Sample records for engine fluids test

  1. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... not one during which component and the engine fluid temperatures would stabilize (in which case... cooling test must be preceded by a period during which the powerplant component and engine fluid temperatures are stabilized with the engines at ground idle. (c) Cooling tests for each stage of flight must be...

  2. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  3. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  4. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  5. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  6. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Preparation of thermal fluid heater for inspection and test. 61.30-5 Section 61.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for...

  7. Computational Pollutant Environment Assessment from Propulsion-System Testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif

    1996-01-01

    An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.

  8. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  9. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less

  10. Fluid infusion system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.

  11. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be the minimum grade approved for the engines, and the mixture settings... engine fluids and powerplant components (except cylinder barrels) for which temperature limits are...

  12. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be the minimum grade approved for the engines, and the mixture settings... engine fluids and powerplant components (except cylinder barrels) for which temperature limits are...

  13. 40 CFR 1065.701 - General requirements for test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false General requirements for test fuels... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.701 General requirements for test fuels. (a) General. For all emission...

  14. 40 CFR 1065.701 - General requirements for test fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false General requirements for test fuels... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.701 General requirements for test fuels. (a) General. For all emission...

  15. 40 CFR 1065.701 - General requirements for test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false General requirements for test fuels... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.701 General requirements for test fuels. (a) General. For all emission...

  16. 40 CFR 1065.701 - General requirements for test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false General requirements for test fuels... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.701 General requirements for test fuels. (a) General. For all emission...

  17. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be of the minimum grade approved for the engines, and the mixture settings... applies, temperatures of engine fluids and power-plant components (except cylinder barrels) for which...

  18. 14 CFR 27.1043 - Cooling tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be of the minimum grade approved for the engines, and the mixture settings... applies, temperatures of engine fluids and power-plant components (except cylinder barrels) for which...

  19. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Property Value Reference procedure 1 Propane... methods yield different results, use the results from ASTM D1267. 3 The test fuel must not yield a...

  20. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected to a maximum operating temperature and an internal pressure of 5 p.s.i., and each pressurized hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...

  1. Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.

    1988-01-01

    NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.

  2. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Item Value Reference procedure 1 Propane... test fuel must not yield a persistent oil ring when you add 0.3 ml of solvent residue mixture to a...

  3. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Item Value Reference procedure 1 Propane... test fuel must not yield a persistent oil ring when you add 0.3 ml of solvent residue mixture to a...

  4. 40 CFR 1065.703 - Distillate diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to... grades are specified in the following table: Table 1 of § 1065.703—Test Fuel Specifications for...

  5. 40 CFR 1065.720 - Liquefied petroleum gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration....720—Test Fuel Specifications for Liquefied Petroleum Gas Item Value Reference procedure 1 Propane... test fuel must not yield a persistent oil ring when you add 0.3 ml of solvent residue mixture to a...

  6. 40 CFR 1065.703 - Distillate diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to... inhibitor. (5) Pour depressant. (6) Dye. (7) Dispersant. (8) Biocide. Table 1 of § 1065.703—Test Fuel...

  7. 40 CFR 1065.703 - Distillate diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to... inhibitor. (5) Pour depressant. (6) Dye. (7) Dispersant. (8) Biocide. Table 1 of § 1065.703—Test Fuel...

  8. 40 CFR 1065.703 - Distillate diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration... diesel fuel specified for use as a test fuel. See the standard-setting part to determine which grade to... inhibitor. (5) Pour depressant. (6) Dye. (7) Dispersant. (8) Biocide. Table 1 of § 1065.703—Test Fuel...

  9. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  10. High-power baseline and motoring test results for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1981-01-01

    Test results are given for the full power range of the engine with both helium and hydrogen working fluids. Comparisons are made to previous testing using an alternator and resistance load bank to absorb the engine output. Indicated power results are presented as determined by several methods. Motoring tests were run to aid in determining engine mechanical losses. Comparisons are made between the results of motoring and energy-balance methods for finding mechanical losses.

  11. Statistical Analysis Tools for Learning in Engineering Laboratories.

    ERIC Educational Resources Information Center

    Maher, Carolyn A.

    1990-01-01

    Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…

  12. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Ruf, Joe

    1999-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.

  13. Seals/Secondary Fluid Flows Workshop 1997; Volume I

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C. (Editor)

    2006-01-01

    The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery

  14. 40 CFR 1065.705 - Residual and intermediate residual fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel. 1065.705 Section 1065.705 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other... categories in the following table: Table 1 of § 1065.705—Service Accumulation and Test Fuel Specifications...

  15. 40 CFR 1065.705 - Residual and intermediate residual fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel. 1065.705 Section 1065.705 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other... in the following table: Table 1 of § 1065.705—Service Accumulation and Test Fuel Specifications for...

  16. 40 CFR 1065.705 - Residual and intermediate residual fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel. 1065.705 Section 1065.705 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other... categories in the following table: Table 1 of § 1065.705—Service Accumulation and Test Fuel Specifications...

  17. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    NASA Technical Reports Server (NTRS)

    Nguyen, Dalton

    2002-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, an C-SiC composites heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and thermal models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  18. Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine

    NASA Technical Reports Server (NTRS)

    Nguyen, Dalton; Turner, Larry D. (Technical Monitor)

    2001-01-01

    As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, a C-SiC composite heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on-going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and therma models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.

  19. An RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Dinanno, L. R.; Dibella, F. A.; Koplow, M. D.

    1983-01-01

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air cooled condenser regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy duty transport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene and 40 mole percent hexafluorobenzene. The thermal stability of the RC-1 organic fluid was tested in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900 F.

  20. 14 CFR 23.1043 - Cooling tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...

  1. 14 CFR 23.1043 - Cooling tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...

  2. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  3. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  4. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  5. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  6. 40 CFR 1065.740 - Lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...

  7. RE-1000 free-piston Stirling engine update

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  8. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  9. Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment

    NASA Technical Reports Server (NTRS)

    Wei, H.; Shang, H. M.; Chen, Y. S.

    2001-01-01

    The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.

  10. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects

    NASA Technical Reports Server (NTRS)

    West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.

  11. Experiment for validation of fluid-structure interaction models and algorithms.

    PubMed

    Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D

    2017-09-01

    In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

  12. Characterization and Analyses of Valves, Feed Lines and Tanks used in Propellant Delivery Systems at NASA SSC

    NASA Technical Reports Server (NTRS)

    Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin

    2006-01-01

    Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.

  13. Military Potential Test of the UH-2A Helicopter.

    DTIC Science & Technology

    1963-10-25

    required to fully service two engines during engine change. 3. One quart of hydr aulic fluid , MIL 5606. Used to replace spillage while disconnecting...Maryland , dated 24 January 1963. 7. Report Nr. 1, Final Report, Climatic Laboratory Environ- mental Test of the Model UH- 2A Helicopter , by US

  14. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  15. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  16. Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Nolan, Steven A.; Hibbs, Robert I.; Genge, Gary G.

    1994-01-01

    A new fluid film bearing package has been tested in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most importantly, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance during testing on the NASA Technology Test Bed (TTB) Engine located at MSFC. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at ten percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65% of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation.

  17. Low-Power Baseline Test Results for the GPU 3 Stirling Engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.

    1979-01-01

    A 7.5 kW (10 hp) Stirling engine was converted to a research configuration in order to obtain data for validating Stirling-cycle computer simulations. Test results for a range of heater-tube gas temperatures, mean compression-space pressures, and engine speeds with both helium and hydrogen as the working fluid are summarized. An instrumentation system to determine indicated work is described and preliminary results are presented.

  18. A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines

    NASA Astrophysics Data System (ADS)

    Backhaus, Scott; Reid, Robert S.

    2005-02-01

    A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.

  19. Urine sampling and collection system optimization and testing

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Geating, J. A.; Koesterer, M. G.

    1975-01-01

    A Urine Sampling and Collection System (USCS) engineering model was developed to provide for the automatic collection, volume sensing and sampling of urine from each micturition. The purpose of the engineering model was to demonstrate verification of the system concept. The objective of the optimization and testing program was to update the engineering model, to provide additional performance features and to conduct system testing to determine operational problems. Optimization tasks were defined as modifications to minimize system fluid residual and addition of thermoelectric cooling.

  20. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    PubMed

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  1. Testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Allen, David J.

    1986-01-01

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 as working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.

  2. Testing of a variable-stroke Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.; Allen, D. J.

    1986-01-01

    Testing of a variable-stroke Stirling engine at NASA Lewis has been completed. In support of the DOE Stirling Engine Highway Vehicle Systems Program, the engine was tested for about 70 hours total with both He and H2 working fluids over a range of pressures and strokes. A direct comparison was made of part-load efficiencies obtained with variable-stroke (VS) and variable-pressure operation. Two failures with the variable-angle swash-plate drive system limited testing to low power levels. These failures are not thought to be caused by problems inherent with the VS concept but do emphasize the need for careful design in the area of the crossheads.

  3. Laminar flow studies of a low-temperature space radiator model using D-shaped tubes

    NASA Technical Reports Server (NTRS)

    Cintula, T. C.; Prok, G. M.; Johnston, D. B.

    1972-01-01

    Test results of a low-temperature space radiator model are presented. Radiator performance is evaluated with a low-thermal-conductivity fluid in laminar flow in D-shaped cross-section tubes. The test covered a Reynolds number range from 50 to 4500 and a fluid temperature range from 294 to 414 K (70 to 286 F). For low-temperature radiators, the fluid-to-surface temperature differential was predominately influenced by fluid temperature in laminar flow. Heat transfer and pressure drop for the radiator tube could be predicted within engineering accuracy from existing correlations.

  4. Orbital transfer vehicle oxygen turbopump technology. Volume 1: Design, fabrication, and hydrostatic bearing testing

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.

    1990-01-01

    The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.

  5. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  6. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.

  7. The Aerothermodynamics of Aircraft Gas Turbine Engines

    DTIC Science & Technology

    1978-07-01

    engine will deteriorate. 1.6.2 Experimental Testing It is easy to fall int9 the organiza- tional trap of four isolated groups . One group does the... Quasi -Dne-Dimensional Fluid Flows The First Law for a F1mdng System-- The Control Volume • . • The Channel Flow Equations Stagnation Properties...exit to control volume (Eq • 2. 14 . 2) CHAPTER TWO THERMODYNAMICS AND QUASI -ONE-DUlENSIONAL FLUID FLO’’{S 2.0 INTRODUCTION This chapter "ill be

  8. Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.

    ERIC Educational Resources Information Center

    McKechnie, R. E.; Vickers, G. W.

    1981-01-01

    Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…

  9. Feasibility Study for a Practical High Rotor Tip Clearance Turbine.

    DTIC Science & Technology

    GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.

  10. 40 CFR 1065.101 - Overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...

  11. 40 CFR 1065.101 - Overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...

  12. 40 CFR 1065.101 - Overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...

  13. 40 CFR 1065.101 - Overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...

  14. 40 CFR 1065.101 - Overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...

  15. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...

  16. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...

  17. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...

  18. 30 CFR 250.490 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... where neither the presence nor absence of H2S has been confirmed. Well-control fluid means drilling mud..., well logs, formation tests, cores and analysis of formation fluids; and (4) Submit a request for... initiate when the SO2 concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect...

  19. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  20. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  1. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  2. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  3. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  4. Engine having multiple pumps driven by a single shaft

    DOEpatents

    Blass, James R.

    2001-01-01

    An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.

  5. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1996-01-01

    This research program dealt with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in January 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled three-component problem were developed during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor tor parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability tor the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the 1196 Computational Aeroscience meeting.

  6. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.

    1995-01-01

    This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.

  7. SSME environment database development

    NASA Technical Reports Server (NTRS)

    Reardon, John

    1987-01-01

    The internal environment of the Space Shuttle Main Engine (SSME) is being determined from hot firings of the prototype engines and from model tests using either air or water as the test fluid. The objectives are to develop a database system to facilitate management and analysis of test measurements and results, to enter available data into the the database, and to analyze available data to establish conventions and procedures to provide consistency in data normalization and configuration geometry references.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Arup; McWatt, D. G.; Zdrodowski, R. J.

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, itsmore » application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal Test Procedure) metro/highway cycles. Five different PAG chemistries were selected by varying the starting alcohol, the oxide monomers (ethylene oxide, propylene oxide, or butylene oxide), capped or uncapped, homopolymer or random copolymer. All formulations contained a proprietary additive package and one which contained additional antiwear and friction modifier additives. Laboratory bench tests (Pin-on-Disk, High Frequency Reciprocating Rig (HFRR), Block-on-Ring, Mini-Traction Machine (MTM) identified formulations having friction, wear, and load carrying characteristics similar to or better than baseline GF-5 SAE 5W-20 oil. Motored valvetrain and motored piston ring friction tests showed nearly 50% friction reduction for some of the PAG formulations compared to GF-5 SAE 5W-20 oil. Motored engine tests showed up to 15% friction benefit over GF-5 SAE 5W-20 oil. It was observed that friction benefits are more related to PAG base oil chemistry than their lower viscosity compared to GF-5 SAE 5W-20 oil. Analysis of wear surfaces from laboratory bench tests and bucket tappets from motored valvetrain tests confirmed the presence of PAG molecules. The adsorption of these polar molecules is believed to be reason for friction reduction. However, the wear surfaces also had thin tribo-film derived from additive components. The tribo-film consisting of phosphates, sulfides, and molybdenum disulfide (when molybdenum additive was present) were observed for both GF-5 SAE 5W-20 and PAG fluids. However, when using PAG fluids, motored valvetrain tests showed high initial wear, which is believed to be due to delay in protective tribo-film formation. After the initial wear, the wear rate of PAG fluids was comparable to GF-5 SAE 5W-20 oil. The PAG oil containing additional antiwear and friction reducing additives showed low initial wear as expected. However, when this oil was evaluated in Sequence IVA test, it showed initially low wear comparable to GF-5 oil but wear accelerated with oil aging indicating rapid deterioration of additive components. ASTM Sequence VG test showed good sludge protection capability but failed to meet varnish rating for GF-5 requirement. Chassis roll dynamometer tests with PAG oil 15-1 showed about 1% fuel economy benefit over GF-5 SAE 5W-20 oil in EPA city cycles only and when the oil was slightly aged (500 miles). No fuel economy benefits could be observed in combined EPA metro/highway cycles. Also, no fuel economy benefit could be observed with continued (500- 10000 miles) oil aging. However, the emission level was comparable to the reference oil and was within EPA limits. Analysis of the PAG oil following tests showed low iron content although additive components were significantly degraded. The results indicate that PAG fluids have significant friction reduction potential but there are challenges with wear and varnish protection capabilities. These limitations are primarily because the selected additive components were chosen to provide a fluid with no metal content that forms little or no sulphated ash. Significant development work is needed to identify additive components compatible with PAG chemistry including their solubility in PAG oil. Miscibility of PAG fluids with mineral base oil is another challenge for oil change service. There is PAG chemistry (oil soluble PAG, OSP) which is soluble in mineral oils but the formulation explored in this investigation did not show significant friction reduction in motored engine tests. Again, highlighting the need for additive development for specific PAG chemistry. The thermal oxidation behavior of these oils has not been explored in this investigation and needs attention.« less

  9. Uncertainty Evaluation of Computational Model Used to Support the Integrated Powerhead Demonstration Project

    NASA Technical Reports Server (NTRS)

    Steele, W. G.; Molder, K. J.; Hudson, S. T.; Vadasy, K. V.; Rieder, P. T.; Giel, T.

    2005-01-01

    NASA and the U.S. Air Force are working on a joint project to develop a new hydrogen-fueled, full-flow, staged combustion rocket engine. The initial testing and modeling work for the Integrated Powerhead Demonstrator (IPD) project is being performed by NASA Marshall and Stennis Space Centers. A key factor in the testing of this engine is the ability to predict and measure the transient fluid flow during engine start and shutdown phases of operation. A model built by NASA Marshall in the ROCket Engine Transient Simulation (ROCETS) program is used to predict transient engine fluid flows. The model is initially calibrated to data from previous tests on the Stennis E1 test stand. The model is then used to predict the next run. Data from this run can then be used to recalibrate the model providing a tool to guide the test program in incremental steps to reduce the risk to the prototype engine. In this paper, they define this type of model as a calibrated model. This paper proposes a method to estimate the uncertainty of a model calibrated to a set of experimental test data. The method is similar to that used in the calibration of experiment instrumentation. For the IPD example used in this paper, the model uncertainty is determined for both LOX and LH flow rates using previous data. The successful use of this model is then demonstrated to predict another similar test run within the uncertainty bounds. The paper summarizes the uncertainty methodology when a model is continually recalibrated with new test data. The methodology is general and can be applied to other calibrated models.

  10. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  11. 40 CFR 1066.101 - Overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROCEDURES Equipment, Measurement Instruments, Fuel, and Analytical Gas Specifications § 1066.101 Overview. (a) This subpart addresses equipment related to emission testing, as well as test fuels and... specifications for fuels, engine fluids, and analytical gases; these specifications apply for testing under this...

  12. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Hydrostatic test. 61.30-10 Section 61.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new...

  13. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  14. Aeronautical Engineering: A Continuing Bibliography. Supplement 384

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical Engineering: A Continuing Bibliography. Supplement 383

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Duct flow nonuniformities study for space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Thoenes, J.

    1985-01-01

    To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.

  17. Flow dynamic environment data base development for the SSME

    NASA Technical Reports Server (NTRS)

    Sundaram, C. V.

    1985-01-01

    The fluid flow-induced vibration of the Space Shuttle main engine (SSME) components are being studied with a view to correlating the frequency characteristics of the pressure fluctuations in a rocket engine to its operating conditions and geometry. An overview of the data base development for SSME test firing results and the interactive computer software used to access, retrieve, and plot or print the results selectively for given thrust levels, engine numbers, etc., is presented. The various statistical methods available in the computer code for data analysis are discussed. Plots of test data, nondimensionalized using parameters such as fluid flow velocities, densities, and pressures, are presented. Results are compared with those available in the literature. Correlations between the resonant peaks observed at higher frequencies in power spectral density plots with pump geometry and operating conditions are discussed. An overview of the status of the investigation is presented and future directions are discussed.

  18. KSC-2012-3731

    NASA Image and Video Library

    2012-07-09

    CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2012-3732

    NASA Image and Video Library

    2012-07-09

    CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 306)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 302)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 152 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 303)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 211 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Test results of the highly instrumented Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Leopard, J. L.; Lightfoot, R. M.

    1992-01-01

    Test results of a highly instrumented Space Shuttle Main Engine (SSME) are presented. The instrumented engine, when combined with instrumented high pressure turbopumps, contains over 750 special measurements, including flowrates, pressures, temperatures, and strains. To date, two different test series, accounting for a total of sixteen tests and 1,667 seconds, have been conducted with this engine. The first series, which utilized instrumented turbopumps, characterized the internal operating environment of the SSME for a variety of operating conditions. The second series provided system-level validation of a high pressure liquid oxygen turbopump that had been retrofitted with a fluid-film bearing in place of the usual pump-end ball bearings. Major findings from these two test series are highlighted in this paper. In addition, comparisons are made between model predictions and measured test data.

  4. Cold Flow Propulsion Test Complex Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Kris

    2016-01-01

    When the propellants in a liquid rocket engine burn, the rocket not only launches and moves in space, it causes forces that interact with the vehicle itself. When these interactions occur under specific conditions, the vehicle's structures and components can become unstable. One instability of primary concern is termed pogo (named after the movement of a pogo stick), in which the oscillations (cycling movements) cause large loads, or pressure, against the vehicle, tanks, feedlines, and engine. Marshall Space Flight Center (MSFC) has developed a unique test technology to understand and quantify the complex fluid movements and forces in a liquid rocket engine that contribute strongly to both engine and integrated vehicle performance and stability. This new test technology was established in the MSFC Cold Flow Propulsion Test Complex to allow injection and measurement of scaled propellant flows and measurement of the resulting forces at multiple locations throughout the engine.

  5. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid density, spark gap distance, electrode angles, electrode materials and polarity. The research added to the fundamental knowledge of spark development in rocket ignition applications by determining the parameters that most influence breakdown voltage. Some improvements to the research should include better temperature measurements near the spark gap, additional testing with oxygen and testing with fuels of interest such as hydrogen and methane.

  6. Advanced airbreathing engine lubricants study with a tetraester fluid and a synthetic paraffinic oil at 492 K (425 F)

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Bamberger, E. N.

    1972-01-01

    Groups of 120-mm-bore angular-contact ball bearings made from AISI M-50 steel were fatigue tested with a tetraester and a synthetic paraffinic oil at a bearing temperature of 492 K (425 F) in an air environment. Bearing life exceeded AFBMA-predicted (catalog) life by factors in excess of 4 and 10 for the tetraester and synthetic paraffinic fluids, respectively. The final viscosities after 500 hours of operation were 14 and 6 times the initial values, respectively. During the same time period, when the test oil is replaced at a rate approximating the replenishment rate in actual commerical engine usage, no significant increase in lubricant viscosity with time was observed.

  7. Synthesis and evaluation of C-ether formulations for use as high temperature lubricants and hydraulic fluids

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Green, R. L.; Miller, D. R.

    1974-01-01

    The formulation and evaluation of C-ether fluids for use in the hydraulic and lubrication systems of the space shuttle and advanced air breathing engines were studied to lower the pour point of a reference C-ether from -29 C to -40 C without changing its evaporation loss. Use of disiloxanes mixed with C-ethers gave a -40 C pour point fluid with little change in the desired evaporation loss or in oxidative stability. A second -40 C pour point fluid containing only C-ethers was also developed. A screening program tested lubrication additives for C-ethers and the new fluids. Six additive packages were chosen for evaluation in 316 C bearing tests, two for evaluation in 260 C pump tests. The goal of the bearing test was a 100 hour run. The rig was a specially designed 80-mm axially loaded ball bearing. The C-ether base fluid ran only one hour at 316 C before cage wear failure occurred. The best additive blends ran 47, 94 and 100 hours. The 96 hour test gave excessive deposits. The 100 hour test had no wear failures; an unexplained loss of cage silver occurred from areas of direct fluid impingement on the cage.

  8. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  9. Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2009-01-01

    Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.

  11. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  12. Propulsion and Energetics Panel Working Group 15 on the Uniform Engine Test Programme

    DTIC Science & Technology

    1990-02-01

    earlier test of uniform aerodynamic models in wind tunnels under the auspices of the Fluid Dynamics Panel. A formal proposal was presented to the...this major new effort and members of the engine test community throughout AGARD were selected to serve on Working Group 15 along with PEP...STPA/MO 4 Mr J.R.Bednarsk; 4 Avenue de Ia Porte d’lssy PE-63 75015 Paris Naval Air Propulsion Center PO Box 7176 GERMANY Trenton. New Jersey 08628

  13. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  14. 46 CFR 61.30-20 - Automatic control and safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Automatic control and safety tests. 61.30-20 Section 61.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-20 Automatic control and safety tests. Operational tests and check...

  15. Thermal stratification potential in rocket engine coolant channels

    NASA Technical Reports Server (NTRS)

    Kacynski, Kenneth J.

    1992-01-01

    The potential for rocket engine coolant channel flow stratification was computationally studied. A conjugate, 3-D, conduction/advection analysis code (SINDA/FLUINT) was used. Core fluid temperatures were predicted to vary by over 360 K across the coolant channel, at the throat section, indicating that the conventional assumption of a fully mixed fluid may be extremely inaccurate. Because of the thermal stratification of the fluid, the walls exposed to the rocket engine exhaust gases will be hotter than an assumption of full mixing would imply. In this analysis, wall temperatures were 160 K hotter in the turbulent mixing case than in the full mixing case. The discrepancy between the full mixing and turbulent mixing analyses increased with increasing heat transfer. Both analysis methods predicted identical channel resistances at the coolant inlet, but in the stratified analysis the thermal resistance was negligible. The implications are significant. Neglect of thermal stratification could lead to underpredictions in nozzle wall temperatures. Even worse, testing at subscale conditions may be inadequate for modeling conditions that would exist in a full scale engine.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 233)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 283)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 615 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 260)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 405 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 247)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 437 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 307)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 338 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 243)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 323)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 518 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 251)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 292)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 675 reports, articles, and other documents recently introduced into the NASA scientific and technical information system database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 321)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 496 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 273)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 808 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 269)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 281)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 596 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jul. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 245)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 537 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 314)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 144 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 246)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 690 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 252)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 425 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 308)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 269 reports, articles, and other documents introduced into the NASA scientific and technical information system in Sep. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Mechanical Engineering at KSC: 'How I spend My Hours from 9 to 5 and Draw a Paycheck'

    NASA Technical Reports Server (NTRS)

    Randazzo, John; Steinrock. Todd (Technical Monitor)

    2003-01-01

    This viewgraph presentation provides an overview of a senior mechanical engineer's role in designing and testing sensors to fly aboard the shuttle Discovery during STS-95 and STS-98. Topics covered include: software development tools, computation fluid dynamics, structural analysis, housing design, and systems integration.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 264)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 558 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 297)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 825 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 263)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 517 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 238)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 458 reports, articles, and other documents introduced into the NASA scientific and technical information system in March, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 255)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 529 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 262)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 474 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 250)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 420 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 270)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 296)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 592 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 253)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 295)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 581 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Sep. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 239)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system in April, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 298)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 328 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following areas: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 242)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 466 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 322)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 317)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 224 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 257)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 560 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 265)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 554 reports, articles, and other documents introduced into the NASA scientific and technical information system in Apr. 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 249)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 271)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 666 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 268)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 406 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 240)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 629 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 259)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 774 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 244)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 465 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 237)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 572 reports, articles, and other documents introduced into the NASA scientific and technical information system in February, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 236)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 430 reports, articles, and other documents introduced into the NASA scientific and technical information system in January, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Aeronautical engineering: A continuing bibliography with indexes (supplement 266)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 645 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  5. Aeronautical engineering: A continuing bibliography with indexes (supplement 288)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1993. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 318)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  7. Aeronautical engineering: A continuing bibliography with indexes (supplement 241)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  8. Aeronautical engineering: A continuing bibliography with indexes (supplement 279)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 759 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  9. Aeronautical engineering: A continuing bibliography with indexes (supplement 276)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 705 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1992. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  10. Aeronautical engineering: A continuing bibliography with indexes (supplement 299)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  11. Aeronautical engineering: A continuing bibliography with indexes (supplement 315)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  12. Aeronautical engineering: A continuing bibliography with indexes (supplement 256)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 426 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 290)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 1396 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Apr. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  14. Aeronautical engineering: A continuing bibliography with indexes (supplement 309)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 212 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  15. Aeronautical engineering: A continuing bibliography with indexes (supplement 291)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 757 reports, articles, and other documents introduced into the NASA scientific and technical information system in May. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  16. Aeronautical engineering: A continuing bibliography with indexes (supplement 258)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This bibliography lists 536 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  17. Aeronautical engineering: A continuing bibliography with indexes (supplement 254)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This bibliography lists 538 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 285)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 534 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in Nov. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Aeronautical engineering: A continuing bibliography with indexes (supplement 234)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This bibliography lists 539 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  20. Aeronautical engineering: A continuing bibliography with indexes (supplement 293)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 476 reports, articles, and other documents introduced into the NASA scientific and technical information system in July, 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  1. Aeronautical engineering: A continuing bibliography with indexes (supplement 305)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 239 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following: the design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  2. Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  3. Aeronautical engineering: A continuing bibliography with indexes (supplement 301)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This bibliography lists 1291 reports, articles, and other documents introduced into the NASA scientific and technical information system in Feb. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  4. Do we need more famous fluid dynamicists?

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon; Brinkman, Bethany; Fenner, Raenita; London, Mara

    2015-11-01

    One of the main reasons students do not join the STEM fields is that they lack interest in technical topics. But do people (young students, the general public, or even our own engineering students) know what an engineer is and/or does? In this talk, results from a recent study on the perceptions of different professions will be presented. The study was designed based off of ``draw-an-engineer'' and ``draw-a-scientist'' tests used on elementary schools kids. The idea is to have participants visualize professionals (engineers, lawyers, and medical doctors were chosen for this study), and determine if there are any patterns within different demographic groups. The demographics that were focused on include gender, race, age, college major, highest level of education, and profession. One of the main findings of this survey was that participants had the most difficult time visualizing an engineer compared to a lawyer or a medical doctor. Therefore, maybe we need more famous engineers (and fluid dynamicists)?

  5. Fastrac Nozzle Design, Performance and Development

    NASA Technical Reports Server (NTRS)

    Peters, Warren; Rogers, Pat; Lawrence, Tim; Davis, Darrell; DAgostino, Mark; Brown, Andy

    2000-01-01

    With the goal of lowering the cost of payload to orbit, NASA/MSFC (Marshall Space Flight Center) researched ways to decrease the complexity and cost of an engine system and its components for a small two-stage booster vehicle. The composite nozzle for this Fastrac Engine was designed, built and tested by MSFC with fabrication support and engineering from Thiokol-SEHO (Science and Engineering Huntsville Operation). The Fastrac nozzle uses materials, fabrication processes and design features that are inexpensive, simple and easily manufactured. As the low cost nozzle (and injector) design matured through the subscale tests and into full scale hot fire testing, X-34 chose the Fastrac engine for the propulsion plant for the X-34. Modifications were made to nozzle design in order to meet the new flight requirements. The nozzle design has evolved through subscale testing and manufacturing demonstrations to full CFD (Computational Fluid Dynamics), thermal, thermomechanical and dynamic analysis and the required component and engine system tests to validate the design. The Fastrac nozzle is now in final development hot fire testing and has successfully accumulated 66 hot fire tests and 1804 seconds on 18 different nozzles.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 277)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 467 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1992. Subject coverage includes: the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines); and associated aircraft components, equipment, and systems. It also includes research and development in ground support systems, theoretical and applied aspects of aerodynamics, and general fluid dynamics.

  7. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  8. Analysis of Flowfields over Four-Engine DC-X Rockets

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Cornelison, Joni

    1996-01-01

    The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.

  9. 9th Annual Systems Engineering Conference: Volume 2 Tuesday

    DTIC Science & Technology

    2006-10-26

    Laboratory, Ben-Gurion University of the Negev Jacob Herscovitz Space systems Directorate RAFAEL jacobh@rafael.co.il A Pragmatic Focus in Managing...Maintainability Tests •Environmental Qualification Tests – Humidity, Salt Fog, Shock, Vibration, Rain UE, Rain CE, Solar Radiation , Icing, Fluid

  10. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.

  11. FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica

    2015-11-01

    The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.

  12. Velocimetry with refractive index matching for complex flow configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  13. Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Miller, D. R.

    1980-01-01

    Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers.

  14. 76 FR 36231 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... exceed the test facility limits and reduces the number of functional tests for specific valve designs... addresses reducing the number of functional tests for specific valve designs. The NRC has identified no... the required test pressure for the new Class 1 incompressible-fluid, pressure-relief valve designs...

  15. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  16. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  17. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...

  18. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  19. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  20. Fluid mass and thermal loading effects on the modal characteristics of space shuttle main engine liquid oxygen inlet splitter vanes

    NASA Technical Reports Server (NTRS)

    Panossian, H. V.; Boehnlein, J. J.

    1987-01-01

    An analysis and evaluation of experimental modal survey test data on the variations of modal characteristics induced by pressure and thermal loading events are presented. Extensive modal survey tests were carried out on a Space Shuttle Main Engine (SSME) test article using liquid nitrogen under cryogenic temperatures and high pressures. The results suggest that an increase of pressure under constant cryogenic temperature or a decrease of temperature under high pressure induces an upward shift of frequencies of various modes of the structures.

  1. Integrated hydraulic cooler and return rail in camless cylinder head

    DOEpatents

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  2. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  3. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  4. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Item Value... test fuel not meeting the specifications in paragraph (a) of this section, as follows: (1) You may use...

  5. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Item Value... test fuel not meeting the specifications in paragraph (a) of this section, as follows: (1) You may use...

  6. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Item Value... test fuel not meeting the specifications in paragraph (a) of this section, as follows: (1) You may use...

  7. 40 CFR 1066.145 - Test fuel, engine fluids, analytical gases, and other calibration standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR 1065.750. (e) Mass standards. Use mass standards that meet the requirements of 40 CFR... gases, and other calibration standards. 1066.145 Section 1066.145 Protection of Environment..., analytical gases, and other calibration standards. (a) Test fuel. Use test fuel as specified in the standard...

  8. Composite Overview and Composite Aerocover Overview

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad

    2014-01-01

    Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC

  9. Zero Boil-OFF Tank Hardware Setup

    NASA Image and Video Library

    2017-09-19

    iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.

  10. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  11. 40 CFR 1065.710 - Gasoline.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) This section specifies test fuel properties for gasoline with ethanol (low-level blend only) and...

  12. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  13. FIR

    NASA Image and Video Library

    2013-09-16

    ISS037-E-001115 (16 Sept. 2013) ---NASA astronaut Karen Nyberg, Expedition 37 flight engineer, works with test samples housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack of the International Space Station’s Destiny laboratory.

  14. Chemical Effect on Wellbore Instability of Nahr Umr Shale

    PubMed Central

    Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391

  15. High-Flux, High Performance H2O2 Catalyst Bed for ISTAR

    NASA Technical Reports Server (NTRS)

    Ponzo, J.

    2005-01-01

    On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.

  16. Chemical effect on wellbore instability of Nahr Umr Shale.

    PubMed

    Yu, Baohua; Yan, Chuanliang; Nie, Zhen

    2013-01-01

    Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.

  17. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  18. Aeronautical engineering: A continuing bibliography with indexes (supplement 316)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This bibliography lists 413 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1995. Subject coverage includes: aeronautics; mathematical and computer sciences; chemistry and material sciences; geosciences; design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.

  19. Contamination Control for Thermal Engineers

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  20. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    ERIC Educational Resources Information Center

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  1. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  2. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  3. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas... specifications in the following table: Table 1 of § 1065.715—Test Fuel Specifications for Natural Gas Property....051 mol/mol. 1 Demonstrate compliance with fuel specifications based on the reference procedures in...

  4. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  5. Baseline performance of the GPU 3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Thieme, L. G.; Tew, R. C., Jr.

    1978-01-01

    A 10 horsepower single-cylinder rhombic-drive Stirling engine was converted to a research configuration to obtain data for validation of Stirling computer simulations. The engine was originally built by General Motors Research Laboratories for the U.S. Army in 1965 as part of a 3 kW engine-generator set, designated the GHU 3 (Ground Power Unit). This report presents test results for a range of heater gas temperatures, mean compression-space pressures, and engine speeds with both helium and hydrogen as the working fluids. Also shown are initial data comparisons with computer simulation predictions.

  6. Real-Time Simulation of the X-33 Aerospace Engine

    NASA Technical Reports Server (NTRS)

    Aguilar, Robert

    1999-01-01

    This paper discusses the development and performance of the X-33 Aerospike Engine RealTime Model. This model was developed for the purposes of control law development, six degree-of-freedom trajectory analysis, vehicle system integration testing, and hardware-in-the loop controller verification. The Real-Time Model uses time-step marching solution of non-linear differential equations representing the physical processes involved in the operation of a liquid propellant rocket engine, albeit in a simplified form. These processes include heat transfer, fluid dynamics, combustion, and turbomachine performance. Two engine models are typically employed in order to accurately model maneuvering and the powerpack-out condition where the power section of one engine is used to supply propellants to both engines if one engine malfunctions. The X-33 Real-Time Model is compared to actual hot fire test data and is been found to be in good agreement.

  7. Design and evaluation of a 3 million DN series-hybrid thrust bearing. [stability tests and fatigue tests

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Winn, L. W.; Eusepi, M.

    1976-01-01

    The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.

  8. Pre-mixing apparatus for a turbine engine

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Melton, Patrick Benedict [Horse Shoe, NC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC; Felling, David Kenton [Greenville, SC; Uhm, Jong Ho [Simpsonville, SC

    2012-04-03

    A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.

  9. Fluid design studies of integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce; Carek, Jerry

    1993-01-01

    A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.

  10. Stirling cycle engine and refrigeration systems

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  11. Novel Optical Technique Developed and Tested for Measuring Two-Point Velocity Correlations in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Goldburg, Walter I.

    2002-01-01

    A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.

  12. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  13. Analysis of heat recovery of diesel engine using intermediate working fluid

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming

    2017-07-01

    The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.

  14. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  15. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter; Harris, Joel

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less

  16. An Introduction to Thermal-Fluid Engineering

    NASA Astrophysics Data System (ADS)

    Warhaft, Zellman

    1998-01-01

    This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.

  17. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.

  18. Technology test bed review

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.

    1992-01-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  19. Development of Polarized UV Raman and Infrared Emission/Absorption Spectroscopy for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Farmer, Richard; Trinh, Huu; Dobson, Chris; Eskridge, Richard; Cramer, John; Hartfield, Roy; Turner, Jim (Technical Monitor)

    2001-01-01

    The objective of this project is to provide measurements of species concentrations and temperature for hot-fire test articles at Test Stand 115 at NASA Marshall Space Flight Center. Measurements can be useful for comparison to computational fluid dynamics simulations and help to evaluate combustion performance.

  20. Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Nolan, Steven A.; Hibbs, Robert I.; Genge, Gary G.

    1993-01-01

    A new fluid film bearing package has been tested in the SSME High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most important, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at 10 percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65 percent of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation.

  1. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  2. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  3. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  4. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  5. Advanced semi-active engine and transmission mounts: tools for modelling, analysis, design, and tuning

    NASA Astrophysics Data System (ADS)

    Farjoud, Alireza; Taylor, Russell; Schumann, Eric; Schlangen, Timothy

    2014-02-01

    This paper is focused on modelling, design, and testing of semi-active magneto-rheological (MR) engine and transmission mounts used in the automotive industry. The purpose is to develop a complete analysis, synthesis, design, and tuning tool that reduces the need for expensive and time-consuming laboratory and field tests. A detailed mathematical model of such devices is developed using multi-physics modelling techniques for physical systems with various energy domains. The model includes all major features of an MR mount including fluid dynamics, fluid track, elastic components, decoupler, rate-dip, gas-charged chamber, MR fluid rheology, magnetic circuit, electronic driver, and control algorithm. Conventional passive hydraulic mounts can also be studied using the same mathematical model. The model is validated using standard experimental procedures. It is used for design and parametric study of mounts; effects of various geometric and material parameters on dynamic response of mounts can be studied. Additionally, this model can be used to test various control strategies to obtain best vibration isolation performance by tuning control parameters. Another benefit of this work is that nonlinear interactions between sub-components of the mount can be observed and investigated. This is not possible by using simplified linear models currently available.

  6. Liquid Acquisition Strategies for Exploration Missions: Current Status 2010

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2010-01-01

    NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.

  7. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  8. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  9. Design of a new engine mount for vertical and horizontal vibration control using magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Phu, D. X.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2014-10-01

    This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work.

  10. Technical accomplishments of the NASA Lewis Research Center, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.

  11. RE-1000 free-piston Stirling engine hydraulic output system description

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Geng, Steven M.

    1987-01-01

    The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid.

  12. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  13. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  14. 14 CFR 33.91 - Engine system and component tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected... minimum operating values. [Doc. No. 3025, 29 FR 7453, June 10, 1964, as amended by Amdt. 33-6, 39 FR 35469...

  15. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  16. Modeling and Analysis of Chill and Fill Processes for the EDU Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.

    2015-01-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.

  17. Advanced Turbine Engine Seal Test

    DTIC Science & Technology

    1976-07-01

    Transpiration- Cooled Shroud Segments. 67. ATEST Shroud Rub Pin Heights and Mid-Chord Runout . 68. Locations of Nine-Point Runout Check on Shroud Surface...69. ATEST Shroud Leading Edge Runout . 70. ATEST Shroud Trailing Edge Runout . 71. ATEST Shroud Support Posttest Runout . 72. ATEST Shroud Flow Zones...at General Electric on many prior engines with good success. It Involves the use of a grinding wheel in conjunction with a cutting fluid which is

  18. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  19. Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.

    1996-01-01

    A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.

  20. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  1. Engineering test results for the Moog Single Line Disconnect

    NASA Technical Reports Server (NTRS)

    Glubke, Scott E.

    1990-01-01

    New and innovative types of disconnects will be required to service, resupply, and maintain future spacecraft subsystems. Efficiently maintaining orbiting scientific instruments, spacecraft support systems, and a manned space station over a long period of time will require the periodic replenishment of consumables and the replacement of components. To accomplish these tasks, the fluid disconnect must be designed to allow the connection and separation of fluid lines and components with minimal hazard to crew and equipment. The capability to simply connect a refueling line or to easily replace a failed component greatly extends the life of a space based fluid system. A test program was initiated to evaluate the Moog Single Line Disconnect. The objective of the test program was to demonstrate the operational characteristics of the disconnect and to verify compliance with current safety regulations. The results of the program are summarized in the referenced document.

  2. Coleman performs a CFE ICF-2 Test

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018760 (18 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, performs a Capillary Flow Experiment (CFE) Interior Corner Flow 2 (ICF-2) test. The CFE is positioned on a Maintenance Work Area in the Destiny laboratory of the International Space Station. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity.

  3. Coleman performs a CFE ICF-2 Test

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018749 (18 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, performs a Capillary Flow Experiment (CFE) Interior Corner Flow 2 (ICF-2) test. The CFE is positioned on a Maintenance Work Area in the Destiny laboratory of the International Space Station. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity.

  4. Coleman performs a CFE ICF-2 Test

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018751 (18 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, performs a Capillary Flow Experiment (CFE) Interior Corner Flow 2 (ICF-2) test. The CFE is positioned on a Maintenance Work Area in the Destiny laboratory of the International Space Station. CFE observes the flow of fluid, in particular capillary phenomena, in microgravity.

  5. Defining and Applying Limits for Test and Flight Through the Project Lifecycle GSFC Standard. [Scope: Non-Cryogenic Systems Tested in Vacuum

    NASA Technical Reports Server (NTRS)

    Mosier, Carol

    2015-01-01

    The presentation will be given at the Annual Thermal Fluids Analysis Workshop (TFAWS 2015, NCTS 21070-15) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). The powerpoint presentation details the process of defining limits throughout the lifecycle of a flight project.

  6. Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations

    DTIC Science & Technology

    2006-06-14

    Conference, Sacramento, CA, 9-12 July 2006. 14. ABSTRACT A new quasi-two-dimensional procedure is presented for the transient solution of real-fluid flows...solution procedures is being developed in parallel to provide verification test cases. The solution procedure for both codes is coupled with a state-of...Davis, Davis, CA, 95616 A new quasi-two-dimensional procedure is presented for the transient solution of real- fluid flows in lines and volumes

  7. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  8. Quantifying Instability Sources in Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary C.

    2000-01-01

    Computational fluid dynamics methodology to predict the effects of combusting flows on acoustic pressure oscillations in liquid rocket engines (LREs) is under development. 'Me intent of the investigation is to develop the causal physics of combustion driven acoustic resonances in LREs. The crux of the analysis is the accurate simulation of pressure/density/sound speed in a combustor which when used by the FDNS-RFV CFD code will produce realistic flow phenomena. An analysis of a gas generator considered for the Fastrac engine will be used as a test validation case.

  9. Experimental Replication of an Aeroengine Combustion Instability

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  10. Education and research in fluid dynamics

    NASA Astrophysics Data System (ADS)

    López González-Nieto, P.; Redondo, J. M.; Cano, J. L.

    2009-04-01

    Fluid dynamics constitutes an essential subject for engineering, since auronautic engineers (airship flights in PBL, flight processes), industrial engineers (fluid transportation), naval engineers (ship/vessel building) up to agricultural engineers (influence of the weather conditions on crops/farming). All the above-mentioned examples possess a high social and economic impact on mankind. Therefore, the fluid dynamics education of engineers is very important, and, at the same time, this subject gives us an interesting methodology based on a cycle relation among theory, experiments and numerical simulation. The study of turbulent plumes -a very important convective flow- is a good example because their theoretical governing equations are simple; it is possible to make experimental plumes in an aesy way and to carry out the corresponding numerical simulatons to verify experimental and theoretical results. Moreover, it is possible to get all these aims in the educational system (engineering schools or institutions) using a basic laboratory and the "Modellus" software.

  11. Engine lubrication circuit including two pumps

    DOEpatents

    Lane, William H.

    2006-10-03

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  12. Performance Analysis of AN Engine Mount Featuring ER Fluids and Piezoactuators

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Choi, Y. T.; Choi, S. B.; Cheong, C. C.

    Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts for a passenger vehicle have their own functional aims on the limited frequency band in the broad engine operating frequency range. In order to achieve high system performance over all frequency ranges of the engine operation, a new type of engine mount featuring electro-rheological(ER) fluids and piezoactuators is proposed in this study. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently adequate to model the interconnected hydromechanical system. In the low frequency domain, the ER fluid is activated upon imposing an electric field for vibration isolation while the piezoactuator is activated in the high frequency domain. A neuro-control algorithm is utilized to determine control electric field for the ER fluid, and H∞ control technique is adopted for the piezoactuator Comparative works between the proposed and single-actuating(ER fluid only or piezoactuator only) engine mounts are undertaken by evaluating force transmissibility over a wide operating frequency range.

  13. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  14. Three-step labyrinth seal for high-performance turbomachines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    1987-01-01

    A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, was tested under static (nonrotating) conditions. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric seal positions. The seal mass fluxes (leakage rates) were lower over the entire range of fluid conditions tested than those for data collected for similar straight and three-step cylindrical seals, and this conformed somewhat to expectations. However, the pressure profiles for the eccentric positions indicated little, if any, direct stiffness for this configuration in contrast to significant direct stiffness reported for the straight and three-step cylindrical seals over the range of test conditions. Seal dynamics depend on geometric configuration, inlet and exit parameters, fluid phase, and rotation. The method of corresponding states was applied to the mass flux data, which were found to have a pressure dependency for helium.

  15. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  16. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  17. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  18. Stirling engine with air working fluid

    DOEpatents

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  19. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  20. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  1. Methodology for Developing Teaching Activities and Materials for Use in Fluid Mechanics Courses in Undergraduate Engineering Programs

    ERIC Educational Resources Information Center

    Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert

    2015-01-01

    "Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…

  2. Application of a single-fluid model for the steam condensing flow prediction

    NASA Astrophysics Data System (ADS)

    Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.

    2016-10-01

    One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.

  3. Optical detection of tracer species in strongly scattering media.

    PubMed

    Brauser, Eric M; Rose, Peter E; McLennan, John D; Bartl, Michael H

    2015-03-01

    A combination of optical absorption and scattering is used to detect tracer species in a strongly scattering medium. An optical setup was developed, consisting of a dual-beam scattering detection scheme in which sample scattering beam overlaps with the characteristic absorption feature of quantum dot tracer species, while the reference scattering beam is outside any absorption features of the tracer. This scheme was successfully tested in engineered breakthrough tests typical of wastewater and subsurface fluid analysis, as well as in batch analysis of oil and gas reservoir fluids and biological samples. Tracers were detected even under highly scattering conditions, conditions in which conventional absorption or fluorescence methods failed.

  4. An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use On Board Crewed Spacecraft

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Arnold, William a.

    2006-01-01

    The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids. Interest in using perfluorocarbon fluids as thermal control system working fluids for future crewed space vehicles and outposts is high. Potential hazards associated with perfluorocarbon fluids are discussed with specific attention given to engineering assessment of ECLS system compatibility, compatibility testing results, and spacecraft environmental impact. Considerations for perfluorocarbon fluid use on crewed spacecraft and outposts are summarized.

  5. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal­hydrological­mechanical processes.

  6. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  7. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  8. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing and Analytical Modeling

    NASA Technical Reports Server (NTRS)

    Olsen, A. D.; Cady, E. C.; Jenkins, D. S.; Chandler, F. O.; Grayson, G. D.; Lopez, A.; Hastings, L. J.; Flachbart, R. H.; Pedersen, K. W.

    2012-01-01

    The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this.

  9. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  10. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  11. Neutron Radiography of Fluid Flow for Geothermal Energy Research

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the ;particles; and imaging with 10 ms exposures.

  12. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid to transition section

    DOEpatents

    Charron, Richard; Pierce, Daniel

    2015-08-11

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.

  13. Fundamentals of fluid lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  14. Benchmark of FDNS CFD Code For Direct Connect RBCC Test Data

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with experimental data from the Pennsylvania State University's (PSU) Propulsion Engineering Research Center (PERC) rocket based combined cycle (RBCC) rocket-ejector experiments. The PERC RBCC experimental hardware was in a direct-connect configuration in diffusion and afterburning (DAB) operation. The objective of the present work was to validate the Finite Difference Navier Stokes (FDNS) CFD code for the rocket-ejector mode internal fluid mechanics and combustion phenomena. A second objective was determine the best application procedures to use FDNS as a predictive/engineering tool. Three-dimensional CFD analysis was performed. Solution methodology and grid requirements are discussed. CFD results are compared to experimental data for static pressure, Raman Spectroscopy species distribution data and RBCC net thrust and specified impulse.

  15. A parallel offline CFD and closed-form approximation strategy for computationally efficient analysis of complex fluid flows

    NASA Astrophysics Data System (ADS)

    Allphin, Devin

    Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.

  16. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms

    NASA Technical Reports Server (NTRS)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon

    2010-01-01

    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  17. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  18. Evaluation of the Seismic Characterision of Select Engineered Nanoparticles in Saturated Glass Beads

    EPA Science Inventory

    A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline si...

  19. Design, construction, and testing of the direct absorption receiver panel research experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.

    1990-01-01

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly.more » The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.« less

  20. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  1. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  2. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  3. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  4. Theory and Tests of Two-Phase Turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.

  5. Environmentally safe fluids for hydraulics used in civil engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirzberger, E.; Rexroth, M.

    1995-12-31

    The majority of hydraulic units used in civil engineering are operated with pressure fluids based on mineral oil. Most civil engineering projects are installed near or immediately next to bodies of water, therefore, any leakage signifies danger for the environment. We try to avert this danger with increasingly safe hydraulic drives. However, growing environmental awareness and stricter laws are demanding more and more environmentally safe hydraulic fluids. Today, the manufacturers of fluids and hydraulic drives have to accept this challenge. What exactly is an environmentally safe hydraulic fluid? The major objectives are: (1) they have to be biodegradable, (2) nomore » fish toxicity, (3) no water pollution, and (4) food compatibility.« less

  6. Engine with exhaust gas recirculation system and variable geometry turbocharger

    DOEpatents

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  7. The Importance of Engine External's Health

    NASA Technical Reports Server (NTRS)

    Stoner, Barry L.

    2006-01-01

    Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.

  8. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  9. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  10. Aeronautical Engineering: A Continuing Bibliography with Indexes (Supplement 216)

    DTIC Science & Technology

    1987-08-01

    HELO COMPUTER-AIDED PROCESSES FOR THE GROUND TESTING PATRICK J. DONOGHUE, PREBEN JENSEN, and ROBERT M. OF AVIATION EQUIPMENT [ SISTEMA ZADACH PROEKTIRO...need for an increased awareness of the various companion document to NASA TM-83186. A User’s Guide to the types of deicing fluids and facilities

  11. CFD assessment of the pollutant environment from RD-170 propulsion system testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Mcconnaughey, Paul; Warsi, Saif; Chen, Yen-Sen

    1995-01-01

    Computational Fluid Dynamics (CFD) technology has been used to assess the exhaust plume pollutant environment of the RD-170 engine hot-firing on the F1 Test Stand at Marshall Space Flight Center. Researchers know that rocket engine hot-firing has the potential for forming thermal nitric oxides (NO(x)), as well as producing carbon monoxide (CO) when hydrocarbon fuels are used. Because of the complicated physics involved, however, little attempt has been made to predict the pollutant emissions from ground-based engine testing, except for simplified methods which can grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work, therefore, has been to develop a technology using CFD to describe the underlying pollutant emission physics from ground-based rocket engine testing. This resultant technology is based on a three-dimensional (3D), viscous flow, pressure-based CFD formulation, where wet CO and thermal NO finite-rate chemistry mechanisms are solved with a Penalty Function method. A nominal hot-firing of a RD-170 engine on the F1 stand has been computed. Pertinent test stand flow physics such as the multiple-nozzle clustered engine plume interaction, air aspiration from base and aspirator, plume mixing with entrained air that resulted in contaminant dilution and afterburning, counter-afterburning due to flame bucket water-quenching, plume impingement on the flame bucket, and restricted multiple-plume expansion and turning have been captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.

  12. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Majjigi, Rudramuni K.

    1992-01-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  13. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  14. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  15. Methane Dual Expander Aerospike Nozzle Rocket Engine

    DTIC Science & Technology

    2012-03-22

    include O/F ratio, thrust, and engine geometry. After thousands of iterations over the design space , the selected MDEAN engine concept has 349 s of...35 Table 7: Fluid Property Table Supported Parameters...44 Table 8: Fluid Property Input Data Independent Variable Ranges. ................................. 46 Table 9

  16. Carbon or graphite foam as a heating element and system thereof

    DOEpatents

    Ott, Ronald D [Knoxville, TN; McMillan, April D [Knoxville, TN; Choudhury, Ashok [Oak Ridge, TN

    2004-05-04

    A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.

  17. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  18. Improved Stirling engine performance using jet impingement

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Britt, E. J.; Thieme, L. G.

    1982-01-01

    Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.

  19. Introducing bio- and micro-technology into undergraduate thermal-fluids courses: investigating pipe pressure loss via atomic force microscopy.

    PubMed

    Müller, Marcus; Traum, Matthew J

    2012-01-01

    To introduce bio- and micro-technologies into general undergraduate thermal-fluids classes, a hands-on interdisciplinary in-class demonstration is described that juxtaposes classical pressure loss pipe flow experiments against a modern micro-characterization technique, AFM profilometry. Both approaches measure surface roughness and can segue into classroom discussions related to material selection and design of bio-medical devices to handle biological fluids such as blood. Appealing to the range of engineering students populating a general thermal-fluids course, a variety of pipe/hose/tube materials representing a spectrum of disciplines can be tested using both techniques. This in-class demonstration relies on technical content already available in standard thermal-fluids textbooks, provides experimental juxtaposition between classical and micro-technology-enabled approaches to the same experiment, and can be taught by personnel with no specialized micro- or bio-technology expertise.

  20. An experiment to evaluate liquid hydrogen storage in space

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  1. Cadmium (Tank) Electroplating Alternative

    DTIC Science & Technology

    2011-08-01

    ASTM F519 HE: 75% NFS 200 hrs HRE : 45% NFS 150 hrs Threshold limit greater than /equal to LHE Cd (AMS 2417G) ASETS Defense Focused Workshop (2011...Test Specimens  Reporting Sustained/Threshold load (%NFS), Time to failure. HRE Testing Cd Zn-Ni IVD Al LHE Cd Re-Embrittlement Test Fluids:  DI...Hydrogen Embrittlement/ HRE ASTM F519 A5, Type 1.a.1 Brush Plating ASETS Defense Focused Workshop (2011) Luzmarie G. Santiago Materials Engineer Naval Air

  2. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOEpatents

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  3. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  4. CIRF.B Reaction-Transport-Mechanical Simulator: Applications to CO2 Injection and Reservoir Integrity Prediction

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Tuncay, K.; Ortoleva, P. J.

    2003-12-01

    An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.

  5. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1997-01-01

    Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.

  6. A magneto-rheological fluid mount featuring squeeze mode: analysis and testing

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok

    2016-05-01

    This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled.

  7. Engineering fluid flow using sequenced microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino

    2013-05-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.

  8. Syringomyelia: A review of the biomechanics

    NASA Astrophysics Data System (ADS)

    Elliott, N. S. J.; Bertram, C. D.; Martin, B. A.; Brodbelt, A. R.

    2013-07-01

    Syringomyelia is a neurological disorder caused by the development of one or more macroscopic fluid-filled cavities in the spinal cord. While the aetiology remains uncertain, hydrodynamics appear to play a role. This has led to the involvement of engineers, who have modelled the system in silico and on the bench. In the process, hypotheses from the neurosurgical literature have been tested, and others generated, while aspects of the system mechanics have been clarified. The spinal cord is surrounded by cerebrospinal fluid (CSF) which is subject both to the periodic excitation of CSF expelled from the head with each heartbeat, and to intermittent larger transients from cough, sneeze, etc., via vertebral veins. The resulting pulsatile flow and pressure wave propagation, and their possible effects on cord cavities and cord stresses, have been elucidated. These engineering contributions are here reviewed for the first time.

  9. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  10. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  11. Double-reed exhaust valve engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Charles L.

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  12. Coal slurry fuel supply and purge system

    DOEpatents

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  13. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  14. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Swami Nathan

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less

  15. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  16. Design and Analysis of a Turbopump for a Conceptual Expander Cycle Upper-Stage Engine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Rothermel, Jeffry; Griffin, Lisa W.; Thornton, Randall J.; Forbes, John C.; Skelly, Stephen E.; Huber, Frank W.

    2006-01-01

    As part of the development of technologies for rocket engines that will power spacecraft to the Moon and Mars, a program was initiated to develop a conceptual upper stage engine with wide flow range capability. The resulting expander cycle engine design employs a radial turbine to allow higher pump speeds and efficiencies. In this paper, the design and analysis of the pump section of the engine are discussed. One-dimensional meanline analyses and three-dimensional unsteady computational fluid dynamics simulations were performed for the pump stage. Configurations with both vaneless and vaned diffusers were investigated. Both the meanline analysis and computational predictions show that the pump will meet the performance objectives. Additional details describing the development of a water flow facility test are also presented.

  17. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  18. Ejector-turbine studies and experimental data. Final report, August 1, 1979-October 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minardi, J.E.; Lawson, M.O.; Krolak, R.V.

    1982-11-01

    An innovative low-power Rankine turbine concept is described which promises competitive efficiencies, low cost, significant reduction in rpm, low maintenance, and long-life operation over similarly rated turbines. The cycle uses a highly efficient two-fluid ejector which greatly lowers the turbine inlet pressure and temperature. The two-fluid ejector cycle is shown by theoretical studies to be capable of transferring energy at efficiencies in excess of 90% from a high-power flux fluid medium to a low-power flux fluid medium. The volume flow of the thermodynamic fluid can be augmented by as much as one-hundred fold. For very low-power turbine applications this couldmore » result in far-more-favorable turbine sizes and rpm. One major application for this type turbine is the heating and cooling with heat pumps. The concept permits engine cycles that cover an extremely broad range of peak temperatures, including those corresponding to stoichiometric combustion of hydrocarbon fuels, waste heat sources, and solar. Actual test data indicated ejector efficiencies as high as 85%. A two-fluid, ejector turbine was designed and tested. The turbine achieved 94% of design power. Additional data indicated that the ejector attached to the turbine operated on the supersonic branch.« less

  19. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  20. Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade

    DTIC Science & Technology

    2016-11-01

    turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis

  1. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...

  2. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...

  3. 40 CFR 92.5 - Reference materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 92.113 ASTM D 1945-91, Standard Test Method for Analysis of Natural Gas by Gas Chromatography § 92... Supercritical Fluid Chromatography § 92.113 ASTM E 29-93a, Standard Practice for Using Significant Digits in....119 SAE Recommended Practice J244, Measurement of Intake Air or Exhaust Gas Flow of Diesel Engines...

  4. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  5. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  6. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  7. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-15 Pipe... shall be evaluated on the basis of physical and chemical properties. To assure these properties, the specifications shall specify and require such physical and chemical testing as considered necessary by the...

  8. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Compliance with § 25.1041 must be shown for the takeoff, climb, en route, and landing stages of flight that... not one during which component and the engine fluid temperatures would stabilize (in which case... transition from the takeoff to the en route configuration is completed and a speed is reached at which...

  9. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Compliance with § 25.1041 must be shown for the takeoff, climb, en route, and landing stages of flight that... not one during which component and the engine fluid temperatures would stabilize (in which case... transition from the takeoff to the en route configuration is completed and a speed is reached at which...

  10. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Compliance with § 25.1041 must be shown for the takeoff, climb, en route, and landing stages of flight that... not one during which component and the engine fluid temperatures would stabilize (in which case... transition from the takeoff to the en route configuration is completed and a speed is reached at which...

  11. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... not one during which component and the engine fluid temperatures would stabilize (in which case... investigated in order to allow temperatures to reach their natural levels at the time of entry). The takeoff... reaches an altitude of 1,500 feet above the takeoff surface or reaches a point in the takeoff where the...

  12. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  13. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  14. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  15. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  16. 40 CFR 1065.110 - Work inputs and outputs, accessory work, and operator demand.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-current and water-brake dynamometers for any testing that does not involve engine motoring, which is... resistor load bank to simulate electrical loads. (3) Pump, compressor, and turbine work. Use pumps, compressors, and turbines that are of the type and capacity installed in use. Use working fluids that are of...

  17. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal constructs.

  18. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  19. Thermal Propulsion Capture System Heat Exchanger Design

    NASA Technical Reports Server (NTRS)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  20. Vibration control of a ship engine system using high-load magnetorheological mounts associated with a new indirect fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Phu, Do Xuan; Choi, Seung-Bok

    2015-02-01

    In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.

  1. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    ERIC Educational Resources Information Center

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  2. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications

    NASA Astrophysics Data System (ADS)

    Forde, Scott; Bulman, Mel; Neill, Todd

    2006-07-01

    Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.

  3. Experimental and computational data from a small rocket exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Stephens, Samuel E.

    1993-06-01

    The Diagnostics Testbed Facility (DTF) at the NASA Stennis Space Center in Mississippi is a versatile facility that is used primarily to aid in the development of nonintrusive diagnostics for liquid rocket engine testing. The DTF consists of a fixed, 1200 lbf thrust, pressure fed, liquid oxygen/gaseous hydrogen rocket engine, and associated support systems. An exhaust diffuser has been fabricated and installed to provide subatmospheric pressures at the exit of the engine. The diffuser aerodynamic design was calculated prior to fabrication using the PARC Navier-Stokes computational fluid dynamics code. The diffuser was then fabricated and tested at the DTF. Experimental data from these tests were acquired to determine the operational characteristics of the system and to correlate the actual and predicted flow fields. The results show that a good engineering approximation of overall diffuser performance can be made using the PARC Navier-Stokes code and a simplified geometry. Correlations between actual and predicted cell pressure and initial plume expansion in the diffuser are good; however, the wall pressure profiles do not correlate as well with the experimental data.

  4. The Transformative Experience in Engineering Education

    NASA Astrophysics Data System (ADS)

    Goodman, Katherine Ann

    This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.

  5. Multidisciplinary propulsion simulation using the numerical propulsion system simulator (NPSS)

    NASA Technical Reports Server (NTRS)

    Claus, Russel W.

    1994-01-01

    Implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributions to the high cost is the need to perform many large scale system tests. The traditional design analysis procedure decomposes the engine into isolated components and focuses attention on each single physical discipline (e.g., fluid for structural dynamics). Consequently, the interactions that naturally occur between components and disciplines can be masked by the limited interactions that occur between individuals or teams doing the design and must be uncovered during expensive engine testing. This overview will discuss a cooperative effort of NASA, industry, and universities to integrate disciplines, components, and high performance computing into a Numerical propulsion System Simulator (NPSS).

  6. HOT CELL BUILDING, TRA632, INTERIOR. HOT CELL NO. 1 (THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. HOT CELL NO. 1 (THE FIRST BUILT) IN LABORATORY 101. CAMERA FACES SOUTHEAST. SHIELDED OPERATING WINDOWS ARE ON LEFT (NORTH) SIDE. OBSERVATION WINDOW IS AT LEFT OF VIEW (ON WEST SIDE). PLASTIC COVERS SHROUD MASTER/SLAVE MANIPULATORS AT WINDOWS IN LEFT OF VIEW. NOTE MINERAL OIL RESERVOIR ABOVE "CELL 1" SIGN, INDICATING LEVEL OF THE FLUID INSIDE THE THICK WINDOWS. HOT CELL HAS BEVELED CORNER BECAUSE A SQUARED CORNER WOULD HAVE SUPPLIED UNNECESSARY SHIELDING. NOTE PUMICE BLOCK WALL AT LEFT OF VIEW. INL NEGATIVE NO. HD46-28-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  8. Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.; Wadel, Mary F.; Meyer, Michael L.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results.

  9. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    NASA Technical Reports Server (NTRS)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  10. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.« less

  12. History of the Fluids Engineering Division

    DOE PAGES

    Cooper, Paul; Martin, C. Samuel; O'Hern, Timothy J.

    2016-08-03

    The 90th Anniversary of the Fluids Engineering Division (FED) of ASME will be celebrated on July 10–14, 2016 in Washington, DC. The venue is ASME's Summer Heat Transfer Conference (SHTC), Fluids Engineering Division Summer Meeting (FEDSM), and International Conference on Nanochannels and Microchannels (ICNMM). The occasion is an opportune time to celebrate and reflect on the origin of FED and its predecessor—the Hydraulic Division (HYD), which existed from 1926–1963. Furthermore, the FED Executive Committee decided that it would be appropriate to publish concurrently a history of the HYD/FED.

  13. History of the Fluids Engineering Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Paul; Martin, C. Samuel; O'Hern, Timothy J.

    The 90th Anniversary of the Fluids Engineering Division (FED) of ASME will be celebrated on July 10–14, 2016 in Washington, DC. The venue is ASME's Summer Heat Transfer Conference (SHTC), Fluids Engineering Division Summer Meeting (FEDSM), and International Conference on Nanochannels and Microchannels (ICNMM). The occasion is an opportune time to celebrate and reflect on the origin of FED and its predecessor—the Hydraulic Division (HYD), which existed from 1926–1963. Furthermore, the FED Executive Committee decided that it would be appropriate to publish concurrently a history of the HYD/FED.

  14. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  15. Advanced Booster Liquid Engine Combustion Stability

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; Gentz, Steve; Nettles, Mindy

    2015-01-01

    Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.

  16. 76 FR 3566 - Airworthiness Directives; The Boeing Company Model 777-200 and -300 Series Airplanes Equipped...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... hydraulic fluid contamination, which can cause cracking of titanium parts in the system disconnect assembly, resulting in compromise of the engine firewall. A cracked firewall can allow fire in the engine area to enter the strut and can lead to an uncontained engine strut fire if flammable fluid is present. Cracking...

  17. Embedding Entrepreneurial Thinking into Fluids-related Courses: Small Changes Lead to Positive Results

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel

    2017-11-01

    Many fluid dynamics instructors have embraced student-centered learning pedagogies (Active & Collaborative Learning (ACL) and Problem/Project Based Learning (PBL)) to promote learning and increase student engagement. A growing effort in engineering education calls to equip students with entrepreneurial skills needed to drive innovation. The Kern Entrepreneurial Engineering Network (KEEN) defines entrepreneurial mindset based on three key attributes: curiosity, connections, and creating value. Elements of ACL and PBL have been used to embed Entrepreneurial Thinking concepts into two fluids-related subjects: 1) an introductory thermal-fluid systems course, and 2) thermo-fluids laboratory. Assessment of students' work reveal an improvement in student learning. Course Evaluations and Surveys indicate an increased perceived-value of course content. Training and development made possible through funding from the Kern Entrepreneurial Engineering Network and the Bucknall Excellence in Teaching Award.

  18. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  19. Jet impingement heat transfer enhancement for the GPU-3 Stirling engine

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.

    1981-01-01

    A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.

  20. Space shuttle main engine definition (phase B). Volume 5: Valves and interconnects. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1971-01-01

    The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.

  1. Development, modeling, simulation, and testing of a novel propane-fueled Brayton-Gluhareff cycle acoustically-pressurized ramjet engine

    NASA Astrophysics Data System (ADS)

    Bramlette, Richard B.

    In the 1950s, Eugene Gluhareff built the first working "pressure jet" engine, a variation on the classical ramjet engine with a pressurized inlet system relying on sonic tuning which allowed operation at subsonic speeds. The engine was an unqualified success. Unfortunately, after decades of sales and research, Gluhareff passed away leaving behind no significant published studies of the engine or detailed analysis of its operation. The design was at serious risk of being lost to history. This dissertation is intended to address that risk by studying a novel subscale modification of Gluhareff's original design operating on the same principles. Included is a background of related engine and how the pressure jet is distinct. The preliminary sizing of a pressure jet using closed-form expressions is then discussed followed by a review of propane oxidation modeling, how it integrates into the Computational Fluid Dynamics (CFD) solver, and the modeling of the pressure jet engine cycle with CFD. The simulation was matched to experimental data recorded on a purpose-built test stand recording chamber pressure, exhaust speed (via a Pitot/static system), temperatures, and thrust force. The engine CFD simulation produced a wide range of qualitative results that matched the experimental data well and suggested strong recirculation flows through the engine confirming suspicions about how the engine operates. Engine operating frequency between CFD and experiment also showed good agreement and appeared to be driven by the "Kadenacy Effect." The research effort lastly opens the door for further study of the engine cycle, the use of pressurized intakes to produce static thrust in a ramjet engine, the Gluhareff pressure jet's original geometry, and a wide array of potential applications. A roadmap of further study and applications is detailed including a modeling and testing of larger engines.

  2. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charron, Richard; Pierce, Daniel

    2015-02-24

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates amore » transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.« less

  3. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to operate the near-infrared spectrometer and GC-MS instruments during ETU testing. Ray will be working with Modified Commercial off the Shelf (MCOTS) instruments and characterizing their analytical behavior for optimization. Ray will be offered the opportunity to suggest testing modifications or configuration changes at any time to improve the experimental effectiveness. He will gain many skills needed for working in a technical team setting requiring flexibility and critical thinking.

  4. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  5. Solar-Thermal Engine Testing

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)

    2001-01-01

    A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.

  6. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  7. Overview of liquid lubricants for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1982-01-01

    An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.

  8. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  9. Injector Design Tool Improvements: User's manual for FDNS V.4.5

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen

    1998-01-01

    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.

  10. Numerical Simulation of the RTA Combustion Rig

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph

    2005-01-01

    The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.

  11. NASA Lewis Helps Company With New Single-Engine Business Turbojet

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Century Aerospace Corporation, a small company in Albuquerque, New Mexico, is developing a six-seat aircraft powered by a single turbofan engine for general aviation. The company had completed a preliminary design of the jet but needed analyses and testing to proceed with detailed design and subsequent fabrication of a prototype aircraft. NASA Lewis Research Center used computational fluid dynamics (CFD) analyses to ferret out areas of excessive curvature in the inlet where separation might occur. A preliminary look at the results indicated very good inlet performance; and additional calculations, performed with vortex generators installed in the inlet, led to even better results. When it was initially determined that the airflow distortion pattern at the compressor face fell outside of the limits set by the engine manufacturer, the Lewis team studied possible solutions, selected the best, and provided recommendations. CFD results for the inlet system were so good that wind tunnel tests were unnecessary.

  12. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  13. Small Multi-Purpose Research Facility (SMiRF)

    NASA Image and Video Library

    2015-10-15

    NASA Glenn engineer Monica Guzik in the Small Multi-Purpose Research Facility (SMiRF). The facility provides the ability to simulate the environmental conditions encountered in space for a variety of cryogenic applications such as thermal protection systems, fluid transfer operations and propellant level gauging. SMiRF is a low-cost, small-scale screening facility for concept and component testing of a wide variety of hardware and is capable of testing cryogenic hydrogen, oxygen, methane and nitrogen.

  14. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  15. Closed-Cycle Engine Program Used to Study Brayton Power Conversion

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2005-01-01

    One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.

  16. Three-Dimensional Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  17. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.

    PubMed

    Yasui, Kyuichi; Izu, Noriya

    2017-06-01

    Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.

  18. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  19. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    PubMed

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  20. A portable and affordable extensional rheometer for field testing

    NASA Astrophysics Data System (ADS)

    Hallmark, Bart; Bryan, Matthew; Bosson, Ed; Butler, Simon; Hoier, Tom; Magens, Ole; Pistre, Nicolas; Pratt, Lee; Ward, Betsy-Ann; Wibberley, Sam; Wilson, D. Ian

    2016-12-01

    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development and validation of an inexpensive, lightweight and robust ‘open source’ extensional rheometer, Seymour II. Validation was carried out experimentally and computationally. Measurements on a Newtonian fluid (492 mPa s Brookfield silicone oil) yielded results of 510  ±  51 mPa s; these are comfortably within the range of  ±10% which other authors have quoted for extensional techniques using laboratory rheometers. Comparison of the observed filament thinning dynamics to those obtained using computational fluid dynamics (CFD) gave good qualitative agreement. Use of Seymour II at the University of Cambridge Botanic Gardens revealed that the mucilage of the ‘crane flower’, Strelitzia reginae, was a viscoelastic fluid whose extensional response could be described by a two-mode Giesekus equation. Engineering drawings and image analysis code for Seymour II are available for download at the project website, www.seymourII.org/.

  1. Two Phase Technology Development Initiatives

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    1999-01-01

    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.

  2. T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Appendices 1-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    These appendices contain the following reports: (1) investigation of coupling failure from the Gladys McCall No. 1 well; (2) failure analysis - oil well casing coupling; (3) technical remedial requirements for 5-inch production tubing string; (4) reservoir limit test data for sand zone No. 9; (5) reservoir fluid study - sand zone No. 9; (6) engineering interpretation of exploration drawdown tests; and (7) reservoir analysis. (ACR)

  3. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  4. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  5. Internal Flow

    NASA Astrophysics Data System (ADS)

    Greitzer, E. M.; Tan, C. S.; Graf, M. B.

    2004-06-01

    Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.

  6. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    DOEpatents

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  7. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  8. Easier Analysis With Rocket Science

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  9. Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context

    DTIC Science & Technology

    2014-09-01

    Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794 P . Rao1 Department of Applied Mathematics and Statistics...scales, 1Corresponding author. Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING...Engineering SEPTEMBER 2014, Vol. 136 / 091206-1Copyright VC 2014 by ASME Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on

  10. Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.

    PubMed

    Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin

    2011-07-01

    Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.

  11. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  12. Mars Science Laboratory Rover Integrated Pump Assembly Bellows Jamming Failure

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Johnson, Joel; Birur, Gajanana; Bhandari, Pradeep; Karlmann, Paul

    2012-01-01

    The Mars Science Laboratory rover and spacecraft utilize two mechanically pumped fluid loops for heat transfer to and from the internal electronics assemblies and the Radioisotope Thermo-Electric Generator (RTG). The heat transfer fluid is Freon R-11 (CFC-11) which has a large coefficient of thermal expansion. The Freon within the heat transfer system must have a volume for safe expansion of the fluid as the system temperature rises. The device used for this function is a gas-over-liquid accumulator. The accumulator uses a metal bellows to separate the fluid and gas sections. During expansion and contraction of the fluid in the system, the bellows extends and retracts to provide the needed volume change. During final testing of a spare unit, the bellows would not extend the full distance required to provide the needed expansion volume. Increasing the fluid pressure did not loosen the jammed bellows either. No amount of stroking the bellows back and forth would get it to pass the jamming point. This type of failure, if it occurred during flight, would result in significant overpressure of the heat transfer system leading to a burst failure at some point in the system piping. A loss of the Freon fluid would soon result in a loss of the mission. The determination of the source of the jamming of the bellows was quite elusive, leading to an extensive series of tests and analyses. The testing and analyses did indicate the root cause of the failure, qualitatively. The results did not provide a set of dimensional limits for the existing hardware design that would guarantee proper operation of the accumulator. In the end, a new design was developed that relied on good engineering judgment combined with the test results to select a reliable enough solution that still met other physical constraints of the hardware, the schedule, and the rover system.

  13. Optical microsystem for analyzing engine lubricants

    NASA Astrophysics Data System (ADS)

    Scott, Andrew J.; Mabesa, Jose R., Jr.; Gorsich, David; Rathgeb, Brian; Said, Ali A.; Dugan, Mark; Haddock, Tom F.; Bado, Philippe W.

    2004-12-01

    It is possible to dramatically improve the performance, reliability, and maintainability of vehicles and other similarly complex equipment if improved sensing and diagnostics systems are available. Each year military and commercial maintenance personnel unnecessarily replace, at scheduled intervals, significant amounts of lubricant fluids in vehicles, weapon systems, and supporting equipment. Personnel draw samples of fluids and send them to test labs for analysis to determine if replacement is necessary. Systematic use of either on-board (embedded) lubricant quality analysis capabilities will save millions of dollars each year in avoided fluid changes, saved labor, prevented damage to mechanical components while providing associated environmental benefits. This paper discusses the design, the manufacturing, and the evaluation of robust optical sensors designed to monitor the condition of industrial fluids. The sensors reported are manufactured from bulk fused silica substrates. They incorporate three-dimensional micro fluidic circuitry side-by-side with three-dimensional wave guided optical networks. The manufacturing of the optical waveguides are completed using a direct-write process based on the use of femtosecond laser pulses to locally alter the structure of the glass substrate at the nano-level. The microfluidic circuitry is produced using the same femtosecond laser based process, followed by an anisotropic wet chemical etching step. Data will be presented regarding the use of these sensors to monitor the quality of engine oil and possibly some other vehicle lubricants such as hydraulic oil.

  14. Attracting Students to Fluid Mechanics with Coffee

    NASA Astrophysics Data System (ADS)

    Ristenpart, William

    2016-11-01

    We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.

  15. Development of a Test to Evaluate Aerothermal Response of Materials to Hypersonic Flow Using a Scramjet Wind Tunnel (Postprint)

    DTIC Science & Technology

    2010-05-01

    SCRAMJET WIND TUNNEL (POSTPRINT) 5a. CONTRACT NUMBER FA8650-10-D-5226-0002 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S...prototype scramjet engine as a wind tunnel . A sample holder was designed using combustion fluid dynamics results as inputs into structural models. The...Z39-18 Development of a Test to Evaluate Aerothermal Response of Materials to Hypersonic Flow Using a Scramjet Wind Tunnel Triplicane A

  16. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  17. Hypervelocity Capability of the HYPULSE Shock-Expansion Tunnel for Scramjet Testing

    NASA Technical Reports Server (NTRS)

    Foelsche, Robert O.; Rogers, R. Clayton; Tsai, Ching-Yi; Bakos, Robert J.; Shih, Ann T.

    2001-01-01

    New hypervelocity capabilities for scramjet testing have recently been demonstrated in the HYPULSE Shock-Expansion Tunnel (SET). With NASA's continuing interests in scramjet testing at hypervelocity conditions (Mach 12 and above), a SET nozzle was designed and added to the HYPULSE facility. Results of tests conducted to establish SET operational conditions and facility nozzle calibration are presented and discussed for a Mach 15 (M15) flight enthalpy. The measurements and detailed computational fluid dynamics calculations (CFD) show the nozzle delivers a test gas with sufficiently wide core size to be suitable for free-jet testing of scramjet engine models of similar scale as, those tested in conventional low Mach number blow-down test facilities.

  18. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  19. Characterization of a Pressure-Fed LOX/LCH4 Reaction Control System Under Simulated Altitude and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Atwell, Matthew J.; Melcher, John C.; Hurlbert, Eric A.; Morehead, Robert L.

    2017-01-01

    A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.

  20. Experimental Results of Integrated Refrigeration and Storage System Testing

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  1. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  2. Experimental Altitude Performance of JP-4 Fuel and Liquid-Oxygen Rocket Engine with an Area Ratio of 48

    NASA Technical Reports Server (NTRS)

    Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.

    1959-01-01

    The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.

  3. Examination of Wave Speed in Rotating Detonation Engines Using Simplified Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2018-01-01

    A simplified, two-dimensional, computational fluid dynamic (CFD) simulation, with a reactive Euler solver is used to examine possible causes for the low detonation wave propagation speeds that are consistently observed in air breathing rotating detonation engine (RDE) experiments. Intense, small-scale turbulence is proposed as the primary mechanism. While the solver cannot model this turbulence, it can be used to examine the most likely, and profound effect of turbulence. That is a substantial enlargement of the reaction zone, or equivalently, an effective reduction in the chemical reaction rate. It is demonstrated that in the unique flowfield of the RDE, a reduction in reaction rate leads to a reduction in the detonation speed. A subsequent test of reduced reaction rate in a purely one-dimensional pulsed detonation engine (PDE) flowfield yields no reduction in wave speed. The reasons for this are explained. The impact of reduced wave speed on RDE performance is then examined, and found to be minimal. Two other potential mechanisms are briefly examined. These are heat transfer, and reactive mixture non-uniformity. In the context of the simulation used for this study, both mechanisms are shown to have negligible effect on either wave speed or performance.

  4. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  5. Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation

    NASA Technical Reports Server (NTRS)

    Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.

    2004-01-01

    Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.

  6. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...

  7. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...

  8. Using Computers in Fluids Engineering Education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  9. Modeling the Effects of Turbulence in Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Smith, Katherine; Hamlington, Peter; van Schoor, Marthinus; TESLa Team; Midé Team

    2014-03-01

    Propulsion systems based on detonation waves, such as rotating and pulsed detonation engines, have the potential to substantially improve the efficiency and power density of gas turbine engines. Numerous technical challenges remain to be solved in such systems, however, including obtaining more efficient injection and mixing of air and fuels, more reliable detonation initiation, and better understanding of the flow in the ejection nozzle. These challenges can be addressed using numerical simulations. Such simulations are enormously challenging, however, since accurate descriptions of highly unsteady turbulent flow fields are required in the presence of combustion, shock waves, fluid-structure interactions, and other complex physical processes. In this study, we performed high-fidelity three dimensional simulations of a rotating detonation engine and examined turbulent flow effects on the operation, performance, and efficiency of the engine. Along with experimental data, these simulations were used to test the accuracy of commonly-used Reynolds averaged and subgrid-scale turbulence models when applied to detonation engines. The authors gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).

  10. Cryostatless high temperature supercurrent bearings for rocket engine turbopumps

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, James F.

    1989-01-01

    The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.

  11. ENGINEERING TEST REACTOR

    DOEpatents

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  12. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1997-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  13. Computer Aided Grid Interface: An Interactive CFD Pre-Processor

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.

    1996-01-01

    NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.

  14. The use of AntiMisting Kerosene (AMK) in turbojet engines

    NASA Technical Reports Server (NTRS)

    Schmidt, H. W.

    1981-01-01

    The effect of antimisting kerosene (AMK) flow characteristics on fan jet engines and the impact of degradation requirements on the fuel system was evaluated. It was determined from the present program that AMK fuel cannot be used without predegradation, although some degradation occurs throughout the fuel feed system, expecially in the fuel pumps. There is a tendency toward FM-9 AMK additive agglomeration and gel formation when the liquid flows at a critical velocity through very small passages. The data indicate this phenomenon to be a function of the degree of degradation, the passage size, the differential pressure, the fluid temperature, and the accumulated flow time. Additionally, test results indicate that the long term cumulative effects of this phenomenon may require more degradation than the theoretical requirement determined from short term tests.

  15. Activities report of the Department of Engineering

    NASA Astrophysics Data System (ADS)

    Acoustics, aerodynamics, fluid mechanics, design, electrical, materials science, mechanical, control, robotics, soil mechanics, structural engineering, thermodynamics, and turbomachine engineering research are described.

  16. Overview of Fluid Dynamics Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See

    1999-01-01

    Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.

  17. Use of GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - Standardized Protocol for On-Site Evaluation of Vapor Intrusion

    DTIC Science & Technology

    2014-07-01

    Testing a Sealed Crack in a Concrete Floor .................................................................. 14 Figure 5: VOC Responses to...Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives, paints, gasoline Bonide Tree Sprays and...expansion joints, plumbing penetrations, or cracks . 3 Note that if indoor air concentrations are

  18. Effect Of Water On Permeation By Hydrogen

    NASA Technical Reports Server (NTRS)

    Tomazic, William A.; Hulligan, David

    1988-01-01

    Water vapor in working fluid equilibrates with permeability-reducing oxides in metal parts. Report describes study of effects of water on permeation of heater-head tubes by hydrogen in Stirling engine. Experiments performed to determine minimum concentration of oxygen and/or oxygen-bearing gas maintaining oxide coverage adequate for low permeability. Tests showed 750 ppm or more of water effective in maintaining stable, low permeability.

  19. One-man, self-contained CO2 concentrating system

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.; Powell, J. D.

    1972-01-01

    A program to design, fabricate, and test a 1-man, self-contained, electrochemical CO2 concentrating system is described. The system was designed with electronic controls and instrumentation to regulate performance, to analyze and display performance trends, and to detect and isolate faults. Ground support accessories were included to provide power, fluids, and a Parametric Data Display allowing real time indication of operating status in engineering units.

  20. Control of Leakage in the Triaxial Test

    DTIC Science & Technology

    1964-03-01

    fields of chemistry, biology , medicine, physics and engi- neering was covered. The application of statistical mechanics to derive equations...chemistry, biology , engineering, physics and medicine was reviewed for Information on the flow of fluids through membranes. (b) The Importance of...suspected that a reaction occurs in the membrane that surrounds the nucleus of the human red blood cell which causes sodium ions to flow in a

  1. CFD - Mature Technology?

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  2. Harmonic engine

    DOEpatents

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  3. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues.

    PubMed

    Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane

    2015-08-01

    The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.

  4. Reorientation of rotating fluid in microgravity environment with and without gravity jitters

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Shyu, K. L.

    1990-01-01

    In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellant transfer. The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank prior main engine restart poses a microgravity fluid behavior problem. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellant resettling have been carried out through the execution of supercomputer CRAY X-MP to simulate the fluid management in a microgravity environment. Results show that the resettlement of fluid can be accomplished more efficiently for fluid in rotating tank than in nonrotating tank, and also better performance for gravity jitters imposed on fluid settlement than without gravity jitters based on the amount of time needed to carry out resettlement period of time between the initiation and termination of geysering.

  5. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  6. Integration of a wave rotor to an ultra-micro gas turbine (UmuGT)

    NASA Astrophysics Data System (ADS)

    Iancu, Florin

    2005-12-01

    Wave rotor technology has shown a significant potential for performance improvement of thermodynamic cycles. The wave rotor is an unsteady flow machine that utilizes shock waves to transfer energy from a high energy fluid to a low energy fluid, increasing both the temperature and the pressure of the low energy fluid. Used initially as a high pressure stage for a gas turbine locomotive engine, the wave rotor was commercialized only as a supercharging device for internal combustion engines, but recently there is a stronger research effort on implementing wave rotors as topping units or pressure gain combustors for gas turbines. At the same time, Ultra Micro Gas Turbines (UmuGT) are expected to be a next generation of power source for applications from propulsion to power generation, from aerospace industry to electronic industry. Starting in 1995, with the MIT "Micro Gas Turbine" project, the mechanical engineering research world has explored more and more the idea of "Power MEMS". Microfabricated turbomachinery like turbines, compressors, pumps, but also electric generators, heat exchangers, internal combustion engines and rocket engines have been on the focus list of researchers for the past 10 years. The reason is simple: the output power is proportional to the mass flow rate of the working fluid through the engine, or the cross-sectional area while the mass or volume of the engine is proportional to the cube of the characteristic length, thus the power density tends to increase at small scales (Power/Mass=L -1). This is the so-called "cube square law". This work investigates the possibilities of incorporating a wave rotor to an UmuGT and discusses the advantages of wave rotor as topping units for gas turbines, especially at microscale. Based on documented wave rotor efficiencies at larger scale and subsidized by both, a gasdynamic model that includes wall friction, and a CFD model, the wave rotor compression efficiency at microfabrication scale could be estimated at about 70%, which is much higher than the obtained efficiency obtained for centrifugal compressors in a microfabricated gas turbine. This dissertation also proposes several designs of ultra-micro wave rotors, including the novel concept of a radial-flow configuration. It describes a new and simplified design procedure as well as numerical simulations of these wave rotors. Results are obtained using FLUENT, a Computational Fluid Dynamics (CFD) commercial code. The vast information about the unsteady processes occurring during simulation is visualized. Last, two designs for experimental tests have been created, one for a micro shock tube and one for the ultra-micro wave rotor. Theoretical and numerical results encourage the idea that at microscale, compression by shock waves may be more efficient than by conventional centrifugal compressors, thus making the ultra-micro wave rotor (UmuWR) a feasible idea for enhancing (upgrading) UmuGT.

  7. Feasibility of Conducting J-2X Engine Testing at the Glenn Research Center Plum Brook Station B-2 Facility

    NASA Technical Reports Server (NTRS)

    Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.

    2008-01-01

    A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.

  8. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  9. Jochem Weber | NREL

    Science.gov Websites

    mechanical engineering (design) and physical engineering (fluid and system dynamics), and a Ph.D. in modeling Ph.D. in Engineering, University College Cork (Ireland); M.S. and B.S. in Physical Engineering

  10. Research and Technology 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.

  11. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  12. Wave Fluid Film Bearing Tests for an Aviation Gearbox

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Proctor, Margaret P.; Fleming, David P.; Keith, Theo G., Jr.

    2000-01-01

    An oil-lubricated wave journal-thrust bearing assembly was successfully tested at conditions found in general aviation engine gearboxes. The bearing performed well at both steady state conditions and in start-stop tests. It ran stably under all loading conditions, including zero load, at all speeds up to 16 000 rpm. The bearing carried 25 percent more load than required for the gearbox application, supporting 8900 N (94 bars average pressure), and showed very good thermal stability. 450 start-stop cycles were also performed, including 350 cycles without oil supply during starting and stopping. Test results and numerical predictions were in good agreement.

  13. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neymark, J.; Kennedy, M.; Judkoff, R.

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  14. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for miscellaneous fluid power and control...

  15. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2014-10-01 2014-10-01 false Requirements for miscellaneous fluid power and control...

  16. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control...

  17. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for miscellaneous fluid power and control...

  18. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control...

  19. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  20. Orbit transfer rocket engine technology program. Phase 2: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C.; Martinez, A.; Hines, B.

    1987-01-01

    In Phase 2 of the Advanced Engine Study, the Failure Modes and Effects Analysis (FMEA) maintenance-driven engine design, preliminary maintenance plan, and concept for space operable disconnects generated in Phase 1 were further developed. Based on the results of the vehicle contractors Orbit Transfer Vehicle (OTV) Concept Definition and System Analysis Phase A studies, minor revisions to the engine design were made. Additional refinements in the engine design were identified through further engine concept studies. These included an updated engine balance incorporating experimental heat transfer data from the Enhanced Heat Load Thrust Chamber Study and a Rao optimum nozzle contour. The preliminary maintenance plan of Phase 1 was further developed through additional studies. These included a compilation of critical component lives and life limiters and a review of the Space Shuttle Main Engine (SSME) operations and maintenance manual in order to begin outlining the overall maintenance procedures for the Orbit Transfer Vehicle Engine and identifying technology requirements for streamlining space-based operations. Phase 2 efforts also provided further definition to the advanced fluid coupling devices including the selection and preliminary design of a preferred concept and a preliminary test plan for its further development.

  1. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture). This hard-point has large weight margins, and, because it is located near the center of gravity of the airplane, the weight of equipment mounted there exerts a minimal effect on the stability and controllability of the airplane. The PFTF (see Figure 2) includes a one-piece aluminum structure that contains space for instrumentation, propellant tanks, and feed-system components. The PFTF also houses a force balance, on which is mounted the subscale engine or other experimental apparatus that is to be the subject of a flight test. The force balance measures a combination of inertial and aerodynamic forces and moments acting on the experimental apparatus.

  2. Computational Fluid Dynamics (CFD) Image of Hyper-X Research Vehicle at Mach 7 with Engine Operating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This computational fluid dynamics (CFD) image shows the Hyper-X vehicle at a Mach 7 test condition with the engine operating. The solution includes both internal (scramjet engine) and external flow fields, including the interaction between the engine exhaust and vehicle aerodynamics. The image illustrates surface heat transfer on the vehicle surface (red is highest heating) and flowfield contours at local Mach number. The last contour illustrates the engine exhaust plume shape. This solution approach is one method of predicting the vehicle performance, and the best method for determination of vehicle structural, pressure and thermal design loads. The Hyper-X program is an ambitious series of experimental flights to expand the boundaries of high-speed aeronautics and develop new technologies for space access. When the first of three aircraft flies, it will be the first time a non-rocket engine has powered a vehicle in flight at hypersonic speeds--speeds above Mach 5, equivalent to about one mile per second or approximately 3,600 miles per hour at sea level. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  3. Feasibility study for convertible engine torque converter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The feasibility study has shown that a dump/fill type torque converter has excellent potential for the convertible fan/shaft engine. The torque converter space requirement permits internal housing within the normal flow path of a turbofan engine at acceptable engine weight. The unit permits operating the engine in the turboshaft mode by decoupling the fan. To convert to turbofan mode, the torque converter overdrive capability bring the fan speed up to the power turbine speed to permit engagement of a mechanical lockup device when the shaft speed are synchronized. The conversion to turbofan mode can be made without drop of power turbine speed in less than 10 sec. Total thrust delivered to the aircraft by the proprotor, fan, and engine during tansient can be controlled to prevent loss of air speed or altitude. Heat rejection to the oil is low, and additional oil cooling capacity is not required. The turbofan engine aerodynamic design is basically uncompromised by convertibility and allows proper fan design for quiet and efficient cruise operation. Although the results of the feasibility study are exceedingly encouraging, it must be noted that they are based on extrapolation of limited existing data on torque converters. A component test program with three trial torque converter designs and concurrent computer modeling for fluid flow, stress, and dynamics, updated with test results from each unit, is recommended.

  4. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  5. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-06-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  6. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    NASA Technical Reports Server (NTRS)

    Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.

    2005-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  7. Transient Mathematical Modeling for Liquid Rocket Engine Systems: Methods, Capabilities, and Experience

    NASA Technical Reports Server (NTRS)

    Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.

    2003-01-01

    The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.

  8. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  9. Results of Microgravity Fluid Dynamics Captured With the Spheres-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  10. Result of Microgravity Fluid Dynamics Captured with the SPHERES-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  11. Results of Microgravity Fluid Dynamics Captured with the Spheres-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel Robert; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Jeffrey Moder

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  12. Performance evaluation of OpenFOAM on many-core architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzobohatý, Tomáš; Říha, Lubomír; Karásek, Tomáš, E-mail: tomas.karasek@vsb.cz

    In this article application of Open Source Field Operation and Manipulation (OpenFOAM) C++ libraries for solving engineering problems on many-core architectures is presented. Objective of this article is to present scalability of OpenFOAM on parallel platforms solving real engineering problems of fluid dynamics. Scalability test of OpenFOAM is performed using various hardware and different implementation of standard PCG and PBiCG Krylov iterative methods. Speed up of various implementations of linear solvers using GPU and MIC accelerators are presented in this paper. Numerical experiments of 3D lid-driven cavity flow for several cases with various number of cells are presented.

  13. Simulation by bondgraphs

    NASA Astrophysics Data System (ADS)

    Thoma, Jean Ulrich

    The fundamental principles and applications of the bond graph method, in which a system is represented on paper by letter elements and their interconnections (bonds), are presented in an introduction for engineering students. Chapters are devoted to simulation and graphical system models; bond graphs as networks for power and signal exchange; the simulation and design of mechanical engineering systems; the simulation of fluid power systems and hydrostatic devices; electrical circuits, drives, and components; practical procedures and problems of bond-graph-based numerical simulation; and applications to thermodynamics, chemistry, and biology. Also included are worked examples of applications to robotics, shocks and collisions, ac circuits, hydraulics, and a hydropneumatic fatigue-testing machine.

  14. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  15. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.

    PubMed

    Wu, Jinghua; Zhang, Lei; Xin, Xing; Zhang, Yang; Wang, Hui; Sun, Aihua; Cheng, Yuchuan; Chen, Xinde; Xu, Gaojie

    2018-02-21

    Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.

  16. Thermodynamic transport properties of nitrogen tetroxide in hypercritical conditions for regenerative cooling of a rocket engine. Volume 1: Tests

    NASA Astrophysics Data System (ADS)

    Saccoccia, Giorgio

    The thermodynamical and transport properties are studied for nitrogen tetroxide (N2O4), which is utilized in hypercritical conditions as oxidants and cooling fluids in rocket propulsion with regenerative cooling systems. An equation of state was performed in the varied zone of the state diagram, taking into account the phase change and two dissociation reactions. The study of the transport properties and state effects is based on the results of the fluid molecular theory. In addition to the state effects, the simple application results obtained for a case of thermal exchange in a cooling channel was studied through the behavior of the substance.

  17. Servicer system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital maneuvering vehicle (OMV) front end kit is defined which is capable of performing in-situ fluid resupply and modular maintenance of free flying spacecraft based on the integrated orbital servicing system (IOSS) concept. The compatibility of the IOSS to perform gas and fluid umbilical connect and disconnect functions utilizing connect systems currently available or in development is addressed. A series of tasks involving on-orbit servicing and the engineering test unit (ETU) of the on-orbit service were studied. The objective is the advancement of orbital servicing by expanding the Spacecraft Servicing Demonstration Plan (SSDP) to include detail demonstration planning using the Multimission Modular Spacecraft (MMS) and upgrading the ETU control.

  18. Aerothermodynamic testing requirements for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Miller, Charles G., III

    1995-01-01

    Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.

  19. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013241 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, prepares to photograph Binodal Colloidal Aggregation Test?4 (BCAT-4) experiment samples in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  20. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013240 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, conducts a session with the Binodal Colloidal Aggregation Test?4 (BCAT-4) in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  1. View of equipment used for Heat Flow and Convection Experiment

    NASA Image and Video Library

    1972-12-17

    AS17-162-24063 (7-19 Dec. 1972) --- A close-up view of the equipment used for the Heat Flow and Convection Experiment, an engineering and operational test and demonstration carried out aboard the Apollo 17 command module during the final lunar landing mission in NASA's Apollo program. Three test cells were used in the demonstration for measuring and observing fluid flow behavior in the absence of gravity in space flight. Data obtained from such demonstrations will be valuable in the design of future science experiments and for manufacturing processes in space.

  2. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    NASA Astrophysics Data System (ADS)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  3. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  4. Computational fluid dynamics - An introduction for engineers

    NASA Astrophysics Data System (ADS)

    Abbott, Michael Barry; Basco, David R.

    An introduction to the fundamentals of CFD for engineers and physical scientists is presented. The principal definitions, basic ideas, and most common methods used in CFD are presented, and the application of these methods to the description of free surface, unsteady, and turbulent flow is shown. Emphasis is on the numerical treatment of incompressible unsteady fluid flow with primary applications to water problems using the finite difference method. While traditional areas of application like hydrology, hydraulic and coastal engineering and oceanography get the main emphasis, newer areas of application such as medical fluid dynamics, bioengineering, and soil physics and chemistry are also addressed. The possibilities and limitations of CFD are pointed out along with the relations of CFD to other branches of science.

  5. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  6. InSPACE-3 experiment

    NASA Image and Video Library

    2013-08-18

    ISS036-E-033948 (18 Aug. 2013) --- NASA astronaut Karen Nyberg, Expedition 36 flight engineer, works with new test samples for the Advanced Colloids Experiment, or ACE, housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack of the International Space Station?s Destiny laboratory. Results from ACE will help researchers understand how to optimize stabilizers to extend the shelf life of products like laundry detergent, paint, ketchup and even salad dressing.

  7. Uncertainty Quantification of CFD Data Generated for a Model Scramjet Isolator Flowfield

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Axdahl, E. L.

    2017-01-01

    Computational fluid dynamics is now considered to be an indispensable tool for the design and development of scramjet engine components. Unfortunately, the quantification of uncertainties is rarely addressed with anything other than sensitivity studies, so the degree of confidence associated with the numerical results remains exclusively with the subject matter expert that generated them. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Given the limitations of current hypersonic ground test facilities, this expanded role is believed to be a requirement by some in the hypersonics community if scramjet engines are to be given serious consideration as a viable propulsion system. The present effort describes a simple, relatively low cost, nonintrusive approach to uncertainty quantification that includes the basic ingredients required to handle both aleatoric (random) and epistemic (lack of knowledge) sources of uncertainty. The nonintrusive nature of the approach allows the computational fluid dynamicist to perform the uncertainty quantification with the flow solver treated as a "black box". Moreover, a large fraction of the process can be automated, allowing the uncertainty assessment to be readily adapted into the engineering design and development workflow. In the present work, the approach is applied to a model scramjet isolator problem where the desire is to validate turbulence closure models in the presence of uncertainty. In this context, the relevant uncertainty sources are determined and accounted for to allow the analyst to delineate turbulence model-form errors from other sources of uncertainty associated with the simulation of the facility flow.

  8. Computational fluid dynamics: Transition to design applications

    NASA Technical Reports Server (NTRS)

    Bradley, R. G.; Bhateley, I. C.; Howell, G. A.

    1987-01-01

    The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.

  9. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  10. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  11. Rankine cycle load limiting through use of a recuperator bypass

    DOEpatents

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  12. Concept of planetary gear system to control fluid mixture ratio

    NASA Technical Reports Server (NTRS)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  13. Variable mixture ratio performance through nitrogen augmentation

    NASA Technical Reports Server (NTRS)

    Beichel, R.; Obrien, C. J.; Bair, E. K.

    1988-01-01

    High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.

  14. Engine control system having pressure-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  15. Magnetically stimulated fluid flow patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  16. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2018-05-23

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  17. Slim hole drilling and testing strategies

    NASA Astrophysics Data System (ADS)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  18. Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.

  19. 76 FR 34918 - Airworthiness Directives; The Boeing Company Model 767 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require modification of the fluid drain path in the leading edge area of the wing. This proposed AD was prompted by a design review following a ground fire incident and reports of flammable fluid leaks from the wing leading edge area onto the engine exhaust area. We are proposing this AD to prevent flammable fluid from leaking onto the engine exhaust nozzle which could result in a fire.

  20. Matlab GUI for a Fluid Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique

    2005-01-01

    The Test and Engineering Directorate at NASA John C. Stennis Space Center developed an interest to study the modeling, evaluation, and control of a liquid hydrogen (LH2) and gas hydrogen (GH2) mixer subsystem of a ground test facility. This facility carries out comprehensive ground-based testing and certification of liquid rocket engines including the Space Shuttle Main engine. A software simulation environment developed in MATLAB/SIMULINK (M/S) will allow NASA engineers to test rocket engine systems at relatively no cost. In the progress report submitted in February 2004, we described the development of two foundation programs, a reverse look-up application using various interpolation algorithms, a variety of search and return methods, and self-checking methods to reduce the error in returned search results to increase the functionality of the program. The results showed that these efforts were successful. To transfer this technology to engineers who are not familiar with the M/S environment, a four-module GUI was implemented allowing the user to evaluate the mixer model under open-loop and closed-loop conditions. The progress report was based on an udergraduate Honors Thesis by Ms. Jamie Granger Austin in the Department of Electrical Engineering and Computer Science at Tulane University, during January-May 2003, and her continued efforts during August-December 2003. In collaboration with Dr. Hanz Richter and Dr. Fernando Figueroa we published these results in a NASA Tech Brief due to appear this year. Although the original proposal in 2003 did not address other components of the test facility, we decided in the last few months to extend our research and consider a related pressurization tank component as well. This report summarizes the results obtained towards a Graphical User Interface (GUI) for the evaluation and control of the hydrogen mixer subsystem model and for the pressurization tank each taken individually. Further research would combine the two components - mixer and tank, for a more realistic simulation tool.

Top