Sample records for engine main combustion

  1. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  2. Distributed ignition method and apparatus for a combustion engine

    DOEpatents

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  3. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  4. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  5. Hot-Fire Test Results of Liquid Oxygen/RP-2 Multi-Element Oxidizer-Rich Preburners

    NASA Technical Reports Server (NTRS)

    Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.; Hulka, J. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. To supply the oxidizer-rich combustion products to the main injector of the integrated test article, existing subscale preburner injectors from a previous NASA-funded oxidizer-rich staged combustion engine development program were utilized. For the integrated test article, existing and newly designed and fabricated inter-connecting hot gas duct hardware were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. However, before one of the preburners was used in the integrated test article, it was first hot-fire tested at length to prove it could provide the hot exhaust gas mean temperature, thermal uniformity and combustion stability necessary to perform in the integrated test article experiment. This paper presents results from hot-fire testing of several preburner injectors in a representative combustion chamber with a sonic throat. Hydraulic, combustion performance, exhaust gas thermal uniformity, and combustion stability data are presented. Results from combustion stability modeling of these test results are described in a companion paper at this JANNAF conference, while hot-fire test results of the preburner injector in the integrated test article are described in another companion paper.

  6. NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

    NASA Image and Video Library

    2016-12-08

    A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)

  7. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for combustion analysis model development. Hot-fire testing was conducted with main combustion chamber pressures ranging from 1400 to 2100 psia, and main combustion chamber mixture ratios ranging from 2.4 to 2.9. Different levels of fuel film cooling injected from the injector face were examined ranging from none to about 12% of the total fuel flow. This paper presents the hot-fire test results of the integrated test article. Combustion performance, stability, thermal, and compatibility characteristics of both the preburner and the thrust chamber are described. Another companion paper at this JANNAF meeting includes additional and more detailed test data regarding the combustion dynamics and stability characteristics.

  8. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  9. Design of Training Systems. Computerization of the Educational Technology Assessment Model (ETAM). Volume 2

    DTIC Science & Technology

    1977-05-01

    444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION

  10. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1978-01-01

    Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.

  11. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  12. Flame Acceleration and Transition to Detonation in High Speed Turbulent Combustion

    DTIC Science & Technology

    2016-12-21

    gas mixtures and sprays is dif- ficult to overestimate, as it is the main process in all internal-combustion engines used for propulsion and energy...generation. These include piston engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high...speed combustion is critical for the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus

  13. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  14. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  15. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  16. Development of teaching material to integrate GT-POWER into combustion courses for IC engine simulations.

    DOT National Transportation Integrated Search

    2009-02-01

    The main objective of this project was to develop instructional engineering projects that utilize the newly-offered PACE software GT-POWER for engine simulations in combustion-related courses at the Missouri University of Science and Technology. Stud...

  17. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  18. General view looking down the approximate centerline of the expansion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking down the approximate centerline of the expansion nozzle of a Space Shuttle Main Engine (SSME) mounted on a SSME Engine Handler in the SSME Processing Facility at Kennedy Space Center. This view shows the 1080 cooling tubes used to regeneratively cool the Nozzle and Combustion Chamber by circulating relatively low temperature fuel through the tubes and manifolds before being ignited in the Main Combustion Chamber. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. State of the art and future needs in S.I. engine combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maly, R.R.

    1994-12-31

    The paper reviews, in short, the state-of-the-art in SI engine combustion by addressing its main features: mixture formation, ignition, homogeneous combustion, pollutant formation, knock, and engine modeling. Necessary links between fundamental and practical work are clarified and discussed along with advanced diagnostics and simulation tools. The needs for further work are identified, the most important one being integration of all fundamental and practical resources to meet R and D requirements for future engines.

  20. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    NASA Astrophysics Data System (ADS)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  1. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  2. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  3. Numerical analysis of the hot-gas-side and coolant-side heat transfer in liquid rocket engine combustors

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Van, Luong

    1992-01-01

    The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.

  4. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  5. Redesign and Test of an SSME Turbopump for the Large Throat Main Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Lunde, K. J.; Lee, G. A.; Eastland, A. H.; Rojas, L.

    1994-01-01

    The preburner oxidizer turbopump for the Space Shuttle Main Engine (SSME) was successfully redesigned for use with the Large Throat Main Combustion Chamber (LTMCC) and tested in air utilizing rapid prototyping. The redesign increases the SSME's operating range with the current Main Combustion Chamber (MCC) while achieving full operational range with the LTMCC. The use of rapid prototyping and air testing to validate the redesign demonstrated the ability to design, fabricate and test designs rapidly and at a very low cost.

  6. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  7. Combustion Stability Verification for the Thrust Chamber Assembly of J-2X Developmental Engines 10001, 10002, and 10003

    NASA Technical Reports Server (NTRS)

    Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.

    2015-01-01

    The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.

  8. Space Shuttle main engine product improvement

    NASA Technical Reports Server (NTRS)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  9. An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John E. Dec; Peter L. Kelly-Zion

    Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation andmore » oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.« less

  10. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  11. Study on the combustion process in a modern diesel engine controlled by pre-injection strategy

    NASA Astrophysics Data System (ADS)

    Punov, P.; Milkov, N.; Perilhon, C.; Podevin, P.; Evtimov, T.

    2017-10-01

    The paper aims to study the combustion process in a modern diesel engine over the engine operating map. In order to study the rate of heat release (ROHR), an automotive diesel engine was experimentally tested using the injection parameters factory defined. The experimental test was conducted over the engine operating map as the engine speed was limited to 2400 rpm. Then, an engine simulation model was developed in AVL Boost. By means of that model the ROHR was estimated and approximated by means of double Vibe function. In all engine operating points we found two peaks at the ROHR. The first is a result of the pilot injection as the second corresponds to the main injection. There was not found an overlap between both peaks. It was found that the first peak of ROHR occurs closely before top dead center (BTDC) at partial load than full load. The ROHR peak as a result of main injection begins from 4°BTDC to 18°ATDC. It starts earlier with increasing engine speed and load. The combustion duration varies from 30 ºCA to 70 °CA. In order to verify the results pressure curve was estimated by means of defined Vibe function parameters and combustion duration. As a result, we observed small deviation between measured and simulated pressure curves.

  12. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    NASA Technical Reports Server (NTRS)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.

  13. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  14. An overview of the current technology relevant to the design and development of the Space Transportation Main Engine (STME)

    NASA Technical Reports Server (NTRS)

    Das, Digendra K.

    1991-01-01

    The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.

  15. Space Shuttle Project

    NASA Image and Video Library

    1977-08-01

    A workman reams holes to the proper size and aligment in the Space Shuttle Main Engine's main injector body, through which propellants will pass through on their way into the engine's combustion chamber. Rockwell International's Rocketdyne Division plant produced the engines under contract to the Marshall Space Flight Center.

  16. Radiation effect on rocket engine performance

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  17. Evaluation of a staged fuel combustor for turboprop engines

    NASA Technical Reports Server (NTRS)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  18. Shock-Induced Heating In A Rocket Engine

    NASA Technical Reports Server (NTRS)

    Lagnado, Ronald R.; Raiszadeh, Farhad

    1989-01-01

    Misalignments give rise to hotspots on walls. Report discusses numerical simulation of flow in and near small, ringlike cavity in wall of Space Shuttle main engine at junction of main combustion chamber and nozzle. Purpose to study effects of misalignments between combustion chamber and nozzle on transfer of heat into surfaces chamber, cavity, and nozzle. Depending on specific misalignment flow encounters forward-or backward-facing step leaving chamber and entering nozzle. Results in serious losses of performance and excessive heating of walls.

  19. Bulkhead insert for an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions definemore » at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.« less

  20. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  1. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  2. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  3. Space shuttle main engine: Interactive design challenges

    NASA Technical Reports Server (NTRS)

    Mccarty, J. P.; Wood, B. K.

    1985-01-01

    The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.

  4. Sound quality assessment of Diesel combustion noise using in-cylinder pressure components

    NASA Astrophysics Data System (ADS)

    Payri, F.; Broatch, A.; Margot, X.; Monelletta, L.

    2009-01-01

    The combustion process in direct injection (DI) Diesel engines is an important source of noise, and it is thus the main reason why end-users could be reluctant to drive vehicles powered with this type of engine. This means that the great potential of Diesel engines for environment preservation—due to their lower consumption and the subsequent reduction of CO2 emissions—may be lost. Moreover, the advanced combustion concepts—e.g. the HCCI (homogeneous charge compression ignition)—developed to comply with forthcoming emissions legislation, while maintaining the efficiency of current engines, are expected to be noisier because they are characterized by a higher amount of premixed combustion. For this reason many efforts have been dedicated by car manufacturers in recent years to reduce the overall level and improve the sound quality of engine noise. Evaluation procedures are required, both for noise levels and sound quality, that may be integrated in the global engine development process in a timely and cost-effective manner. In previous published work, the authors proposed a novel method for the assessment of engine noise level. A similar procedure is applied in this paper to demonstrate the suitability of combustion indicators for the evaluation of engine noise quality. These indicators, which are representative of the peak velocity of fuel burning and the resonance in the combustion chamber, are well correlated with the combustion noise mark obtained from jury testing. Quite good accuracy in the prediction of the engine noise quality has been obtained with the definition of a two-component regression, which also permits the identification of the combustion process features related to the resulting noise quality, so that corrective actions may be proposed.

  5. Closeup view looking into the nozzle of the Space Shuttle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking into the nozzle of the Space Shuttle Main Engine number 2061 looking at the cooling tubes along the nozzle wall and up towards the Main Combustion Chamber and Injector Plate - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Effect of Atmospheric Pressure and Temperature on a Small Spark Ignition Internal Combustion Engine’s Performance

    DTIC Science & Technology

    2011-03-24

    open and close as the piston moves up and down within the cylinder. The main difference between cross-scavenged and loop -scavenged engines is the...with the fuel and is burned as part of the combustion process. In four stroke engines the oil is contained within a separate area and is a closed loop ...exchanger shown in Figure 26 was placed as close to the engine as possible. This was done to reduce increases in air temperature between the heat

  7. Evaluation of the correlation between concentration of volatile organic compounds and temperature of the exhaust gases in motor vehicles

    NASA Astrophysics Data System (ADS)

    Skrętowicz, Maria; Wróbel, Radosław; Andrych-Zalewska, Monika

    2017-11-01

    Volatile organic compounds (VOCs) are the group of organic compounds which are one of the most important air pollutants. One of the main sources of VOCs are combustion processes including fuel combustion is internal combustion engines. Volatile organic compounds are very dangerous pollution, because even in very low concentrations they have significant harmful effect on human health. A lot of that compounds are mutagenic and carcinogenic, in addition they could cause asthma, intoxication or allergy. The measurements of VOCs are quite problematic, because it is required using the specialist analytical apparatus, ex. chromatograph. However, not always it is need to measure the content of that compounds in engine exhaust with high precision and sometimes it is enough only to estimate the level of the concentration. Emission of the VOCs mainly depends on the combustion process in the engine and this determines the temperature of the exhaust gases. In this paper authors tried to determine if the correlation between temperature of exhaust gases and VOCs' concentration exist and is able to determine.

  8. The time-frequency method of signal analysis in internal combustion engine diagnostics

    NASA Astrophysics Data System (ADS)

    Avramchuk, V. S.; Kazmin, V. P.; Faerman, V. A.; Le, V. T.

    2017-01-01

    The paper presents the results of the study of applicability of time-frequency correlation functions to solving the problems of internal combustion engine fault diagnostics. The proposed methods are theoretically justified and experimentally tested. In particular, the method’s applicability is illustrated by the example of specially generated signals that simulate the vibration of an engine both during the normal operation and in the case of a malfunction in the system supplying fuel to the cylinders. This method was confirmed during an experiment with an automobile internal combustion engine. The study offers the main findings of the simulation and the experiment and highlights certain characteristic features of time-frequency autocorrelation functions that allow one to identify malfunctions in an engine’s cylinder. The possibility in principle of using time-frequency correlation functions in function testing of the internal combustion engine is demonstrated. The paper’s conclusion proposes further research directions including the application of the method to diagnosing automobile gearboxes.

  9. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 2: a Study of Low Frequency Combustion Instability in Rocket Engine Preburners Using a Heterogeneous Stirred Tank Reactor Model. Final Report M.S. Thesis - Aug. 1987

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.

    1988-01-01

    During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.

  10. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  11. Detonation Jet Engine. Part 2--Construction Features

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  12. Determining Parameters of Double-Wiebe Function for Simulation of Combustion Process in Overload Diesel Engine with Common Rail Fuel Feed System

    NASA Astrophysics Data System (ADS)

    Kamaltdinov, V. G.; Markov, V. A.; Lysov, I. O.

    2018-03-01

    To analyze the peculiarities of the combustion process in an overload diesel engine with the system of Common Rail type with one-stage injection, the indicator diagram was registered. The parameters of the combustion process simulated by the double-Wiebe function were calculated as satisfactorily reconstructing the law of burning rate variation. The main parameters of the operating cycle obtained through the indicator diagram processing and the double-Wiebe function calculation differed insignificantly. And the calculated curve of the cylinder pressure differed notably only in the end of the expansion stroke. To improve the performance of the diesel engine, a two-stage fuel injection was recommended.

  13. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    NASA Astrophysics Data System (ADS)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  14. KSC-07pd1271

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines (behind them) of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  15. KSC-07pd1272

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  16. KSC-07pd1274

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers check the installation of an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  17. KSC-07pd1273

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  18. KSC-07pd1270

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  19. Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. The Combination of Internal-Combustion Engine and Gas Turbine

    NASA Technical Reports Server (NTRS)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  1. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    NASA Astrophysics Data System (ADS)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  2. Calculations of combustion response profiles and oscillations

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1993-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Pressure and velocity oscillations calculated using this procedure are presented for the Space Shuttle Main Engine (SSME) to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Results of calculations to determine local combustion responses using detailed physical models for injection, atomization, and vaporization with gas phase oscillations in baffled and unbaffled SSME combustors are presented. The contributions of the various physical phenomena occurring in a combustor to oscillations in combustion response were determined.

  3. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  4. ARC-1982-AC82-0402-5

    NASA Image and Video Library

    1982-06-04

    cutaway Rockwell International Space Shuttle Main Engines: Powerhead (Left side - fuel preburner, fuel trubopump - Center - Main Combustion Chamber, nozzle forward manifold - Right side - oxidizer preburner, oxidizer turbopump, preburner boost pump)

  5. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  6. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  7. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  8. Modelling the average velocity of propagation of the flame front in a gasoline engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Smolenskii, V. V.

    2018-01-01

    The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.

  9. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Technical Reports Server (NTRS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  10. Study on atomization and combustion characteristics of LOX/methane pintle injectors

    NASA Astrophysics Data System (ADS)

    Fang, Xin-xin; Shen, Chi-bing

    2017-07-01

    Influences of main structural parameters of the LOX/methane pintle injectors on atomization cone angles and combustion performances were studied by experiments and numerical simulation respectively. In addition, improvement was brought up to the structure of the pintle injectors and combustion flow fields of two different pintle engines were obtained. The results indicate that, with increase of the gas-liquid mass flow ratio, the atomization cone angle decreases. In the condition of the same gas-liquid mass flow ratio, as the thickness of the LOX-injection gap grows bigger, the atomization cone angle becomes smaller. In the opposite, when the half cone angle of the LOX-injection gap grows bigger, the atomization cone angle becomes bigger. Moreover, owing to the viscous effects of the pintle tip, with increase of the 'skip distance', the atomization cone angle gets larger. Two big recirculation zones in the combustor lead to combustion stability of the pintle engines. When the value of the non-dimensional 'skip distance' is near 1, the combustion efficiency of the pintle engines is the highest. Additionally, pintle engines with LOX injected in quadrangular slots can acquire better mixing efficiency of the propellants and higher combustion efficiency as the gas methane can pass through the adjacent slots. However, the annular-channel type of pintle injectors has an 'enclosed' area near the pintle tip which has a great negative influence on the combustion efficiency.

  11. National Combustion Code Used To Study the Hydrogen Injector Design for Gas Turbines

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Norris, Andrew T.; Shih, Tsan-Hsing

    2005-01-01

    Hydrogen, in the gas state, has been proposed to replace Jet-A (the fuel used for commercial jet engines) as a fuel for gas turbine combustion. For the combustion of hydrogen and oxygen only, water is the only product and the main greenhouse gas, carbon dioxide, is not produced. This is an obvious benefit of using hydrogen as a fuel. The situation is not as simple when air replaces oxygen in the combustion process. (Air is mainly a mixture of oxygen, nitrogen, and argon. Other components comprise a very small part of air and will not be mentioned.) At the high temperatures found in the combustion process, oxygen reacts with nitrogen, and this produces nitrogen oxide compounds, or NOx--the main component of atmospheric smog. The production of NOx depends mainly on two variables: the temperature at which combustion occurs, and the length of time that the products of combustion stay, or reside, in the combustor. Starting from a lean (excess air) air-to-fuel ratio, the goal of this research was to minimize hot zones caused by incomplete premixing and to keep the residence time short while producing a stable flame. The minimization of these two parameters will result in low- NOx hydrogen combustion.

  12. Radiation effect on rocket engine performance

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1988-01-01

    The effects of radiation on the performance of modern rocket propulsion systems operating at high pressure and temperature were recognized as a key issue in the design and operation of various liquid rocket engines of the current and future generations. Critical problem areas of radiation coupled with combustion of bipropellants are assessed and accounted for in the formulation of a universal scaling law incorporated with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and the pertaining data of the Variable Thrust Engine (VTE) and Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low enthalpy engines, such as the VTE, are vulnerable to a substantial performance set back by the radiative loss, whereas the performance of high enthalpy engines such as the SSME, are hardly affected over a broad range of engine operation. Additionally, combustion enhancement by the radiative heating of the propellant has a significant impact in those propellants with high absorptivity. Finally, the areas of research related with radiation phenomena in bipropellant engines are identified.

  13. Heterogeneous mass transfer in HRE in the presence of electrostatic field research

    NASA Astrophysics Data System (ADS)

    Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.

    2017-01-01

    The paper presents research results of polymethylmethacrylate (PMMA) combustion in a hybrid rocket engine (HRE) under the influence of an electrostatic field. It is shown that the main mechanism of electrostatic field influence on the combustion rate is process changes in the condensed phase.

  14. Main Chamber and Preburner Injector Technology

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Merkle, Charles L.

    1999-01-01

    This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application.

  15. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  16. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  17. Combustion Devices CFD Team Analyses Review

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    2008-01-01

    A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.

  18. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which validates the proposed methods.

  19. Two-step rocket engine bipropellant valve concept

    NASA Technical Reports Server (NTRS)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  20. Detection of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Gotoda, Hiroshi; Tachibana, Shigeru; Yoshida, Seiji

    2017-12-01

    We conduct an experimental study using time series analysis based on symbolic dynamics to detect a precursor of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor. With increasing amount of the main fuel, a significant shift in the dominant frequency-mode occurs in noisy periodic dynamics, leading to a notable increase in oscillation amplitudes. The sustainment of noisy periodic dynamics during thermoacoustic combustion oscillations is clearly shown by the multiscale complexity-entropy causality plane in terms of statistical complexity. A modified version of the permutation entropy allows us to detect a precursor of the frequency-mode-shift before the amplification of pressure fluctuations.

  1. Performance Evaluation of an Experimental Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet

    2017-11-01

    An exergy analysis is presented including design parameters and performance assessment, by identifying the losses and efficiency of a gas turbine engine. The aim of this paper is to determine the performance of a small turbojet engine with an exergetic analysis based on test data. Experimental data from testing was collected at full-load of small turbojet engine. The turbojet engine exhaust data contains CO2, CO, CH4, H2, H2O, NO, NO2, N2 and O2 with a relative humidity of 35 % for the ambient air of the performed experiments. The evaluated main components of the turbojet engine are the air compressor, the combustion chamber and the gas turbine. As a result of the thermodynamic analysis, exergy efficiencies (based on product/fuel) of the air compressor, the combustion chamber and the gas turbine are 81.57 %, 50.13 % and 97.81 %, respectively. A major proportion of the total exergy destruction was found for the combustion chamber at 167.33 kW. The exergy destruction rates are 8.20 %, 90.70 % and 1.08 % in the compressor, the combustion chamber and the gas turbine, respectively. The rates of exergy destruction within the system components are compared on the basis of the exergy rate of the fuel provided to the engine. Eventually, the exergy rate of the fuel is calculated to be 4.50 % of unusable due to exergy destruction within the compressor, 49.76 % unusable due to exergy destruction within the combustion chamber and 0.59 % unusable due to exergy destruction within the gas turbine. It can be stated that approximately 55 % of the exergy rate of the fuel provided to the engine can not be used by the engine.

  2. Improving the Flow

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.

  3. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Astrophysics Data System (ADS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-04-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  4. Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tarraf Kojok, Ali

    This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.

  5. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines.

    PubMed Central

    Cohn, J G

    1975-01-01

    The development of PTX, monolithic catalytic exhaust purifiers, is outlined, and their first use for exhaust emissions control of commercial equipment is described. The main use of PTX converters is on forklift trucks. The purification achievable with PTX-equipped fork-lift trucks under various operational conditions is discussed, and examples from the field are given. During more than ten years of operation, no adverse health effects have been reported, and PTX-equipped internal combustion engines appear safe for use in confined areas. PMID:50933

  6. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    NASA Astrophysics Data System (ADS)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  7. Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China.

    PubMed

    Wang, Degao; Tian, Fulin; Yang, Meng; Liu, Chenlin; Li, Yi-Fan

    2009-05-01

    Soil derived sources of polycyclic aromatic hydrocarbons (PAHs) in the region of Dalian, China were investigated using positive matrix factorization (PMF). Three factors were separated based on PMF for the statistical investigation of the datasets both in summer and winter. These factors were dominated by the pattern of single sources or groups of similar sources, showing seasonal and regional variations. The main sources of PAHs in Dalian soil in summer were the emissions from coal combustion average (46%), diesel engine (30%), and gasoline engine (24%). In winter, the main sources were the emissions from coal-fired boiler (72%), traffic average (20%), and gasoline engine (8%). These factors with strong seasonality indicated that coal combustion in winter and traffic exhaust in summer dominated the sources of PAHs in soil. These results suggested that PMF model was a proper approach to identify the sources of PAHs in soil.

  8. Path planning during combustion mode switch

    DOEpatents

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  9. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    NASA Astrophysics Data System (ADS)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  10. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  11. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  12. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Axially staged combustion system for a gas turbine engine

    DOEpatents

    Bland, Robert J [Oviedo, FL

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  14. STE thrust chamber technology: Main injector technology program and nozzle Advanced Development Program (ADP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The purpose of the STME Main Injector Program was to enhance the technology base for the large-scale main injector-combustor system of oxygen-hydrogen booster engines in the areas of combustion efficiency, chamber heating rates, and combustion stability. The initial task of the Main Injector Program, focused on analysis and theoretical predictions using existing models, was complemented by the design, fabrication, and test at MSFC of a subscale calorimetric, 40,000-pound thrust class, axisymmetric thrust chamber operating at approximately 2,250 psi and a 7:1 expansion ratio. Test results were used to further define combustion stability bounds, combustion efficiency, and heating rates using a large injector scale similar to the Pratt & Whitney (P&W) STME main injector design configuration including the tangential entry swirl coaxial injection elements. The subscale combustion data was used to verify and refine analytical modeling simulation and extend the database range to guide the design of the large-scale system main injector. The subscale injector design incorporated fuel and oxidizer flow area control features which could be varied; this allowed testing of several design points so that the STME conditions could be bracketed. The subscale injector design also incorporated high-reliability and low-cost fabrication techniques such as a one-piece electrical discharged machined (EDMed) interpropellant plate. Both subscale and large-scale injectors incorporated outer row injector elements with scarfed tip features to allow evaluation of reduced heating rates to the combustion chamber.

  15. Combustion Device Failures During Space Shuttle Main Engine Development

    NASA Technical Reports Server (NTRS)

    Goetz, Otto K.; Monk, Jan C.

    2005-01-01

    Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.

  16. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.

  17. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  18. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  19. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  20. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  1. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of... Combustion Engines Compliance Requirements § 60.4210 What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI internal combustion engine...

  2. Modeling of SSME fuel preburner ASI

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.

  3. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    NASA Astrophysics Data System (ADS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  4. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  5. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  6. Experimental Study of Combustion and Emissions Characteristics of Methyl Oleate, as a Surrogate for Biodiesel, in a Direct injection Diesel Engine

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the combustion and emissions characteristics of methyl oleate (C19H36O2 CAS# 112-62) produced by transesterification from oleic acid, one of the main fatty acid components of biodiesel. The ignition delay of ultra-low sulfur diesel#2 (ULSD) and its blends with methyl oleate (O20...

  7. Combustion-chamber Performance Characteristics of a Python Turbine-propeller Engine Investigated in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, Carl E

    1951-01-01

    Combustion-chamber performance characteristics of a Python turbine-propeller engine were determined from investigation of a complete engine over a range of engine speeds and shaft horsepowers at simulated altitudes. Results indicated the effect of engine operating conditions and altitude on combustion efficiency and combustion-chamber total pressure losses. Performance of this vaporizing type combustion chamber was also compared with several atomizing type combustion chambers. Over the range of test conditions investigated, combustion efficiency varied from approximately 0.95 to 0.99.

  8. DESIGN OF AN ENGINE GENERATOR FOR THE RURAL POOR: A SUSTAINABLE SYSTEMS APPROACH

    EPA Science Inventory

    The system consists of a fuel source (a biodiesel system), a combustion/boiler system, and a steam engine/generator. The biodiesel system proved to be simplistic in its design and low cost; it successfully made high-quality biodiesel in an efficient manner. The main issues to ...

  9. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically shortmore » injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.« less

  10. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.

  11. Advanced main combustion chamber program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics presented are covered in viewgraph form and include the following: investment of low cost castings; usage of SSME program; usage of MSFC personnel for design effort; and usage of concurrent engineering techniques.

  12. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    NASA Astrophysics Data System (ADS)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  13. Combustion devices technology team - An overview and status of STME-related activities

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Croteau-Gillespie, Margie

    1992-01-01

    The Consortium for CFD applications in propulsion technology has been formed at NASA/Marshall Space Flight Center. The combustion devices technology team is one of the three teams that constitute the Consortium. While generally aiming to advance combustion devices technology for rocket propulsion, the team's efforts for the last 1 and 1/2 years have been focused on issues relating to the Space Transportation Main Engine (STME) nozzle. The nozzle design uses hydrogen-rich turbine exhaust to cool the wall in a film/dump scheme. This method of cooling presents challenges and associated risks for the nozzle designers and the engine/vehicle integrators. Within the nozzle itself, a key concern is the ability to effectively and efficiently film cool the wall. From the National Launch System vehicle base standpoint, there are concerns with dumping combustible gases at the nozzle exit and their potential adverse effects on the base thermal environment. The Combustion Team has developed and is implementing plans to use validated CFD tools to aid in risk mitigation for both areas.

  14. 36th International Symposium on Combustion (ISOC2016)

    DTIC Science & Technology

    2016-12-01

    GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants

  15. Possibility of Coal Combustion Product Conditioning

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2018-03-01

    This paper is focused on properties of materials known as green binders. They can be used to produce aluminium-siliceous concrete and binders known also as geopolymers. Comparing new ecological binders to ordinary cements we can see huge possibility of reducing amount of main greenhouse gas which is emitted to atmosphere by 3 to even 10 times depending of substrate type used to new green material production. Main ecological source of new materials obtaining possibility is to use already available products which are created in coal combustion and steel smelting process. Most of them are already used in many branches of industry. They are mostly civil engineering, chemistry or agriculture. Conducted research was based on less popular in civil engineering fly ash based on lignite combustion. Materials were examine in order to verify possibility of obtaining hardened mortars based of different factors connected with process of geopolymerization, which are temperature, amount of reaction reagent and time of heat treatment. After systematizing the matrices for the basic parameters affecting the strength of the hardened mortars, the influence of the fly ash treatment for increasing the strength was tested.

  16. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.; Kirby, F. M.

    1978-01-01

    The potential for converting the space shuttle main engine (SSME) to a dual-fuel, dual-mode engine using LOX/hydrocarbon propellants in mode 1 and LOX/H2 in mode 2 was examined. Various engine system concepts were formulated that included staged combustion and gas generator turbine power cycles, and LOX/RP-1, LOX/CH4, and LOX/C3H8 mode 1 propellants. Both oxidizer and fuel regenerative cooling were considered. All of the SSME major components were examined to determine their adaptability to the candidate dual-fuel engines.

  17. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  18. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  19. Engine and method for operating an engine

    DOEpatents

    Lauper, Jr., John Christian; Willi, Martin Leo [Dunlap, IL; Thirunavukarasu, Balamurugesh [Peoria, IL; Gong, Weidong [Dunlap, IL

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  20. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    NASA Astrophysics Data System (ADS)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  1. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  2. Numerical model of spray combustion in a single cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria

    2017-11-01

    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  3. Design of Heat Exchanger for Ericsson-Brayton Piston Engine

    PubMed Central

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174

  4. Design of heat exchanger for Ericsson-Brayton piston engine.

    PubMed

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.

  5. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  6. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  7. Dual nozzle single pump fuel injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less

  8. Flex Fuel Optimized SI and HCCI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less

  9. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... equipment containing internal combustion engines, and battery powered vehicles or equipment. (a... internal combustion engine, or a battery powered vehicle or equipment is subject to the requirements of...

  10. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  11. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  12. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  13. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  14. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  15. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  16. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  17. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  18. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  19. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  20. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  1. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  2. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  3. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  4. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  5. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  6. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  7. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  8. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  9. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below decks...

  10. Pre-mixing apparatus for a turbine engine

    DOEpatents

    Lacy, Benjamin Paul [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Melton, Patrick Benedict [Horse Shoe, NC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC; Felling, David Kenton [Greenville, SC; Uhm, Jong Ho [Simpsonville, SC

    2012-04-03

    A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.

  11. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  12. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  13. Turbocharging of Small Internal Combustion Engines as a Means of Improving Engine/Application System Fuel Economy.

    DTIC Science & Technology

    1979-01-01

    OF SMALL INTERNAL COMBUSTION ENGINES AS A MEANS 0-.ETC(U) 1979 DAAK7O-78-C-O031 .hhuuufBuhhhh...Aerodyne Dallas th W__tIP FINAL REPORT CONTRACT* DAAK7-78-C-0031 FTURBOCHARGING OF SMALL INTERNAL COMBUSTION ENGINE AS A MEANS OF IMPROVING ENGINE ...DAAK70-78-C0031 TURBOCHARGING OF SMALL INTERNAL COMBUSTION ENGINES AS A MEANS OF IMPROVING ENGINE /APPLICATION SYSTEM FUEL ECONOMY Prepared by

  14. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  15. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  16. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  17. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  18. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242... Ignition Internal Combustion Engines Compliance Requirements for Manufacturers § 60.4242 What other...

  19. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  20. Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine

    DOE PAGES

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.; ...

    2017-06-06

    Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less

  1. Performance of a Laser Ignited Multicylinder Lean Burn Natural Gas Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansour, Bader; Vasu, Subith; Gupta, Sreenath B.

    Market demands for lower fueling costs and higher specific powers in stationary natural gas engines has engine designs trending towards higher in-cylinder pressures and leaner combustion operation. However, Ignition remains as the main limiting factor in achieving further performance improvements in these engines. Addressing this concern, while incorporating various recent advances in optics and laser technologies, laser igniters were designed and developed through numerous iterations. Final designs incorporated water-cooled, passively Q-switched, Nd:YAG micro-lasers that were optimized for stable operation under harsh engine conditions. Subsequently, the micro-lasers were installed in the individual cylinders of a lean-burn, 350 kW, inline 6-cylinder, open-chamber,more » spark ignited engine and tests were conducted. To the best of our knowledge, this is the world’s first demonstration of a laser ignited multi-cylinder natural gas engine. The engine was operated at high-load (298 kW) and rated speed (1800 rpm) conditions. Ignition timing sweeps and excess-air ratio (λ) sweeps were performed while keeping the NOx emissions below the USEPA regulated value (BSNOx < 1.34 g/kW-hr), and while maintaining ignition stability at industry acceptable values (COV_IMEP <5 %). Through such engine tests, the relative merits of (i) standard electrical ignition system, and (ii) laser ignition system were determined. In conclusion, a rigorous combustion data analysis was performed and the main reasons leading to improved performance in the case of laser ignition were identified.« less

  2. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  3. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    NASA Astrophysics Data System (ADS)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  4. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine

    NASA Astrophysics Data System (ADS)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.

    2018-01-01

    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  5. J-2X engine assembly

    NASA Image and Video Library

    2011-03-03

    Pratt & Whitney Rocketdyne employees Carlos Alfaro (l) and Oliver Swanier work on the main combustion element of the J-2X rocket engine at their John C. Stennis Space Center facility. Assembly of the J-2X rocket engine to be tested at the site is under way, with completion and delivery to the A-2 Test Stand set for June. The J-2X is being developed as a next-generation engine that can carry humans into deep space. Stennis Space Center is preparing a trio of stands to test the new engine.

  6. Predictive modeling and reducing cyclic variability in autoignition engines

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  7. Fuel governor for controlled autoignition engines

    DOEpatents

    Jade, Shyam; Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li

    2016-06-28

    Methods and systems for controlling combustion performance of an engine are provided. A desired fuel quantity for a first combustion cycle is determined. One or more engine actuator settings are identified that would be required during a subsequent combustion cycle to cause the engine to approach a target combustion phasing. If the identified actuator settings are within a defined acceptable operating range, the desired fuel quantity is injected during the first combustion cycle. If not, an attenuated fuel quantity is determined and the attenuated fuel quantity is injected during the first combustion cycle.

  8. Combustion-wave ignition for rocket engines

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1992-01-01

    The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.

  9. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  10. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  11. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  12. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  13. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines...

  14. Engineered Sulfur‐Resistant Catalyst System with an Assisted Regeneration Strategy for Lean‐Burn Methane Combustion

    PubMed Central

    Kallinen, Kauko; Maunula, Teuvo; Suvanto, Mika

    2018-01-01

    Abstract Catalytic combustion of methane, the main component of natural gas, is a challenge under lean‐burn conditions and at low temperatures owing to sulfur poisoning of the Pd‐rich catalyst. This paper introduces a more sulfur‐resistant catalyst system that can be regenerated during operation. The developed catalyst system lowers the barrier that has restrained the use of liquefied natural gas as a fuel in energy production. PMID:29780434

  15. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  16. Combustion stability analysis of preburners in liquid propellant rocket engines during shutdown

    NASA Technical Reports Server (NTRS)

    Lim, Kair-Chuan; George, Paul E., II

    1987-01-01

    A linearized one-dimensional lumped-parameter model capable of predicting the occurrence of the low frequency combustion instability (chugging) experienced during preburner shutdown in the Space Shuttle Main Engines is discussed, and predictions are compared with NASA experimental results. Results from a parametric study of parameters including chamber pressure, fuel and oxygen temperatures, and the effective bulk modulus of the liquid oxidizer suggest that chugging is probably affected by conditions at shutdown through the fuel and oxidizer temperatures. It is suggested that chugging is initiated when the fuel, oxidizer, and helium temperature and flow rates pass into an unstable region, and that chugging may be terminated by decaying pressures.

  17. Plasma arc welding repair of space flight hardware

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.

    1993-01-01

    A technique to weld repair the main combustion chamber of Space Shuttle Main Engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloy-Z, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloy-Z while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  18. Mixed mode control method and engine using same

    DOEpatents

    Kesse, Mary L [Peoria, IL; Duffy, Kevin P [Metamora, IL

    2007-04-10

    A method of mixed mode operation of an internal combustion engine includes the steps of controlling a homogeneous charge combustion event timing in a given engine cycle, and controlling a conventional charge injection event to be at least a predetermined time after the homogeneous charge combustion event. An internal combustion engine is provided, including an electronic controller having a computer readable medium with a combustion timing control algorithm recorded thereon, the control algorithm including means for controlling a homogeneous charge combustion event timing and means for controlling a conventional injection event timing to be at least a predetermined time from the homogeneous charge combustion event.

  19. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  20. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  1. Analysis of turbojet combustion chamber performances based on flow field simplified mathematical model

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin

    2017-06-01

    In this paper are presented some results about the study of combustion chamber geometrical configurations that are found in aircraft gas turbine engines. The main focus of this paper consists in a study of a new configuration of the aircraft engine combustion chamber with an optimal distribution of gas velocity in front of the turbine. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio. The Arrhenius relationship, which describes the basic dependencies of the reaction rate on pressure, temperature and concentration has been used. and the CFD simulations were made with jet A fuel (which is presented in the Fluent software database) for an annular flame tube with 24 injectors. The temperature profile at the turbine inlet exhibits nonuniformity due to the number of fuel injectors used in the circumferential direction, the spatial nonuniformity in dilution air cooling and mixing characteristics as well as other secondary flow patterns and instabilities that are set up in the flame tube.

  2. Control installation for the proportioning of a secondary air quantity for improvement of the combustion in internal combustion engines or the afterburning of the exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelmann, W.; Groezinger, H.; Woebky, P.U.

    1977-01-04

    A control installation is described for the dosing or proportioning of a secondary air quantity for the improvement of combustion in internal combustion engines, or the after-burning of the exhaust gases of internal combustion engines. An auxiliary arrangement is responsive to an emergency signal for effecting the prompt shutting-off of the secondary air. The emergency signal may be initiated in response to a failure in the ignition voltage of the internal combustion engine; an increase in the hydrocarbon content of the exhaust gases; a disparity between the position of the mixture dosing element and the engine rotational speed; the exceedingmore » of a limiting temperature in the exhaust gas manifold; or the exceeding of a limiting temperature in the afterburner.« less

  3. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOEpatents

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  4. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  5. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  6. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  7. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  8. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  9. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  10. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  11. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  12. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business« less

  13. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.

  14. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  15. Effect of Structural Parameters on the Combustion Performance of Platelet Engines

    NASA Astrophysics Data System (ADS)

    Liang, Yin; Liu, Weiqiang

    2017-12-01

    Numerical simulation was adopted to determine its flow and combustion characteristics by using gaseous methane and oxygen as the main propellants, the effects of nozzle space and expanding angle are examined for the single element splash platelet injector. Navier-Stokes (N-S) equations were solved for the gas-gas flow field with a reduced mechanism involving 9 species and 1 reaction. Results indicated that large corner recirculation zones are produced in the combustor head. This phenomenon consequently enhances mixing and stabilizes combustion, but non-uniformity in temperature contour is observed in the combustor head. Recirculation zone decreases as nozzle space increases, which induces the decrease of maximum temperature and high temperature regions, but it has little influence on the combustion efficiency and combustion length. The combustion length and maximum temperature decrease initially and then increase as expanding angle increases. Conversely, a D value of 2.4 mm and γ value of 60° are selected for the future works because of the shortest combustion length and minimum temperature of the injector faceplate.

  16. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  17. Cavity Coupled Aeroramp Injector Combustion Study

    DTIC Science & Technology

    2009-08-01

    Lin 5 Taitech Inc., Beavercreek, OH, 45430 The difficulties with fueling of supersonic combustion ramjet engines with hydrocarbon based fuels...combustor to not force the pre- combustion shock train out of the isolator and, in a full engine with inlet, cause an inlet unstart and likely...metric used to quantify engine performance is the combustion efficiency. Figure 9 shows the comparison of the combustion efficiency as a function of

  18. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.

  19. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  20. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2018-01-16

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  1. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  2. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  3. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  4. 40 CFR 60.4202 - What emission standards must I meet for emergency engines if I am a stationary CI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emergency engines if I am a stationary CI internal combustion engine manufacturer? 60.4202 Section 60.4202... Combustion Engines Emission Standards for Manufacturers § 60.4202 What emission standards must I meet for emergency engines if I am a stationary CI internal combustion engine manufacturer? (a) Stationary CI...

  5. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  6. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  7. Prediction of high frequency combustion instability in liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.

    1992-01-01

    The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.

  8. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  9. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  10. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  11. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  12. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided with...

  13. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  14. Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.

    A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.

  15. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  17. Combustion performance and exhaust emissions fuelled with non-surfactant water-in-diesel emulsion fuel made from different water sources.

    PubMed

    Ahmad, Mohamad Azrin; Yahya, Wira Jazair; Ithnin, Ahmad Muhsin; Hasannuddin, A K; Bakar, Muhammad Aiman Abu; Fatah, Abdul Yasser Abd; Sidik, Nor Azwadi Che; Noge, Hirofumi

    2018-06-14

    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NO x ) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.

  18. Chemical kinetic simulation of kerosene combustion in an individual flame tube.

    PubMed

    Zeng, Wen; Liang, Shuang; Li, Hai-Xia; Ma, Hong-An

    2014-05-01

    The use of detailed chemical reaction mechanisms of kerosene is still very limited in analyzing the combustion process in the combustion chamber of the aircraft engine. In this work, a new reduced chemical kinetic mechanism for fuel n-decane, which selected as a surrogate fuel for kerosene, containing 210 elemental reactions (including 92 reversible reactions and 26 irreversible reactions) and 50 species was developed, and the ignition and combustion characteristics of this fuel in both shock tube and flat-flame burner were kinetic simulated using this reduced reaction mechanism. Moreover, the computed results were validated by experimental data. The calculated values of ignition delay times at pressures of 12, 50 bar and equivalence ratio is 1.0, 2.0, respectively, and the main reactants and main products mole fractions using this reduced reaction mechanism agree well with experimental data. The combustion processes in the individual flame tube of a heavy duty gas turbine combustor were simulated by coupling this reduced reaction mechanism of surrogate fuel n-decane and one step reaction mechanism of surrogate fuel C12H23 into the computational fluid dynamics software. It was found that this reduced reaction mechanism is shown clear advantages in simulating the ignition and combustion processes in the individual flame tube over the one step reaction mechanism.

  19. Chemical kinetic simulation of kerosene combustion in an individual flame tube

    PubMed Central

    Zeng, Wen; Liang, Shuang; Li, Hai-xia; Ma, Hong-an

    2013-01-01

    The use of detailed chemical reaction mechanisms of kerosene is still very limited in analyzing the combustion process in the combustion chamber of the aircraft engine. In this work, a new reduced chemical kinetic mechanism for fuel n-decane, which selected as a surrogate fuel for kerosene, containing 210 elemental reactions (including 92 reversible reactions and 26 irreversible reactions) and 50 species was developed, and the ignition and combustion characteristics of this fuel in both shock tube and flat-flame burner were kinetic simulated using this reduced reaction mechanism. Moreover, the computed results were validated by experimental data. The calculated values of ignition delay times at pressures of 12, 50 bar and equivalence ratio is 1.0, 2.0, respectively, and the main reactants and main products mole fractions using this reduced reaction mechanism agree well with experimental data. The combustion processes in the individual flame tube of a heavy duty gas turbine combustor were simulated by coupling this reduced reaction mechanism of surrogate fuel n-decane and one step reaction mechanism of surrogate fuel C12H23 into the computational fluid dynamics software. It was found that this reduced reaction mechanism is shown clear advantages in simulating the ignition and combustion processes in the individual flame tube over the one step reaction mechanism. PMID:25685503

  20. Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

  1. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  2. Sensitivity Analysis to Turbulent Combustion Models for Combustor-Turbine Interactions

    NASA Astrophysics Data System (ADS)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2017-11-01

    The recently-updated Open National CombustionCode (Open NCC) equipped with alarge-eddy simulation (LES) is applied to model the flow field inside the Energy Efficient Engine (EEE) in conjunction with sensitivity analysis to turbulent combustion models. In this study, we consider three different turbulence-combustion interaction models, the Eddy-Breakup model (EBU), the Linear-Eddy Model (LEM) and the Probability Density Function (PDF)model as well as the laminar chemistry model. Acomprehensive comparison of the flow field and the flame structure will be provided. One of our main interests isto understand how a different model predicts thermal variation on the surface of the first stage vane. Considering that these models are often used in combustor/turbine communities, this study should provide some guidelines on numerical modeling of combustor-turbine interactions.

  3. Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Korneev, N. V.

    2017-05-01

    The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.

  4. LES/FMDF of turbulent jet ignition in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  5. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  6. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  7. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  8. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  9. 76 FR 47092 - Approval and Promulgation of Implementation Plans; Reasonably Available Control Technology for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... oxides of nitrogen from the stationary reciprocating, diesel fuel fired, internal combustion engines..., diesel fuel fired, internal combustion engines--one existing and one new engine. B. Why is EPA proposing... both engines. In addition, the Conditions of Approval specify the NO X emissions limits, combustion...

  10. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Starting systems for internal-combustion engines. 62.35-35 Section 62.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...

  11. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  12. Level Recession Of Emissions Release By Motor-And-Tractor Diesel Engines Through The Application Of Water-Fuel Emulsions

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Chikishev, E.

    2017-01-01

    The paper is dedicated to a problem of environmental pollution by emissions of hazardous substances with the exhaust gases of internal combustion engines. It is found that application of water-fuel emulsions yields the best results in diesels where production of a qualitative carburetion is the main problem for the organization of working process. During pilot studies the composition of a water-fuel emulsion with the patent held is developed. The developed composition of a water-fuel emulsion provides its stability within 14-18 months depending on mass content of components in it while stability of emulsions’ analogues makes 8-12 months. The mode of operation of pilot unit is described. Methodology and results of pilot study of operation of diesel engine on a water-fuel emulsion are presented. Cutting time of droplet combustion of a water-fuel emulsion improves combustion efficiency and reduces carbon deposition (varnish) on working surfaces. Partial dismantling of the engine after its operating time during 60 engine hours has shown that there is a removal of a carbon deposition in cylinder-piston group which can be observed visually. It is found that for steady operation of the diesel and ensuring decrease in level of emission of hazardous substances the water-fuel emulsion with water concentration of 18-20% is optimal.

  13. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Thomas E.

    1998-01-01

    NASA's Marshall Space Flight Center(MSFC) has been tasked with developing a 60,000 pound thrust, pump-fed, LOX/RP-1 engine under the Advanced Space Transportation Program(ASTP). This government-led design has been designated the Fastrac engine. The X-34 vehicle will use the Fastrac engine as the main propulsion system. The X-34 will be a suborbital vehicle developed by the Orbital Sciences Corporation. The X-34 vehicle will be launched from an L-1011 airliner. After launch, the X-34 vehicle will be able to climb to altitudes up to 250,000 feet and reach speeds up to Mach 8, over a mission range of 500 miles. The overall length, wingspan, and gross takeoff weight of the X-34 vehicle are 58.3 feet, 27.7 feet and 45,000 pounds, respectively. This report summarizes the plan of achieving a Fastrac thrust chamber assembly(TCA) stable bomb test that meets the JANNAF standards, the Fastrac TCA design, and the combustion instabilities exhibited by the Fastrac TCA during testing at MSFC's test stand 116 as determined from high-frequency fluctuating pressure measurements. This report also summarizes the characterization of the combustion instabilities from the pressure measurements and the steps taken to eliminate the instabilities.

  14. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  15. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  16. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  17. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  18. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines or equipment containing such... Stationary Spark Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or...

  19. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1977-01-01

    Work conducted was devoted to three main tasks. Thermochemical equilibrium performance data were assembled to establish the expected performance calculations of the mode 1 engine propellant combinations and thermodynamic and transport data for the products of combustion. Turbine drive gas characteristics were also established. Thrust chamber and nozzle cooling studies were devoted to the evaluation of H2, C3H8, CH4, and RP-1 as coolants in the existing SSME cooling circuit geometry. It was found that all these candidate coolants are feasible without limiting the desired operating conditions with the exception of RP-1, which would limit the maximum P(c) to 2000 psia. RP-1 could be used, however, to cool the nozzle only without imposing the chamber pressure limit. A total of 15 candidate engine system cycles were selected and a preliminary engine system balance was conducted for 12 of these systems to establish component operating flowrates, pressures and temperatures. It was found that the staged combustion cycles employing fuel rich LOX/hydrocarbon turbine drive gases are power limited.

  20. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.

    In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.

  1. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In themore » case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)« less

  2. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  3. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a manufacturer of stationary CI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...

  4. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a manufacturer of stationary CI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...

  5. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a manufacturer of stationary CI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards if I am a manufacturer of stationary CI internal combustion engines? 60.4203 Section 60... Ignition Internal Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a manufacturer of stationary CI internal combustion engines...

  6. Diesel Engine With Air Boosted Turbocharger

    DTIC Science & Technology

    2010-05-26

    of the exhaust turbocharger over the entire RPM range of the internal combustion engine . To this end, the...Kriegler, discloses that in order to utilize recycling of exhaust gases at high engine loads in an internal- combustion engine with an exhaust gas...October 29, 2002) to Cook, discloses an apparatus for and method of exhaust gas recirculation in an internal combustion engine that operates

  7. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    NASA Astrophysics Data System (ADS)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent in order to prevent pre-ignition from occurring. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.

  8. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 1: A One-Dimensional Analysis of Low Frequency Combustion Instability in the Fuel Preburner of the Space Shuttle Main Engine. Final Report M.S. Thesis - Aug. 1986

    NASA Technical Reports Server (NTRS)

    Lim, Kair Chuan

    1986-01-01

    Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.

  9. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    PubMed

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO 2 emission decreases. Meanwhile, the ratio of NO 2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO 2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.

  10. Detection of cylinder unbalance from Bayesian inference combining cylinder pressure and vibration block measurement in a Diesel engine

    NASA Astrophysics Data System (ADS)

    Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier

    2009-12-01

    In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.

  11. The scaling of performance and losses in miniature internal combustion engines

    NASA Astrophysics Data System (ADS)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate mostly in the 'wrinkled laminar flame sheet' regime. Taken together, the results show that the combustion process is the key obstacle to realizing the potential of small IC engines. Overcoming this obstacle will require new diagnostic techniques, measurements, combustion models, and high temperature materials.

  12. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    DOEpatents

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  13. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  14. Low emissions compression ignited engine technology

    DOEpatents

    Coleman, Gerald N [Dunlap, IL; Kilkenny, Jonathan P [Peoria, IL; Fluga, Eric C [Dunlap, IL; Duffy, Kevin P [East Peoria, IL

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  15. Supercomputer modeling of hydrogen combustion in rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye

    2013-08-01

    Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  16. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  17. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  18. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  19. 40 CFR 60.4204 - What emission standards must I meet for non-emergency engines if I am an owner or operator of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... non-emergency engines if I am an owner or operator of a stationary CI internal combustion engine? 60... Compression Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4204 What... internal combustion engine? (a) Owners and operators of pre-2007 model year non-emergency stationary CI ICE...

  20. Hydrogen combustion in tomorrow's energy technology

    NASA Astrophysics Data System (ADS)

    Peschka, W.

    The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.

  1. Energy Efficient Engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) Combustor Development effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent was to evolve a design which meets the stringent emissions and life goals of the E3 as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this development effort will be incorporated into the engine combustion system hardware design. This advanced engine combustion system will then be evaluated in component testing to verify the design intent. What is evolving from this development effort is an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3. Fuel nozzle, diffuser, starting, and emissions design studies are discussed.

  2. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon

    2017-06-09

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated in this paper by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C 8H 18) with a pseudo-iso-octane (PC 8H 18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC 8H 18more » model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C 8H 18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C 8H 18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C 8H 18. Finally, a misfire is observed for the DDFS combustion when the direct injection of i-C 8H 18 occurs during the intermediate-temperature chemistry (ITC) regime between the first- and second-stage ignition. Finally, this is because the temperature drop induced by the direct injection of i-C 8H 18 impedes the main ITC reactions, and hence, the main combustion fails to occur.« less

  3. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn- around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  4. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  5. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  6. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  7. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  8. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  9. Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine.

    PubMed

    Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen

    2003-01-01

    In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.

  10. Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.

    2013-04-01

    New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.

  11. Methods of the working processes modelling of an internal combustion engine by an ANSYS IC Engine module

    NASA Astrophysics Data System (ADS)

    Kurchatkin, I. V.; Gorshkalev, A. A.; Blagin, E. V.

    2017-01-01

    This article deals with developed methods of the working processes modelling in the combustion chamber of an internal combustion engine (ICE). Methods includes description of the preparation of a combustion chamber 3-d model, setting of the finite-element mesh, boundary condition setting and solution customization. Aircraft radial engine M-14 was selected for modelling. The cycle of cold blowdown in the ANSYS IC Engine software was carried out. The obtained data were compared to results of known calculation methods. A method of engine’s induction port improvement was suggested.

  12. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  13. 77 FR 40879 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Compression Ignition Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA....regulations.gov . Title: NSPS for Stationary Source Compression Ignition Internal Combustion Engines (Renewal... Performance Standards (NSPS) for Stationary Source Compression Ignition Internal Combustion Engines (40 CFR...

  14. 78 FR 77671 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Stationary Spark Ignition Internal Combustion Engines (40 CFR Part 60, Subpart JJJJ) (Renewal... operators of stationary spark ignition internal combustion engines. Respondent's obligation to respond...

  15. Thin-film sensors for reusable space propulsion systems

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kim, Walter S.

    1989-01-01

    Thin-film thermocouples (TFTCs) were developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades up to 1800 F. Established aircraft engine gas turbine technology is currently being adapted to turbine engine blade materials and the environment encountered in the Space Shuttle Main Engine (SSME)-severe thermal shock from cryogenic fuel to combustion temperatures. Initial results with coupons of MAR M-246 (+Hf) and PWA 1480 were followed by fabrication of TFTC on SSME turbine blades. Current efforts are focused on preparation for testing in the Turbine Blade Tester at NASA Marshall Space Flight Center.

  16. Plasma arc welding repair of space flight hardware

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.

    1993-01-01

    Repair and refurbishment of flight and test hardware can extend the useful life of very expensive components. A technique to weld repair the main combustion chamber of space shuttle main engines has been developed. The technique uses the plasma arc welding process and active cooling to seal cracks and pinholes in the hot-gas wall of the main combustion chamber liner. The liner hot-gas wall is made of NARloyZ, a copper alloy previously thought to be unweldable using conventional arc welding processes. The process must provide extensive heat input to melt the high conductivity NARloyZ while protecting the delicate structure of the surrounding material. The higher energy density of the plasma arc process provides the necessary heat input while active water cooling protects the surrounding structure. The welding process is precisely controlled using a computerized robotic welding system.

  17. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  18. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, Jr., Leighton Ira; Daw, Charles Stuart; Feldkamp, Lee Albert; Hoard, John William; Yuan, Fumin; Connolly, Francis Thomas

    1999-01-01

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  19. Advanced engine management of individual cylinders for control of exhaust species

    DOEpatents

    Graves, Ronald L [Knoxville, TN; West, Brian H [Knoxville, TN; Huff, Shean P [Knoxville, TN; Parks, II, James E

    2008-12-30

    A method and system controls engine-out exhaust species of a combustion engine having a plurality of cylinders. The method typically includes various combinations of steps such as controlling combustion parameters in individual cylinders, grouping the individual cylinders into a lean set and a rich set of one or more cylinders, combusting the lean set in a lean combustion parameter condition having a lean air:fuel equivalence ratio, combusting the rich set in a rich combustion parameter condition having a rich air:fuel equivalence ratio, and adjusting the lean set and the rich set of one or more cylinders to generate net-lean combustion. The exhaust species may have elevated concentrations of hydrogen and oxygen.

  20. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...

  1. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  2. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less

  3. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  4. A numerical study on the effect of various combustion bowl parameters on the performance, combustion, and emission behavior on a single cylinder diesel engine.

    PubMed

    Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai

    2018-01-01

    A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.

  5. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  6. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  7. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  8. 76 FR 7191 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Combustion Engines (Renewal) ICR Numbers: EPA ICR Number 2227.03, OMB Control Number 2060-0610. ICR Status... internal combustion engines. Estimated Number of Respondents: 17,052. Frequency of Response: Initially and...

  9. 78 FR 63181 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NESHAP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...), ``NESHAP for Stationary Reciprocating Internal Combustion Engines (Renewal)'' (EPA ICR No. 1975.09, OMB... combustion engines (RICE) have been regulated under previous actions. Thus, this final action fulfills the...

  10. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  11. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.; hide

    2000-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  12. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.

    2001-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  13. Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine. V; Combustion-Chamber Characteristics

    NASA Technical Reports Server (NTRS)

    Gensenheyner, Robert M.; Berdysz, Joseph J.

    1947-01-01

    An investigation to determine the performance and operational characteristics of the TG-1OOA gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet rm-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and.correcte& horsepower. For the range of corrected engine speeds investigated, over-all total-pressure-loss ratio, cycle efficiency, ana the frac%ional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. The scatter of combustion- efficiency data tended to obscure any effect of altitude or ram-pressure ratio. For the range of corrected horse-powers investigated, the total-pressure-loss ratio an& the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horse-powers investigated at all corrected engine speeds.

  14. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation.

    PubMed

    Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano

    2017-05-15

    Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NLS propulsion - Government view

    NASA Technical Reports Server (NTRS)

    Smelser, Jerry W.

    1992-01-01

    The paper discusses the technology development for the Space Transportation Main Engine (STME). The STME is a liquid oxygen/liquid hydrogen engine with 650,000 pounds of thrust, which may be flown in single-engine or multiple-engine configurations, depending upon the payload and mission requirements. The technological developments completed so far include a vacuum plasma spray process, the liquid interface diffusion bonding, and a thin membrane platelet technology for the combustion chamber fabrication; baseline designs for the hydrogen turbopump and the oxygen pump; and the engine control system. The family of spacecraft for which this engine is being developed includes a 20,000 pound payload to LEO and a 150,000 pound to LEO vehicle.

  16. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies.

    PubMed

    Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto

    2013-08-01

    Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.

  17. Two phase exhaust for internal combustion engine

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  18. Detonation Jet Engine. Part 1--Thermodynamic Cycle

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…

  19. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  20. Flame Acceleration and Transition to Detonation in High-Speed Turbulent Combustion

    DTIC Science & Technology

    2016-12-21

    Turbulent Combustion 1. Introduction to the Challenge Problem The importance of high-speed t urbulent combustion of gas mixtures and sprays is dif...engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high-speed combustion is critical for...the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus, the development of more fuel

  1. Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y

    2011-01-01

    An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less

  2. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  3. Current and Future Critical Issues in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.; Dix, Jeff C.

    1998-01-01

    The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).

  4. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end themore » authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.« less

  5. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  6. Impact of Variations on 1-D Flow in Gas Turbine Engines via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Ngo, Khiem Viet; Tumer, Irem

    2004-01-01

    The unsteady compressible inviscid flow is characterized by the conservations of mass, momentum, and energy; or simply the Euler equations. In this paper, a study of the subsonic one-dimensional Euler equations with local preconditioning is presented using a modal analysis approach. Specifically, this study investigates the behavior of airflow in a gas turbine engine using the specified conditions at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine, to determine the impact of variations in pressure, velocity, temperature, and density at low Mach numbers. Two main questions motivate this research: 1) Is there any aerodynamic problem with the existing gas turbine engines that could impact aircraft performance? 2) If yes, what aspect of a gas turbine engine could be improved via design to alleviate that impact and to optimize aircraft performance? This paper presents an initial attempt to model the flow behavior in terms of their eigenfrequencies subject to the assumption of the uncertainty or variation (perturbation). The flow behavior is explored using simulation outputs from a customer-deck model obtained from Pratt & Whitney. Variations of the main variables (i.e., pressure, temperature, velocity, density) about their mean states at the inflow and outflow boundaries of the compressor, combustion chamber, and turbine are modeled. Flow behavior is analyzed for the high-pressure compressor and combustion chamber utilizing the conditions on their left and right boundaries. In the same fashion, similar analyses are carried out for the high-pressure and low-pressure turbines. In each case, the eigenfrequencies that are obtained for different boundary conditions are examined closely based on their probabilistic distributions, a result of a Monte Carlo 10,000 sample simulation. Furthermore, the characteristic waves and wave response are analyzed and contrasted among different cases, with and without preconditioners. The results reveal the existence of flow instabilities due to the combined effect of variations and excessive pressures in the case of the combustion chamber and high-pressure turbine. Finally, a discussion is presented on potential impacts of the instabilities and what can be improved via design to alleviate them for a better aircraft performance.

  7. Study of soot production for double injections of n-dodecane in CI engine-like conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiz, Ahmed Abdul; Ameen, Muhsin M.; Lee, Seong-Young

    Soot production mechanism in multiple injections is complex since it involves its dependence on turbulent interactions of constituting injections and their combustion progress. A concise study was performed in a constant-volume combustion vessel by considering a double injection scheme of 0.3 ms pilot injection, 0.5 ms dwell time and 1.2 ms main injection (nomenclature: 0.3/0.5/12 ms) with n-dodecane as fuel and replicating the thermodynamic operating condition of a compression ignition (CI) engine. Experimental ambient temperature variations of 900 K and 800 K were performed at 15% ambient oxygen level. Simultaneous planar laser-induced fluorescence (PUP) of formaldehyde and schlieren imaging techniquesmore » were employed to analyze the ignition and flame characteristics experimentally. These studies revealed almost similar heat release rates for a double injection at 900 K and 800 K ambient gas temperatures due to combustion of a longer main injection which is enhanced by pilot combustion event A lower soot production for 800 K ambient condition over 900 K case was observed, which was concluded to be due to its higher lift-off length which would allow for a leaner combustion of fuel-air mixtures. Numerical simulations were performed using a Large Eddy Simulation (LES) approach by extensively validating the 900 K double injection condition with respect to non-reacting vapor penetration profiles of both injections, reacting jet heat release rate and spatial as well as temporal (qualitative) soot production. As part of LES work, a dwell time variation of 0.65 ms (0.3/0.65/1.2 ms) was performed to reveal the sensitivity of soot production to variations in dwell time. It was observed numerically that marginally higher quasi steady lift-off length of the 0.3/0.65/1.2 ms injection causes increased entrainment of surrounding oxygen into the flame region. This leads to combustion of slightly leaner fuel-air mixture and hence relatively less soot when compared to a 0.3/0.5/1.2 ms injection. (C) 2016 The Combustion Institute. Published by Elsevier Inc All rights reserved.« less

  8. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  9. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  10. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  11. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  12. 77 FR 24843 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... requirements for large stationary internal combustion engines under the NO X SIP Call. Transco Station 175 has...), large stationary internal combustion engines, and large cement kilns. The NO X SIP Call was challenged... internal combustion engines and large cement kilns. EPA approved Virginia's Phase I NO X SIP Call...

  13. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  14. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's...

  15. Emission characteristics of kerosene-air spray combustion with plasma assistance

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Zeng, Hao; Jin, Tao; Chen, Yi; Zhang, Yihan; Liu, Pengfei

    2015-09-01

    A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  16. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 5; Combustion-Chamber Characterisitcs

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1948-01-01

    An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.

  17. Application of C/C composites to the combustion chamber of rocket engines. Part 1: Heating tests of C/C composites with high temperature combustion gases

    NASA Astrophysics Data System (ADS)

    Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-04-01

    Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.

  18. The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1939-01-01

    The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.

  19. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGES

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; ...

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  20. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with no apparent wear. Material physical properties and the hot firing tests are reviewed.

  1. Space Shuttle Main Engine Off-Nominal Low Power Level Operation

    NASA Technical Reports Server (NTRS)

    Bradley, Michael

    1997-01-01

    This paper describes Rocketdyne's successful analysis and demonstration of the Space Shuttle Main Engine (SSME) operation at off-nominal power levels during Reusable Launch Vehicle (RLV) evaluation tests. The nominal power level range for the SSME is from 65% rated power level (RPL) to 109% RPL. Off-nominal power levels incrementally demonstrated were: 17% RPL, 22% RPL, 27% RPL, 40% RPL, 45% RPL, and 50% RPL. Additional achievements during low power operation included: use of a hydrostatic bearing High Pressure Oxidizer Turbopump (HPOTP), nominal High Pressure Fuel Turbopump (HPFTP) first rotor critical speed operation, combustion stability at low power levels, and refined definition of nozzle flow separation heat loads.

  2. Preburner of Staged Combustion Rocket Engine

    NASA Technical Reports Server (NTRS)

    Yost, M. C.

    1978-01-01

    A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.

  3. Design of a Premixed Gaseous Rocket Engine Injector for Ethylene and Oxygen

    DTIC Science & Technology

    2006-12-01

    and uniform combustion zone. An engine will benefit by having a greater characteristic exhaust velocity efficiency (ηc*), less soot production and...the challenges of designing a premixed injector. The design requirements for the engine are to provide a wide range of combustion pressure... Engineering Original Premixed Injector1 Downstream of the three inch combustion chamber a bolt-on conical nozzle was attached. This nozzle had a

  4. Large Eddy Simulations of Transverse Combustion Instability in a Multi-Element Injector

    DTIC Science & Technology

    2016-07-27

    plagued the development of liquid rocket engines and remains a large riskin the development and acquisition of new liquid rocket engines. Combustion...simulations to better understand the physics that can lead combustion instability in liquid rocket engines. Simulations of this type are able to...instabilities found in liquid rocket engines are transverse. The motivating of the experiment behind the current work is to subject the CVRC injector

  5. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    NASA Astrophysics Data System (ADS)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  6. Injection Principles from Combustion Studies in a 200-Pound-Thrust Rocket Engine Using Liquid Oxygen and Heptane

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Auble, C. M.

    1955-01-01

    The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.

  7. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  8. Efficiency of the rocket engines with a supersonic afterburner

    NASA Astrophysics Data System (ADS)

    Sergienko, A. A.

    1992-08-01

    The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.

  9. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  10. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  11. Determination of combustion parameters using engine crankshaft speed

    NASA Astrophysics Data System (ADS)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  12. AXISYMMETRIC, THROTTLEABLE NON-GIMBALLED ROCKET ENGINE

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L. (Inventor); Hutt, John J. (Inventor); Anderson, William E. (Inventor); Dressler, Gordon A. (Inventor)

    2005-01-01

    A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.

  13. Environmental assessment of combustion modification controls for stationary internal combustion engines. Final report Sep 78-Jul 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, H.I.; Gotterba, J.A.; Lim, K.J.

    1981-07-01

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.

  14. Optimal design of a combustion chamber of gas turbine engine by a Combustion chamber 1D-2D computer program

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Y. B.; Mingazov, B. G.

    2017-09-01

    The paper shows a method of modeling and optimization of processes in combustion chambers of gas turbine engines using a computer program developed by a team at the Department of Jet Engines and Power Plants (DJEPP) of Technical University named after A N Tupolev KNRTU-KAI.

  15. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  16. Development of a natural gas stratified charge rotary engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierens, R.; Verdonck, W.

    A water model has been used to determine the positions of separate inlet ports for a natural gas, stratified charge rotary engine. The flow inside the combustion chamber (mainly during the induction period) has been registered by a film camera. From these tests the best locations of the inlet ports have been obtained, a prototype of this engine has been built by Audi NSU and tested in the laboratories of the university of Gent. The results of these tests, for different stratification configurations, are given. These results are comparable with the best results obtained by Audi NSU for a homogeneousmore » natural gas rotary engine.« less

  17. Method and apparatus for effecting light-off of a catalytic converter in a hybrid powertrain system

    DOEpatents

    Roos, Bryan Nathaniel; Spohn, Brian L

    2013-07-02

    A powertrain system includes a hybrid transmission and an internal combustion engine coupled to an exhaust aftertreatment device. A method for operating the powertrain system includes operating the hybrid transmission to generate tractive torque responsive to an operator torque request with the internal combustion engine in an engine-off state so long as the tractive torque is less than a threshold. The internal combustion engine is operated in an engine-on state at preferred operating conditions to effect light-off of the exhaust aftertreatment device and the hybrid transmission is coincidentally operated to generate tractive torque responsive to the operator torque request when the operator torque request exceeds the threshold. The internal combustion engine is then operated in the engine-on state to generate tractive torque responsive to the operator torque request.

  18. An assessment of thermodynamic merits for current and potential future engine operating strategies

    DOE PAGES

    Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.; ...

    2017-02-01

    The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less

  19. An assessment of thermodynamic merits for current and potential future engine operating strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.

    The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less

  20. 77 FR 282 - Proposed Settlement Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... revised the National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion... the stationary internal combustion engine new source performance standards (ICE NSPS) to allow owners and operators of emergency stationary internal combustion engines to operate emergency stationary...

  1. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  2. Low-cost high-efficiency GDCI engines for low octane fuels

    DOEpatents

    Kolodziej, Christopher P.; Sellnau, Mark C.

    2018-01-09

    A GDCI engine has a piston arranged within a cylinder to provide a combustion chamber. According to one embodiment, the GDCI engine operates using a method that includes the steps of supplying a hydrocarbon fuel to the combustion chamber with a research octane number in the range of about 30-65. The hydrocarbon fuel is injected in completely stratified, multiple fuel injections before a start of combustion and supplying a naturally aspirated air charge to the combustion chamber.

  3. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  4. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.

  5. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  6. Internal combustion engine and method for control

    DOEpatents

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  7. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  8. Report on Investigation of Alcohol Combustion Associated Wear in Spark Ignition Engines, Mechanisms and Lubricant Effects.

    DTIC Science & Technology

    1984-12-01

    investigated four - alcohol -containing fuels: pure methanol , pure ethanol, methanol in unleaded gaso- line, and ethanol in unleaded gasoline (gasohol...testing indicated that pure alcohol fuels reduced the buildup of engine .. deposits. Also neat methanol greatly increased engine wear rates at engine...results from reactions between methanol combustion products and the cast-iron cylinder liner, where the presence of liquid methanol in the combustion

  9. Thermal Loss Determination for a Small Internal Combustion Engine

    DTIC Science & Technology

    2014-03-27

    calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas

  10. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will providemore » an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.« less

  11. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    NASA Astrophysics Data System (ADS)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  12. Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Jacqueline; Musculus, Mark P. B.; Pickett, Lyle M.

    This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH 2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strongmore » function of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. In conclusion, the fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.« less

  13. Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

    DOE PAGES

    O'Connor, Jacqueline; Musculus, Mark P. B.; Pickett, Lyle M.

    2016-05-30

    This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH 2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strongmore » function of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. In conclusion, the fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.« less

  14. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  15. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  16. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...

  17. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  18. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  19. Experimental Flow Models for SSME Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Abel, L. C.; Ramsey, P. E.

    1989-01-01

    Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.

  20. Development and Hot-fire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Greene, Sandy Elam; Protz, Christopher S.; Ellis, David L.; Lerch, Bradley A.; Locci, Ivan E.

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder-bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. NASA's efforts include a 4K lbf thrust liquid oxygen/methane (LOX/CH4) combustion chamber and subscale thrust chambers for 1.2K lbf LOX/hydrogen (H2) applications that have been designed and fabricated with SLM GRCop-84. The same technologies for these lower thrust applications are being applied to 25-35K lbf main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  1. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  2. The Rotary Combustion Engine: a Candidate for General Aviation. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The state of development of the rotary combustion engine is discussed. The nonturbine engine research programs for general aviation and future requirements for general aviation powerplants are emphasized.

  3. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  4. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  5. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels? (a...

  6. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  7. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  8. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  9. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels...

  10. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels...

  11. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  12. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  13. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels? (a...

  14. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  15. 40 CFR 60.4217 - What emission standards must I meet if I am an owner or operator of a stationary internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of a stationary internal combustion engine using special fuels? 60.4217... Compression Ignition Internal Combustion Engines Special Requirements § 60.4217 What emission standards must I meet if I am an owner or operator of a stationary internal combustion engine using special fuels...

  16. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  17. 40 CFR 60.4237 - What are the monitoring requirements if I am an owner or operator of an emergency stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of an emergency stationary SI internal combustion engine? 60.4237 Section... Internal Combustion Engines Other Requirements for Owners and Operators § 60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine? (a...

  18. 40 CFR 60.4235 - What fuel requirements must I meet if I am an owner or operator of a stationary SI gasoline fired...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...

  19. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  20. Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, E.T.

    1977-07-26

    A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less

  1. Thermoelectric system

    DOEpatents

    Reiners, Eric A.; Taher, Mahmoud A.; Fei, Dong; McGilvray, Andrew N.

    2007-10-30

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  2. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Simulation of air pollution due to marine engines

    NASA Astrophysics Data System (ADS)

    Stan, L. C.

    2017-08-01

    This paperwork tried to simulate the combustion inside the marine engines using the newest computer methods and technologies with the result of a diverse and rich palette of solutions, extremely useful for the study and prediction of complex phenomena of the fuel combustion. The paperwork is contributing to the theoretical systematization of the area of interest bringing into attention a thoroughly inventory of the thermodynamic description of the phenomena which take place in the combustion process into the marine diesel engines; to the in depth multidimensional combustion models description along with the interdisciplinary phenomenology taking place in the combustion models; to the FEA (Finite Elements Method) modelling for the combustion chemistry in the nonpremixed mixtures approach considered too; the CFD (Computational Fluid Dynamics) model was issued for the combustion area and a rich palette of results interesting for any researcher of the process.

  4. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, P.

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueledmore » operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.« less

  6. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  7. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Paul C.

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictivemore » engine simulation is summarized.« less

  8. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  9. Performance and operational improvements made to the Waukesha AT27-GL engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbold, E.O.

    1996-12-31

    This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less

  10. Rocket Engine Innovations Advance Clean Energy

    NASA Technical Reports Server (NTRS)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  11. Performance of a supercharged direct-injection stratified-charge rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1990-01-01

    A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.

  12. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    NASA Astrophysics Data System (ADS)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  13. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  14. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  15. Application and theoretical analysis of the flamelet model for supersonic turbulent combustion flows in the scramjet engine

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxun; Wang, Jingying; Jiang, Chongwen; Lee, Chunhian

    2014-11-01

    In the framework of Reynolds-averaged Navier-Stokes simulation, supersonic turbulent combustion flows at the German Aerospace Centre (DLR) combustor and Japan Aerospace Exploration Agency (JAXA) integrated scramjet engine are numerically simulated using the flamelet model. Based on the DLR combustor case, theoretical analysis and numerical experiments conclude that: the finite rate model only implicitly considers the large-scale turbulent effect and, due to the lack of the small-scale non-equilibrium effect, it would overshoot the peak temperature compared to the flamelet model in general. Furthermore, high-Mach-number compressibility affects the flamelet model mainly through two ways: the spatial pressure variation and the static enthalpy variation due to the kinetic energy. In the flamelet library, the mass fractions of the intermediate species, e.g. OH, are more sensible to the above two effects than the main species such as H2O. Additionally, in the combustion flowfield where the pressure is larger than the value adopted in the generation of the flamelet library or the conversion from the static enthalpy to the kinetic energy occurs, the temperature obtained by the flamelet model without taking compressibility effects into account would be undershot, and vice versa. The static enthalpy variation effect has only little influence on the temperature simulation of the flamelet model, while the effect of the spatial pressure variation may cause relatively large errors. From the JAXA case, it is found that the flamelet model cannot in general be used for an integrated scramjet engine. The existence of the inlet together with the transverse injection scheme could cause large spatial variations of pressure, so the pressure value adopted for the generation of a flamelet library should be fine-tuned according to a pre-simulation of pure mixing.

  16. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric

    2015-12-01

    An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a detailed combustion model along with a dynamic structure LES model to evaluate its performance at engine-relevant conditions and understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a detailed combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of RANS predictions. The LES data suggests that the first ignition initiatesmore » in lean mixture and propagates to rich mixture, and the main ignition happens in rich mixture, preferable less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled and modulated by flame propagation. Soot predictions by LES present much better agreement with experiments compared to RANS both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 2 and 5 realizations can reach 99\\% of similarity to the target average of 16 realizations on the temperature and mixture fraction fields, respectively. However, more realizations are necessary for OH and soot mass fraction due to their high fluctuations.« less

  17. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

    DOE PAGES

    Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...

    2015-10-14

    An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less

  18. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  19. 40 CFR 60.4243 - What are my compliance requirements if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4243 Section 60.4243... Combustion Engines Compliance Requirements for Owners and Operators § 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine? (a) If you are an...

  20. 40 CFR 60.4243 - What are my compliance requirements if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4243 Section 60.4243... Combustion Engines Compliance Requirements for Owners and Operators § 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine? (a) If you are an...

  1. 40 CFR 60.4243 - What are my compliance requirements if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4243 Section 60.4243... Combustion Engines Compliance Requirements for Owners and Operators § 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine? (a) If you are an...

  2. 40 CFR 60.4243 - What are my compliance requirements if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4243 Section 60.4243... Combustion Engines Compliance Requirements for Owners and Operators § 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine? (a) If you are an...

  3. 40 CFR 60.4243 - What are my compliance requirements if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4243 Section 60.4243... Combustion Engines Compliance Requirements for Owners and Operators § 60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine? (a) If you are an...

  4. 40 CFR 60.4209 - What are the monitoring requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4209 Section 60.4209... Combustion Engines Other Requirements for Owners and Operators § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine? If you are an owner or...

  5. 40 CFR 60.4233 - What emission standards must I meet if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...

  6. 40 CFR 60.4233 - What emission standards must I meet if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...

  7. 40 CFR 60.4209 - What are the monitoring requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4209 Section 60.4209... Combustion Engines Other Requirements for Owners and Operators § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine? If you are an owner or...

  8. 40 CFR 60.4233 - What emission standards must I meet if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...

  9. 40 CFR 60.4209 - What are the monitoring requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4209 Section 60.4209... Combustion Engines Other Requirements for Owners and Operators § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine? If you are an owner or...

  10. 40 CFR 60.4209 - What are the monitoring requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4209 Section 60.4209... Combustion Engines Other Requirements for Owners and Operators § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine? If you are an owner or...

  11. 40 CFR 60.4233 - What emission standards must I meet if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...

  12. 40 CFR 60.4209 - What are the monitoring requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4209 Section 60.4209... Combustion Engines Other Requirements for Owners and Operators § 60.4209 What are the monitoring requirements if I am an owner or operator of a stationary CI internal combustion engine? If you are an owner or...

  13. 40 CFR 60.4233 - What emission standards must I meet if I am an owner or operator of a stationary SI internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of a stationary SI internal combustion engine? 60.4233 Section 60.4233... Combustion Engines Emission Standards for Owners and Operators § 60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine? (a) Owners and operators...

  14. Combustion system CFD modeling at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-03-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  15. Source localization of turboshaft engine broadband noise using a three-sensor coherence method

    NASA Astrophysics Data System (ADS)

    Blacodon, Daniel; Lewy, Serge

    2015-03-01

    Turboshaft engines can become the main source of helicopter noise at takeoff. Inlet radiation mainly comes from the compressor tones, but aft radiation is more intricate: turbine tones usually are above the audible frequency range and do not contribute to the weighted sound levels; jet is secondary and radiates low noise levels. A broadband component is the most annoying but its sources are not well known (it is called internal or core noise). Present study was made in the framework of the European project TEENI (Turboshaft Engine Exhaust Noise Identification). Its main objective was to localize the broadband sources in order to better reduce them. Several diagnostic techniques were implemented by the various TEENI partners. As regards ONERA, a first attempt at separating sources was made in the past with Turbomeca using a three-signal coherence method (TSM) to reject background non-acoustic noise. The main difficulty when using TSM is the assessment of the frequency range where the results are valid. This drawback has been circumvented in the TSM implemented in TEENI. Measurements were made on a highly instrumented Ardiden turboshaft engine in the Turbomeca open-air test bench. Two engine powers (approach and takeoff) were selected to apply TSM. Two internal pressure probes were located in various cross-sections, either behind the combustion chamber (CC), the high-pressure turbine (HPT), the free-turbine first stage (TL), or in four nozzle sections. The third transducer was a far-field microphone located around the maximum of radiation, at 120° from the intake centerline. The key result is that coherence increases from CC to HPT and TL, then decreases in the nozzle up to the exit. Pressure fluctuations from HPT and TL are very coherent with the far-field acoustic spectra up to 700 Hz. They are thus the main acoustic source and can be attributed to indirect combustion noise (accuracy decreases above 700 Hz because coherence is lower, but far-field sound spectra also are much lower above 700 Hz).

  16. Variable compression ratio device for internal combustion engine

    DOEpatents

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  17. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    NASA Astrophysics Data System (ADS)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  18. The NACA Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    This report describes the apparatus as designed and constructed at the Langley Memorial Aeronautical Laboratory, for studying the formation and combustion of fuel sprays under conditions closely simulating those occurring in a high-speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel-injection system so designed that a single charge of fuel can be injected into the combustion chamber of the engine, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical-disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2,000 per second are taken of the spray formation by means of spark discharges. When combustion takes place the light of the combustion is recorded on the same photographic film as the spray photographs. The report includes the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation.

  19. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOEpatents

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  20. Full hoop casing for midframe of industrial gas turbine engine

    DOEpatents

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  1. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  2. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Aleksandrov, Nikolay

    2016-09-01

    Nonequilibrium plasma demonstrates ability to control ultra-lean, ultra-fast, low-temperature flames and appears to be an extremely promising technology for a wide range of applications, including aviation GTEs, piston engines, ramjets, scramjets and detonation initiation for pulsed detonation engines. To use nonequilibrium plasma for ignition and combustion in real energetic systems, one must understand the mechanisms of plasma-assisted ignition and combustion and be able to numerically simulate the discharge and combustion processes under various conditions. A new, validated mechanism for high-temperature hydrocarbon plasma assisted combustion was built and allows to qualitatively describe plasma-assisted combustion close and above the self-ignition threshold. The principal mechanisms of plasma-assisted ignition and combustion have been established and validated for a wide range of plasma and gas parameters. These results provide a basis for improving various energy-conversion combustion systems, from automobile to aircraft engines, using nonequilibrium plasma methods.

  3. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  4. 77 FR 27490 - Plant-Specific Adoption, Revision 4 of the Improved Standard Technical Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ...,'' NUREG-1432, ``Standard Technical Specifications, Combustion Engineering Plants,'' NUREG-1433, ``Standard..., ``Standard Technical Specifications, Combustion Engineering Plants'' Revision 4, ADAMS Accession No..., Westinghouse Plants''.. NUREG-1432, ``Standard Technical ML12102A165 ML12102A169 Specifications, Combustion...

  5. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOEpatents

    Amey, David L.; Degner, Michael W.

    2002-01-01

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  6. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  7. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  8. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  9. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine.

    PubMed

    Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto

    2017-11-01

    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

  10. Elimination of Intermediate-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Turner, Jim E. (Technical Monitor)

    2001-01-01

    A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. The thrust chamber exhibited benign, yet marginally unstable combustion. The marginally unstable combustion was characterized by chamber pressure oscillations with large amplitudes and a frequency that was too low to be identified as acoustic or high-frequency combustion instability and too high to be identified as chug or low-frequency combustion instability. The source of the buzz or intermediate-frequency combustion instability was traced to the fuel venturi whose violently noisy cavitation caused resonance in the feedline downstream. Combustion was stabilized by increasing the throat diameter of the fuel venturi such that the cavitation would occur more quietly.

  11. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.

  13. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen/Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, J. C.; Morehead, Robert L.

    2014-01-01

    The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.

  14. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    NASA Astrophysics Data System (ADS)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  15. 40 CFR 60.4211 - What are my compliance requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4211 Section 60.4211... Combustion Engines Compliance Requirements § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine? (a) If you are an owner or operator and must comply...

  16. 40 CFR 60.4206 - How long must I meet the emission standards if I am an owner or operator of a stationary CI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards if I am an owner or operator of a stationary CI internal combustion engine? 60.4206 Section 60... Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine...

  17. 40 CFR 60.4206 - How long must I meet the emission standards if I am an owner or operator of a stationary CI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards if I am an owner or operator of a stationary CI internal combustion engine? 60.4206 Section 60... Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine...

  18. 40 CFR 60.4211 - What are my compliance requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4211 Section 60.4211... Combustion Engines Compliance Requirements § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine? (a) If you are an owner or operator and must comply...

  19. 40 CFR 60.4234 - How long must I meet the emission standards if I am an owner or operator of a stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards if I am an owner or operator of a stationary SI internal combustion engine? 60.4234 Section 60... Internal Combustion Engines Emission Standards for Owners and Operators § 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine? Owners and...

  20. 40 CFR 60.4234 - How long must I meet the emission standards if I am an owner or operator of a stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards if I am an owner or operator of a stationary SI internal combustion engine? 60.4234 Section 60... Internal Combustion Engines Emission Standards for Owners and Operators § 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine? Owners and...

  1. 40 CFR 60.4211 - What are my compliance requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4211 Section 60.4211... Combustion Engines Compliance Requirements § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine? (a) If you are an owner or operator and must comply...

  2. 40 CFR 60.4211 - What are my compliance requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4211 Section 60.4211... Combustion Engines Compliance Requirements § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine? (a) If you are an owner or operator and must comply...

  3. 40 CFR 60.4211 - What are my compliance requirements if I am an owner or operator of a stationary CI internal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am an owner or operator of a stationary CI internal combustion engine? 60.4211 Section 60.4211... Combustion Engines Compliance Requirements § 60.4211 What are my compliance requirements if I am an owner or operator of a stationary CI internal combustion engine? (a) If you are an owner or operator and must comply...

  4. 40 CFR 60.4206 - How long must I meet the emission standards if I am an owner or operator of a stationary CI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards if I am an owner or operator of a stationary CI internal combustion engine? 60.4206 Section 60... Ignition Internal Combustion Engines Emission Standards for Owners and Operators § 60.4206 How long must I meet the emission standards if I am an owner or operator of a stationary CI internal combustion engine...

  5. 40 CFR 60.4234 - How long must I meet the emission standards if I am an owner or operator of a stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards if I am an owner or operator of a stationary SI internal combustion engine? 60.4234 Section 60... Internal Combustion Engines Emission Standards for Owners and Operators § 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine? Owners and...

  6. 40 CFR 60.4234 - How long must I meet the emission standards if I am an owner or operator of a stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards if I am an owner or operator of a stationary SI internal combustion engine? 60.4234 Section 60... Internal Combustion Engines Emission Standards for Owners and Operators § 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine? Owners and...

  7. 40 CFR 60.4234 - How long must I meet the emission standards if I am an owner or operator of a stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards if I am an owner or operator of a stationary SI internal combustion engine? 60.4234 Section 60... Internal Combustion Engines Emission Standards for Owners and Operators § 60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine? Owners and...

  8. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  9. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty diesel engine. Pollutant emissions for the engine operating with different injection velocity profiles reflected the sensitivity of diesel engines to the location of pollutants within the combustion chamber, as influenced by the fuel injection.

  10. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    PubMed

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of diesel engine emissions.

  11. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  12. Stratified charge rotary engine combustion studies

    NASA Astrophysics Data System (ADS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-07-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  13. Aviation combustion toxicology: an overview.

    PubMed

    Chaturvedi, Arvind K

    2010-01-01

    Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties.

  14. A new technique for thermodynamic engine modeling

    NASA Astrophysics Data System (ADS)

    Matthews, R. D.; Peters, J. E.; Beckel, S. A.; Shizhi, M.

    1983-12-01

    Reference is made to the equations given by Matthews (1983) for piston engine performance, which show that this performance depends on four fundamental engine efficiencies (combustion, thermodynamic cycle or indicated thermal, volumetric, and mechanical) as well as on engine operation and design parameters. This set of equations is seen to suggest a different technique for engine modeling; that is, that each efficiency should be modeled individually and the efficiency submodels then combined to obtain an overall engine model. A simple method for predicting the combustion efficiency of piston engines is therefore required. Various methods are proposed here and compared with experimental results. These combustion efficiency models are then combined with various models for the volumetric, mechanical, and indicated thermal efficiencies to yield three different engine models of varying degrees of sophistication. Comparisons are then made of the predictions of the resulting engine models with experimental data. It is found that combustion efficiency is almost independent of load, speed, and compression ratio and is not strongly dependent on fuel type, at least so long as the hydrogen-to-carbon ratio is reasonably close to that for isooctane.

  15. Control Strategies for HCCI Mixed-Mode Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Robert M; Edwards, Kevin Dean

    2010-03-01

    Delphi Automotive Systems and ORNL established this CRADA to expand the operational range of Homogenous Charge Compression Ignition (HCCI) mixed-mode combustion for gasoline en-gines. ORNL has extensive experience in the analysis, interpretation, and control of dynamic engine phenomena, and Delphi has extensive knowledge and experience in powertrain compo-nents and subsystems. The partnership of these knowledge bases was important to address criti-cal barriers associated with the realistic implementation of HCCI and enabling clean, efficient operation for the next generation of transportation engines. The foundation of this CRADA was established through the analysis of spark-assisted HCCI data from a single-cylinder research engine.more » This data was used to (1) establish a conceptual kinetic model to better understand and predict the development of combustion instabilities, (2) develop a low-order model framework suitable for real-time controls, and (3) provide guidance in the initial definition of engine valve strategies for achieving HCCI operation. The next phase focused on the development of a new combustion metric for real-time characterization of the combustion process. Rapid feedback on the state of the combustion process is critical to high-speed decision making for predictive control. Simultaneous to the modeling/analysis studies, Delphi was focused on the development of engine hardware and the engine management system. This included custom Delphi hardware and control systems allowing for flexible control of the valvetrain sys-tem to enable HCCI operation. The final phase of this CRADA included the demonstration of conventional and spark assisted HCCI on the multi-cylinder engine as well as the characterization of combustion instabilities, which govern the operational boundaries of this mode of combustion. ORNL and Delphi maintained strong collaboration throughout this project. Meetings were held on a bi-weekly basis with additional reports, presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.« less

  16. Uncertainty in Calibration, Detection and Estimation of Metal Concentrations in Engine Plumes Using OPAD

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Benzing, Daniel A.

    1998-01-01

    Improvements in uncertainties in the values of radiant intensity (I) can be accomplished mainly by improvements in the calibration process and in minimizing the difference between the background and engine plume radiance. For engine tests in which the plume is extremely bright, the difference in luminance between the calibration lamp and the engine plume radiance can be so large as to cause relatively large uncertainties in the values of R. This is due to the small aperture necessary on the receiving optics to avoid saturating the instrument. However, this is not a problem with the SSME engine since the liquid oxygen/hydrogen combustion is not as bright as some other fuels. Applying the instrumentation to other type engine tests may require a much brighter calibration lamp.

  17. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  18. 74. ARAII. Dr. William Zinn of combustion engineering company and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. ARA-II. Dr. William Zinn of combustion engineering company and others at controls of SL-1. August 8, 1959. Ineel photo no. 59-4109. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  20. Application of Weibull analysis to SSME hardware

    NASA Technical Reports Server (NTRS)

    Gray, L. A. B.

    1986-01-01

    Generally, it has been documented that the wearing of engine parts forms a failure distribution which can be approximated by a function developed by Weibull. The purpose here is to examine to what extent the Weibull distribution approximates failure data for designated engine parts of the Space Shuttle Main Engine (SSME). The current testing certification requirements will be examined in order to establish confidence levels. An examination of the failure history of SSME parts/assemblies (turbine blades, main combustion chamber, or high pressure fuel pump first stage impellers) which are limited in usage by time or starts will be done by using updated Weibull techniques. Efforts will be made by the investigator to predict failure trends by using Weibull techniques for SSME parts (turbine temperature sensors, chamber pressure transducers, actuators, and controllers) which are not severely limited by time or starts.

  1. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    NASA Astrophysics Data System (ADS)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.

  2. Influence of Method of Adding Water to Combustible Mixture on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Devyanin, S. N.; Bigaev, A. V.; Markov, V. A.

    2018-03-01

    The supply of water to the cylinders of the diesel engine is one way to reduce the maximum temperature in the combustion zone of the fuel. A reduction of the maximum combustion temperature allows reducing the formation of nitrogen oxides and improving the environmental characteristics of the engine, which remains one of the urgent tasks at the present stage of their development. The methods of supplying water to the engine together with air at the inlet and with the fuel into the cylinder are well known. This article considers the influence of the way the water is supplied to the engine cylinders on its environmental characteristics. It presents the results of experimental studies on the internal combustion engine and analysis of the method of adding water on the engine performance from exhaust gas toxicity, operating efficiency and its thermal state. There are marked different effects on the motor performance of the method of adding water.

  3. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  4. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  5. Combustion Limits and Efficiency of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  6. Combustion characteristics of the LO2/GCH4 fuel-rich preburners for staged combustion cycle rocket engines

    NASA Astrophysics Data System (ADS)

    Ono, Fumiei; Tamura, Hiroshi; Sakamoto, Hiroshi; Sasaki, Masaki

    1991-09-01

    The combustion characteristics of Liquid Oxygen (LO2)/Gaseous Methane (GCH4) fuel rich preburners were experimentally studied using subscale hardware. Three types of preburners with coaxial type propellant injection elements were designed and fabricated, and were used for hot fire testing. LO2 was used as oxidizer, and GCH4 at room temperature was used as fuel. The tests were conducted at chamber pressures ranging from 6.7 to 11.9 M Pa, and oxidizer to fuel ratios ranged from 0.16 to 0.42. The test results, which include combustion gas temperature T(sub c), characteristic velocity C(sup *) and soot adhesion data, are presented. The T(sub c) efficiency and the C(sup *) efficiency were found to be a function of oxidizer to fuel ratio and chamber pressure. These efficiencies are correlated by an empirical correlation parameter which accounts for the effects of oxidizer to fuel ratio and chamber pressure. The exhaust plumes were colorless and transparent under all tests conditions. There was some soot adhesion to the chamber wall, but no soot adhesion was observed on the main injector simulator orifices. Higher temperature igniter gas was required to ignite the main propellants of the preburner compared with that of the LO2/Gaseous Hydrogen (GH2) propellants combination.

  7. Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1993-01-01

    This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.

  8. Los Alamos National Security, LLC Request for Information on how industry may partner with the Laboratory on KIVA software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, Kathleen Herrera

    2016-02-29

    KIVA is a family of Fortran-based computational fluid dynamics software developed by LANL. The software predicts complex fuel and air flows as well as ignition, combustion, and pollutant-formation processes in engines. The KIVA models have been used to understand combustion chemistry processes, such as auto-ignition of fuels, and to optimize diesel engines for high efficiency and low emissions. Fuel economy is heavily dependent upon engine efficiency, which in turn depends to a large degree on how fuel is burned within the cylinders of the engine. Higher in-cylinder pressures and temperatures lead to increased fuel economy, but they also create moremore » difficulty in controlling the combustion process. Poorly controlled and incomplete combustion can cause higher levels of emissions and lower engine efficiencies.« less

  9. Control of the low-load region in partially premixed combustion

    NASA Astrophysics Data System (ADS)

    Ingesson, Gabriel; Yin, Lianhao; Johansson, Rolf; Tunestal, Per

    2016-09-01

    Partially premixed combustion (PPC) is a low temperature, direct-injection combustion concept that has shown to give promising emission levels and efficiencies over a wide operating range. In this concept, high EGR ratios, high octane-number fuels and early injection timings are used to slow down the auto-ignition reactions and to enhance the fuel and are mixing before the start of combustion. A drawback with this concept is the combustion stability in the low-load region where a high octane-number fuel might cause misfire and low combustion efficiency. This paper investigates the problem of low-load PPC controller design for increased engine efficiency. First, low-load PPC data, obtained from a multi-cylinder heavy- duty engine is presented. The data shows that combustion efficiency could be increased by using a pilot injection and that there is a non-linearity in the relation between injection and combustion timing. Furthermore, intake conditions should be set in order to avoid operating points with unfavourable global equivalence ratio and in-cylinder temperature combinations. Model predictive control simulations were used together with a calibrated engine model to find a gas-system controller that fulfilled this task. The findings are then summarized in a suggested engine controller design. Finally, an experimental performance evaluation of the suggested controller is presented.

  10. Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  11. Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1998-01-01

    An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  12. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.

  13. Ignition and combustion: Low compression ratio, high output diesel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.

  14. Technologies for Energy from Biomass by Direct Combustion, Gasification, and Liquefaction.

    DTIC Science & Technology

    1981-05-01

    1980 1982 1984 Development Alberta Industrial Dev. X American Fyr. Feeder X Andco, Inc. X Applied Engineering Co., Inc. X Biomass Corp. X Bio-Solar x...Feeder ANDCO, Inc. Applied Engineering Company Biomass Corporation Bio-Solar Research and Development Corporation Combustion Power Company, Inc. Davy...Andco. Inc. X Applied Engineering Co., Inc. X Biomass Corp. X , Big-Solar .X I Combustion Power .. XI Davy Powergas X j Dekalb Acresearch, Inc.- x Duvant

  15. Development and Hotfire Testing of Additively Manufactured Copper Combustion Chambers for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Greene, Sandy; Protz, Chris

    2017-01-01

    NASA and industry partners are working towards fabrication process development to reduce costs and schedules associated with manufacturing liquid rocket engine components with the goal of reducing overall mission costs. One such technique being evaluated is powder-bed fusion or selective laser melting (SLM), commonly referred to as additive manufacturing (AM). The NASA Low Cost Upper Stage Propulsion (LCUSP) program was designed to develop processes and material characterization for GRCop-84 (a NASA Glenn Research Center-developed copper, chrome, niobium alloy) commensurate with powder bed AM, evaluate bimetallic deposition, and complete testing of a full scale combustion chamber. As part of this development, the process has been transferred to industry partners to enable a long-term supply chain of monolithic copper combustion chambers. To advance the processes further and allow for optimization with multiple materials, NASA is also investigating the feasibility of bimetallic AM chambers. In addition to the LCUSP program, NASA’s Marshall Space Flight Center (MSFC) has completed a series of development programs and hot-fire tests to demonstrate SLM GRCop-84 and other AM techniques. MSFC’s efforts include a 4,000 pounds-force thrust liquid oxygen/methane (LOX/CH4) combustion chamber. Small thrust chambers for 1,200 pounds-force LOX/hydrogen (H2) applications have also been designed and fabricated with SLM GRCop-84. Similar chambers have also completed development with an Inconel 625 jacket bonded to the GRCop-84 material, evaluating direct metal deposition (DMD) laser- and arc-based techniques. The same technologies for these lower thrust applications are being applied to 25,000-35,000 pounds-force main combustion chamber (MCC) designs. This paper describes the design, development, manufacturing and testing of these numerous combustion chambers, and the associated lessons learned throughout their design and development processes.

  16. Some Calculated Research Results of the Working Process Parameters of the Low Thrust Rocket Engine Operating on Gaseous Oxygen-Hydrogen Fuel

    NASA Astrophysics Data System (ADS)

    Ryzhkov, V.; Morozov, I.

    2018-01-01

    The paper presents the calculating results of the combustion products parameters in the tract of the low thrust rocket engine with thrust P ∼ 100 N. The article contains the following data: streamlines, distribution of total temperature parameter in the longitudinal section of the engine chamber, static temperature distribution in the cross section of the engine chamber, velocity distribution of the combustion products in the outlet section of the engine nozzle, static temperature near the inner wall of the engine. The presented parameters allow to estimate the efficiency of the mixture formation processes, flow of combustion products in the engine chamber and to estimate the thermal state of the structure.

  17. Combustion instability investigations on the BR710 jet engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konrad, W.; Brehm, N.; Kameier, F.

    1998-01-01

    During the development of the BR710 jet engine, audible combustor instabilities (termed rumble) occurred. Amplitudes measured with test cell microphones were up to 130 dB at around 100 Hz. Disturbances of this amplitude are clearly undesirable, even if only present during start-up, and a research program was initiated to eliminate the problem. Presented here is the methodical and structured approach used to identify, understand, and remove the instability. Some reference is made to theory, which was used for guidance, but the focus of the work is on the research done to find the cause of the problem and to correctmore » it. The investigation followed two separate, but parallel, paths--one looking in detail at individual components of the engine to identify possible involvement in the instability and the other looking at the pressure signals from various parts of a complete engine to help pinpoint the source of the disturbance. The main cause of the BR710 combustor rumble was found to be a self-excited aerodynamic instability arising from the design of the fuel injector head. In the end, minor modifications lead to spray pattern changes, which greatly reduced the combustor noise. As a result of this work, new recommendation are made for reducing the risk of combustion instabilities in jet engines.« less

  18. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    DOEpatents

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  19. 40 CFR 1074.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activity engaged in as a vocation. Construction equipment or vehicle means any internal combustion engine... vehicle means any internal combustion engine-powered machine primarily used in the commercial production... STATE STANDARDS AND PROCEDURES FOR WAIVER OF FEDERAL PREEMPTION FOR NONROAD ENGINES AND NONROAD VEHICLES...

  20. 40 CFR 1074.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activity engaged in as a vocation. Construction equipment or vehicle means any internal combustion engine... vehicle means any internal combustion engine-powered machine primarily used in the commercial production... STATE STANDARDS AND PROCEDURES FOR WAIVER OF FEDERAL PREEMPTION FOR NONROAD ENGINES AND NONROAD VEHICLES...

  1. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  2. Lean Stability augmentation study

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical and experimental program was conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Three concepts for improving lean stability limits were selected for experimental evaluation among twelve approaches considered. Concepts were selected on the basis of the potential for improving stability limits and achieving emission goals, the technological risks associated with development of practical burners employing the concepts, and the penalties to airline direct operating costs resulting from decreased combustor performance, increased engine cost, increased maintenance cost and increased engine weight associated with implementation of the concepts. Tests of flameholders embodying the selected concepts were conducted.

  3. FUEL EFFECTS ON COMBUSTION WITH EGR DILUTION IN SPARK IGNITED ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P

    The use of EGR as a diluent allows operation with an overall stoichiometric charge composition, and the addition of cooled EGR results in well-understood thermodynamic benefits for improved fuel consumption. This study investigates the effect of fuel on the combustion and emission response of EGR dilution in spark ignited engines. A 2.0 L GM Ecotec LNF engine equipped with the production side-mounted direct injection (DI) fueling system is used in this study. Ethanol, isooctane and certified gasoline are investigated with EGR from 0% to the EGR dilution tolerance. Constant BMEP at 2000 rpm was operated with varying CA50 from 8more » CAD to 16 CAD aTDCf. The results show that ethanol gives the largest EGR tolerance at a given combustion phasing, engine load and speed. The improved EGR dilution tolerance with ethanol is attributed to a faster flame speed, which manifests itself as shorter combustion duration. Data shows that the combustion stability limit occurs at a critical combustion duration that is fuel independent. Due to different flame speeds, this critical combustion duration occurs at different EGR levels for the different fuels.« less

  4. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  5. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    DOE PAGES

    Ge, Hai-Wen; Juneja, Harmit; Shi, Yu; ...

    2010-01-01

    An efficient multigrid (MG) model was implemented for spark-ignited (SI) engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model) for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regionsmore » separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.« less

  6. The causes of unstable engine idle speed and their solutions

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    2018-06-01

    There are many types of engines. The most commonly used engine for automobiles is the internal combustion engine. Internal combustion engines use a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach, also known as the "Ototo cycle," commemorates Nicklaus Otto, who invented it in 1867. The working cycle of a four-stroke engine consists of four piston strokes, ie, intake stroke, compression stroke, power stroke, and exhaust stroke. This article focuses on the cause of the instability of the four-stroke engine and its solution. There are many reasons for the instability of the engine, so this article will be divided into four areas: intake system, fuel system, ignition system and mechanical structure. Based on the above reasons, the corresponding solution is proposed.

  7. Spontaneous Raman Scattering (SRS) System for Calibrating High-Pressure Flames Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.

  8. Engine-Scale Combustor Rig Designed, Fabricated, and Tested for Combustion Instability Control Research

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.

    2000-01-01

    Low-emission combustor designs are prone to combustor instabilities. Because active control of these instabilities may allow future combustors to meet both stringent emissions and performance requirements, an experimental combustor rig was developed for investigating methods of actively suppressing combustion instabilities. The experimental rig has features similar to a real engine combustor and exhibits instabilities representative of those in aircraft gas turbine engines. Experimental testing in the spring of 1999 demonstrated that the rig can be tuned to closely represent an instability observed in engine tests. Future plans are to develop and demonstrate combustion instability control using this experimental combustor rig. The NASA Glenn Research Center at Lewis Field is leading the Combustion Instability Control program to investigate methods for actively suppressing combustion instabilities. Under this program, a single-nozzle, liquid-fueled research combustor rig was designed, fabricated, and tested. The rig has many of the complexities of a real engine combustor, including an actual fuel nozzle and swirler, dilution cooling, and an effusion-cooled liner. Prior to designing the experimental rig, a survey of aircraft engine combustion instability experience identified an instability observed in a prototype engine as a suitable candidate for replication. The frequency of the instability was 525 Hz, with an amplitude of approximately 1.5-psi peak-to-peak at a burner pressure of 200 psia. The single-nozzle experimental combustor rig was designed to preserve subcomponent lengths, cross sectional area distribution, flow distribution, pressure-drop distribution, temperature distribution, and other factors previously found to be determinants of burner acoustic frequencies, mode shapes, gain, and damping. Analytical models were used to predict the acoustic resonances of both the engine combustor and proposed experiment. The analysis confirmed that the test rig configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.

  9. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  10. 40 CFR 63.11132 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an internal combustion engine (including the fuel system) that is not used in a motor vehicle or a... internal combustion engines. Gasoline cargo tank means a delivery tank truck or railcar which is loading or... motor vehicle, motor vehicle engine, nonroad vehicle, or nonroad engine, including a nonroad vehicle or...

  11. The Stirling Engine: A Wave of the Future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video describes the Stirling engine, an external combustion engine which creates heat energy to power the motor, and can use many types of fuel. It can be used for both stationary and propulsion purposes and has advantages of better fuel economy and cleaner exhaust than internal combustion engines. The engine is shown being road tested at Langley Air Force Base.

  12. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  13. Rotary engine performance limits predicted by a zero-dimensional model

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  14. Experimental investigation of solid rocket motors for small sounding rockets

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  15. Lab-scale Lidar Sensing of Diesel Engines Exhausts

    NASA Technical Reports Server (NTRS)

    Borghese, A.

    1992-01-01

    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  16. The research on new type fast burning systems for biogas engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, L.; Zheng, B.; Chen, Z.

    1996-12-31

    In order to meet the demands of energy supply and environmental protection, the large and medium-sized biogas engineering are developed quickly. The biogas engines are also beginning to be developed in China. However, the problems of afterburning and short lifespan of spark ignited biogas engine have not been solved. According to the fast burning theory in gas engines, the authors developed four kinds of new combustion systems which could promote the fast burning of mixture gas and gained good effects. This paper discusses in detail the structural features and experimental results of one combustion system: the Fan shaped combustion chamber.

  17. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time for current two-stroke swing engine is estimated as about 2.5 ms, which can be used in the prescribed burned mass fraction profile that follows the Wiebe's function. Finally, a 2D CFD code for compressible flow has been developed to study wave interactions in the engine and header system. It is found that with realistic working conditions, for a two-stroke swing engine, certain expansion waves can be created by the exhaust gas flows and the chamber pressure can reach as low as 5 psi below one atmosphere, which helps fill fresh reactant charge. The results also show that to obtain appropriate header tuning for the current two-stroke swing engine, the length of the header neck is about 40 cm.

  18. SSME Main Combustion Chamber (MCC) hot oil dewaxing

    NASA Technical Reports Server (NTRS)

    Akpati, Anthony U.

    1995-01-01

    In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax (R) casting compound. Rigidax (R) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.

  19. SSME Main Combustion Chamber (MCC) 'Hot Oil' Dewaxing

    NASA Technical Reports Server (NTRS)

    Akpati, Anthony U.

    1994-01-01

    In an attempt to comply with the changing environmental regulations, a process was developed for the replacement of perchloroethylene in the dewaxing of the Space Shuttle Main Engine (SSME) Main Combustion Chamber (MCC) and other associated hardware filled with the Rigidax(registered mark) casting compound. Rigidax(registered mark) is a hard blue-dyed, calcium carbonate filled thermoplastic casting compound (melting point 77 C) that is melted and poured into hardware cavities to prevent contamination during material removal processes, i.e. machining, grinding, drilling, and deburring. Additionally, it serves as a maskant for designated areas during electroforming processes. Laboratory testing was conducted to evaluate seven alternate fluids for the replacement of perchloroethylene in the dewaxing process. Based upon successful laboratory results, a mineral oil was selected for testing on actual hardware. The final process developed involves simultaneous immersion and flushing of the MCC channels using a distinct eight stage process. A nonvolatile hydrocarbon analysis of a solvent flush sample is performed to determine the hardware cleanliness for comparison to the previous perchloroethylene dewaxing process.

  20. An experimental study of the combustion characteristics in SCCI and CAI based on direct-injection gasoline engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Lee, K.H.

    2007-08-15

    Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less

Top