothesis that Erv14 dependency reflects the length rather than the sequence of the TMD. The PAIRS approach allowed us to uncover new cargo for known cargo receptors and to obtain an unbiased look at specificity in cargo selection. Obtaining the spectrum of cargo for a cargo receptor allows a novel perspective on its mode of action. The rules that appear to guide Erv14 substrate recognition suggest that sorting of membrane proteins at multiple points in the secretory pathway could depend on the physical properties of TMDs. Such a mechanism would allow diverse proteins to utilize a few receptors without the constraints of evolving location-specific sorting motifs.
Maximizing Exosome Colloidal Stability Following Electroporation
Hood, Joshua L.; Scott, Michael J.; Wickline, Samuel A.
2014-01-01
Development of exosome based semi-synthetic nanovesicles for diagnostic and therapeutic purposes requires novel approaches to load exosomes with cargo. Electroporation has previously been used to load exosomes with RNA. However, investigations into exosome colloidal stability following electroporation have not been considered. Herein, we report the development of a unique trehalose pulse media (TPM) that minimizes exosome aggregation following electroporation. Dynamic light scattering (DLS) and RNA absorbance were employed to determine the extent of exosome aggregation and electroextraction post electroporation in TPM compared to common PBS pulse media or sucrose pulse media (SPM). Use of TPM to disaggregate melanoma exosomes post electroporation was dependent on both exosome concentration and electric field strength. TPM maximized exosome dispersal post electroporation for both homogenous B16 melanoma and heterogeneous human serum derived populations of exosomes. Moreover, TPM enabled heavy cargo loading of melanoma exosomes with 5 nm superparamagnetic iron oxide nanoparticles (SPION5) while maintaining original exosome size and minimizing exosome aggregation as evidenced by transmission electron microscopy. Loading exosomes with SPION5 increased exosome density on sucrose gradients. This provides a simple, label free means to enrich exogenously modified exosomes and introduces the potential for MRI driven theranostic exosome investigations in vivo. PMID:24333249
Maximizing exosome colloidal stability following electroporation.
Hood, Joshua L; Scott, Michael J; Wickline, Samuel A
2014-03-01
Development of exosome-based semisynthetic nanovesicles for diagnostic and therapeutic purposes requires novel approaches to load exosomes with cargo. Electroporation has previously been used to load exosomes with RNA. However, investigations into exosome colloidal stability following electroporation have not been considered. Herein, we report the development of a unique trehalose pulse media (TPM) that minimizes exosome aggregation following electroporation. Dynamic light scattering (DLS) and RNA absorbance were employed to determine the extent of exosome aggregation and electroextraction post electroporation in TPM compared to common PBS pulse media or sucrose pulse media (SPM). Use of TPM to disaggregate melanoma exosomes post electroporation was dependent on both exosome concentration and electric field strength. TPM maximized exosome dispersal post electroporation for both homogenous B16 melanoma and heterogeneous human serum-derived populations of exosomes. Moreover, TPM enabled heavy cargo loading of melanoma exosomes with 5nm superparamagnetic iron oxide nanoparticles (SPION5) while maintaining original exosome size and minimizing exosome aggregation as evidenced by transmission electron microscopy. Loading exosomes with SPION5 increased exosome density on sucrose gradients. This provides a simple, label-free means of enriching exogenously modified exosomes and introduces the potential for MRI-driven theranostic exosome investigations in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Cooperativity of self-organized Brownian motors pulling on soft cargoes.
Orlandi, Javier G; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume
2010-12-01
We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.
Self-folding polymeric containers for encapsulation and delivery of drugs
Fernandes, Rohan; Gracias, David H.
2012-01-01
Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612
Cooperativity of self-organized Brownian motors pulling on soft cargoes
NASA Astrophysics Data System (ADS)
Orlandi, Javier G.; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume
2010-12-01
We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.
2012-12-10
combustion (IC) engine , Type 907, and its dat file was modified to match the expected fuel consumption and performance of the ...temperature output by the AS desorber. Depending on this DB set temperature, fuel would be burned to raise the temperature of the engine exhaust stream...in the simulations, it was based upon experimental data provided for this project indicating the performance of a 3 kW diesel
NASA Technical Reports Server (NTRS)
Colis, William D
1947-01-01
The icing characteristics, the de-icing rate with hot air, and the effect of impact ice on fuel metering and mixture distribution have been determined in a laboratory investigation of that part of the engine induction system consisting of a three-barrel injection-type carburetor and a supercharger housing with spinner-type fuel injection from an 18-cylinder radial engine used on a large twin-engine cargo airplane. The induction system remained ice-free at carburetor-air temperatures above 36 F regardless of the moisture content of the air. Between carburetor-air temperatures of 32 F and 36 F with humidity ratios in excess of saturation, serious throttling ice formed in the carburetor because of expansion cooling of the air; at carburetor-air temperatures below 32 F with humidity ratios in excess of saturation, serious impact-ice formations occurred, Spinner-type fuel injection at the entrance to the supercharger and heating of the supercharger-inlet elbow and the guide vanes by the warn oil in the rear engine housing are design features that proved effective in eliminating fuel-evaporation icing and minimized the formation of throttling ice below the carburetor. Air-flow recovery time with fixed throttle was rapidly reduced as the inlet -air wet -bulb temperature was increased to 55 F; further temperature increase produced negligible improvement in recovery time. Larger ice formations and lower icing temperatures increased the time required to restore proper air flow at a given wet-bulb temperature. Impact-ice formations on the entrance screen and the top of the carburetor reduced the over-all fuel-air ratio and increased the spread between the over-all ratio and the fuel-air ratio of the individual cylinders. The normal spread of fuel-air ratio was increased from 0.020 to 0.028 when the left quarter of the entrance screen was blocked in a manner simulating the blocking resulting from ice formations released from upstream duct walls during hot-air de-icing.
RS-25 for the NASA Cargo Launch Vehicle: The Evolution of SSME for Space Exploration
NASA Technical Reports Server (NTRS)
Kynard, Michael H.; McArthur, J. Craig; Ise, Dayna S.
2006-01-01
A key element of the National Vision for Space Exploration is the development of a heavy-lift Cargo Launch Vehicle (CaLV). Missions to the Moon, Mars, and beyond are only possible with the logistical capacity of putting large payloads in low-earth orbit. However, beyond simple logistics, there exists the need for this capability to be as cost effective as possible to ensure mission sustainability. An element of the CaLV project is, therefore, the development of the RS-25, which represents the evolution of the proven Space Shuttle Main Engine (SSME) into a high-performance, cost-effective expendable rocket engine. The development of the RS-25 will be built upon the foundation of over one million seconds of accumulated hot-fire time on the SSME. Yet in order to transform the reusable SSME into the more cost-effective, expendable RS-25 changes will have to be made. Thus the project will inevitably strive to maintain a balance between demonstrated heritage products and processes and the utilization of newer technology developments. Towards that end, the Core Stage Engine Office has been established at the NASA Marshall Space Flight Center to initiate the design and development of the RS-25 engine. This paper is being written very early in the formulation phase of the RS-25 project. Therefore the focus of this paper will be to present the scope, challenges, and opportunities for the RS-25 project. Early schedules and development decisions and plans will be explained. For not only must the RS-25 project achieve cost effectiveness through the development of new, evolved components such as a channel-wall nozzle, a new HIP-bonded main combustion chamber, and several others, it must simultaneously develop the means whereby this engine can be manufactured on a scale never envisioned for the SSME. Thus, while the overall project will span the next eight to ten years, there is little doubt that even this schedule is aggressive with a great deal of work to accomplish.
Er, K; Sümer, Z; Akpinar, K E
2005-12-01
To evaluate the number of bacteria extruded apically from extracted teeth ex vivo after canal instrumentation using the two engine-driven techniques utilizing nickel-titanium instruments (ProTaper and System GT). Forty extracted single-rooted human mandibular premolar teeth were used. Access cavities were prepared and root canals were then contaminated with a suspension of Enterococcus faecalis and dried. The contaminated roots were divided into two experimental groups of 15 teeth each and one control group of 10 teeth. Group 1, ProTaper group: the root canals were instrumented using ProTaper instruments. Group 2, System GT group: the root canals were instrumented using System GT instruments. Group 3, control group: no instrumentation was attempted. Bacteria extruded from the apical foramen during instrumentation were collected into vials. The microbiological samples from the vials were incubated in culture media for 24 h. Colonies of bacteria were counted and the results were given as number of colony-forming units. The data obtained were analysed using the Kruskal-Wallis one-way analysis of variance and Mann-Whitney U-tests, with alpha = 0.05 as the level for statistical significance. There was no significant difference as to the number of extruded bacteria between the ProTaper and System GT engine-driven systems (P > 0.05). Both engine-driven nickel-titanium systems extruded bacteria through the apical foramen.
NASA Astrophysics Data System (ADS)
Llauró, Aida; Luque, Daniel; Edwards, Ethan; Trus, Benes L.; Avera, John; Reguera, David; Douglas, Trevor; Pablo, Pedro J. De; Castón, José R.
2016-04-01
Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers.Nucleic acids are the natural cargo of viruses and key determinants that affect viral shell stability. In some cases the genome structurally reinforces the shell, whereas in others genome packaging causes internal pressure that can induce destabilization. Although it is possible to pack heterologous cargoes inside virus-derived shells, little is known about the physical determinants of these artificial nanocontainers' stability. Atomic force and three-dimensional cryo-electron microscopy provided mechanical and structural information about the physical mechanisms of viral cage stabilization beyond the mere presence/absence of cargos. We analyzed the effects of cargo-shell and cargo-cargo interactions on shell stability after encapsulating two types of proteinaceous payloads. While bound cargo to the inner capsid surface mechanically reinforced the capsid in a structural manner, unbound cargo diffusing freely within the shell cavity pressurized the cages up to ~30 atm due to steric effects. Strong cargo-cargo coupling reduces the resilience of these nanocompartments in ~20% when bound to the shell. Understanding the stability of artificially loaded nanocages will help to design more robust and durable molecular nanocontainers. Electronic supplementary information (ESI) available: 6 figures, 3 tables and theory. See DOI: 10.1039/c6nr01007e
Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D
2017-05-01
Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.
Light absorbing carbon emissions from commercial shipping
NASA Astrophysics Data System (ADS)
Lack, Daniel; Lerner, Brian; Granier, Claire; Baynard, Tahllee; Lovejoy, Edward; Massoli, Paola; Ravishankara, A. R.; Williams, Eric
2008-07-01
Extensive measurements of the emission of light absorbing carbon aerosol (LAC) from commercial shipping are presented. Vessel emissions were sampled using a photoacoustic spectrometer in the Gulf of Mexico region. The highest emitters (per unit fuel burnt) are tug boats, thus making significant contributions to local air quality in ports. Emission of LAC from cargo and non cargo vessels in this study appears to be independent of engine load. Shipping fuel consumption data (2001) was used to calculate a global LAC contribution of 133(+/-27) Ggyr-1, or ~1.7% of global LAC. This small fraction could have disproportionate effects on both air quality near port areas and climate in the Arctic if direct emissions of LAC occur in that region due to opening Arctic sea routes. The global contribution of this LAC burden was investigated using the MOZART model. Increases of 20-50 ng m-3 LAC (relative increases up to 40%) due to shipping occur in the tropical Atlantic, Indonesia, central America and the southern regions of South America and Africa.
Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.
2002-01-01
A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.
Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.
Wang, Ming; Zuris, John A; Meng, Fantao; Rees, Holly; Sun, Shuo; Deng, Pu; Han, Yong; Gao, Xue; Pouli, Dimitra; Wu, Qi; Georgakoudi, Irene; Liu, David R; Xu, Qiaobing
2016-03-15
A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
Shipping InSight Mars Spacecraft to Buckley Air Force Base
2018-02-28
A truck carrying NASA s InSight spacecraft leaves Lockheed Martin Space, Denver, where the spacecraft was built and tested, on February 28, 2018. InSight was driven to Buckley Air Force Base, where it was loaded into a C-17 cargo aircraft and flown to Vandenberg Air Force Base, California. There, it will be prepared for a May launch. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22225
Coarse-grained Simulations of Viral Assembly
NASA Astrophysics Data System (ADS)
Elrad, Oren M.
2011-12-01
The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Small single-stranded RNA viruses not only assemble their coat proteins in this fashion but also package their genome during the self-assembly process. Recent experiments have shown that the coat proteins are competent to assemble not merely around their own genomes but heterologous RNA, synthetic polyanions and even functionalized gold nanoparticles. Remarkably these viruses can even assemble around cargo not commensurate with their native state by adopting different morphologies. Understanding the properties that confer such exquisite precision and flexibility to the assembly process could aid biomedical research in the search for novel antiviral remedies, drug-delivery vehicles and contrast agents used in bioimaging. At the same time, viral assembly provides an excellent model system for the development of a statistical mechanical understanding of biological self-assembly, in the hopes of that we will identify some universal principles that underly such processes. This work consists of computational studies using coarse-grained representations of viral coat proteins and their cargoes. We find the relative strength of protein-cargo and protein-protein interactions has a profound effect on the assembly pathway, in some cases leading to assembly mechanisms that are markedly different from those found in previous work on the assembly of empty capsids. In the case of polymeric cargo, we find the first evidence for a previously theorized mechanism in which the polymer actively participates in recruiting free subunits to the assembly process through cooperative polymer-protein motions. We find that successful assembly is non-monotonic in protein-cargo affinity, such affinity can be detrimental to assembly if it becomes strong enough to stabilize frustrated intermediates that are incompatible with the ground state structure. In cases where the subunits are capable of assembly into different morphologies, we find that maintaining the precise spatial arrangement of subunits seen in the crystal structure is possible even if non-native interactions are disfavored by as little as the thermal energy.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-1 General. This subpart prescribes the requirements for cargo segregation for cargo tanks. These requirements are based on considerations of cargo...
Code of Federal Regulations, 2011 CFR
2011-10-01
... HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-1 General. This subpart prescribes the requirements for cargo segregation for cargo tanks. These requirements are based on considerations of cargo...
NASA Technical Reports Server (NTRS)
Hart, Angela
2006-01-01
A description of internal cargo integration is presented. The topics include: 1) Typical Cargo for Launch/Disposal; 2) Cargo Delivery Requirements; 3) Cargo Return Requirements; and 4) Vehicle On-Orbit Stay Time.
Calcium-Responsive Liposomes via a Synthetic Lipid Switch.
Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D
2018-03-07
Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exploration and practice for engineering innovative talents training based on project-driven
NASA Astrophysics Data System (ADS)
Xu, Yishen; Lv, Qingsong; Ye, Yan; Wu, Maocheng; Gu, Jihua
2017-08-01
As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students' innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.
Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities.
Quo, Chang F; Kaddi, Chanchala; Phan, John H; Zollanvari, Amin; Xu, Mingqing; Wang, May D; Alterovitz, Gil
2012-07-01
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.
46 CFR 150.120 - Definition of incompatible cargoes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...
46 CFR 150.120 - Definition of incompatible cargoes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...
46 CFR 150.120 - Definition of incompatible cargoes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...
46 CFR 150.120 - Definition of incompatible cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...
46 CFR 150.120 - Definition of incompatible cargoes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Definition of incompatible cargoes. 150.120 Section 150.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.120 Definition of incompatible cargoes. Except as described in § 150.150, a cargo...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...
46 CFR 151.13-5 - Cargo segregation-tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks. (a... through design. (2) Segregation of cargo space from machinery spaces and other spaces which have or could... Grade E Liquid (if compatible with cargo) is satisfactory. (b) [Reserved] (c) If a cofferdam is required...
49 CFR 392.9 - Inspection of cargo, cargo securement devices and systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.9 Inspection of cargo, cargo securement devices... drives that commercial motor vehicle; (2) Inspect the cargo and the devices used to secure the cargo...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
33 CFR 105.265 - Security measures for handling cargo.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., containers, or other cargo transport units entering the facility match the delivery note or equivalent cargo..., containers or other cargo transport units, and cargo storage areas within the facility for evidence of... cargo. 105.265 Section 105.265 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND...
46 CFR 154.235 - Cargo tank location.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank location. 154.235 Section 154.235 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Survival Capability and Cargo Tank Location § 154.235 Cargo tank location. (a) For type IG hulls, cargo...
Geomagnetic effects caused by rocket exhaust jets
NASA Astrophysics Data System (ADS)
Lipko, Yuriy; Pashinin, Aleksandr; Khakhinov, Vitaliy; Rahmatulin, Ravil
2016-09-01
In the space experiment Radar-Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in flux tubes crossed by the spacecraft. When analyzing experimental data, we took into account space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kp, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations in various time ranges.
View of Atlantis leaving the ISS
2011-07-19
ISS028-E-017501 (19 July 2011) --- This picture of the space shuttle Atlantis was photographed from the International Space Station as the orbiting complex and the shuttle performed their relative separation in the early hours of July 19, 2011. The Raffaello multi-purpose logistics module, which transported tons of supplies to the complex, can be seen in the cargo bay. It is filled with different materials from the station for return to Earth. Onboard the station were Russian cosmonauts Andrey Borisenko, commander; Sergei Volkov and Alexander Samokutyaev, both flight engineers; Japan Aerospace Exploration astronaut Satoshi Furukawa, and NASA astronauts Mike Fossum and Ron Garan, all flight engineers. Onboard the shuttle were NASA astronauts Chris Ferguson, commander; Doug Hurley, pilot; and Sandy Magnus and Rex Walheim, both mission specialists.
Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses
NASA Astrophysics Data System (ADS)
Boehm, Barry; Port, Dan; Winsor Brown, A.
2002-09-01
For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”
On the Use of Client-Driven Projects in the Mathematics Classroom
ERIC Educational Resources Information Center
Maki, Dan; Winston, Wayne; Shafii-Mousavi, Morteza; Kochanowski, Paul; Lang, Chris; Ernstberger, Kathy; Hodgson, Ted
2006-01-01
In this article, we discuss the use of client-driven projects--projects that are posed by business, government, and non-profit organizations and based upon real problems facing the organization. Although client-driven projects have long been used in business and engineering education, their use in the mathematics classroom is rare. Client-driven…
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less
NASA Astrophysics Data System (ADS)
Li, Chao; Tao, Fei; Ni, Jun; Wang, Yu; Yao, Feng; Xu, Ping
2015-05-01
It is increasingly attractive to engineer cyanobacteria for bulk production of chemicals from CO2. However, cofactor bias of cyanobacteria is different from bacteria that prefer NADH, which hampers cyanobacterial strain engineering. In this study, the key enzyme D-lactate dehydrogenase (LdhD) from Lactobacillus bulgaricus ATCC11842 was engineered to reverse its favored cofactor from NADH to NADPH. Then, the engineered enzyme was introduced into Synechococcus elongatus PCC7942 to construct an efficient light-driven system that produces D-lactic acid from CO2. Mutation of LdhD drove a fundamental shift in cofactor preference towards NADPH, and increased D-lactate productivity by over 3.6-fold. We further demonstrated that introduction of a lactic acid transporter and bubbling CO2-enriched air also enhanced D-lactate productivity. Using this combinational strategy, increased D-lactate concentration and productivity were achieved. The present strategy may also be used to engineer cyanobacteria for producing other useful chemicals.
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, L. Y.; Hao, H. X.
2014-01-01
Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.
FE Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013708 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013710 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013714 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Mastracchio prepares Robonaut for Taskboard Operations
2013-12-09
ISS038-E-013712 (9 Dec. 2013) --- In the International Space Station's Destiny laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares Robonaut 2 for an upcoming ground-commanded firmware update that will support the installation of a pair of legs for the humanoid robot. R2 was designed to test out the capability of a robot to perform tasks deemed too dangerous or mundane for astronauts. Robonaut's legs are scheduled to arrive to the station aboard the SpaceX-3 commercial cargo mission in February 2014.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070943 (25 May 2012) --- Backdropped against the Namib Desert on the Atlantic coast of Namibia, the SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m.
Gerst depressurized Kibo for Cubesat deployment
2014-08-18
ISS040-E-096126 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.
Gerst depressurized Kibo for Cubesat deployment
2014-08-18
ISS040-E-096122 (18 Aug. 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, depressurizes the Kibo airlock in preparation for a series of NanoRacks CubeSat miniature satellite deployments. The first two pairs of nanosatellites are scheduled for deployment on Aug. 19. The Planet Labs Dove satellites that were carried to the station aboard the Orbital Sciences Cygnus commercial cargo craft are being deployed between Aug. 19 and Aug. 25.