Fringe effects of value engineering. A survey prepared by the technical subcommittee, AOA special committee on value engineering for the office of the assistant secretary of defense (installations and logistics).
An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation
NASA Technical Reports Server (NTRS)
Miley, S. J.
1977-01-01
A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.
Engine installation effects of four civil transport airplanes : Wallops Flight Facility study
DOT National Transportation Integrated Search
2003-10-31
This report examines the effects of airplane geometrical configuration on the acoustic directivity characteristics and on the propagation of airplane noise. This effect of airplane geometry is referred to in this report as engine installation effe...
Installation and testing of a cummins Qsk19 lean burn natural gas engine
NASA Astrophysics Data System (ADS)
Sutley, Franklin H.
The goal for a more efficient engine will never disappear. Over the years many different techniques have been explored within the common goal of higher efficiency. Lean combustion has proven to be effective at increasing efficiencies as well as reducing emissions. The purpose of this thesis is to install a modern Cummins QSK19G and perform certain test that will explore the lean combustion limits and other methods that could possibly increase efficiency even more. The entire installation and instrumentation process is documented within this thesis. The engine was installed in the Engines and Energy Conversion Laboratory at Colorado State University. The engine was installed with the hopes of instilling the desire for endless future tests from Cummins as well as other companies seeking this type of research engine. The lean limit was explored in the most detail. Cummins supplied a test plan that satisfied their desired stopping at a lean limit when the coefficient of variance of indicated mean effective pressure reached 5%. For the curiosity of others involved and this thesis, the lean limit was explored further until the engine could no longer ignite the ultra-lean combustion mixture. Friction accounts for a significant loss in a modern internal combustion engine. One role of the engine oil is to reduce these frictional losses as much as possible without causing increased wear. A test was conducted on the QSK19G to explore the effects of varying the engine oil viscosity. Frictional losses of two different viscosity oils were compared to the stock engine oil losses. The fact that reducing oil viscosity reduces frictional losses was proven in the test.
Installation effects on propeller wake/vortex induced structure-borne noise transmission
NASA Technical Reports Server (NTRS)
Unruh, J. F.
1989-01-01
A laboratory-based test apparatus was employed to investigate the effects of power-plant placement, engine/nacelle mass installation, and wing-to-fuselage attachment methods on propeller-induced structure-borne noise (SBN) transmission levels and their effects on noise-control measures. Data are presented showing SBN transmission is insensitive to propeller spanwise placement, however some sensitivity is seen in propeller-to-wing spacing. Installation of an engine/nacelle mass and variation in wing-to-fuselage attachments have measurable influences on SBN transmission and control measures.
Design considerations in clustering nuclear rocket engines
NASA Technical Reports Server (NTRS)
Sager, Paul H.
1992-01-01
An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.
Design considerations in clustering nuclear rocket engines
NASA Astrophysics Data System (ADS)
Sager, Paul H.
1992-07-01
An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.
46 CFR 58.10-10 - Diesel engine installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...
46 CFR 58.10-10 - Diesel engine installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...
46 CFR 58.10-10 - Diesel engine installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...
46 CFR 58.10-10 - Diesel engine installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...
10 CFR 960.5-2-4 - Offsite installations and operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... present projected effects from nearby industrial, transportation, and military installations and..., construction, operation, closure, or decommissioning or can be accommodated by engineering measures and (2...
10 CFR 960.5-2-4 - Offsite installations and operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... present projected effects from nearby industrial, transportation, and military installations and..., construction, operation, closure, or decommissioning or can be accommodated by engineering measures and (2...
10 CFR 960.5-2-4 - Offsite installations and operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... present projected effects from nearby industrial, transportation, and military installations and..., construction, operation, closure, or decommissioning or can be accommodated by engineering measures and (2...
10 CFR 960.5-2-4 - Offsite installations and operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... present projected effects from nearby industrial, transportation, and military installations and..., construction, operation, closure, or decommissioning or can be accommodated by engineering measures and (2...
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.
2014-01-01
An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
40 CFR 1033.130 - Instructions for engine remanufacturing or engine installation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Instructions for engine remanufacturing or engine installation. 1033.130 Section 1033.130 Protection of Environment ENVIRONMENTAL... and Related Requirements § 1033.130 Instructions for engine remanufacturing or engine installation. (a...
14 CFR 23.929 - Engine installation ice protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine installation ice protection. 23.929... General § 23.929 Engine installation ice protection. Propellers (except wooden propellers) and other components of complete engine installations must be protected against the accumulation of ice as necessary to...
14 CFR 23.929 - Engine installation ice protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine installation ice protection. 23.929... General § 23.929 Engine installation ice protection. Propellers (except wooden propellers) and other components of complete engine installations must be protected against the accumulation of ice as necessary to...
14 CFR 23.929 - Engine installation ice protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine installation ice protection. 23.929... General § 23.929 Engine installation ice protection. Propellers (except wooden propellers) and other components of complete engine installations must be protected against the accumulation of ice as necessary to...
14 CFR 23.929 - Engine installation ice protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine installation ice protection. 23.929... General § 23.929 Engine installation ice protection. Propellers (except wooden propellers) and other components of complete engine installations must be protected against the accumulation of ice as necessary to...
14 CFR 23.929 - Engine installation ice protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine installation ice protection. 23.929... General § 23.929 Engine installation ice protection. Propellers (except wooden propellers) and other components of complete engine installations must be protected against the accumulation of ice as necessary to...
46 CFR 58.10-10 - Diesel engine installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361...
Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations
NASA Technical Reports Server (NTRS)
Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.
1982-01-01
A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
Impact of Fire Resistant Fuel Blends on Compression Ignition Engine Performance
2011-07-01
EFFECTS ON ENGINE PERFORMANCE FRF blends were tested in the CAT C7 and GEP 6.5L(T) engines to determine the effects of FRF on engine ...impact on efficiency of the Stanadyne rotary injection pump used in the GEP 6.5L(T) engine , thus largely effecting its power output when varying... exhaust backpressure . Emissions are sampled from an exhaust probe installed between the engine and exhaust system butterfly valve.
14 CFR 23.361 - Engine torque.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 23.361 Section 23.361...
14 CFR 23.361 - Engine torque.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 23.361 Section 23.361...
14 CFR 23.361 - Engine torque.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 23.361 Section 23.361...
14 CFR 23.361 - Engine torque.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 23.361 Section 23.361...
14 CFR 23.361 - Engine torque.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru
This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.
Implanted component faults and their effects on gas turbine engine performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, J.D.; Taylor, V.; Laflamme, J.C.G.
Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effect is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library, which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine,more » such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: (a) first-stage turbine nozzle erosion damage; (b) first-stage turbine rotor blade untwist; (c) compressor seal wear; (d) first and second-stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.« less
NASA Technical Reports Server (NTRS)
Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.
1973-01-01
A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.
NASA Technical Reports Server (NTRS)
Kowalski, E. J.
1979-01-01
A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.
46 CFR 182.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... must be so arranged as to prevent backflow of water from reaching engine exhaust ports under normal...
46 CFR 182.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... must be so arranged as to prevent backflow of water from reaching engine exhaust ports under normal...
Effects of installation caused flow distortion on noise from a fan designed for turbofan engines
NASA Technical Reports Server (NTRS)
Povinelli, F. P.; Dittmar, J. H.; Woodward, R. P.
1972-01-01
Far-field noise measurements were taken for three different installations of essentially the same fan. The installation with the most uniform inlet flow resulted in fan-blade-passage tone sound pressure levels more than 10 dB lower than the installation with more nonuniform inflow. Perceived noise levels were computed for the various installations and compared. Some measurements of inlet flow distortion were made and used in a blade-passage noise generation theory to predict the effects of distortion on noise. Good agreement was obtained between the prediction and the measured effect. Possible origins of the distortion were identified by observation of tuft action in the vicinity of the inlet.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1979-01-01
The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.
Data Base for Light-Weight Automotive Diesel Power Plants : Volume 3. Miscellaneous Data.
DOT National Transportation Integrated Search
1979-12-01
The effects of fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...
Data Base for Light-Weight Automotive Diesel Power Plants. Volume 2: Discussion and Results.
DOT National Transportation Integrated Search
1979-12-01
The effects on fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...
Data Base for Light-Weight Automotive Diesel Power Plants: Volume 1. Executive Summary.
DOT National Transportation Integrated Search
1979-12-01
The effects on fuel economy, emissions, passenger car safety and other variables due to the installation of light-weight Diesel powerplants were studied. Experimental data was obtained on naturally aspirated and turbocharged Diesel engines installed ...
Effects of bleed air extraction on thrust levels on the F404-GE-400 turbofan engine
NASA Technical Reports Server (NTRS)
Yuhas, Andrew J.; Ray, Ronald J.
1992-01-01
A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases in bleed flow rate.
Installation Effects on Heat Transfer Measurements for a Turbine Vane
2003-03-01
turbine vanes and blades in order to acquire high accuracy, high frequency response data. Typically the installation procedure has involved either mounting...length scale such as blade chord) again matches the engine value. Also before the start of the run a choke valve downstream of the turbine is set to...of Engineering for Gas Turbines and Power (January 1984), Volume 106. p 229 - 240. Gibbings, J.C. “On boundary Layer Transition Wires.” Aeronautical
Investigation of installation effects of single-engine convergent-divergent nozzles
NASA Technical Reports Server (NTRS)
Burley, J. R., II; Berrier, B. L.
1982-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed.
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 96.05-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communications Systems § 96.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or... be in accordance with the requirements of subchapter J (Electrical Engineering) of this chapter...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
46 CFR 77.05-1 - Installation and details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Electrical Engineering and Interior Communication Systems § 77.05-1 Installation and details. (a) The installation of all systems of an electrical engineering or interior... accordance with the requirements of subchapter J (Electrical Engineering) of this chapter. Systems of this...
40 CFR 90.128 - Installation instructions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... an engine will be installed in its certified configuration. In particular, describe the steps needed... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Standards and Certification Provisions § 90.128 Installation instructions. (a) If you sell an engine for...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2013 CFR
2013-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2012 CFR
2012-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2014 CFR
2014-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects
Code of Federal Regulations, 2011 CFR
2011-01-01
... a. reciprocating engines (1) 1. Inspect and repair a radial engine. (2) 2. Overhaul reciprocating.... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7...
46 CFR 96.03-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Marine Engineering Systems § 96.03-1 Installation and details. (a) The installation of all systems of a marine engineering nature, together with the details of... (Marine Engineering) of this chapter. Systems of this type include the following: Steering Systems. Bilge...
46 CFR 195.03-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Marine Engineering Systems § 195.03-1 Installation and details. (a) The installation of all systems of a marine engineering nature, together with the details of... (Marine Engineering) of this chapter. Systems of this type include the following: Steering Systems. Bilge...
2015-11-05
program investigated cost- effective technologies to reduce emissions from legacy marine engines. High-speed, high-population engine models in both...respectively) were driven by health effects and environmental impacts. The U.S. Navy assessed its contribution to the domestic marine emission inventory...greatest potential. A laboratory developmental assessment was followed by a shipboard evaluation. Effective technology concepts applied to high
Nacelle Aerodynamic and Inertial Loads (NAIL) project
NASA Technical Reports Server (NTRS)
1982-01-01
A flight test survey of pressures measured on wing, pylon, and nacelle surfaces and of the operating loads on Boeing 747/Pratt & Whitney JT9D-7A nacelles was made to provide information on airflow patterns surrounding the propulsion system installations and to clarify processes responsible for inservice deterioration of fuel economy. Airloads at takeoff rotation were found to be larger than at any other normal service condition because of the combined effects of high angle of attack and high engine airflow. Inertial loads were smaller than previous estimates indicated. A procedure is given for estimating inlet airloads at low speeds and high angles of attack for any underwing high bypass ratio turbofan installation approximately resembling the one tested. Flight procedure modifications are suggested that may result in better fuel economy retention in service. Pressures were recorded on the core cowls and pylons of both engine installations and on adjacent wing surfaces for use in development of computer codes for analysis of installed propulsion system aerodynamic drag interference effects.
NASA Technical Reports Server (NTRS)
Kowalski, E. J.
1979-01-01
A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-12-06
An installation is described for the catalytic afterburning of exhaust gases in an internal combustion engine. The system includes a line by-passing the installation for the catalytic afterburning, in which is arranged a throttle valve actuated in dependence on the temperature of the installation. The throttle valve also can be actuated independently of the temperature of the installation, but in dependence of the oil pressure which continues to exist for a short period of time after turning off the engine.
Compressor coating effects on gas turbine engine performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, J.D.; Laflamme, J.C.
1991-10-01
In an attempt to increase the time between maintenance actions and to improve performance retention of turboprop engines installed in transport and maritime patrol aircraft, the Canadian Department of National Defence is evaluating an erosion and corrosion-resistance blade coating, for use on compressors. As coatings could appreciably alter engine performance by virtue of their application thickness and surface quality, the National Research Council of Canada was asked to quantify any performance changes that could occur. A project was initiated, utilizing a new Allison T56 turboprop engine, to assess not only the performance changes resulting from the coating, but also thosemore » from dismantling and reassembling the compressor, since the compressor must be completely disassembled to apply the coating. This paper describes the project objectives, the experimental installation, and the measured effects of the coating application on compressor performance.« less
Temperature measurement using infrared imaging systems during turbine engine altitude testing
NASA Technical Reports Server (NTRS)
Burns, Maureen E.
1994-01-01
This report details the use of infrared imaging for temperature measurement and thermal pattern determination during simulated altitude engine testing in the NASA Lewis Propulsion Systems Laboratory. Three identical argon-cooled imaging systems were installed in the facility exhaust collector behind sapphire windows to look at engine internal surfaces. The report describes the components of each system, presents the specifics of the complicated installation, and explains the operation of the systems during engine testing. During the program, several problems emerged, such as argon contamination system, component overheating, cracked sapphire windows, and other unexplained effects. This report includes a summary of the difficulties as well as the solutions developed. The systems performed well, considering they were in an unusually harsh exhaust environment. Both video and digital data were recorded, and the information provided valuable material for the engineers and designers to quickly make any necessary design changes to the engine hardware cooling system. The knowledge and experience gained during this program greatly simplified the installation and use of the systems during later test programs in the facility. The infrared imaging systems have significantly enhanced the measurement capabilities of the facility, and have become an outstanding and versatile testing resource in the Propulsion Systems Laboratory.
STS-26 Discovery, OV-103, SSME (2019) installed in position number one at KSC
1988-01-10
S88-29076 (10 Jan 1988) --- KSC employees work together to carefully guide a 7,000 pound main engine into the number one position in Discovery's aft compartment. Because of the engine's weight and size, special handling equipment is needed to perform the installation. Discovery is currently being prepared for the upcoming STS-26 mission in bay 1 of the Orbiter Processing Facility. This engine, 2019, arrived at KSC on Jan. 6 and was installed Jan. 10. The other two engines are scheduled to be installed later this month. The shuttle's three main liquid fueled engines provide the main propulsion for the orbiter vehicle. The cluster of three engines operate in parallel with the solid rocket boosters during the initial ascent.
NASA Technical Reports Server (NTRS)
Kowalski, E. J.
1979-01-01
A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1980-01-01
The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockelmann, W.; Groezinger, H.; Woebky, P.U.
1977-01-04
A control installation is described for the dosing or proportioning of a secondary air quantity for the improvement of combustion in internal combustion engines, or the after-burning of the exhaust gases of internal combustion engines. An auxiliary arrangement is responsive to an emergency signal for effecting the prompt shutting-off of the secondary air. The emergency signal may be initiated in response to a failure in the ignition voltage of the internal combustion engine; an increase in the hydrocarbon content of the exhaust gases; a disparity between the position of the mixture dosing element and the engine rotational speed; the exceedingmore » of a limiting temperature in the exhaust gas manifold; or the exceeding of a limiting temperature in the afterburner.« less
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 70.25-1 - Electrical engineering details.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Electrical engineering details. 70.25-1 Section 70.25-1... General Electrical Engineering Requirements § 70.25-1 Electrical engineering details. All electrical engineering details and installations shall be designed and installed in accordance with subchapter J...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
46 CFR 90.25-1 - Electrical engineering details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical engineering details. 90.25-1 Section 90.25-1... PROVISIONS General Electrical Engineering Requirements § 90.25-1 Electrical engineering details. (a) All electrical engineering details and installations shall be designed and installed in accordance with...
Closeup view of a Space Shuttle Main Engine (SSME) installed ...
Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
78 FR 23698 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-22
... fire extinguisher discharge tube (No. 1 engine tube). This proposed AD is prompted by the discovery that the No. 1 engine tube installed on the helicopters is too long to ensure that a fire could be effectively extinguished on a helicopter. The proposed actions are intended to ensure the No. 1 engine tube...
NASA Technical Reports Server (NTRS)
Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.
1981-01-01
A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.
1946-07-01
good distribution of cooling air, as well as minimum drag for the installation. The fact that these tests showed that the front recovery decreased...installations on engine cooling-air distribution indicates that good coin-elation of the cooling results of like engines in different installations...tests indicate that an important consider- ation in the design of cowlings and cowl flaps should be the obtaining of good distribution of cooling air
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
...- 10 or -12JR turboprop engine installed per STC SA09866SC (Texas Turbines Conversions, Inc.). The...) airplanes equipped with a Honeywell TPE331-10 or -12JR turboprop engine installed per STC SA09866SC (Texas... the installation of a turboprop engine. We are issuing this AD to prevent the loss of airplane...
33 CFR 149.409 - How many fire extinguishers are needed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489. ...
33 CFR 149.409 - How many fire extinguishers are needed?
Code of Federal Regulations, 2013 CFR
2013-07-01
... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489...
33 CFR 149.409 - How many fire extinguishers are needed?
Code of Federal Regulations, 2012 CFR
2012-07-01
... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489. ...
33 CFR 149.409 - How many fire extinguishers are needed?
Code of Federal Regulations, 2014 CFR
2014-07-01
... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489...
33 CFR 149.409 - How many fire extinguishers are needed?
Code of Federal Regulations, 2011 CFR
2011-07-01
... turbine engines B-II One for each engine. 2 (6) Open electric motors and generators C-II One for each of... fixed system is installed. 2 If the engine is installed on a weather deck or is open to the atmosphere... fans, are exempt. 4 Not required if a fixed foam system is installed in accordance with 46 CFR 108.489. ...
Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.
Gaffney, James; McAlpine, Alan; Kingan, Michael J
2017-03-01
A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.
14 CFR 33.29 - Instrument connection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must make provision for the installation of instrumentation necessary to ensure operation in compliance... assumed aircraft installation, then the applicant must specify this instrumentation in the engine installation instructions and declare it mandatory in the engine approval documentation. (f) As part of the...
IET. Diesel engine for emergency generator is headed for installation ...
IET. Diesel engine for emergency generator is headed for installation in shielded control building (TAN-620). Date: September 21, 1954. INEEL negative no. 12145 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
...; Electronic Engine Control System Installation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... feature(s) associated with the installation of an electronic engine control. The applicable airworthiness...) Engines, Inc. SR305-230E-C1 which is a four-stroke, air cooled, diesel cycle engine that uses turbine (jet...
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.
46 CFR 77.03-1 - Installation and details.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Marine Engineering Systems § 77.03-1 Installation and details. (a) The installation of all systems of a marine engineering nature, together with the details of design, construction...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2011-10-01 2011-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2012-10-01 2012-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2014-10-01 2014-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 167.40-1 - Electrical installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (Electrical Engineering) of this chapter. (3) Institute of Electrical and Electronic Engineers, Inc. (IEEE... 46 Shipping 7 2013-10-01 2013-10-01 false Electrical installations. 167.40-1 Section 167.40-1... SHIPS Certain Equipment Requirements § 167.40-1 Electrical installations. (a) Except as otherwise...
46 CFR 169.609 - Exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... Yacht Council, Inc. Standard P-1, “Safe Installation of Exhaust Systems for Propulsion and Auxiliary...
Code of Federal Regulations, 2010 CFR
2010-07-01
... MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified... Facility Design Report and Fabrication and Installation Report. (1) If the CVA or project engineer finds...
NASA Technical Reports Server (NTRS)
1985-01-01
The installation procedure, maintenance, adjustment and operation of a Lucas type fuel injection system for 13B rotary racing engine is outlined. Components of the fuel injection system and installation procedure and notes are described. Maintenance, adjustment, and operation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.
2010-03-09
This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.
Viscous Aerodynamic Shape Optimization with Installed Propulsion Effects
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Seidel, Jonathan A.; Rallabhandi, Sriram K.
2017-01-01
Aerodynamic shape optimization is demonstrated to tailor the under-track pressure signature of a conceptual low-boom supersonic aircraft. Primarily, the optimization reduces nearfield pressure waveforms induced by propulsion integration effects. For computational efficiency, gradient-based optimization is used and coupled to the discrete adjoint formulation of the Reynolds-averaged Navier Stokes equations. The engine outer nacelle, nozzle, and vertical tail fairing are axi-symmetrically parameterized, while the horizontal tail is shaped using a wing-based parameterization. Overall, 48 design variables are coupled to the geometry and used to deform the outer mold line. During the design process, an inequality drag constraint is enforced to avoid major compromise in aerodynamic performance. Linear elastic mesh morphing is used to deform volume grids between design iterations. The optimization is performed at Mach 1.6 cruise, assuming standard day altitude conditions at 51,707-ft. To reduce uncertainty, a coupled thermodynamic engine cycle model is employed that captures installed inlet performance effects on engine operation.
NASA Conducts First RS-25 Rocket Engine Test of 2018
2018-01-16
A main objective for today’s test will be testing a new flight controller or “brain” of the engine. The controller, which is currently installed on a developmental engine, has the electronics that operate the engine and communicate with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on a flight engine in preparation for flight of SLS and the Orion spacecraft.
Method of making an aero-derivative gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, David J.
A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. Amore » can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.« less
78 FR 28161 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... turbofan engines that have a high-pressure (HP) compressor stage 1 to 4 rotor disc installed, with a..., -524H-T-36, and -524H2-T-19 turbofan engines that have a HP compressor stage 1 to 4 rotor disc installed...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... Engines Installed In, But Not Limited To, Diamond Aircraft Industries Model DA 42 Airplanes; Correction..., Diamond Aircraft Industries model DA 42 airplanes. The part number for engine model TAE 125-01 is missing...-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries model DA 42...
14 CFR 25.1521 - Powerplant limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operation due to the design of the installation or to another established limitation. (c) Turbine engine installations. Operating limitations relating to the following must be established for turbine engine... section must be established so that they do not exceed the corresponding limits for which the engines or...
14 CFR 25.1521 - Powerplant limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... operation due to the design of the installation or to another established limitation. (c) Turbine engine installations. Operating limitations relating to the following must be established for turbine engine... section must be established so that they do not exceed the corresponding limits for which the engines or...
14 CFR 25.1521 - Powerplant limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operation due to the design of the installation or to another established limitation. (c) Turbine engine installations. Operating limitations relating to the following must be established for turbine engine... section must be established so that they do not exceed the corresponding limits for which the engines or...
14 CFR 25.1521 - Powerplant limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... operation due to the design of the installation or to another established limitation. (c) Turbine engine installations. Operating limitations relating to the following must be established for turbine engine... section must be established so that they do not exceed the corresponding limits for which the engines or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... room means the compartment where a permanently installed gasoline or diesel engine is installed... boat is in its static floating position, except engine rooms. Connected means allowing a flow of water in excess of one-quarter ounce per hour from the engine room bilge into any other compartment with a...
NASA Astrophysics Data System (ADS)
Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.
2009-07-01
An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).
STS-112 final main engine is installed after welding/polishing process
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Workers on the engine lift get ready to install the last engine in orbiter Atlantis after a welding and polishing process was undertaken on flow liners where cracks were detected. All engines were removed for inspection of flow liners. Atlantis will next fly on mission STS-112, scheduled for launch no earlier than Oct. 2.
Methods for comparative evaluation of propulsion system designs for supersonic aircraft
NASA Technical Reports Server (NTRS)
Tyson, R. M.; Mairs, R. Y.; Halferty, F. D., Jr.; Moore, B. E.; Chaloff, D.; Knudsen, A. W.
1976-01-01
The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses.
Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation
NASA Technical Reports Server (NTRS)
Patt, R. F.
1980-01-01
Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.
Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, R.F.
Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.
78 FR 60656 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... firewall center fire extinguisher discharge tube (No. 1 engine tube) and inspecting the outboard discharge tube to determine if it is correctly positioned. This AD was prompted by the discovery that the No. 1 engine tube installed on the helicopters is too long to ensure that a fire could be effectively...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and..., survey, or check, the installation items required by this section. (a) The CVA or project engineer must... according to the Facility Design Report and the Fabrication and Installation Report. (b) For a fixed or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...
46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...
46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...
46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...
46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...
STS-112 final main engine is installed after welding/polishing process
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The last engine is installed in orbiter Atlantis after a welding and polishing process was undertaken on flow liners where cracks were detected. All engines were removed for inspection of flow liners. Atlantis will next fly on mission STS-112, scheduled for launch no earlier than Oct. 2.
76 FR 37247 - Airworthiness Directives; Learjet Inc. Model 45 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... the left engine accessory compartment, and corrective actions if necessary. This new AD also requires...) Replace the left engine fuel and hydraulic tubing and install a tubing support channel using new parts. (2... other damage of the case drain tube from the hydraulic pump case installed on the left-hand engine, and...
Allison V–1710 Engine on a Dynamotor Stand in the Engine Research Building
1943-03-21
The first research assignment specifically created for the National Advisory Committee for Aeronautics’ (NACA) new Aircraft Engine Research Laboratory was the integration of a supercharger into the Allison V–1710 engine. The military was relying on the liquid-cooled V–1710 to power several types of World War II fighter aircraft and wanted to improve the engine's speed and altitude performance. Superchargers forced additional airflow into the combustion chamber, which increased the engine’s performance resulting in greater altitudes and speeds. They also generated excess heat that affected the engine cylinders, oil, and fuel. In 1943 the military tasked the new Aircraft Engine Research Laboratory to integrate the supercharger, improve the cooling system, and remedy associated engine knock. Three Allison engines were provided to the laboratory’s research divisions. One group was tasked with improving the supercharger performance, another analyzed the effect of the increased heat on knock in the fuel, one was responsible for improving the cooling system, and another would install the new components on the engine with minimal drag penalties. The modified engines were installed on this 2000-horsepower dynamotor stand in a test cell within the Engine Research Building. The researchers could run the engine at different temperatures, fuel-air ratios, and speeds. When the modifications were complete, the improved V–1710 was flight tested on a P–63A Kingcobra loaned to the NACA for this project.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…
High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.
High speed turboprop aeroacoustic study (counterrotation). Volume 2: Computer programs
NASA Astrophysics Data System (ADS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-07-01
The isolated counterrotating high speed turboprop noise prediction program developed and funded by GE Aircraft Engines was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in the NASA-Lewis 8 x 6 and 9 x 15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counter rotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attack was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combined into a single prediction program. The results were compared with data taken during the flight test of the B727/UDF (trademark) engine demonstrator aircraft.
Installation of TVC Actuators in a Two Axis Inertial Load Simulator Test Stand
NASA Technical Reports Server (NTRS)
Dziubanek, Adam
2013-01-01
This paper is about the installation of Space Shuttle Main Engines (SSME) actuators in the new Two Axis Inertial Load Simulator (ILS) at MSFC. The new test stand will support the core stage of the Space Launch System (SLS). Because of the unique geometry of the new test stand standard actuator installation procedures will not work. I have been asked to develop a design on how to install the actuators into the new test stand. After speaking with the engineers and technicians I have created a possible design solution. Using Pro Engineer design software and running my own stress calculations I have proven my design is feasible. I have learned how to calculate the stresses my design will see from this task. From the calculations I have learned I have over built the apparatus. I have also expanded my knowledge of Pro Engineer and was able to create a model of my idea.
STS-112 final main engine is installed after welding/polishing process
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. - Workers get ready to install the last engine in orbiter Atlantis after a welding and polishing process was undertaken on flow liners where cracks were detected. All engines were removed for inspection of flow liners. Atlantis will next fly on mission STS-112, scheduled for launch no earlier than Oct. 2.
Near-field sound radiation of fan tones from an installed turbofan aero-engine.
McAlpine, Alan; Gaffney, James; Kingan, Michael J
2015-09-01
The development of a distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is reported. The key objective is to examine a canonical problem: how to predict the pressure field due to a distributed source located near an infinite, rigid cylinder. This canonical problem is a simple representation of an installed turbofan, where the distributed source is based on the pressure pattern generated by a spinning duct mode, and the rigid cylinder represents an aircraft fuselage. The radiation of fan tones can be modelled in terms of spinning modes. In this analysis, based on duct modes, theoretical expressions for the near-field acoustic pressures on the cylinder, or at the same locations without the cylinder, have been formulated. Simulations of the near-field acoustic pressures are compared against measurements obtained from a fan rig test. Also, the installation effect is quantified by calculating the difference in the sound pressure levels with and without the adjacent cylindrical fuselage. Results are shown for the blade passing frequency fan tone radiated at a supersonic fan operating condition.
40 CFR 1051.130 - What installation instructions must I give to vehicle manufacturers?
Code of Federal Regulations, 2010 CFR
2010-07-01
... you install the engine in a way that makes the engine's emission contro information label hard to read.... (d) Provide instructions in writing or in an equivalent format. For example, you may post...
Easy method of matching fighter engine to airframe for use in aircraft engine design courses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattingly, J.D.
1989-01-01
The proper match of the engine(s) to the airframe affects both aircraft size and life cycle cost. A fast and straightforward method is developed and used for the matching of fighter engine(s) to airframes during conceptual design. A thrust-lapse equation is developed for the dual-spool, mixed-flow, afterburning turbofan type of engine based on the installation losses of 'Aircraft Engine Design' and the performance predictions of the cycle analysis programs ONX and OFFX. Using system performance requirements, the effects of aircraft thrust-to-weight, wing loading, and engine cycle on takeoff weight are analyzed and example design course results presented. 5 refs.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1979-01-01
The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.
46 CFR 193.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...
46 CFR 193.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...
46 CFR 193.05-10 - Fixed fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
....05-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH... combustion engine installations; (2) Gas turbine installations; (3) Enclosed spaces containing gasoline engines; (4) Chemical storerooms; (5) Any space containing auxiliaries with an aggregate power of 1,000...
Code of Federal Regulations, 2010 CFR
2010-10-01
... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...
Code of Federal Regulations, 2012 CFR
2012-10-01
... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...
Code of Federal Regulations, 2011 CFR
2011-10-01
... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...
Code of Federal Regulations, 2013 CFR
2013-10-01
... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...
Code of Federal Regulations, 2014 CFR
2014-10-01
... acceptable means of backfire flame control. Installation of backfire flame arresters bearing basic Approval... acceptable means of backfire flame control for gasoline engines: (1) A backfire flame arrester complying with... and firmly secured to withstand vibration, shock, and engine backfire. Such installations do not...
5. Photocopy of engineering drawing. LC17 HIGH PRESSURE GAS INSTALLATION: ...
5. Photocopy of engineering drawing. LC-17 HIGH PRESSURE GAS INSTALLATION: PLANS AND DETAILS (CHANGE HOUSE)-STRUCTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28409, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Measured Engine Installation Effects of Four Civil Transport Airplanes
NASA Technical Reports Server (NTRS)
Senzig, David A.; Fleming, Gregg G.; Shepherd, Kevin P.
2001-01-01
The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools for land use planning around airports. The INM currently calculates airplane noise lateral attenuation using the methods contained in the Society of Automotive Engineer's Aerospace Information Report No. 1751 (SAE AIR 1751). Researchers have noted that improved lateral attenuation algorithms may improve airplane noise prediction. The authors of SAE AIR 1751 based existing methods on empirical data collected from flight tests using 1960s-technology airplanes with tail-mounted engines. To determine whether the SAE AIR 1751 methods are applicable for predicting the engine installation component of lateral attenuation for airplanes with wing-mounted engines, the National Aeronautics and Space Administration (NASA) sponsored a series of flight tests during September 2000 at their Wallops Flight Facility. Four airplanes, a Boeing 767-400, a Douglas DC-9, a Dassault Falcon 2000, and a Beech KingAir, were flown through a 20 microphone array. The airplanes were flown through the array at various power settings, flap settings, and altitudes to simulate take-off and arrival configurations. This paper presents the preliminary findings of this study.
NASA Technical Reports Server (NTRS)
Shirkey, M. D.
1973-01-01
The results from two low-speed wind tunnel tests of the Boeing 727-200 airplane as configured with the NASA refan JT8D-109 turbofan engines are presented. The objective of these tests was to determine the effects of the refan installation on the low-speed stability and control characteristics of the 727 airplane. Four side nacelle locations were tested to insure that aerodynamic interactions of the nacelles and empennage would be optimized. The optimum location was judged to be the same as that of the production JT8D-9 engines; the current production engine mounts can be used for this location. Some small changes in the basic airplane characteristics are attributable to the refan nacelles. The flaps up longitudinal and lateral-directional stability are both slightly increased for low angles of attack and sideslip respectively. The longitudinal stability at stall is improved for both the flaps up and landing flap configurations. The high attitude characteristics of the basic airplane are not significantly altered by the refan nacelle installation. Directional control capability is not affected by the refan nacelles.
ETR HEAT EXCHANGER BUILDING, TRA644. WORKERS ARE INSTALLING HEAT EXCHANGER ...
ETR HEAT EXCHANGER BUILDING, TRA-644. WORKERS ARE INSTALLING HEAT EXCHANGER PIPING. INL NEGATIVE NO. 56-3122. Jack L. Anderson, Photographer, 9/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...
ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
6. Photocopy of engineering drawing. LC17 HIGH PRESSURE GAS INSTALLATION: ...
6. Photocopy of engineering drawing. LC-17 HIGH PRESSURE GAS INSTALLATION: PLANS, SCHEDULES AND ELEVATIONS (CHANGE HOUSE)-ARCHITECTURAL, APRIL 1969. - Cape Canaveral Air Station, Launch Complex 17, Facility 28409, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Aeroacoustics of Propulsion Airframe Integration: Overview of NASA's Research
NASA Technical Reports Server (NTRS)
Thomas, Russell H.
2003-01-01
The integration of propulsion and airframe is fundamental to the design of an aircraft system. Many considerations influence the integration, such as structural, aerodynamic, and maintenance factors. In regard to the acoustics of an aircraft, the integration can have significant effects on the net radiated noise. Whether an engine is mounted above a wing or below can have a significant effect on noise that reaches communities below because of shielding or reflection of engine noise. This is an obvious example of the acoustic effects of propulsion airframe installation. Another example could be the effect of the pylon on the development of the exhaust plume and on the resulting jet noise. In addition, for effective system noise reduction the impact that installation has on noise reduction devices developed on isolated components must be understood. In the future, a focus on the aerodynamic and acoustic interaction effects of installation, propulsion airframe aeroacoustics, will become more important as noise reduction targets become more difficult to achieve. In addition to continued fundamental component reduction efforts, a system level approach that includes propulsion airframe aeroacoustics will be required in order to achieve the 20 dB of perceived noise reduction envisioned by the long-range NASA goals. This emphasis on the aeroacoustics of propulsion airframe integration is a new part of NASA s noise research. The following paper will review current efforts and highlight technical challenges and approaches.
NASA Technical Reports Server (NTRS)
Hambly, D.
1974-01-01
The results of a low speed wind tunnel test of 0.046 scale model target thrust reversers installed on a 727-200 model airplane are presented. The full airplane model was mounted on a force balance, except for the nacelles and thrust reversers, which were independently mounted and isolated from it. The installation had the capability of simulating the inlet airflows and of supplying the correct proportions of primary and secondary air to the nozzles. The objectives of the test were to assess the compatibility of the thrust reversers target door design with the engine and airplane. The following measurements were made: hot gas ingestion at the nacelle inlets; model lift, drag, and pitching moment; hot gas impingement on the airplane structure; and qualitative assessment of the rudder effectiveness. The major parameters controlling hot gas ingestion were found to be thrust reverser orientation, engine power setting, and the lip height of the bottom thrust reverser doors on the side nacelles. The thrust reversers tended to increase the model lift, decrease the drag, and decrease the pitching moment.
28. MESTA STEAM ENGINE, INSTALLED BY THE CORRIGAN, McKINNEY COMPANY ...
28. MESTA STEAM ENGINE, INSTALLED BY THE CORRIGAN, McKINNEY COMPANY IN 1916, STILL DRIVES THE 44-INCH REVERSING BLOOMING MILL. THE TWIN TANDAM, COMPOUND CONDENSING, REVERSING STEAM ENGINE HAS A RATED CAPACITY OF 35,000 H.P. IT WAS BUILT BY THE MESTA MACHINE COMPANY OF PITTSBURGH. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH
Review of Aircraft Engine Fan Noise Reduction
NASA Technical Reports Server (NTRS)
VanZante, Dale
2008-01-01
Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.
How to be Green and Stay in the Black: Environmental Guideline Document.
1997-10-01
of the studies were within the American Society of Heating, Refrigera- tion, and Air conditioning Engineers (ASHRAE) Guidelines. Polaroid plans to...Whitney, Texas Instru- ments-Defense Group, Hughes Missile Systems, Boeing Defense Systems, and General Electric Air - craft Engines . The methodology...boxes, and the need to install space air thermostats. Description For Polaroid’s needs, engineers installed inte- grated, self-contained, thermally
2011-07-25
Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
...-001-736-005, installed. (5) Model 230 with (i) Fitting Assembly Engine Bipod Mount, P/N 230-060-113..., P/N 427- 001-723-101, installed. (9) Model 430 with (i) Fitting Assembly Engine Bipod Mount, P/N 230...
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
46 CFR 169.609 - Exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations and associated cooling systems must be built in accordance with the requirements of American Boat and...
40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...
40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...
40 CFR 86.1830-01 - Acceptance of vehicles for emission testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... good engineering judgment. (3) Test vehicles must have air conditioning installed and operational if... whole-vehicle cycle, all emission-related hardware and software must be installed and operational during.... Manufacturers shall use good engineering judgment in making such determinations. (c) Special provisions for...
The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...
NASA Technical Reports Server (NTRS)
Mengle, Vinod G.; Elkoby, Ronen; Brusniak, Leon; Thomas, Russ H.
2006-01-01
Propulsion airframe aeroacoustic (PAA) interactions arise due to the manner in which an engine is installed on the airframe and lead to an asymmetry in the flow/acoustic environment, for example, for under-the-wing installations due to the pylon, the wing and the high-lift devices. In this work we study how we can affect these PAA interactions to reduce the overall jet-related installed noise by tailoring the chevron shapes on fan and core nozzles in a unique fashion to take advantage of this asymmetry. In part 1 of this trio of papers we introduced the concept of azimuthally varying chevrons (AVC) and showed how some types of AVCs can be more beneficial than the conventional chevrons when tested on "isolated" scaled nozzles inclusive of the pylon effect. In this paper, we continue to study the effect of installing these AVC nozzles under a typical scaled modern wing with high-lift devices placed in a free jet. The noise benefits of these installed nozzles, as well as their installation effects are systematically studied for several fan/core AVC combinations at typical take-off conditions with high bypass ratio. We show, for example, that the top-enhanced mixing T-fan AVC nozzle (with enhanced mixing near the pylon and less mixing away from it) when combined with conventional chevrons on the core nozzle is quieter than conventional chevrons on both nozzles, and hardly produces any high-frequency lift, just as in the isolated case; however, its installed nozzle benefit is less than its isolated nozzle benefit. This suppression of take-off noise benefit under installed conditions, compared to its isolated nozzle benefit, is seen for all other chevron nozzles. We show how these relative noise benefits are related to the relative installation effects of AVCs and baseline nozzles.
2011-06-08
Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.
Special features of large-size resistors for high-voltage pulsed installations
NASA Astrophysics Data System (ADS)
Minakova, N. N.; Ushakov, V. Ya.
2017-12-01
Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.
Investigation of two-dimensional wedge exhaust nozzles for advanced aircraft
NASA Technical Reports Server (NTRS)
Maiden, D. L.; Petit, J. E.
1975-01-01
Two-dimensional wedge nozzle performance characteristics were investigated in a series of wind-tunnel tests. An isolated single-engine/nozzle model was used to study the effects of internal expansion area ratio, aftbody cowl boattail angle, and wedge length. An integrated twin-engine/nozzle model, tested with and without empenage surfaces, included cruise, acceleration, thrust vectoring and thrust reversing nozzle operating modes. Results indicate that the thrust-minus-aftbody drag performance of the twin two-dimensional nozzle integration is significantly higher, for speeds greater than Mach 0.8, than the performance achieved with twin axisymmetric nozzle installations. Significant jet-induced lift was obtained on an aft-mounted lifting surface using a cambered wedge center body to vector thrust. The thrust reversing capabilities of reverser panels installed on the two-dimensional wedge center body were very effective for static or in-flight operation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...
46 CFR 25.35-1 - Requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Requirements. (a) Every gasoline engine installed in a motorboat or motor vessel after April 25, 1940, except outboard motors, shall be equipped with an acceptable means of backfire flame control. (b) Installations... Approval Nos. 162.015 or 162.041 or engine air and fuel induction systems bearing basic Approval Nos. 162...
46 CFR 25.35-1 - Requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Requirements. (a) Every gasoline engine installed in a motorboat or motor vessel after April 25, 1940, except outboard motors, shall be equipped with an acceptable means of backfire flame control. (b) Installations... Approval Nos. 162.015 or 162.041 or engine air and fuel induction systems bearing basic Approval Nos. 162...
16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. ...
16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. THE PANEL CONTROLS AIR-HANDLING EQUIPMENT AND AIR PRESSURE WITHIN THE BUILDING. (10/6/69) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
30 CFR 250.1628 - Design, installation, and operation of production systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanical and electrical systems to be installed was approved by registered professional engineers. After... Installation of Offshore Production Platform Piping Systems; (3) Electrical system information including a plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...
NASA Astrophysics Data System (ADS)
Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.
2012-01-01
This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.
Waste incineration, Part I: Technology.
1990-02-01
Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.
Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study
NASA Technical Reports Server (NTRS)
Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.
2003-01-01
The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.
NACA Researcher Measures Ice on a Turbojet Engine Inlet
1948-11-21
The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory conducted an extensive icing research program in the late 1940s that included studies in the Icing Research Tunnel and using specially modified aircraft. One facet of this program was the investigation of the effects of icing on turbojets. Although jet engines allowed aircraft to pass through inclement weather at high rates of speed, ice accumulation was still a concern. The NACA’s B-24M Liberator was initially reconfigured with a General Electric I-16 engine installed in the aircraft’s waist compartment with an air scoop and spray nozzles to produce the artificial icing conditions. The centrifugal engine appeared nearly impervious to the effects of icing. Axial-flow jet engines, however, were much more susceptible to icing damage. The inlet guide vanes were particularly vulnerable, but the cowling’s leading edge, the main bearing supports, and accessory housing could also ice up. If pieces of ice reached the engine’s internal components, the compressor blades could be damaged. To study this phenomenon, a Westinghouse 24C turbojet, seen in this photograph, was installed under the B-24M’s right wing. In January 1948 flight tests of the 24C in icing conditions began. Despite ice buildup into the second stage of the compressor, the engine was able to operate at takeoff speeds. Researchers found the ice on the inlet vanes resulted in half of the engine’s decreased performance.
Possible ways of reducing the effect of thermal power facilities on the environment
NASA Astrophysics Data System (ADS)
Zroichikov, N. A.; Prokhorov, V. B.; Tupov, V. B.; Arkhipov, A. M.; Fomenko, M. V.
2015-02-01
The main trends in the integrated solution of thermal power engineering environmental problems are pointed out taking the Mosenergo power company as an example, and the data are given with respect to the structure of the power engineering equipment of the city of Moscow and its change, energy consumption, and generation of heat and electric energy. The dynamics of atmospheric air pollution of Moscow from 1990 to 2010, as well as the main measures on reducing the adverse effect of the power engineering equipment operation, is given. The results of original designs by the Department of Boiler Installations and Power Engineering Ecology (KU&EE) are given concerning the reduction of nitrogen oxides emissions and the decrease of the noise impact produced by the power engineering equipment.
Measured Engine Installation Effects of Four Civil Transport Airplanes.
DOT National Transportation Integrated Search
2001-10-28
The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools : for land use planning around airports [1]. The INM currently calculates airplane noise lateral : attenuation using the methods contained in the Society o...
Direct and system effects of water ingestion into jet engine compresors
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.
1986-01-01
Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.
NASA Technical Reports Server (NTRS)
Howard, D. F.
1976-01-01
The preliminary design and installation of high bypass, geared turbofan engine with a composite nacelle forming the propulsion system for a short haul passenger aircraft are described. The technology required for externally blown flap aircraft with under the wing (UTW) propulsion system installations for introduction into passenger service in the mid 1980's is included. The design, fabrication, and testing of this UTW experimental engine containing the required technology items for low noise, fuel economy, with composite structure for reduced weight and digital engine control are provided.
NASA Technical Reports Server (NTRS)
Price, E. A.; Hull, J. J.; Rawls, E. A.
1971-01-01
A dual purpose test was conducted in the propulsion wind tunnel (PWT) to evaluate the performance of an aerospike engine, in the presence of a booster, and obtain forebody and base pressure distributions on the booster in which it is installed. The test item was a 2.5 percent scaled replica of the SERV booster employing a 5 percent spike length aerospike engine installed in the base region of the model. Cold flow air was used to simulate engine jet operation. Two booster configurations were investigated, one on which reentry aerospike engine thermal protection doors were installed, and another where the doors were removed. The data presented are representative of the latter configuration for a Mach number range of 0 to 1.25 at angles of attack of 0 and 8 degrees and 0 degrees angle of sideslip.
Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao
2017-01-01
In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect. PMID:28252034
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao
2017-03-01
In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect.
46 CFR 58.10-15 - Gas turbine installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-15 Gas turbine installations. (a) Standards. The design, construction, workmanship and tests of gas turbines and their associated... 46 Shipping 2 2010-10-01 2010-10-01 false Gas turbine installations. 58.10-15 Section 58.10-15...
46 CFR 58.10-15 - Gas turbine installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-15 Gas turbine installations. (a) Standards. The design, construction, workmanship and tests of gas turbines and their associated... 46 Shipping 2 2011-10-01 2011-10-01 false Gas turbine installations. 58.10-15 Section 58.10-15...
77 FR 10406 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... powered by Pratt & Whitney JT9D series engines require installation of a new bracket for stowing the... serviceable stowage bracket for the deactivation pins on all airplanes powered by Pratt & Whitney JT9D series... Pratt & Whitney JT9D series engines require installation of a new bracket for stowing the deactivation...
14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)
Code of Federal Regulations, 2010 CFR
2010-01-01
...) This appendix specifies additional requirements for installation of an engine power control system that... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...
14 CFR 121.705 - Mechanical interruption summary report.
Code of Federal Regulations, 2013 CFR
2013-01-01
... § 121.703. (b) The number of engines removed prematurely because of malfunction, failure or defect, listed by make and model and the aircraft type in which it was installed. (c) The number of propeller featherings in flight, listed by type of propeller and engine and aircraft on which it was installed...
14 CFR 121.705 - Mechanical interruption summary report.
Code of Federal Regulations, 2012 CFR
2012-01-01
... § 121.703. (b) The number of engines removed prematurely because of malfunction, failure or defect, listed by make and model and the aircraft type in which it was installed. (c) The number of propeller featherings in flight, listed by type of propeller and engine and aircraft on which it was installed...
14 CFR 121.705 - Mechanical interruption summary report.
Code of Federal Regulations, 2014 CFR
2014-01-01
... § 121.703. (b) The number of engines removed prematurely because of malfunction, failure or defect, listed by make and model and the aircraft type in which it was installed. (c) The number of propeller featherings in flight, listed by type of propeller and engine and aircraft on which it was installed...
14 CFR 121.705 - Mechanical interruption summary report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 121.703. (b) The number of engines removed prematurely because of malfunction, failure or defect, listed by make and model and the aircraft type in which it was installed. (c) The number of propeller featherings in flight, listed by type of propeller and engine and aircraft on which it was installed...
Installation, Operation, and Operator's Maintenance of Diesel-Engine-Driven Generator Sets.
ERIC Educational Resources Information Center
Marine Corps Inst., Washington, DC.
This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, contains three study units dealing with the skills needed by individuals responsible for the installation, operation, and maintenance of diesel engine-driven generator sets. The first two units cover…
NASA Technical Reports Server (NTRS)
Reynolds, C. N.
1985-01-01
The preliminary design of advanced technology (1992) prop-fan engines for single-rotation prop-fans, the conceptual design of the entire propulsion system, and an aircraft evaluation of the resultant designs are discussed. Four engine configurations were examined. A two-spool engine with all axial compressors and a three-spool engine with axial/centrifugal compressors were selected. Integrated propulsion systems were designed in conjunction with airframe manufacturers. The design efforts resulted in 12,000 shaft horsepower engines installed in over the installations with in-line and offset gearboxes. The prop-fan powered aircraft used 21 percent less fuel and cost 10 percent less to operate than a similar aircraft powered by turbofan engines with comparable technology.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.
1990-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.
Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System
NASA Technical Reports Server (NTRS)
Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.
2007-01-01
Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.
NASA Technical Reports Server (NTRS)
Harrington, Douglas E.
1998-01-01
The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.
Rapid Evaluation of Propulsion System Effects. Volume I
1978-07-01
for either mixed or non-mixed flow engines ) For mixed flow fans or a turbojet : W8 w W2 WBX + W. f 08" Wr/(W2 -WBX) hT1 " (ŕ ÷IT2 w+ W •)/W1l...gathered during the AFAPL Installed Turbine Engine Survivability Criteria contract documented in Reference 20. These tests provided data on a variety of...Performance of the F-100 Duct Inlet, NA-53-26, North American Aviation , Inc., 7 January 1953. 111 9. Bates, D. L., and Welling, S. W., Engine Inlet
46 CFR 76.33-20 - Operation and installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Operation and installation. 76.33-20 Section 76.33-20... EQUIPMENT Smoke Detecting System, Details § 76.33-20 Operation and installation. (a) The system shall be so... audible alarm in the engine room. For installations contracted for on or after January 1, 1962, where...
A simplified analysis of propulsion installation losses for computerized aircraft design
NASA Technical Reports Server (NTRS)
Morris, S. J., Jr.; Nelms, W. P., Jr.; Bailey, R. O.
1976-01-01
A simplified method is presented for computing the installation losses of aircraft gas turbine propulsion systems. The method has been programmed for use in computer aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.
46 CFR 119.425 - Engine exhaust cooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (2) Horizontal dry exhaust pipes are...) They are installed in compliance with §§ 116.405(c) and 116.970 of this chapter. (b) The exhaust pipe...
40 CFR 1051.801 - What definitions apply to this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CFR part 90, 91, 1048, or 1054, where that engine is installed in a piece of equipment that is covered... CFR part 90, 91, 1048, or 1054, when that engine is installed in a piece of equipment that is covered... rear payload capacity of 350 pounds or more or seating for six or more passengers. Vehicles intended...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., what must the CVA or project engineer do? 585.710 Section 585.710 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING... Verification Agent § 585.710 When conducting onsite installation inspections, what must the CVA or project...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., what must the CVA or project engineer do? 585.710 Section 585.710 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING... Verification Agent § 585.710 When conducting onsite installation inspections, what must the CVA or project...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., what must the CVA or project engineer do? 585.710 Section 585.710 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING... Verification Agent § 585.710 When conducting onsite installation inspections, what must the CVA or project...
76 FR 35378 - Installation and Use of Engine Cut-Off Switches on Recreational Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 175 and 183 [Docket No. USCG-2009-0206] RIN 1825-AB34 Installation and Use of Engine Cut-Off Switches on Recreational Vehicles Correction Proposed Rule document 2011-14140 was inadvertently published in the Rules section of the issue of June 8...
WATER PUMP HOUSE, TRA619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. ...
WATER PUMP HOUSE, TRA-619, PUMP INSTALLATION. CAMERA FACING NORTHEAST CORNER. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3998. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Gibb, James
1992-01-01
The present study demonstrates that the Reduced Navier-Stokes code RNS3D can be used very effectively to develop a vortex generator installation for the purpose of minimizing the engine face circumferential distortion by controlling the development of secondary flow. The computing times required are small enough that studies such as this are feasible within an analysis-design environment with all its constraints of time and costs. This research study also established the nature of the performance improvements that can be realized with vortex flow control, and suggests a set of aerodynamic properties (called observations) that can be used to arrive at a successful vortex generator installation design. The ultimate aim of this research is to manage inlet distortion by controlling secondary flow through an arrangements of vortex generators configurations tailored to the specific aerodynamic characteristics of the inlet duct. This study also indicated that scaling between flight and typical wind tunnel test conditions is possible only within a very narrow range of generator configurations close to an optimum installation. This paper also suggests a possible law that can be used to scale generator blade height for experimental testing, but further research in this area is needed before it can be effectively applied to practical problems. Lastly, this study indicated that vortex generator installation design for inlet ducts is more complex than simply satisfying the requirement of attached flow, it must satisfy the requirement of minimum engine face distortion.
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.
1943-01-01
A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
2014-06-01
nautical miles per hour ONR Office of Naval Research OPC overall propulsive coefficient RS repairable at sea SFC specific fuel consumption SHP shaft...fmSFC SHP hp = (2.3) Overall Propulsive Coefficient ( OPC ) The overall propulsive coefficient is equal to the ratio between the effective...horsepower (EHP), and the total installed shaft horsepower (SHP) delivered by the main engine [6]. OPC can be determined using the following relationship
Stress grading of recycled lumber and timber
Robert H. Falk; David Green
1999-01-01
This paper presents an overview of selected research at the Forest Products Laboratory (FPL) to characterize the grade distribution and engineering properties of lumber and timber recycled from deconstructed buildings on US. Army installations. The effects of splits on timber beam and column...
NASA Technical Reports Server (NTRS)
Lee, E. E., Jr.; Pendergraft, O. C., Jr.
1985-01-01
The installation interference effects of an underwing-mounted, long duct, turbofan nacelle were evaluated in the Langley 16-Foot Transonic Tunnel with two different pylon shapes installed on a twin engine transport model having a supercritical wing swept 30 deg. Wing, pylon, and nacelle pressures and overall model force data were obtained at Mach numbers from 0.70 to 0.83 and nominal angles of attack from -2 deg to 4 deg at an average unit Reynolds number of 11.9 x 1,000,000 per meter. The results show that adding the long duct nacelles to the supercritical wing, in the near sonic flow field, changed the magnitude and direction of flow velocities over the entire span, significantly reduced cruise lift, and caused large interference drag on the nacelle afterbody.
NASA Technical Reports Server (NTRS)
Abeyounis, W. K.; Patterson, J. C., Jr.
1985-01-01
As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.
46 CFR 119.220 - Installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Propulsion... subchapter J (Electrical Engineering) of this chapter. (b) Installation of propulsion machinery of an unusual... requirements as determined necessary by the cognizant OCMI. Unusual types of propulsion machinery include: (1...
46 CFR 119.220 - Installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Propulsion... subchapter J (Electrical Engineering) of this chapter. (b) Installation of propulsion machinery of an unusual... requirements as determined necessary by the cognizant OCMI. Unusual types of propulsion machinery include: (1...
46 CFR 119.220 - Installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Propulsion... subchapter J (Electrical Engineering) of this chapter. (b) Installation of propulsion machinery of an unusual... requirements as determined necessary by the cognizant OCMI. Unusual types of propulsion machinery include: (1...
46 CFR 119.220 - Installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS MACHINERY INSTALLATION Propulsion... subchapter J (Electrical Engineering) of this chapter. (b) Installation of propulsion machinery of an unusual... requirements as determined necessary by the cognizant OCMI. Unusual types of propulsion machinery include: (1...
NASA Technical Reports Server (NTRS)
Knip, G.; Plencner, R. M.; Eisenberg, J. D.
1980-01-01
The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.
Ultra Efficient Engine Technology Systems Integration and Environmental Assessment
NASA Technical Reports Server (NTRS)
Daggett, David L.; Geiselhart, Karl A. (Technical Monitor)
2002-01-01
This study documents the design and analysis of four types of advanced technology commercial transport airplane configurations (small, medium large and very large) with an assumed technology readiness date of 2010. These airplane configurations were used as a platform to evaluate the design concept and installed performance of advanced technology engines being developed under the NASA Ultra Efficient Engine Technology (UEET) program. Upon installation of the UEET engines onto the UEET advanced technology airframes, the small and medium airplanes both achieved an additional 16% increase in fuel efficiency when using GE advanced turbofan engines. The large airplane achieved an 18% increase in fuel efficiency when using the P&W geared fan engine. The very large airplane (i.e. BWB), also using P&W geared fan engines, only achieved an additional 16% that was attributed to a non-optimized airplane/engine combination.
Noise suppressor for turbo fan jet engines
NASA Technical Reports Server (NTRS)
Cheng, D. Y. (Inventor)
1983-01-01
A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.
Department of Defense In-House RDT and E Activities
1976-10-30
BALLISTIC TESTS.FAC AVAL FCR TESIS OF SP ELELTRONIC’ FIl’ CON EQUIP 4 RELATED SYSTEMS E COMPONFNTZ, 35 INSTALLATION: MEDICAL BIOENGINEERINC- R&D LABORATORY...ANALYSIS OF CHEMICAL AND METALLOGRAPHIC EFFECTS, MICROBIOLOGICAL EFFECTS, CLIMATIC ENVIRONMENTAL EFFECTS. TEST AND EVALUATE WARHEADS AND SPECIAL...CCMMUNICATI’N SYST:M INSTRUMENTED DROP ZONES ENGINEERING TEST FACILITY INSTRUMENTATION CALIBRATICN FACILITY SCIENTIFIC COMPUTER CENTER ENVIRONMENTAL TESY
Real-time POD-CFD Wind-Load Calculator for PV Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huayamave, Victor; Divo, Eduardo; Ceballos, Andres
The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such asmore » those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.« less
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Installation. 29.901 Section 29.901 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Axial and radial expansion of turbine engines may not affect the safety of the installation. (6) Design...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Installation. 29.901 Section 29.901 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Axial and radial expansion of turbine engines may not affect the safety of the installation. (6) Design...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Installation. 29.901 Section 29.901 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Axial and radial expansion of turbine engines may not affect the safety of the installation. (6) Design...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Installation. 29.901 Section 29.901 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Axial and radial expansion of turbine engines may not affect the safety of the installation. (6) Design...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Installation. 29.901 Section 29.901 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS...) Axial and radial expansion of turbine engines may not affect the safety of the installation. (6) Design...
Crash history after installation of traffic signals : warranted vs. unwarranted.
DOT National Transportation Integrated Search
2008-01-01
The objective of this study was to determine the change in crash history at intersections after installation of a traffic signal. Signals installed based on the warrants from an engineering study resulted in a decrease in angle collisions with an inc...
46 CFR 111.33-5 - Installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Installation. 111.33-5 Section 111.33-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-5 Installation. Each semiconductor rectifier system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
14 CFR 23.1103 - Induction system ducts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... withstanding the effects of temperature extremes, fuel, oil, water, and solvents to which it is expected to be exposed in service and maintenance without hazardous deterioration or delamination. (d) For reciprocating engine installations, each induction system duct must be— (1) Strong enough to prevent induction system...
Fish passage at road crossings: an annotated bibliography.
Lynette Anderson; Mason Bryant
1980-01-01
A report of special interest to fishery biologists, resource managers, hydrologists, and road engineers, this bibliography lists publications pertinent to road crossings of salmon and trout streams. Topics include bridge and culvert installation, design criteria, mechanics, hydraulics, and economics, as well as their biological effects.
78 FR 59293 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... Engineering Corporation parts manufacturer approval replacement cylinder assemblies installed. The replacement cylinder assemblies are marketed by Engine Components International Division. DATES: The comment period for...
Engineering report for simulated riser installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brevick, C.H., Westinghouse Hanford
1996-05-09
The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.
Application of selected advanced technologies to high performance, single-engine, business airplanes
NASA Technical Reports Server (NTRS)
Domack, C. S.; Martin, G. L.
1984-01-01
Improvements in performance and fuel efficiency are evaluated for five new configurations of a six place, single turboprop, business airplane derived from a conventional, aluminum construction baseline aircraft. Results show the greatest performance gains for enhancements in natural laminar flow. A conceptual diesel engine provides greater fuel efficiency but reduced performance. Less significant effects are produced by the utilization of composite materials construction or by reconfiguration from tractor to pusher propeller installation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine compartment) of any system that can affect an engine (other than a fuel tank if only one fuel tank...) Starting and stopping (piston engine). (1) The design of the installation must be such that risk of fire or...
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine compartment) of any system that can affect an engine (other than a fuel tank if only one fuel tank...) Starting and stopping (piston engine). (1) The design of the installation must be such that risk of fire or...
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Rodela, Chris
2006-01-01
Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-04-24
An installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine has two cylinder rows with two exhaust gas lines, each of which includes at least one catalyst. A temperature-responsive control is operable during engine start-up to conduct substantially the entire exhaust gas flow from the internal combustion engine during warmup for a predetermined time by way of only one of the two catalyst and then, after a short period of time, to conduct the exhaust gas flow from each row of cylinders by way of its associated gas line and catalyst.
Code of Federal Regulations, 2012 CFR
2012-07-01
... installing stationary CI ICE produced in previous model years? 60.4208 Section 60.4208 Protection of... or installing stationary CI ICE produced in previous model years? (a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... installing stationary CI ICE produced in previous model years? 60.4208 Section 60.4208 Protection of... or installing stationary CI ICE produced in previous model years? (a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... installing stationary CI ICE produced in previous model years? 60.4208 Section 60.4208 Protection of... or installing stationary CI ICE produced in previous model years? (a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... installing stationary CI ICE produced in the previous model year? 60.4208 Section 60.4208 Protection of... or installing stationary CI ICE produced in the previous model year? (a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... installing stationary CI ICE produced in the previous model year? 60.4208 Section 60.4208 Protection of... or installing stationary CI ICE produced in the previous model year? (a) After December 31, 2008, owners and operators may not install stationary CI ICE (excluding fire pump engines) that do not meet the...
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J C; Wilsted, H D; Mulcahy, B A
1943-01-01
Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
Development of Mechanics in Support of Rocket Technology in Ukraine
NASA Astrophysics Data System (ADS)
Prisnyakov, Vladimir
2003-06-01
The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented
Noise assessment of unsuppressed TF-34-GE-100A engine at Warfield ANG, Baltimore, Maryland
NASA Astrophysics Data System (ADS)
Shaffer, Winston J., II; Ellis, John C., II
1987-12-01
This report presents the results of noise data measurements of an unsuppressed TF34-GE-100A engine and a community noise survey of the local area around the engine. Three recommendations were made. A two barrier design should be installed as an interim noise control measure. Justification and installation of a noise suppressor, as a long term solution, should be pursued. Day-night sound levels should continue to be monitored until adequate characterization of the airport noise environment is obtained.
24 CFR 3285.404 - Severe climatic conditions.
Code of Federal Regulations, 2010 CFR
2010-04-01
....404 Severe climatic conditions. In frost-susceptible soil locations, ground anchor augers must be installed below the frost line, unless the foundation system is frost-protected to prevent the effects of frost heave, in accordance with acceptable engineering practice and § 3280.306 of this chapter and...
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND THE PROCEDURES FOR TRANSMISSION INSTALLATION. TOPICS ARE (1) IMPORTANCE OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) EVALUATING COOLING SYSTEM FAILURES, (4) CARING FOR THE COOLING SYSTEM,…
Structure A, protective alarm installation details. Drawing no. H3709, revised ...
Structure A, protective alarm installation details. Drawing no. H3-709, revised as-built dated August 28, 1952. Original drawing by Black & Veatch, consulting engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA
DEMINERALIZER BUILDING, TRA608. INSTALLATION OF SAMPLING AND OTHER INSTRUMENTS COMPLETES ...
DEMINERALIZER BUILDING, TRA-608. INSTALLATION OF SAMPLING AND OTHER INSTRUMENTS COMPLETES DEMINERALIZER UNITS ALONG NORTH WALL. CAMERA FACES EAST. CARD IN LOWER RIGHT WAS INSERTED BY INL PHOTOGRAPHER TO COVER AN OBSOLETE SECURITY RESTRICTION PRINTED ON THE ORIGINAL NEGATIVE. INL NEGATIVE NO. 3996A. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
46 CFR 111.30-1 - Location and installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Location and installation. 111.30-1 Section 111.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-1 Location and installation. Each switchboard must meet the...
46 CFR 111.30-1 - Location and installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Location and installation. 111.30-1 Section 111.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-1 Location and installation. Each switchboard must meet the...
46 CFR 111.30-1 - Location and installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Location and installation. 111.30-1 Section 111.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-1 Location and installation. Each switchboard must meet the...
46 CFR 111.30-1 - Location and installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Location and installation. 111.30-1 Section 111.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-1 Location and installation. Each switchboard must meet the...
46 CFR 111.30-1 - Location and installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Location and installation. 111.30-1 Section 111.30-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-1 Location and installation. Each switchboard must meet the...
49 CFR 393.30 - Battery installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Battery installation. 393.30 Section 393.30... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation. Every storage battery on every vehicle, unless located in the engine compartment, shall be covered by a...
46 CFR 58.16-18 - Installation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Installation. 58.16-18 Section 58.16-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Liquefied Petroleum Gases for Cooking and Heating § 58.16-18 Installation. (a) Cylinders...
49 CFR 393.30 - Battery installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 5 2013-10-01 2013-10-01 false Battery installation. 393.30 Section 393.30... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation. Every storage battery on every vehicle, unless located in the engine compartment, shall be covered by a...
49 CFR 393.30 - Battery installation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Battery installation. 393.30 Section 393.30... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation. Every storage battery on every vehicle, unless located in the engine compartment, shall be covered by a...
49 CFR 393.30 - Battery installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 5 2014-10-01 2014-10-01 false Battery installation. 393.30 Section 393.30... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation. Every storage battery on every vehicle, unless located in the engine compartment, shall be covered by a...
49 CFR 393.30 - Battery installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 5 2012-10-01 2012-10-01 false Battery installation. 393.30 Section 393.30... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.30 Battery installation. Every storage battery on every vehicle, unless located in the engine compartment, shall be covered by a...
78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines AGENCY: Federal Aviation... (AD) for all Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02- 99, and TAE 125-02-114 reciprocating engines. That AD currently requires installation of full-authority digital electronic control...
Proceedings of the Conference Arctic '85; Civil Engineering in the Artic offshore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, F.L.; Machemehl, J.L.
1985-01-01
Topics of the 1985 Conference included: Arctic construction, Arctic foundation, Arctic structures, and ocean effects. Arctic terminals and coastal offshore bases, protecting the Arctic environment, and probabilistic methods in Arctic offshore engineering were also discussed. Ice mechanics, marine pipelines in the Arctic, and the role of universities in training civil engineers for Arctic offshore development were highlighted. Sessions on remote sensing, surveying, and mapping were included, and offshore installations in the Bering Sea were discussed. Another topic of discussion was research in Civil Engineering for development of the Arctic offshore. The overall thrust of the conference was the application ofmore » Arctic offshore engineering principles and research in the field of oil and gas exploration and exploitation activity.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY... installed on a limited number of engines. No defective washers have been shipped as spare parts. This... consequent ignition failure, possibly resulting in damage to the engine, in- flight engine shutdown and...
NASA Astrophysics Data System (ADS)
Plotnikov, L. V.
2017-09-01
Comparison of experimental research results of gas dynamics and instantaneous local heat transfer in the intake pipes for piston internal combustion engines (ICE) without and with supercharging are presented in the article. Studies were conducted on full-scale experimental setups in terms of gas dynamic nonstationarity, which is characteristic of piston engines. It has been established that the turbocharger installation in a gas-air system of piston internal combustion engine leads to significant differences in the patterns of change in gas-dynamic and heat transfer characteristics of flows. These data can be used in a modernization of piston engines due to installation of a turbocharger or in a development of gas-air systems for piston ICE with supercharging.
NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2018-01-16
On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).
Study on installation of the submersible mixer
NASA Astrophysics Data System (ADS)
Tian, F.; Shi, W. D.; He, X. H.; Jiang, H.; Xu, Y. H.
2013-12-01
Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice.
Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J
2002-02-01
Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and maintenance of the engineering controls, this study showed that retrofitting engineering controls may be a feasible option for some dry-cleaning shop owners to reduce worker exposures to perchloroethylene. By installing retrofit controls, a dry-cleaning facility can reduce exposures, in some cases dramatically, and bring operators into compliance with the Occupational Safety and Health Administration (OSHA) peak exposure limit of 300 ppm. Retrofit engineering controls are also likely to enable many dry-cleaning workers to lower their overall personal TWA exposures to perchloroethylene.
76 FR 33161 - Installation and Use of Engine Cut-off Switches on Recreational Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
...-off switches as a standard safety feature on propulsion machinery and/or starting controls installed... not most, propulsion machinery and/or starting controls installed on recreational vessels are... new subpart N that would cover propulsion machinery capable of developing static thrust of 115 pounds...
30 CFR 250.802 - Design, installation, and operation of surface production-safety systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and electrical systems to be installed were approved by registered professional engineers. After these... reference as specified in § 250.198). (4) Electrical system information including the following: (i) A plan... Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent... Facility Design Report and the Fabrication and Installation Report. (b) For a fixed or floating facility...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
46 CFR 169.607 - Keel cooler installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Machinery and Electrical Internal Combustion Engine Installations § 169.607 Keel cooler installations. (a... vessel. (d) Short lengths of approved nonmetallic flexible hose may be used at machinery connections... do not depend on spring tension for their holding power; and (3) Two clamps are used on each end of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... a fuel tank if only one fuel tank is installed), will not: (1) Prevent the continued safe operation... operation of the remaining engines. (d) Starting and stopping (piston engine). (1) The design of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... a fuel tank if only one fuel tank is installed), will not: (1) Prevent the continued safe operation... operation of the remaining engines. (d) Starting and stopping (piston engine). (1) The design of the...
46 CFR 119.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protected from mechanical damage. (e) Where flexibility is necessary, a section of flexible metallic hose... the material requirements of part 56 of subchapter F (Marine Engineering) of this chapter. (k) Engine...
46 CFR 119.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protected from mechanical damage. (e) Where flexibility is necessary, a section of flexible metallic hose... the material requirements of part 56 of subchapter F (Marine Engineering) of this chapter. (k) Engine...
46 CFR 119.430 - Engine exhaust pipe installation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... protected from mechanical damage. (e) Where flexibility is necessary, a section of flexible metallic hose... the material requirements of part 56 of subchapter F (Marine Engineering) of this chapter. (k) Engine...
Code of Federal Regulations, 2014 CFR
2014-07-01
... installing stationary SI ICE produced in previous model years? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in previous model years? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... installing stationary SI ICE produced in the previous model year? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in the previous model year? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet...
Code of Federal Regulations, 2012 CFR
2012-07-01
... installing stationary SI ICE produced in previous model years? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in previous model years? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... installing stationary SI ICE produced in the previous model year? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in the previous model year? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet...
Code of Federal Regulations, 2013 CFR
2013-07-01
... installing stationary SI ICE produced in previous model years? 60.4236 Section 60.4236 Protection of... installing stationary SI ICE produced in previous model years? (a) After July 1, 2010, owners and operators may not install stationary SI ICE with a maximum engine power of less than 500 HP that do not meet the...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
14 CFR 25.1181 - Designated fire zones; regions included.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engines; and (7) Combustor, turbine, and tailpipe sections of turbine engine installations that contain... Protection § 25.1181 Designated fire zones; regions included. (a) Designated fire zones are— (1) The engine power section; (2) The engine accessory section; (3) Except for reciprocating engines, any complete...
QCSEE UTW engine powered-lift acoustic performance
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.
1980-01-01
Powered-lift acoustic test of the Quiet Clean Short Haul Experimental Engine (QCSEE) under the wing (UTW) engine are reported. Propulsion systems for two powered-lift concepts were designed, fabricated, and tested. In addition to low noise features, the designs included composite structures, gear-driven fans, digital control, and a variable pitch fan (UTW). The UTW engine was tested in a static ground test facility with wing and flap segments to simulate installation on a short haul transport aircraft of the future. Powered-lift acoustic performance of the UTW engine is compared with that of the previously tested and reported QCSEE over-the-wing (OTW) engine. Both engines were slightly above the noise goal but were significantly below current FAA and modern wide-body jet transport levels. The UTW system in the powered-lift mode was penalized by reflected engine noise from the wing and flap system, while the OTW system was benefitted by a wing noise shielding effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, P.R.
1996-03-01
A grant was made to install and pilot-test the Science, Engineering and Technology (SET) Career Library Corner at the New York Hall of Science. The SET Career Library Corner is located in a multi-media library setting where visitors can explore careers in a quiet, uninterrupted environment, in contrast to the original installation designed as a museum floor exhibit.
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
14 CFR 171.323 - Fabrication and installation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... must be located, constructed, and installed in accordance with best commercial engineering practices... software and/or hardware in space provided in the original equipment. (d) The mean corrective maintenance...
76 FR 56637 - Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... Airworthiness Directives; Lycoming Engines Model IO-720-A1B Reciprocating Engines AGENCY: Federal Aviation... directive (AD) for certain model IO-720-A1B Lycoming Engines reciprocating engines. This AD requires a... crankshaft due to incorrect parts installed. We are issuing this AD to prevent engine crankshaft failure and...
Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Wilson, Herbert A , Jr
1942-01-01
An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Wilson, Herbert A., Jr.
1939-01-01
An investigation is in progress in the NACA full-scale wind tunnel to determine the drag and propulsive efficiency of nacelle sizes. In contrast with the usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a 4-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplane weighing from about 20 to 100 tons. The results show that the drag, the propulsive efficiency, and the overall efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model are shown for both propeller-removed and propeller-operating conditions.
NASA Technical Reports Server (NTRS)
Falarski, M. D.; Aoyagi, K.; Koenig, D. G.
1973-01-01
The upper-surface blown (USB) flap as a powered-lift concept has evolved because of the potential acoustic shielding provided when turbofan engines are installed on a wing upper surface. The results from a wind tunnel investigation of a large-scale USB model powered by two JT15D-1 turbofan engines are-presented. The effects of coanda flap extent and deflection, forward speed, and exhaust nozzle configuration were investigated. To determine the wing shielding the acoustics of a single engine nacelle removed from the model were also measured. Effective shielding occurred in the aft underwing quadrant. In the forward quadrant the shielding of the high frequency noise was counteracted by an increase in the lower frequency wing-exhaust interaction noise. The fuselage provided shielding of the opposite engine noise such that the difference between single and double engine operation was 1.5 PNdB under the wing. The effects of coanda flap deflection and extent, angle of attack, and forward speed were small. Forward speed reduced the perceived noise level (PNL) by reducing the wing-exhaust interaction noise.
14 CFR 29.907 - Engine vibration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...
40 CFR 1065.125 - Engine intake air.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine intake air. 1065.125 Section... ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.125 Engine intake air. (a) Use the intake-air system installed on the engine or one that represents a typical in-use configuration. This includes the...
14 CFR 29.907 - Engine vibration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...
14 CFR 29.907 - Engine vibration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...
14 CFR 29.907 - Engine vibration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...
14 CFR 29.907 - Engine vibration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...
40 CFR 90.113 - In-use testing program for Phase 1 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission control technology which most likely will be used on Phase 2 engines; (2) Engine families using... technology specifically installed to achieve compliance with emission standards of this part; (6) The engine... with itself or its vehicle manufacturer. (2) A test engine should have a maintenance history...
Code of Federal Regulations, 2014 CFR
2014-01-01
... interconnections must be provided to prevent differences of potential between major components of the installation and the rest of the rotorcraft; (4) Axial and radial expansion of turbine engines may not affect the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... interconnections must be provided to prevent differences of potential between major components of the installation and the rest of the rotorcraft; (4) Axial and radial expansion of turbine engines may not affect the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... interconnections must be provided to prevent differences of potential between major components of the installation and the rest of the rotorcraft; (4) Axial and radial expansion of turbine engines may not affect the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... interconnections must be provided to prevent differences of potential between major components of the installation and the rest of the rotorcraft; (4) Axial and radial expansion of turbine engines may not affect the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... compartment) of any system that can affect an engine (other than a fuel tank if only one fuel tank is... stopping (piston engine). (1) The design of the installation must be such that risk of fire or mechanical...
33 CFR 183.550 - Fuel tanks: Installation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...
30 CFR 75.1101-14 - Installation of dry powder chemical systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...
30 CFR 75.1101-14 - Installation of dry powder chemical systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...
30 CFR 75.1101-14 - Installation of dry powder chemical systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...
30 CFR 75.1101-14 - Installation of dry powder chemical systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...
30 CFR 75.1101-14 - Installation of dry powder chemical systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
...' Laboratories, Inc., or Factory Mutual Engineering Corp. (c) The components of each dry powder chemical system... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of dry powder chemical systems. 75...-14 Installation of dry powder chemical systems. (a) Self-contained dry powder chemical systems shall...
33 CFR 183.550 - Fuel tanks: Installation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Installation. 183.550...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Company Model M680 Airplane; Lithium-ion Battery Installations AGENCY: Federal Aviation Administration... design feature associated with Lithium-ion batteries. The applicable airworthiness regulations do not...) T00012WI for installation of Lithium-ion batteries in the Model 680. The Model 680 is a twin-engine, medium...
Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion
2016-06-01
ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a
Reduction of cooking oil fume exposure following an engineering intervention in Chinese restaurants.
Pan, Chih-Hong; Shih, Tung-Sheng; Chen, Chiou-Jong; Hsu, Jin-Huei; Wang, Shun-Chih; Huang, Chien-Ping; Kuo, Ching-Tang; Wu, Kuen-Yuh; Hu, Howard; Chan, Chang-Chuan
2011-01-01
A new engineering intervention measure, an embracing air curtain device (EACD), was used to increase the capture efficiency of cooker hoods and reduce cooking oil fume (COF) exposure in Chinese restaurants. An EACD was installed in six Chinese restaurants where the cooks complained of COF exposure. Before- and after-installation measurements were taken to compare changes in particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) in kitchen air, and changes in levels of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). The association between PM and PAHs in air and 8-OHdG and MDA in urine was evaluated by linear mixed-effects regression analysis. Results showed that geometric mean kitchen air levels of PM(10), PM(2.5), PM(1.0) and total particulate PAHs were significantly reduced after the EACDs were introduced. Urinary levels of 8-OHdG and MDA in cooks were also significantly lower after EACD instalment. PM(2.5), PM(1.0) and benzo(a)pyrene (BaP) levels were positively associated with urinary 8-OHdG levels after adjusting for key personal covariates. Urinary MDA levels in cooks were also positively associated with BaP levels after adjusting for key personal covariates. This study demonstrates that the EACD is effective for reducing COF and oxidative stress levels in cooks working in Chinese kitchens.
NASA Technical Reports Server (NTRS)
Rennak, Robert M; Messing, Wesley E; Morgan, James E
1946-01-01
The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author)
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle to exceed applicable emission standards with such parts installed. (h) Engine family means the... emission-data vehicle or engine selection and as determined in accordance with 40 CFR 86.078-24. (i) Vehicle or engine configuration means the specific subclassification unit of an engine family or certified...
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle to exceed applicable emission standards with such parts installed. (h) Engine family means the... emission-data vehicle or engine selection and as determined in accordance with 40 CFR 86.078-24. (i) Vehicle or engine configuration means the specific subclassification unit of an engine family or certified...
Code of Federal Regulations, 2014 CFR
2014-07-01
... vehicle to exceed applicable emission standards with such parts installed. (h) Engine family means the... emission-data vehicle or engine selection and as determined in accordance with 40 CFR 86.078-24. (i) Vehicle or engine configuration means the specific subclassification unit of an engine family or certified...
Code of Federal Regulations, 2012 CFR
2012-07-01
... vehicle to exceed applicable emission standards with such parts installed. (h) Engine family means the... emission-data vehicle or engine selection and as determined in accordance with 40 CFR 86.078-24. (i) Vehicle or engine configuration means the specific subclassification unit of an engine family or certified...
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle to exceed applicable emission standards with such parts installed. (h) Engine family means the... emission-data vehicle or engine selection and as determined in accordance with 40 CFR 86.078-24. (i) Vehicle or engine configuration means the specific subclassification unit of an engine family or certified...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fixed-pitch propellers, etc.). If the engine is certified as a recreational engine, state: “INSTALLING... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.135 Labeling. (a) Assign each engine a unique identification number and permanently affix...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fixed-pitch propellers, etc.). If the engine is certified as a recreational engine, state: “INSTALLING... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.135 Labeling. (a) Assign each engine a unique identification number and permanently affix...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fixed-pitch propellers, etc.). If the engine is certified as a recreational engine, state: “INSTALLING... EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.135 Labeling. (a) Assign each engine a unique identification number and permanently affix...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
46 CFR 129.560 - Engine-order telegraphs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Engine-order telegraphs. 129.560 Section 129.560 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Miscellaneous Electrical Systems § 129.560 Engine-order telegraphs. No OSV need carry an engine...
Installing SAM Instrument into Curiosity Mars Rover
2011-01-18
In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.
2010-09-16
ISS024-E-014952 (16 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014934 (16 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014956 (16 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014930 (16 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014981 (17 Sept. 2010) --- NASA astronaut Shannon Walker, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014973 (17 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
2010-09-16
ISS024-E-014979 (17 Sept. 2010) --- NASA astronaut Doug Wheelock, Expedition 24 flight engineer, works with Muscle Atrophy Resistive Exercise System (MARES) hardware during installation of MARES payload in the Columbus laboratory of the International Space Station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Abraham; Schneider, Gia; McKinstry, Katherine
Natel Energy is a low-head, distributed hydropower company based out of Alameda, CA. Natel manufactures and sells proprietary hydroelectric turbines called hydroEngines® that are suitable for low-head, high-flow settings, and range from 30kW to 1 MW of capacity per unit. Natel’s hydroEngine is a state-ofthe-art two stage impulse turbine, using blades mounted symmetrically on two belts perpendicular to the axis of travel, and using linearly-moving foils, rather than a rotor, to enable efficient conversion of kinetic energy of large volumes of water at low head with no risk of cavitation. In addition, the hydroEngine can be installed at or abovemore » tailwater level, reducing the excavation necessary to build the powerhouse and thus reducing total installed cost and project footprint. Thus, the hydroEngine technology enables a new generation of small hydro installations with low cost of project development, fish-friendly operations, and small project footprint. In September of 2015, Natel Energy formally commissioned its first project installation in Madras, Oregon, installing 1 SLH100 turbine at an existing drop structure on the North Unit Irrigation District (NUID) Main Canal. The water falls between 13.5 feet to 16.5 feet at this structure, depending on flow. The plant has an installed capacity of 250 kW and an expected annual generation of approximately 873 MWh. The plant operates at an annual capacity factor of 40%, and a capacity factor over the irrigation season, or period of available flow, of 80%. Annual capacity factor is calculated as a percentage of plant operating hours relative to a total of 8,760 hours in a year; because the irrigation canal in which the Project is located only runs water from April to October, the available flow capacity factor is higher. Net greenhouse gas reductions from the Monroe Project are estimated to be 602 tCO2/year. The purpose of this report is to provide an overview of the specifications for Natel’s first commissioned project, the project development process, the plant’s performance, project costs, and the construction, installation, and commissioning process. We hope that this report will provide useful context for assessment of the hydroEngine as a viable technology choice for future distributed, low-head hydropower projects, as well as assessment of the bankability, performance, reliability, and cost of the hydroEngine.« less
76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This... engine utilizing turbine (jet) fuel. The applicable airworthiness regulations do not contain adequate or...: Installation of the Austro Engine GmbH Model E4 ADE diesel engine utilizing turbine (jet) fuel. Discussion...
40 CFR 1051.20 - May I certify a recreational engine instead of the vehicle?
Code of Federal Regulations, 2011 CFR
2011-07-01
... in subpart F of this part. If the test procedures require vehicle testing, use good engineering... installation instructions as described in § 1051.130 and use good engineering judgment so that the engines will... section, use good engineering judgment to ensure that these engines are produced in the same manner as the...
40 CFR 1051.20 - May I certify a recreational engine instead of the vehicle?
Code of Federal Regulations, 2014 CFR
2014-07-01
... in subpart F of this part. If the test procedures require vehicle testing, use good engineering... installation instructions as described in § 1051.130 and use good engineering judgment so that the engines will... section, use good engineering judgment to ensure that these engines are produced in the same manner as the...
40 CFR 1051.20 - May I certify a recreational engine instead of the vehicle?
Code of Federal Regulations, 2012 CFR
2012-07-01
... in subpart F of this part. If the test procedures require vehicle testing, use good engineering... installation instructions as described in § 1051.130 and use good engineering judgment so that the engines will... section, use good engineering judgment to ensure that these engines are produced in the same manner as the...
40 CFR 1051.20 - May I certify a recreational engine instead of the vehicle?
Code of Federal Regulations, 2010 CFR
2010-07-01
... in subpart F of this part. If the test procedures require vehicle testing, use good engineering... installation instructions as described in § 1051.130 and use good engineering judgment so that the engines will... section, use good engineering judgment to ensure that these engines are produced in the same manner as the...
Infrared suppressor effect on T63 turboshaft engine performance
NASA Technical Reports Server (NTRS)
Bailey, E. E.; Civinskas, K. C.; Walker, C. L.
1978-01-01
Tests were conducted to determine if there are performance penalties associated with the installation of infrared (IR) suppressors on the T63-A-700 turboshaft engine. The testing was done in a sea-level, static test cell. The same engine (A-E402808 B) was run with the standard OH-58 aircraft exhaust stacks and with the ejector-type IR suppressors in order to make a valid comparison. Repeatability of the test results for the two configurations was verified by rerunning the conditions over a period of days. Test results showed no measurable difference in performance between the standard exhaust stacks and the IR suppressors.
Experimental performance of the regenerator for the Chrysler upgraded automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Winter, J. M.; Nussle, R. C.
1982-01-01
Automobile gas turbine engine regenerator performance was studied in a regenerator test facility that provided a satisfactory simulation of the actual engine operating environment but with independent control of airflow and gas flow. Velocity and temperature distributions were measured immediately downstream of both the core high-pressure-side outlet and the core low-pressure-side outlet. For the original engine housing, the regenerator temperature effectiveness was 1 to 2 percent higher than the design value, and the heat transfer effectiveness was 2 to 4 percent lower than the design value over the range of test conditions simulating 50 to 100 percent of gas generator speed. Recalculating the design values to account for seal leakage decreased the design heat transfer effectiveness to values consistent with those measured herein. A baffle installed in the engine housing high-pressure-side inlet provided more uniform velocities out of the regenerator but did not improve the effectiveness. A housing designed to provide more uniform axial flow to the regenerator was also tested. Although temperature uniformity was improved, the effectiveness values were not improved. Neither did 50-percent flow blockage (90 degree segment) applied to the high-pressure-side inlet change the effectiveness significantly.
Numerical methods for engine-airframe integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less
32 CFR 203.10 - Eligible activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reports include, but are not limited to: (i) Installation restoration program site studies, engineering documents, such as site inspections, remedial investigations, feasibility studies, engineering evaluation...
NASA Astrophysics Data System (ADS)
Miccoli, M.; Usai, A.; Tafuto, A.; Albertoni, A.; Togna, F.
2016-10-01
The propagation environment around airborne platforms may significantly degrade the performance of Electro-Optical (EO) self-protection systems installed onboard. To ensure the sufficient level of protection, it is necessary to understand that are the best sensors/effectors installation positions to guarantee that the aeromechanical turbulence, generated by the engine exhausts and the rotor downwash, does not interfere with the imaging systems normal operations. Since the radiation-propagation-in-turbulence is a hardly predictable process, it was proposed a high-level approach in which, instead of studying the medium under turbulence, the turbulence effects on the imaging systems processing are assessed by means of an equivalent statistical model representation, allowing a definition of a Turbulence index to classify different level of turbulence intensities. Hence, a general measurement methodology for the degradation of the imaging systems performance in turbulence conditions was developed. The analysis of the performance degradation started by evaluating the effects of turbulences with a given index on the image processing chain (i.e., thresholding, blob analysis). The processing in turbulence (PIT) index is then derived by combining the effects of the given turbulence on the different image processing primitive functions. By evaluating the corresponding PIT index for a sufficient number of testing directions, it is possible to map the performance degradation around the aircraft installation for a generic imaging system, and to identify the best installation position for sensors/effectors composing the EO self-protection suite.
Altitude Wind Tunnel Drive Fan being Assembled
1943-07-21
National Advisory Committee for Aeronautics (NACA) engineers assembled the Altitude Wind Tunnel’s (AWT) large wooden drive fan inside the hangar at the Aircraft Engine Research Laboratory. When it was built at the in the early 1940s the AWT was among the most complex test facilities ever designed. It was the first wind tunnel capable of operating full-scale engines under realistic flight conditions. This simulation included the reduction of air temperature, a decrease in air pressure, and the creation of an airstream velocity of up to 500 miles per hour. The AWT was constructed in 1942 and 1943. This photograph shows NACA engineers Lou Hermann and Jack Aust assembling the tunnel’s drive fan inside the hangar. The 12-bladed, 31-foot-diameter spruce wood fan would soon be installed inside the wind tunnel to create the high-speed airflow. This massive propeller was designed and constructed by the engine lab's design team at Langley Field. John Breisch, a Langley technician with several years of wind tunnel installation experience, arrived in Cleveland at the time of this photograph to supervise the fan assembly inside the hangar. He would return several weeks later to oversee the actual installation in the tunnel. The fan was driven at 410 revolutions per minute by an 18,000-horsepower General Electric induction motor that was located in the rear corner of the Exhauster Building. An extension shaft connected the motor to the fan. A bronze screen protected the fan against damage from failed engine parts sailing through the tunnel. Despite this screen the blades did become worn or cracked over time and had to be replaced. An entire new fan was installed in 1951.
14 CFR 23.1309 - Equipment, systems, and installations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of the effect. (2) In a single-engine airplane, must be designed to minimize hazards to the airplane in the event of a probable malfunction or failure. (3) In a multiengine airplane, must be designed to... category airplane, must be designed to safeguard against hazards to the airplane in the event of their...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
14 CFR 25.934 - Turbojet engine thrust reverser system tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet engine thrust reverser system... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.934 Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet the...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
46 CFR 169.693 - Engine order telegraph systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Engine order telegraph systems. 169.693 Section 169.693... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.693 Engine order telegraph systems. An engine order telegraph system is not required. ...
14 CFR 27.1189 - Shutoff means.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (1) Lines, fittings, and components forming an intergral part of an engine; (2) For oil systems for which all components of the system, including oil tanks, are fireproof or located in areas not subject to engine fire conditions; and (3) For reciprocating engine installations only, engine oil system...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom
2011-12-01
Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systemsmore » are properly specified and installed with respect to the continuing structural integrity of the building.« less
New Research on the Cowling and Cooling of Radial Engines
NASA Technical Reports Server (NTRS)
Molloy, Richard C.; Brewster, James H., III
1943-01-01
An extensive series of wind-tunnel tests on a half-scale conventional, nacelle model were made by the United Aircraft Corporation to determine and correlate the effects of many variables on cooling air flow and nacelle drag. The primary investigation was concerned with the reaction of these factors to varying conditions ahead of, across, and behind the engine. In the light of this investigation, common misconceptions and factors which are frequently overlooked in the cooling and cowling of radial engines are considered in some detail. Data are presented to support certain design recommendations and conclusions which should lead toward the improvement of present engine installations. Several charts are included to facilitate the estimation of cooling drag, available cooling pressure, and cowl exit area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine, including the combustor, turbine, and tailpipe sections of turbine engine installations, must be isolated by a firewall, shroud, or equivalent means, from personnel compartments, structures, controls...
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine, including the combustor, turbine, and tailpipe sections of turbine engine installations, must be isolated by a firewall, shroud, or equivalent means, from personnel compartments, structures, controls...
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine, including the combustor, turbine, and tailpipe sections of turbine engine installations, must be isolated by a firewall, shroud, or equivalent means, from personnel compartments, structures, controls...
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine, including the combustor, turbine, and tailpipe sections of turbine engine installations, must be isolated by a firewall, shroud, or equivalent means, from personnel compartments, structures, controls...
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine, including the combustor, turbine, and tailpipe sections of turbine engine installations, must be isolated by a firewall, shroud, or equivalent means, from personnel compartments, structures, controls...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... modification that included installation of winglets and different engines and propellers) were installed. The... addition of winglets. (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... group: (1) Radio and electronic equipment—for improper installation and insecure mounting. (2) Wiring...) Systems and components—for improper installation, apparent defects, and unsatisfactory operation. (3...) improper operation. (5) Flight and engine controls—for improper installation and improper operation. (6...
Hopkins installs wire harnesses
2013-11-24
ISS038-E-008291 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, installs wire harnesses in the International Space Station?s Harmony node to support the installation of Ethernet video cables for the station?s local area network. These new cables will provide Ethernet connectivity to the visiting vehicles that dock to Harmony?s Earth-facing port.
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
NASA Technical Reports Server (NTRS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-01-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development
NASA Astrophysics Data System (ADS)
Whitfield, C. E.; Mani, R.; Gliebe, P. R.
1990-07-01
The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.
2011-02-16
ISS026-E-027391 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.
2011-02-16
ISS026-E-027361 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.
2011-02-16
ISS026-E-027368 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.
Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes
NASA Technical Reports Server (NTRS)
Czech, Michael J.; Thomas, Russell H.
2013-01-01
As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided quantification of the aeroacoustic installation effects for a wide range of open rotor and airframe configurations and can be used with data processing methods to evaluate the aeroacoustic installation effects for open rotors with modern blade designs.
Economics of installation of solar heating plants
NASA Astrophysics Data System (ADS)
Popel, O. S.; Frid, S. Y.; Shpiltayn, E. E.
1984-04-01
An engineering-economic analysis of solar heating plants for determination of their cost effectiveness involves calculating the maximum economically feasibile extra capital investment on their installation and calculating the fraction of the total heat demand covered by such a plant which makes replacement of conventional heating plant maximally economical. The annual economic effect of solar heating is calculated in terms of normalized cost differential, as criterion for its competitiveness with conventional heating. Plant performance characteristics, namely dependence of both the percent demand coverage and the annual cost differential on the area of solar radiation collectors is then considered. Analysis of the cost equation, assuming that the extra fixed cost is proportional to the collector area, reveals the necessary and sufficient condition for decrease of annual operating cost.
Code of Federal Regulations, 2010 CFR
2010-01-01
... chapter. (2) Each turbine engine must comply with one of the following: (i) Sections 33.76, 33.77 and 33... any engine individually in flight, except that, for turbine engine installations, the means for... might be exposed to fire must be at least fire-resistant. If hydraulic propeller feathering systems are...
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Allen, M. (Editor)
1980-01-01
Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.
77 FR 16921 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA..., PW4160, PW4460, PW4462, and PW4650 turbofan engines, including models with any dash number suffix. This... Compliance We estimate that this AD will affect 44 turbofan engines installed on airplanes of U.S. registry...
76 FR 64844 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... General Electric Company (GE) CF6-45 and CF6-50 series turbofan engines with certain low-pressure turbine... series turbofan engines with certain LPT rotor stage 3 disks installed. That AD requires initial and...
78 FR 5126 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. This AD requires replacement of the fuel oil heat exchanger (FOHE). This AD was prompted...-84 turbofan engines with a fuel oil heat exchanger (FOHE), part number 47111-1241, installed. (d...
40 CFR 94.203 - Application for certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in § 94.210 to accurately reflect the manufacturer's production. (d) Each application shall include... temperature or engine speed); (iii) Each auxiliary emission control device (AECD); and (iv) All fuel system components to be installed on any production or test engine(s). (3) A description of the test engine. (4...
40 CFR 94.203 - Application for certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in § 94.210 to accurately reflect the manufacturer's production. (d) Each application shall include... temperature or engine speed); (iii) Each auxiliary emission control device (AECD); and (iv) All fuel system components to be installed on any production or test engine(s). (3) A description of the test engine. (4...
2011-06-10
A J-2X next-generation rocket engine is lifted onto the A-2 Test Stand at Stennis Space Center. Testing of the engine began the following month. The engine is being developed for NASA by Pratt & Whitney Rocketdyne and could help carry humans beyond low-Earth orbit into deep space once more.
77 FR 67582 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for certain Rolls-Royce Deutschland Ltd & Co KG (RRD) Tay 611-8 turbofan engines... properties may have been installed in some engines. This proposed AD would require inspection and replacement...
46 CFR 182.420 - Engine cooling.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...
46 CFR 182.420 - Engine cooling.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...
46 CFR 182.425 - Engine exhaust cooling.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...
46 CFR 182.425 - Engine exhaust cooling.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...
46 CFR 182.420 - Engine cooling.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...
46 CFR 182.420 - Engine cooling.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...
46 CFR 182.425 - Engine exhaust cooling.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...
46 CFR 182.425 - Engine exhaust cooling.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Engine exhaust cooling. 182.425 Section 182.425 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry...
NASA Astrophysics Data System (ADS)
Edlund, C. A.
2017-12-01
The Department of Defense (DoD) is planning over $500M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. This construction program will expand the footprint of facilities and change the storm water management scheme, which will have second order effects on the underlying permafrost layer. These changes in permafrost will drive engineering decision making at local and regional levels, and help shape the overall strategy for military readiness in the Arctic. Although many studies have attempted to predict climate change induced permafrost degradation, very little site-specific knowledge exists on the anthropogenic effects to permafrost at this location. In 2016, the permafrost degradation rates at Eielson AFB were modeled using the Geophysics Institute Permafrost Laboratory (GIPL) 2.1 model and limited available geotechnical and climate data. Model results indicated a degradation of the discontinuous permafrost layer at Eielson AFB of up to 7 meters in depth over the next century. To further refine an understanding of the geophysics at Eielson AFB and help engineers and commanders make more informed decisions on engineering and operations in the arctic, this project established two permafrost monitoring stations near the future construction sites. Installation of the stations occurred in July 2017. Permafrost was located and characterized using two Electrical Resistivity Tomography surveys, as well as direct frost probe measurements. Using this data, the research team optimized the placement location and depth of two long term ground temperature monitoring stations, and then installed the stations for data collection. The data set generated by these stations are the first of their kind at Eielson AFB, and represent the first systematic effort in the DoD to quantify permafrost condition before, during, and after construction and other anthropogenic activities in order to fully understand the effects of that activity in the future.
51. (Credit JTL) Interior view (looking NW) of new pumping ...
51. (Credit JTL) Interior view (looking NW) of new pumping room built in 1921. In the right foreground is #1 low service pump built in 1897. Installed at McNeil in 1898, it was not moved during the building of this room in 1921. Beyond is a 5 mgd capacity Worthington-Snow cross-compound, duplex crank-and-fly-wheel engine built in 1920. Behind the worthington is an 8 mgd Allis-Chalmers engine of the same configuration. it was built in 1911, but not installed at McNeil until 1927. Both engines have condensers. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)
2009-10-22
ISS021-E-011438 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.
View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)
2009-10-22
ISS021-E-011443 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.
View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)
2009-10-22
ISS021-E-011440 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.
40 CFR 1039.130 - What installation instructions must I give to equipment manufacturers?
Code of Federal Regulations, 2011 CFR
2011-07-01
... make sure the installed engine will operate according to design specifications in your application for... post instructions on a publicly available website for downloading or printing. If you do not provide...
40 CFR 1039.130 - What installation instructions must I give to equipment manufacturers?
Code of Federal Regulations, 2012 CFR
2012-07-01
... make sure the installed engine will operate according to design specifications in your application for... post instructions on a publicly available website for downloading or printing. If you do not provide...
40 CFR 1039.130 - What installation instructions must I give to equipment manufacturers?
Code of Federal Regulations, 2013 CFR
2013-07-01
... make sure the installed engine will operate according to design specifications in your application for... post instructions on a publicly available website for downloading or printing. If you do not provide...
40 CFR 1039.130 - What installation instructions must I give to equipment manufacturers?
Code of Federal Regulations, 2014 CFR
2014-07-01
... make sure the installed engine will operate according to design specifications in your application for... post instructions on a publicly available website for downloading or printing. If you do not provide...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maintenance. (c) Engine cowls and nacelles must be easily removable or openable by the pilot to provide adequate access to and exposure of the engine compartment for preflight checks. (d) Each turbine engine...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maintenance. (c) Engine cowls and nacelles must be easily removable or openable by the pilot to provide adequate access to and exposure of the engine compartment for preflight checks. (d) Each turbine engine...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maintenance. (c) Engine cowls and nacelles must be easily removable or openable by the pilot to provide adequate access to and exposure of the engine compartment for preflight checks. (d) Each turbine engine...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maintenance. (c) Engine cowls and nacelles must be easily removable or openable by the pilot to provide adequate access to and exposure of the engine compartment for preflight checks. (d) Each turbine engine...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... maintenance. (c) Engine cowls and nacelles must be easily removable or openable by the pilot to provide adequate access to and exposure of the engine compartment for preflight checks. (d) Each turbine engine...
32 CFR 634.24 - Traffic planning and codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... enforcement officer, engineer, safety officer, and other concerned staff agencies. Highway engineering representatives from adjacent civil communities must be consulted to ensure the installation plan is compatible... and minor routes, location of traffic control devices, and conditions requiring engineering or...
Reduction of Dynamic Loads in Mine Lifting Installations
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu
2018-01-01
Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.
Investigation of the interference effects of mixed flow long duct nacelles on a DC-10 wing
NASA Technical Reports Server (NTRS)
Patel, S. P.; Donelson, J. E.
1982-01-01
Wind tunnel test results utilizing a 4.7 percent scale semispan model in the 11 foot transonic wind tunnel are presented. A low drag long duct nacelle installation for the DC-10 jet transport was developed. A long duct nacelle representative of a CF6-50 mixed flow configuration was investigated on the DC-10-30. The results showed that the long duct nacelle installation located in the same position as the current short duct nacelle and with the current production symmetrical pylon is a relatively low risk installation for the DC-10 aircraft. Tuft observations and analytical boundary layer analysis confirmed that the flow on the nacelle afterbody was attached. A small pylon fairing was evaluated and found to reduce channel peak suction pressures, which resulted in a small drag improvement. The test also confirmed that the optimum nacelle incidence angle is the same as for the short duct nacelle, thus the same engine mount as for the production short duct nacelle can be used for the long duct nacelle installation. Comparison of the inboard wing pylon nacelle channel pressure distributions, with flow through and powered long duct nacelles showed that the power effects did not change the flow mechanism; hence, power effects can be considered negligible.
2011-05-01
prepared to acquire 50% of domestic aviation fuel requirements via an alternative fuel blend by 2016 Installation Energy Reduce energy intensity by...FY10 On track to certify fleet on synthetic fuel blend by early 2011 Installation Energy Reduced installation energy intensity nearly 15% since... Winglets Manufacturing Methods Propulsion Integration Alt Fuels Analysis New Efficient Engines Legacy Aircraft Energy Harvesting Weight-optimized
40. 1911 ELECTRIC MOTOR INSTALLATION: Photocopy of July 1911 photograph ...
40. 1911 ELECTRIC MOTOR INSTALLATION: Photocopy of July 1911 photograph showing the installed 600hp General Electric motor at the Washington and Mason Streets powerhouse. View towards the south wall of the first floor. Note the engineer's shack and switchboard behind the motor and its pinion gear. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA
Science Officer Whitson installs SUBSA in MSG
2002-07-05
ISS005-E-06787 (5 July 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, works near the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). Whitson spent much of the morning installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the MSG. The SUBSA installation will be completed once the MSG is activated.
Vroblesky, Don A.; Casey, Clifton C.
2007-01-01
The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used innovative sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report evaluates a new type of pore-water sampler developed for this investigation to examine the subsurface contamination beneath the drainage ditch. The new type of pore-water sampler appears to be an effective approach for long-term monitoring of ground water in the sand and organic-rich mud beneath the drainage ditch.
NASA Technical Reports Server (NTRS)
Chrisenberry, H. E.; Doss, P. G.; Kressly, A. E.; Prichard, R. D.; Thorndike, C. S.
1973-01-01
A low speed wind tunnel test was conducted to assess the effects of the larger JT8D refan nacelles on the stability and control characteristics of the DC-9-30, with emphasis on the deep stall regime. Deep stall pitching moment and elevator hinge moment data, and low angle of attack tail-on and tail-off pitching moment data are presented. The refan nacelle was tested in conjunction with various pylons of reduced span relative to the production DC-9-30 pylon. Also, a horizontal tail that was larger than the production tail was tested. The data show that the refan installation has a small detrimental effect on the DC-9-30 deep stall recovery capability, that recovery characteristics are essentially independent of pylon span, and that the larger horizontal tail significantly increases recovery margins. The deep stall characteristics with the refan installation, within the range of pylon spans tested, are acceptable with no additional design changes anticipated.
NASA Technical Reports Server (NTRS)
Holm, R. G.; Langenbrunner, L. E.; Mccann, E. O.
1981-01-01
The inlet radiated noise of a turbofan engine was studied. The principal research objectives were to characterize or suppress such noise with particular regard to its tonal characteristics. The major portion of this research was conducted by using ground-based static testing without simulation of aircraft forward speed or aircraft installation-related aeroacoustic effects.
NASA Technical Reports Server (NTRS)
1988-01-01
A flight program was completed in June of 1985 using the Boeing 757 flight research aircraft with an NLF glove installed on the right wing just outboard of the engine. The objectives of this program were to measure noise levels on the wing and to investigate the effect of engine noise on the extent of laminar flow on the glove. Details of the flight test program and results are contained in Volume 1 of this document. Tabulations and plots of the measured data are contained in Volume 2. The present volume contains the results of additional engineering analysis of the data. The latter includes analysis of the measured noise data, a comparison of predicted and measured noise data, a boundary layer stability analysis of 21 flight data cases, and an analysis of the effect of noise on boundary layer transition.
2012-09-05
ISS032-E-025152 (5 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 32 flight engineer, participates in the mission?s third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station?s robotic arm, Canadarm2.
2012-09-05
ISS032-E-025234 (5 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 32 flight engineer, participates in the mission?s third session of extravehicular activity (EVA). During the six-hour, 28-minute spacewalk, Hoshide and NASA astronaut Sunita Williams (out of frame), flight engineer, completed the installation of a Main Bus Switching Unit (MBSU) that was hampered last week by a possible misalignment and damaged threads where a bolt must be placed. They also installed a camera on the International Space Station?s robotic arm, Canadarm2.
14 CFR 33.29 - Instrument connection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...
14 CFR 33.29 - Instrument connection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...
14 CFR 33.29 - Instrument connection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...
14 CFR 33.29 - Instrument connection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
32 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... installations by participating in traffic control studies designed to obtain information on traffic problems and... phase of engineering concerned with the planning, design, construction, and maintenance of streets, highways, and abutting lands. (2) Select, determine appropriate design, procure, construct, install, and...
Orbit Transfer Vehicle (OTV) engine, phase A study. Volume 2: Study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1979-01-01
The hydrogen oxygen engine used in the orbiter transfer vehicle is described. The engine design is analyzed and minimum engine performance and man rating requirements are discussed. Reliability and safety analysis test results are presented and payload, risk and cost, and engine installation parameters are defined. Engine tests were performed including performance analysis, structural analysis, thermal analysis, turbomachinery analysis, controls analysis, and cycle analysis.
18. VIEW AFT INTO ENGINE ROOM AND UP INTO CAPTAIN'S ...
18. VIEW AFT INTO ENGINE ROOM AND UP INTO CAPTAIN'S CABIN. THE AFTER BULKHEAD OF THE ENGINE ROOM WAS REMOVED WHEN THE ENGINE WAS SALVAGED. ENGINE BED AND GEARBOX ARE REMNANTS OF THE ENGINE INSTALLATION. CABLES AND CHAINS ARE IN PLACE TO HELP STABILIZE THE HULL AND TRANSOM. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA
Noise of deflectors used for flow attachment with STOL-OTW configurations
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.; Groesbeck, D.
1977-01-01
Future STOL aircraft may utilize engine-over-the-wing installations in which the exhaust nozzles are located above and separated from the upper surface of the wing. An external jet flow deflector can be used with such installations to provide flow attachment to the wing/flap surfaces for lift augmentation. Deflector noise in the flyover plane measured with several model-scale nozzle/deflector/wing configurations is examined. The deflector-associated noise is correlated in terms of velocity and geometry parameters. The data also indicate that the effective overall sound pressure level of the deflector-associated noise peaks in the forward quadrant near 40 deg from the inlet axis.
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., assistant driller, toolpusher, assistant toolpusher, barge supervisor, mechanical supervisor, electrician... 14 days of that supervisory service on surface units; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and...
46 CFR 11.470 - National officer endorsements as offshore installation manager.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., mechanical supervisor, electrician, crane operator, ballast control operator, or equivalent supervisory... from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and Technology (ABET). The National Maritime Center will give consideration to...
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., assistant driller, toolpusher, assistant toolpusher, barge supervisor, mechanical supervisor, electrician... 14 days of that supervisory service on surface units; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and...
46 CFR 11.470 - Officer endorsements as offshore installation manager.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., assistant driller, toolpusher, assistant toolpusher, barge supervisor, mechanical supervisor, electrician... 14 days of that supervisory service on surface units; or (ii) A degree from a program in engineering or engineering technology which is accredited by the Accreditation Board for Engineering and...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT TITLES AND SECURITY DOCUMENTS Encumbrances Against Air Carrier Aircraft Engines, Propellers... aircraft engine, propeller, or appliance maintained by or on behalf of an air carrier certificated under 49 U.S.C. 44705 for installation or use in aircraft, aircraft engines, or propellers, or any spare...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT TITLES AND SECURITY DOCUMENTS Encumbrances Against Air Carrier Aircraft Engines, Propellers... aircraft engine, propeller, or appliance maintained by or on behalf of an air carrier certificated under 49 U.S.C. 44705 for installation or use in aircraft, aircraft engines, or propellers, or any spare...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT TITLES AND SECURITY DOCUMENTS Encumbrances Against Air Carrier Aircraft Engines, Propellers... aircraft engine, propeller, or appliance maintained by or on behalf of an air carrier certificated under 49 U.S.C. 44705 for installation or use in aircraft, aircraft engines, or propellers, or any spare...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT TITLES AND SECURITY DOCUMENTS Encumbrances Against Air Carrier Aircraft Engines, Propellers... aircraft engine, propeller, or appliance maintained by or on behalf of an air carrier certificated under 49 U.S.C. 44705 for installation or use in aircraft, aircraft engines, or propellers, or any spare...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT TITLES AND SECURITY DOCUMENTS Encumbrances Against Air Carrier Aircraft Engines, Propellers... aircraft engine, propeller, or appliance maintained by or on behalf of an air carrier certificated under 49 U.S.C. 44705 for installation or use in aircraft, aircraft engines, or propellers, or any spare...
ERIC Educational Resources Information Center
Blackwell, H. Richard
1963-01-01
An application method for evaluating the visual significance of reflected glare is described, based upon a number of decisions with respect to the relative importance of various aspects of visual performance. A standardized procedure for evaluating the overall effectiveness of lighting from photometric data on materials or installations is needed…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... equivalent to that established by the existing airworthiness standards. DATES: Effective Date: August 19... addition, the J182T certification basis includes special conditions and equivalent levels of safety. If the... Sec. 23.961 and adds the possibility of testing non- aviation diesel fuels. To ensure fuel system...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2012 CFR
2012-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2014 CFR
2014-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
14 CFR Appendix A to Part 23 - Simplified Design Load Criteria
Code of Federal Regulations, 2013 CFR
2013-01-01
... imposed when the particular items are installed in the airplane. The engine mount, however, must be.... (d) Supplementary conditions; rear lift truss; engine torque; side load on engine mount. Each of the... weight. (2) Each engine mount and its supporting structures must be designed for the maximum limit torque...
78 FR 35574 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines AGENCY: Federal Aviation... airworthiness directive (AD) for all Rolls-Royce Deutschland Ltd & Co KG (RRD) model Tay 650-15 turbofan engines... Compliance We estimate that this proposed AD affects 52 Tay turbofan engines installed on airplanes of U.S...
77 FR 54791 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... Airworthiness Directives; Pratt & Whitney Division Turbofan Engines AGENCY: Federal Aviation Administration (FAA... & Whitney Division PW4000-94'' and PW4000-100'' turbofan engines having a 1st stage high-pressure turbine... AD will affect 446 P&W PW4000-94'' and PW4000-100'' turbofan engines installed on airplanes of U.S...
77 FR 3088 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-10E series turbofan engines. This AD was prompted by a report of heavy wear... turbofan engines installed on airplanes of U.S. registry. We also estimate that it will take about 8 work...
Code of Federal Regulations, 2010 CFR
2010-10-01
... flow, must be fitted in the fuel supply lines, one at the tank connection and one at the engine end of... flexible hose must be installed in the fuel supply line at or near the engines. The flexible hose must meet... of the engine manufacturer, must be fitted in the fuel supply line in the engine compartment...
77 FR 23380 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... Airworthiness Directives; Turbomeca S.A. Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT....A. Arrius 2F turboshaft engines with P3 air pipe (first section) part number (P/N) 0 319 71 918 0... same inspections for installed engines, eliminates readjusting of the P3 air pipe (first section...
14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations, each...
14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations, each...
14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations, each...
14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations, each...
14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations, each...
Site Characterization Report (Building 202). Volume 2. Appendicies A-H.
1996-04-01
Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and
14 CFR 125.177 - Control of engine rotation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section... flight. (b) In the case of turbine engine installations, a means of stopping rotation need be provided...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmi, S.
1996-03-18
The United States Air Force (Air Force) has prepared this Remedial investigation/Feasibility Study (RI/FS) report as part of the Installation Restoration Program (IRP) to present results of RI/FS activities at five sites at the Bullen Point radar installation. The IRP provides for investigating, quantifying, and remediating environmental contamination from past waste management activities at Air Force installations throughout the United States.
Integrated Field Testing of Fuel Cells and Micro-Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerome R. Temchin; Stephen J. Steffel
A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This reportmore » contains installation and operation issues as well as the utility perspective on DG deployment.« less
Lewis Research Center support of Chrysler upgraded engine program
NASA Technical Reports Server (NTRS)
Warren, E. L.
1978-01-01
Running of the upgraded engine has indicated that, although the engine is mechanically sound, it is deficient in power. Recent modifications and corrective action have improved this. Testing of the engine is being done in the test cell. This simulates an automobile installation. Located in the inlet flow ducts are two turbine flow meters to measure engine air flow.
78 FR 44899 - Airworthiness Directives; General Electric Company Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Electric Company (GE) GE90-110B1 and -115B turbofan engines. This proposed AD was prompted by multiple...) 2165M22P01, installed on GE90-110B1 and -115B turbofan engines. One of the leaks led to an under cowl engine...
Automotive Stirling Engine Development Project
NASA Technical Reports Server (NTRS)
Ernst, William D.; Shaltens, Richard K.
1997-01-01
The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.