He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing
2015-09-01
Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level. Copyright © 2015. Published by Elsevier B.V.
Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D
2012-08-21
The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2014-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.
2015-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2015-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2014-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; ...
2016-04-05
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less
Evaluation of mobile source emission trends in the United States
NASA Astrophysics Data System (ADS)
Dallmann, Timothy R.; Harley, Robert A.
2010-07-01
A fuel-based approach is used to estimate exhaust emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) from mobile sources in the United States for the years 1996-2006. Source categories considered include on-road and off-road gasoline and diesel engines. Pollutant emissions for each mobile source category were estimated by combining fuel consumption with emission factors expressed per unit of fuel burned. Over the 10-year time period that is the focus of this study, sales of gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by ˜20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. For NOx, there have been dramatic (factor of 2) decreases in emission factors for on-road gasoline engines between 1996 and 2006. In contrast, diesel NOx emission factors decreased more gradually. Exhaust PM2.5 emission factors appear to have decreased for most engine categories, but emission uncertainties are large for this pollutant. Diesel engines appear to be the dominant mobile source of both NOx and PM2.5; the diesel share of total NOx has increased over time as gasoline engine emissions have declined. Comparing fuel-based emission estimates with U.S. Environmental Protection Agency's national emission inventory led to the following conclusions: (1) total emissions of NOx and PM2.5 estimated by two different methods were similar, (2) source contributions to these totals differ significantly, with higher relative contributions coming from on-road diesel engines in this study.
40 CFR Appendix I to Part 1054 - Summary of Previous Emission Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... Engines (g/kW-hr) a Engine displacement class HC NOX CO Class III 295 5.36 805 Class IV 241 5.36 805 Class...—Phase 2 Emission Standards for Handheld Engines (g/kW-hr) a Engine displacement class HC+NOX CO Class...-hr) a Engine displacement class HC+NOX CO Class I 16.1 519 Class II 13.4 519 a Phase 1 standards are...
40 CFR Appendix I to Part 1054 - Summary of Previous Emission Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... Engines (g/kW-hr) a Engine displacement class HC NOX CO Class III 295 5.36 805 Class IV 241 5.36 805 Class...—Phase 2 Emission Standards for Handheld Engines (g/kW-hr) a Engine displacement class HC+NOX CO Class...-hr) a Engine displacement class HC+NOX CO Class I 16.1 519 Class II 13.4 519 a Phase 1 standards are...
40 CFR Appendix I to Part 1054 - Summary of Previous Emission Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
... Engines (g/kW-hr) a Engine displacement class HC NOX CO Class III 295 5.36 805 Class IV 241 5.36 805 Class...—Phase 2 Emission Standards for Handheld Engines (g/kW-hr) a Engine displacement class HC+NOX CO Class...-hr) a Engine displacement class HC+NOX CO Class I 16.1 519 Class II 13.4 519 a Phase 1 standards are...
40 CFR Appendix I to Part 1054 - Summary of Previous Emission Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... Engines (g/kW-hr) a Engine displacement class HC NOX CO Class III 295 5.36 805 Class IV 241 5.36 805 Class...—Phase 2 Emission Standards for Handheld Engines (g/kW-hr) a Engine displacement class HC+NOX CO Class...-hr) a Engine displacement class HC+NOX CO Class I 16.1 519 Class II 13.4 519 a Phase 1 standards are...
40 CFR Appendix I to Part 1054 - Summary of Previous Emission Standards
Code of Federal Regulations, 2011 CFR
2011-07-01
... Engines (g/kW-hr) a Engine displacement class HC NOX CO Class III 295 5.36 805 Class IV 241 5.36 805 Class...—Phase 2 Emission Standards for Handheld Engines (g/kW-hr) a Engine displacement class HC+NOX CO Class...-hr) a Engine displacement class HC+NOX CO Class I 16.1 519 Class II 13.4 519 a Phase 1 standards are...
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest.more » In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11% compared with stoichiometric operation.« less
Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.
Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C
2008-03-15
Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.
Correlating Engine NOx Emission with Biodiesel Composition
NASA Astrophysics Data System (ADS)
Jeyaseelan, Thangaraja; Mehta, Pramod Shankar
2017-06-01
Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.
A Fuel-Based Assessment of On-Road and Off-Road Mobile Source Emission Trends
NASA Astrophysics Data System (ADS)
Dallmann, T. R.; Harley, R. A.
2009-12-01
Mobile sources contribute significantly to emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) in the United States. These emissions lead to a variety of environmental concerns including adverse human health effects and climate change. In the electric power sector, sulfur dioxide (SO2) and NOx emissions from power plants are measured directly using continuous emission monitoring systems. In contrast for mobile sources, statistical models are used to estimate average emissions from a very large and diverse population of engines. Despite much effort aimed at improving them, mobile source emission inventories continue to have large associated uncertainties. Alternate methods are needed to help evaluate estimates of mobile source emissions and quantify and reduce the associated uncertainties. In this study, a fuel-based approach is used to estimate emissions from mobile sources, including on-road and off-road gasoline and diesel engines. In this approach, engine activity is measured by fuel consumed (in contrast EPA mobile source emission models are based on vehicle km of travel and total amount of engine work output for on-road and off-road engines, respectively). Fuel consumption is defined in this study based on highway fuel tax reports for on-road engines, and from surveys of fuel wholesalers who sell tax-exempt diesel fuel for use in various off-road sectors such as agriculture, construction, and mining. Over the decade-long time period (1996-2006) that is the focus of the present study, national sales of taxable gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by about 20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. This study relies on in-use measurements of mobile source emission factors, for example from roadside and tunnel studies, remote sensing, and plume capture experiments. Extensive in-use emissions data are available for NOx, especially for on-road engines. Measurements of exhaust PM2.5 emission factors are sparse in comparison. For NOx, there have been dramatic (factor of 2) decreases in emission factors for on-road gasoline engines between 1996 and 2006, due to use of improved catalytic converters on most engines. In contrast, diesel NOx emission factors decreased more gradually over the same time period. Exhaust PM2.5 emission factors appear to have decreased for most engine categories, but emission uncertainties are large for this pollutant. Pollutant emissions were estimated by combining fuel sales with emission factors expressed per unit of fuel burned. Diesel engines are the dominant mobile source of both NOx and PM2.5; the diesel contribution to NOx has increased over time as gasoline engine emissions have declined. Comparing fuel-based emission estimates with EPA’s national emission inventory led to the following conclusions: (1) total emissions of both NOx and PM2.5 estimated by two different methods were similar, (2) the distribution of source contributions to these totals differ significantly, with higher relative contributions coming from on-road diesel engines in this study compared to EPA.
Prediction of the production of nitrogen oxide (NOx) in turbojet engines
NASA Astrophysics Data System (ADS)
Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo
Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO database [Goehlich, R.A., 2000. Investigation into the applicability of pollutant emission models for computer aided preliminary aircraft design, Book number 175654, 4.2.2000, pp. 57-79] can now be completed using the approach we propose to complete the whole mission flight NOx emissions.
Development of Diesel Exhaust Aftertreatment System for Tier II Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.
2002-06-01
Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringentmore » emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)« less
Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve
Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.
2007-01-30
An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.
Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L
2009-05-15
Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further research with control optimization, urea distribution and possible use of oxidation catalysts is recommended to improve the NOx reduction capabilities while minimizing ammonia slip.
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-05-01
There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.
NASA Astrophysics Data System (ADS)
Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias
2015-01-01
This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a factor of 14.
NASA Astrophysics Data System (ADS)
Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.
2017-11-01
On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.
EPA is amending the existing emission standards for oxides of nitrogen (NOx) for new commercial aircraft engines. These standards are equivalent to the NOx emission standards of the United Nations International Civil Aviation Organization (ICAO).
Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L
2008-03-15
Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.
Application of an EGR system in a direct injection diesel engine to reduce NOx emissions
NASA Astrophysics Data System (ADS)
De Serio, D.; De Oliveira, A.; Sodré, J. R.
2016-09-01
This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.
40 CFR 94.305 - Credit generation and use calculation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engine family, calculate THC+NOX and PM emission credits (positive or negative) according to the equation... applicable cycle-weighted marine engine THC+NOX or PM emission standard in grams per kilowatt-hour. (ii) FEL...
40 CFR 94.305 - Credit generation and use calculation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine family, calculate THC+NOX and PM emission credits (positive or negative) according to the equation... applicable cycle-weighted marine engine THC+NOX or PM emission standard in grams per kilowatt-hour. (ii) FEL...
40 CFR 94.305 - Credit generation and use calculation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engine family, calculate THC+NOX and PM emission credits (positive or negative) according to the equation... applicable cycle-weighted marine engine THC+NOX or PM emission standard in grams per kilowatt-hour. (ii) FEL...
40 CFR 94.305 - Credit generation and use calculation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... engine family, calculate THC+NOX and PM emission credits (positive or negative) according to the equation... applicable cycle-weighted marine engine THC+NOX or PM emission standard in grams per kilowatt-hour. (ii) FEL...
40 CFR 94.305 - Credit generation and use calculation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine family, calculate THC+NOX and PM emission credits (positive or negative) according to the equation... applicable cycle-weighted marine engine THC+NOX or PM emission standard in grams per kilowatt-hour. (ii) FEL...
Effects of retrofitting emission control systems on in-use heavy diesel vehicles.
Millstein, Dev E; Harley, Robert A
2010-07-01
Diesel engines are now the largest source of nitrogen oxides (NO(x)) and fine particulate black carbon (soot) emissions in California. The California Air Resources Board recently adopted a rule requiring that by 2014 all in-use heavy trucks and buses meet current (2007) exhaust particulate matter (PM) emission standards. Also by 2023 all in-use heavy-duty vehicles will have to meet current NO(x) emission standards, with significant progress in achieving the requirements for NO(x) control expected by 2014. This will require retrofit or replacement of older in-use engines. Diesel particle filters (DPF) reduce PM emissions but may increase the NO(2)/NO(x) emission ratio to approximately 35%, compared to approximately 5% typical of diesel engines without particle filters. Additionally, DPF with high oxidative capacity reduce CO and hydrocarbon emissions. We evaluate the effects of retrofitting trucks with DPF on air quality in southern California, using an Eulerian photochemical air quality model. Compared to a 2014 reference scenario without the retrofit program, black carbon concentrations decreased by 12 +/- 2% and 14 +/- 2% during summer and fall, respectively, with corresponding increases in ambient ozone concentrations of 3 +/- 2% and 7 +/- 3%. NO(2) concentrations decreased by 2-4% overall despite the increase in primary NO(2) emissions because total NO(x) emissions were reduced as part of the program to retrofit NO(x) control systems on in-use engines. However, in some cases NO(2) concentrations may increase at locations with high diesel truck traffic.
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model...
Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki
2016-05-05
Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. Copyright © 2016. Published by Elsevier B.V.
REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I
Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...
Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.
Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung
2015-03-17
NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.
Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao
2017-01-01
In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect. PMID:28252034
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao
2017-03-01
In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect.
Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study
NASA Technical Reports Server (NTRS)
Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)
2003-01-01
Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.
Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong
2008-01-01
In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).
Yoon, Seungju; Collins, John; Thiruvengadam, Arvind; Gautam, Mridul; Herner, Jorn; Ayala, Alberto
2013-08-01
Engine and exhaust control technologies applied to compressed natural gas (CNG) transit buses have advanced from lean-burn, to lean-burn with oxidation catalyst (OxC), to stoichiometric combustion with three-way catalyst (TWC). With this technology advancement, regulated gaseous and particulate matter emissions have been significantly reduced. Two CNG transit buses equipped with stoichiometric combustion engines and TWCs were tested on a chassis dynamometer, and their emissions were measured. Emissions from the stoichiometric engines with TWCs were then compared to the emissions from lean-burn CNG transit buses tested in previous studies. Stoichiometric combustion with TWC was effective in reducing emissions of oxides of nitrogen (NO(x)), particulate matter (PM), and nonmethane hydrocarbon (NMHC) by 87% to 98% depending on pollutants and test cycles, compared to lean combustion. The high removal efficiencies exceeded the emission reduction required from the certification standards, especially for NO(x) and PM. While the certification standards require 95% and 90% reductions for NO(x) and PM, respectively, from the engine model years 1998-2003 to the engine model year 2007, the measured NO(x) and PM emissions show 96% and 95% reductions, respectively, from the lean-burn engines to the stoichiometric engines with TWC over the transient Urban Dynamometer Driving Schedule (UDDS) cycle. One drawback of stoichiometric combustion with TWC is that this technology produces higher carbon monoxide (CO) emissions than lean combustion. In regard to controlling CO emissions, lean combustion with OxC is more effective than stoichiometric combustion. Stoichiometric combustion with TWC produced higher greenhouse gas (GHG) emissions including carbon dioxide (CO2) and methane (CH4) than lean combustion during the UDDS cycle, but lower GHG emissions during the steady-state cruise cycle. Stoichiometric combustion with three-way catalyst is currently the best emission control technology available for compressed natural gas (CNG) transit buses to meet the stringent U.S. Environmental Protection Agency (EPA) 2010 heavy-duty engine NO(x) emissions standard. For existing lean-burn CNG transit buses in the fleet, oxidation catalyst would be the most effective retrofit technology for the control of NMHC and CO emissions.
Nox Emission Reduction in Commercial Jets Through Water Injection
NASA Technical Reports Server (NTRS)
Balepin, Vladimir; Ossello, Chris; Snyder, Chris
2002-01-01
This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; McCormick, R. L.; Sindler, P.
2012-10-01
Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP Engine type and fuel Maximum engine...
Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides
NASA Technical Reports Server (NTRS)
Lyons, V. J.
1981-01-01
The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.
Low NO(x) potential of gas turbine engines
NASA Technical Reports Server (NTRS)
Tacina, Robert R.
1990-01-01
The purpose is to correlate emission levels of gas turbine engines. The predictions of NO(x) emissions are based on a review of the literature of previous low NO(x) combustor programs and analytical chemical kinetic calculations. Concepts included in the literature review consisted of lean-premixed-prevaporized (LPP), rich burn/quick quench/lean burn (RQL), and direct injection. The NO(x) emissions were found to be an exponential function of adiabatic combustion temperature over a wide range of inlet temperatures, pressures and (lean) fuel-air ratios. A simple correlation of NO(x) formation with time was not found. The LPP and direct injection (using gaseous fuels) concepts have the lowest NO(x) emissions of the three concepts. The RQL data has higher values of NO(x) than the LPP concept, probably due to the stoichiometric temperatures and NO(x) production that occur during the quench step. Improvements in the quick quench step could reduce the NO(x) emissions to the LPP levels. The low NO(x) potential of LPP is offset by the operational disadvantages of its narrow stability limits and its susceptibility to autoignition/flashback. The Rich-Burn/Quick-Quench/Lean-Burn (RQL) and the direct injection concepts have the advantage of wider stability limits comparable to conventional combustors.
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
40 CFR 90.426 - Dilute emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... NOX) [g/kW-hr] Wi = Average mass flow rate of an emission (HC, CO, CO2, NOX) from a test engine during... is also equal to 1 for all two-stroke engines. (b) The mass flow rate, Wi in g/hr, of an emission for... rate, Fi, can be either measured or calculated using the following formula: ER03JY95.046 Where: MFUEL...
Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine
NASA Astrophysics Data System (ADS)
Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang
2018-01-01
For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.
NASA Technical Reports Server (NTRS)
Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.
1976-01-01
A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Fluga
The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources inmore » light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.« less
DI Diesel Performance and Emissions Models
2003-06-11
Skeletal mechanism for NOx chemistry in diesel engines ,” SAE Paper 981450, 1998 SAE Transactions, Vol. 107, Sect. 4, J. Fuels and... mechanism for NOx chemistry proposed by Mellor et al. (1998a) is incorporated in an engine simulation code. The two-zone model, also proposed by Mellor et...34Dynamic Application of a Skeletal Mechanism for DI Diesel NOx Emissions," SAE Paper 2001-01-1984, SAE Trans., J. Fuels & Lubricants,
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-10-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV fleet in the future.
NASA Astrophysics Data System (ADS)
Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra
2018-04-01
Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.
Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Storey, John Morse; Theiss, Timothy J
Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance ismore » straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.« less
Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions
NASA Astrophysics Data System (ADS)
Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.
2015-12-01
Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference could be related to engine temperature, with highway operation producing greater exhaust temperatures that promote UFP nucleation. These studies indicate that DPF and SCR use can mitigate air quality and climate impacts of diesel truck emissions through reductions in BC and NOx. However, increased emissions of N2O, NO2 and PN may offset some of the benefits.
Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks
NASA Astrophysics Data System (ADS)
Millstein, D.; Harley, R. A.
2009-12-01
Diesel exhaust is now the largest source of nitrogen oxide (NOx) emissions nationally in the US, and contributes significantly to emissions of fine particulate black carbon (soot) as well. New national standards call for dramatically lower emissions of exhaust particulate matter (PM) and NOx from new diesel engines starting in 2007 and 2010, respectively. Unfortunately it will take decades for the cleaner new engines to replace those currently in service on existing heavy-duty trucks. The state of California recently adopted a rule to accelerate fleet turnover in the heavy-duty truck sector, requiring that all in-use trucks meet the new exhaust PM standards by 2014. This will entail retrofit of diesel particle filters or replacement for over a million existing diesel engines. Diesel particle filters can replace the muffler on existing trucks, and there is extensive experience with retrofit of this control equipment on public sector fleets such as diesel-powered transit buses. Nitrogen dioxide (NO2) is used as an oxidizing agent to remove carbon particles from the particle filter, to prevent it from becoming plugged. To create the needed NO2, NOx already present in engine exhaust as nitric oxide (NO) is deliberately oxidized to NO2 upstream of the particle filter using a platinum catalyst. The NO2/NOx ratio in exhaust emissions therefore increases to ~35% in comparison to much lower values (~5%) typical of older engines without particle filters. We evaluate the effects on air quality of increased use of diesel particle traps and NOx controls in southern California using the Community Multiscale Air Quality (CMAQ) model. Compared to a reference scenario without the retrofit program, we found black carbon concentrations decreased by ~20%, with small increases (4%) in ambient ozone concentrations. During summer, average NO2 concentrations decrease despite the increase in primary NO2 emissions - because total NOx emissions are reduced as part of a parallel but more gradual program to retrofit NOx control systems on in-use engines. During winter, NO2 concentrations increase by 1-2% at locations with high diesel truck traffic, and larger increases may occur if diesel trucks outfitted with particle traps do not meet the in-use NOx emission reduction requirements. Small changes to fine particulate nitrate are seen as well with increases over the Los Angeles area of 3 and 6% during the summer and fall, respectively. During the summer, but not the fall, downwind nitrate decreased by 2% east of Los Angeles near Riverside. Emissions reductions due to fleet turnover in the reference scenario (without retrofit) may be optimistic, and the air quality benefits of retrofits could therefore be understated, due to slow sales of new engines in recent years. In any case, significant changes in diesel engine emissions of NOx and PM are expected to occur over the next 5 years in California.
McCormick, R L; Graboski, M S; Alleman, T L; Herring, A M; Tyson, K S
2001-05-01
Biodiesel is an oxygenated diesel fuel made from vegetable oils and animal fats by conversion of the triglyceride fats to esters via transesterification. In this study we examined biodiesels produced from a variety of real-world feedstocks as well as pure (technical grade) fatty acid methyl and ethyl esters for emissions performance in a heavy-duty truck engine. The objective was to understand the impact of biodiesel chemical structure, specifically fatty acid chain length and number of double bonds, on emissions of NOx and particulate matter (PM). A group of seven biodiesels produced from real-world feedstocks and 14 produced from pure fatty acids were tested in a heavy-duty truck engine using the U.S. heavy-duty federal test procedure (transient test). It was found that the molecular structure of biodiesel can have a substantial impact on emissions. The properties of density, cetane number, and iodine number were found to be highly correlated with one another. For neat biodiesels, PM emissions were essentially constant at about 0.07 g/bhp-h for all biodiesels as long as density was less than 0.89 g/cm3 or cetane number was greater than about 45. NOx emissions increased with increasing fuel density or decreasing fuel cetane number. Increasing the number of double bonds, quantified as iodine number, correlated with increasing emissions of NOx. Thus the increased NOx observed for some fuels cannot be explained by the NOx/PM tradeoff and is therefore not driven by thermal NO formation. For fully saturated fatty acid chains the NOx emission increased with decreasing chain length for tests using 18, 16, and 12 carbon chain molecules. Additionally, there was no significant difference in NOx or PM emissions for the methyl and ethyl esters of identical fatty acids.
40 CFR 86.327-79 - Quench checks; NOX analyzer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.327-79..., recalibrate and repeat the quench check. (4) Prior to testing, the difference between the calculated NOX...
40 CFR 86.327-79 - Quench checks; NOX analyzer.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.327-79..., recalibrate and repeat the quench check. (4) Prior to testing, the difference between the calculated NOX...
Corbett, J J; Robinson, A L
2001-04-01
This paper describes measurements of NOx emissions from one engine on a commercial towboat operating on the Upper Ohio River system around the Port of Pittsburgh. Continuous measurements were made over a one-week period to characterize emissions during normal operations. The average NOx emission factor is 70 +/- 4.2 kg of NOx per t of fuel, similar to that of larger marine engines. A vessel-specific duty cycle is derived to characterize the towboat's operations; more than 50% of the time the vessel engines are at idle. Although recently promulgated EPA regulations apply only to new marine engines, these data provide insight into inland-river operations, which can be used to evaluate these regulations within the inland river context. This vessel operates as a courier service, scheduling pickups and deliveries of single- or multiple-barge loads per customers' requests; as many as 30% of the 277 towboats in the Pittsburgh region operate in this fashion. The EPA-prescribed ISO E3 duty cycle does not accurately describe inland-river operations of this towboat: its application overestimates actual NOx emissions by 14%. Only 41% of this vessel's operations fall within the Not-To-Exceed Zone defined by the EPA regulations, which limits the effectiveness of this component of the regulations to limit emissions from vessels that operate in a similar fashion.
The challenge to NOx emission control for heavy-duty diesel vehicles in China
NASA Astrophysics Data System (ADS)
Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.
2012-07-01
China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.
Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less
Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin
2013-05-01
NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China. Copyright © 2013 Elsevier B.V. All rights reserved.
High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie
2007-01-01
In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.
NASA Glenn High Pressure Low NOx Emissions Research
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Wey, Changlie
2008-01-01
In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.
NASA Astrophysics Data System (ADS)
Williams, E. J.; Lerner, B. M.; Murphy, P. C.; Herndon, S. C.; Zahniser, M. S.
2009-11-01
We report measurements of NOx, SO2, CO, and HCHO mass-based emission factors from more than 200 commercial vessel encounters in the Gulf of Mexico and the Houston-Galveston region of Texas during August and September, 2006. For underway ships, bulk freight carriers have the highest average NOx emissions at ˜87 g NOx (kg fuel)-1, followed by tanker ships at ˜79 g NOx (kg fuel)-1, while container carriers, passenger ships, and tugs all emit an average of about ˜60 g NOx (kg fuel)-1. Emission of NOx from stationary vessels was lower, except for container ships and tugs, and likely reflects use of medium-speed diesel engines. Overall, our mean NOx emission factors are 10-15% lower than published data. Average emission of SO2 was lower for passenger ships and tugs and tows (6-7 g SO2 (kg fuel)-1) than for larger cargo vessels (20-30 g SO2 (kg fuel)-1). Our data for large cargo ships in this region indicate an average residual fuel sulfur content of ˜1.4% which is a factor of two lower than the global average of 2.7%. Emission of CO was low for all categories (7-16 g CO (kg fuel)-1), although our mean overall CO emission factor is about 10% higher than published data. Emission of HCHO was less than 5% that of CO. Despite considerable variability, no functional relationships, such as emissions changes with engine speed or load, could be discerned. Comparison of emission factors from ships to those from other sources suggests ship emissions in this region cannot be ignored.
Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William
2011-09-15
The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Yunhua; Lou, Diming; Tan, Piqiang; Hu, Zhiyuan
2018-03-01
The increasingly stringent emission regulations will mandate the retrofit of after-treatment devices for in-use diesel vehicles, in order to reduce their substantial particulate matter and nitrogen oxides (NOX) emissions. In this paper, a combination of DOC (diesel oxidation catalyst), CDPF (catalytic diesel particulate filter) and SCR (selective catalytic reduction) retrofit for a heavy-duty diesel engine was employed to perform experiment on the engine test bench to evaluate the effects on the particulate matter emissions including particle number (PN), particle mass (PM), particle size distributions and nitrogenous compounds emissions including NOX, nitrogen dioxide (NO2)/NOX, nitrous oxide (N2O) and ammonia (NH3) slip. In addition, the urea injection was also of our concern. The results showed that the DOC+CDPF+SCR retrofit almost had no adverse effect on the engine power and fuel consumption. Under the test loads, the upstream DOC and CDPF reduced the PN and PM by an average of 91.6% and 90.9%, respectively. While the downstream SCR brought about an average decrease of 85% NOX. Both PM and NOX emission factors based on this retrofit were lower than China-Ⅳ limits (ESC), and even lower than China-Ⅴ limits (ESC) at medium and high loads. The DOC and CDPF changed the particle size distributions, leading to the increase in the proportion of accumulation mode particles and the decrease in the percentage of nuclear mode particles. This indicates that the effect of DOC and CDPF on nuclear mode particles was better than that of accumulation mode ones. The upstream DOC could increase the NO2/NOX ratio to 40%, higher NO2/NOX ratio improved the efficiency of CDPF and SCR. Besides, the N2O emission increased by an average of 2.58 times after the retrofit and NH3 slip occurred with the average of 26.7 ppm. The rate of urea injection was roughly equal to 8% of the fuel consumption rate. The DOC+CDPF+SCR retrofit was proved a feasible and effective measurement in terms of reducing particulate emissions and NOX simultaneously for in-use engine. However, it also resulted in higher N2O emission, NH3 slip as well as urea injecting strategy problem which should be of further concern.
Idle emissions from heavy-duty diesel vehicles: review and recent data.
Khan, A B M S; Clark, Nigel N; Thompson, Gregory J; Wayne, W Scott; Gautam, Mridul; Lyons, Donald W; Hawelti, Daniel
2006-10-01
Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted approximately 20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted approximately 35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idle CO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by approximately 100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75% of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.
Emission Characteristics of A P and W Axially Staged Sector Combustor
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Wey, Changlie; Chang, Clarence T.; Lee, Chi Ming; Surgenor, Angela D.; Kopp-Vaughan, Kristin; Cheung, Albert
2016-01-01
Emission characteristics of a three-cup P and W Axially Controlled Stoichiometry (ACS) sector combustor are reported in this article. Multiple injection points and fuel staging strategies are used in this combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve overall lean burn yielding very low NOx emissions. Combustion efficiencies at four ICAO LTO conditions were all above 99%. Three EINOx emissions correlation equations were developed based on the experimental data to describe the NOx emission trends of this combustor concept. For the 7% and 30% engine power conditions, NOx emissions are obtained with the low power configuration, and the EINOx values are 6.16 and 6.81. The high power configuration was used to assess 85% and 100% engine power NOx emissions, with measured EINOx values of 4.58 and 7.45, respectively. The overall landing-takeoff cycle NOx emissions are about 12% relative to ICAO CAEP/6 level.
In-Plume Emission Test Stand 2: emission factors for 10- to 100-kW U.S. military generators.
Zhu, Dongzi; Nussbaum, Nicholas J; Kuhns, Hampden D; Chang, M-C Oliver; Sodeman, David; Uppapalli, Sebastian; Moosmüller, Hans; Chow, Judith C; Watson, John G
2009-12-01
Although emissions of air pollutants from some military tactical equipment are not subject to the emissions standards, local communities near military bases must conform to the National Ambient Air Quality Standards. Military diesel generators are widely used in training. A portable in-plume system was used to measure fuel-based emission factors (EFs) for particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HCs) for 30-, 60-, and 100-kW generators at five load levels and for cold starts. It was found that EFs depend on multiple parameters including engine size, engine load, unit age, and total running hours. The average CO EF of generators tested was 5% lower, and the average NOx EF was 63% lower than AP-42 estimates; average PM EF was 80% less than the AP-42 estimates. A 2002 model-year 60-kW engine produced 25% less PM than a 1995 engine of the same family with similar running hours. CO EFs decrease with increasing engine load, NOx EFs increase up to mid-loads and decrease slightly at high loads, PM EFs increase with loads for 30- and 60-kW engines. CO and PM have higher EFs and NOx has a lower EF during cold starts than during hot-stabilized operation. PM chemical source profiles were also examined.
The effect of fuel processes on heavy duty automotive diesel engine emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, E.G.
1995-12-31
The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxidemore » levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.« less
Evaluation of a staged fuel combustor for turboprop engines
NASA Technical Reports Server (NTRS)
Verdouw, A. J.
1976-01-01
Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.
40 CFR 94.304 - Compliance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...
40 CFR 94.304 - Compliance requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...
40 CFR 94.304 - Compliance requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...
40 CFR 94.304 - Compliance requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...
40 CFR 94.304 - Compliance requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specified in this part, except that the applicable FEL replaces the applicable THC+NOX and PM emission... life shall be unlimited. (m) Upper limits. The FELs for THC+NOX and PM for new engines certified for...—Category 1 Upper Limits for Tier 2 Family Emission Limits Subcategory liters/cylinder Model year 1 THC+NOX...
Biofuels, vehicle emissions, and urban air quality.
Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J
2016-07-18
Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.
Prediction of in-use emissions of heavy-duty diesel vehicles from engine testing.
Yanowitz, Janet; Graboski, Michael S; McCormick, Robert L
2002-01-15
A model of a heavy-duty vehicle driveline with automatic transmission has been developed for estimating engine speed and load from vehicle speed. The model has been validated using emissions tests conducted on three diesel vehicles on a chassis dynamometer and then on the engines removed from the vehicles tested on an engine dynamometer. Nitrogen oxide (NOx) emissions were proportional to work done by the engine. For two of the engines, the NOx/horsepower(HP) ratio was the same on the engine and on the chassis dynamometer tests. For the third engine NOx/HP was significantly higher from the chassis test, possibly due to the use of dual engine maps. The engine certification test generated consistently less particulate matter emissions on a gram per brake horsepower-hour basis than the Heavy Duty Transient and Central Business District chassis cycles. A good linear correlation (r2 = 0.97 and 0.91) was found between rates of HP increase integrated over the test cycle and PM emissions for both the chassis and the engine tests for two of the vehicles. The model also shows how small changes in vehicle speeds can lead to a doubling of load on the engine. Additionally, the model showed that it is impossible to drive a vehicle cycle equivalent to the heavy-duty engine federal test procedure on these vehicles.
Butanol / Gasoline Mercury CRADA Report
2015-03-01
oxygenated fuel, which increases in-cylinder temperatures and thus generates higher NOx emissions. 3.2 Modifications to the SPC-TB 3.2.1 Data Collection...emissions. Emissions of oxides of Nitrogen (NOx) are higher with oxygenated fuel. NOx generation is a function of the time spent at high temperature ...pressure in the combustion chamber. The engines run leaner and hotter with oxygenated fuel, which increases in-cylinder temperatures and thus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, S.G.; Van Stone, D.A.; Little, R.C.
1993-09-01
Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that formmore » as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.« less
Regulated and non-regulated emissions from in-use diesel-electric switching locomotives.
Sawant, Aniket A; Nigam, Abhilash; Miller, J Wayne; Johnson, Kent C; Cocker, David R
2007-09-01
Diesel-electric locomotives are vital to the operation of freight railroads in the United States, and emissions from this source category have generated interest in recent years. They are also gaining attention as an important emission source under the larger set of nonroad sources, both from a regulated emissions and health effects standpoint. The present work analyzes regulated (NOx, PM, THC, CO) and non-regulated emissions from three in-use diesel-electric switching locomotives using standardized sampling and analytical techniques. The engines tested in this work were from 1950, 1960, and 1970 and showed a range of NOx and PM emissions. In general, non-regulated gaseous emissions showed a sharp increase as engines shifted from non-idle to idle operating modes. This is interesting from an emissions perspective since activity data shows that these locomotives spend around 60% of their time idling. In terms of polycyclicaromatic hydrocarbon (PAH) contributions, the dominance of naphthalene and its derivatives over the total PAH emissions was apparent, similar to observations for on-road diesel tractors. Among nonnaphthalenic species, itwas observed that lower molecular weight PAHs and n-alkanes dominated their respective compound classes. Regulated emissions from a newer technology engine used in a back-up generator (BUG) application were also compared againstthe present engines; it was determined that use of the newer engine may lower NOx and PM emissions by up to 30%. Another area of interest to regulators is better estimation of the marine engine inventory for port operations. Toward that end, a comparison of emissions from these engines with engine manufacturer data and the newer technology BUG engine was also performed for a marine duty cycle, another application where these engines are used typically with little modifications.
An assessment of cruise NOx emissions of short-haul commercial flights
NASA Astrophysics Data System (ADS)
Turgut, Enis T.; Usanmaz, Oznur
2017-12-01
Cruise NOx emissions of aircraft are an important input parameter for studies investigating climate change due to their ability to alter the concentrations of certain trace gases, such as ozone, methane, and hydroxyl in the atmosphere, and to induce positive radiative forcing. Therefore, it is of importance to minimize estimation errors on NOx emitted from aircraft engines at high altitude. In this study, the cruise NOx emissions of a frequently-used narrow-bodied aircraft type operating domestic flights in Turkey, are quantified based on numerous actual flight, actual emissions and actual meteorological data. The overall average cruise NOx emissions index is found to be ∼10 g/kg fuel. In addition, newly-developed parameters of the aircraft cruise NOx footprint and NOx intensity are calculated to be 0.5 g/pa-NM and ∼60 g/NM, respectively. Regarding the effects of flight parameters on cruise NOx emissions, while there is a distinct increase in NOx parameters with an increase in aircraft mass, this may differ for altitude. The results reveal that the NOx emissions index tends to increase slightly by 1-2%, particularly above 28,000 ft, whereas NOx intensity decreases at a rate of 2.4-2.7% per 2000 ft of cruise altitude increase.
Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara
2015-08-01
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.
40 CFR 90.104 - Compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...
40 CFR 90.104 - Compliance with emission standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...
40 CFR 90.104 - Compliance with emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...
40 CFR 90.104 - Compliance with emission standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...
40 CFR 90.104 - Compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Volume Engine Families Engine class Two-stroke engines 1 HC+NOX CO Four-stroke engines HC+NOX CO Engines...). Class IV 1.1 1.1 1.5 1.1 Class V 1.1 1.1 1.5 1.1 1 Two-stroke technologies to which these assigned deterioration factors apply include conventional two-strokes, compression wave designs, and stratified...
NOx reduction through combustion optimization at PEPCO`s Potomac River Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, D.S.; Williams, S.E.; Watkins, J.T.
1995-06-01
This paper describes the work done under EPRI Project RP 3383 at Potomac River Station to reduce NOx emissions by adjusting boiler controls. it details the method followed by PEPCO and Lehigh engineers to achieve a 35% reduction in average NOx emissions over a one-month extended test. Parameters that had the largest effect on NOx are discussed. A description of instruments installed to better monitor and control combustion is included.
Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigel N. Clark
Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, amore » percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.« less
NASA Astrophysics Data System (ADS)
Carslaw, David C.; Rhys-Tyler, Glyn
2013-12-01
In this paper we report the first direct measurements of nitrogen dioxide (NO2) in the UK using a vehicle emission remote sensing technique. Measurements of NO, NO2 and ammonia (NH3) from almost 70,000 vehicles were made spanning vehicle model years from 1985 to 2012. These measurements were carefully matched with detailed vehicle information data to understand the emission characteristics of a wide range of vehicles in a detailed way. Overall it is found that only petrol fuelled vehicles have shown an appreciable reduction in total NOx emissions over the past 15-20 years. Emissions of NOx from diesel vehicles, including those with after-treatment systems designed to reduce emissions of NOx, have not reduced over the same period of time. It is also evident that the vehicle manufacturer has a strong influence on emissions of NO2 for Euro 4/5 diesel cars and urban buses. Smaller-engined Euro 4/5 diesel cars are also shown to emit less NO2 than larger-engined vehicles. It is shown that NOx emissions from urban buses fitted with Selective Catalytic Reduction (SCR) are comparable to those using Exhaust Gas Recirculation for Euro V vehicles, while reductions in NOx of about 30% are observed for Euro IV and EEV vehicles. However, the emissions of NO2 vary widely dependent on the bus technology used. Almost all the NOx emission from Euro IV buses with SCR is in the form of NO, whereas EEV vehicles (Enhanced Environmentally friendly Vehicle) emit about 30% of the NOx as NO2. We find similarly low amounts of NO2 from trucks (3.5-12t and >12t). Finally, we show that NH3 emissions are most important for older generation catalyst-equipped petrol vehicles and SCR-equipped buses. The NH3 emissions from petrol cars have decreased by over a factor of three from the vehicles manufactured in the late 1990s compared with those manufactured in 2012. Tables of emission factors are presented for NOx, NO2 and NH3 together with uncertainties to assist the development of new emission inventories.
Wide range operation of advanced low NOx aircraft gas turbine combustors
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.; Butze, H. F.
1978-01-01
The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.
Fuel/air nonuniformity - Effect on nitric oxide emissions
NASA Technical Reports Server (NTRS)
Lyons, V. J.
1981-01-01
An analytical and experimental study was performed to determine the effect of inlet fuel/air profile nonuniformity on NO(x) emissions. The theoretical NO(x) levels were verified in a flame-tube rig at inlet air temperatures of 600, 700, and 800 K, 0.3 MPa rig pressure, 25 m/sec reference velocity, overall equivalence ratio of 0.6 and residence time near 0.002 sec. The theory predicts an increase in NO(x) emissions for increased fuel/air nonuniformity for average equivalence ratios less than 0.7, while for average equivalence ratios near stoichiometric, increasing the nonuniformity will decrease NO(x) emissions. The results can be used to predict the degree of uniformity of fuel/air profiles necessary to achieve NO(x) emissions goals for actual engines that use lean premixed, prevaporized combustion systems.
Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Wey, Changlie
1999-01-01
NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a worldwide basis by producing environmentally acceptable commercial engines.
Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara
2015-01-01
The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study. Implications: Heavy-duty on-highway diesel engines equipped with DOC/DPF/SCR/AMOX and fueled with ultra-low-sulfur diesel fuel produced lower emissions than the stringent 2010 emission standards established by the U.S. Environmental Protection Agency. They also resulted in significant reductions in a wide range of unregulated toxic emission compounds relative to older technology engines. The increased use of newer technology (2010+) diesel engines in the on-highway sector and the adaptation of such technology by other sectors such as nonroad, displacing older, higher emissions engines, will have a positive impact on ambient levels of PM, NOx, and volatile organic compounds, in addition to many other toxic compounds. PMID:26037832
NASA Technical Reports Server (NTRS)
Shih, W.-P.; Lee, J. G.; Santavicca, D. A.
1994-01-01
Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.
Air quality benefits of universal particle filter and NOx controls on diesel trucks
NASA Astrophysics Data System (ADS)
Tao, L.; Mcdonald, B. C.; Harley, R.
2015-12-01
Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.
Xinling, Li; Zhen, Huang
2009-03-15
A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.
Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.
McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J
2000-11-01
Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.
1975-01-01
Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.
Huang, Ta-Jen; Hsu, Sheng-Hsiang; Wu, Chung-Ying
2012-02-21
The high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3) (LSC)-Ce(0.9)Gd(0.1)O(1.95) as the cathode, with or without adding vanadium to LSC. SOFC operation at 450 °C and open circuit can effectively treat NO(x) over the cathode at a very high concentration in the simulated exhaust. Higher NO(x) concentration up to 5000 ppm can result in a larger NO(x) to N(2) rate. Moreover, a higher oxygen concentration promotes NO conversion. Complete oxidation of HCs can be achieved by adding silver to the LSC current collecting layer. The SOFC-based emissions control system can treat NO(x) and HCs simultaneously, and can be operated without consuming the anode fuel (a reductant) at near the engine exhaust temperature to eliminate the need for reductant refilling and extra heating.
NASA Astrophysics Data System (ADS)
Senthil, R.; Silambarasan, R.; Pranesh, G.
2017-03-01
The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.
A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions
NASA Astrophysics Data System (ADS)
Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.
2015-12-01
A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.
Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J
2014-01-01
Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions that apply...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
40 CFR 94.12 - Interim provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...
N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls
NASA Astrophysics Data System (ADS)
Preble, C.; Harley, R.; Kirchstetter, T.
2014-12-01
Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and are significantly increased. More comprehensive analysis of the effects of SCR on diesel NOx and N2O emissions will be reported in the presentation. These on-road emission studies indicate that advanced emission control systems such as DPF and SCR dramatically reduce PM and NOx emissions, but can cause undesirable side effects like increased NO2 and N2O emissions.
Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai
2016-12-01
In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO 2 emission decreases. Meanwhile, the ratio of NO 2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO 2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.
Water Injection Feasibility for Boeing 747 Aircraft
NASA Technical Reports Server (NTRS)
Daggett, David L.
2005-01-01
Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.
40 CFR 89.203 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...
40 CFR 89.203 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...
40 CFR 89.203 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...
40 CFR 89.203 - General provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...
40 CFR 89.203 - General provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... credits to offset the difference between the emission standards and the FEL for such engine families will...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Averaging, Banking, and.... NMHC+NOX. and PM emissions from eligible nonroad engines are described in this subpart. Participation...
Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles
NASA Astrophysics Data System (ADS)
Hajbabaei, Maryam
There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines. Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure. NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus. Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine technologies. Emissions from an average diesel fuel used throughout the U.S. were compared with a 10% aromatic, ultra-low sulfur diesel fuel used in California with more stringent air quality regulations. The results showed that the emerging aftertreatment technologies eventually eliminate the benefits of the lower aromatic content/higher cetane number diesel fuels.
Automotive fuel economy and emissions program
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Baisley, R. L.
1978-01-01
Experimental data were generated to support an assessment of the relationship between automobile fuel economy and emissions control systems. Tests were made at both the engine and vehicle levels. Detailed investigations were made on cold-start emissions devices, exhaust gas recirculation systems, and air injection reactor systems. Based on the results of engine tests, an alternative emission control system and modified control strategy were implemented and tested in the vehicle. With the same fuel economy and NOx emissions as the stock vehicle, the modified vehicle reduced HC and CO emissions by about 20 percent. By removing the NOx emissions constraint, the modified vehicle demonstrated about 12 percent better fuel economy than the stock vehicle.
Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar
2017-07-01
In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.
Senthil, R; Silambarasan, R
2015-01-01
The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.
Performance of a peroxide-based cetane improvement additive in different diesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, M.K.; Jacobs, D.C.; Liotta, F.J. Jr.
The implementation of stringent diesel engine emissions regulations is growing worldwide. The use of high cetane diesel fuels is a cost-effective option that can be used to reduce engine emissions. A direct comparison of heavy-duty diesel engine emissions for three different low sulfur diesel fuels treated with di-t-butyl peroxide and 2-ethylhexyl nitrate, at the same cetane level, was evaluated. Both the peroxide and the nitrate cetane improvement additive significantly reduced all regulated and unregulated emissions including the oxides of nitrogen (NOx) emission. Di-t-butyl peroxide shows a small advantage over ethylhexyl nitrate in reducing NOx in all the three fuels. Compatibilitymore » of the peroxide and the nitrate additives, when mixed in a fuel blend, has been demonstrated by cetane response and engine emissions for the fuel blend. 13 refs., 2 figs., 9 tabs.« less
Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen
2010-01-15
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced. Copyright 2009 Elsevier B.V. All rights reserved.
Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen
2010-02-01
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.
40 CFR 1068.101 - What general actions does this regulation prohibit?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., operating an engine without a supply of appropriate quality urea if the emissions control system relies on urea to reduce NOx emissions or the use of incorrect fuel or engine oil that renders the emissions... manufacturers of new engines, manufacturers of equipment containing these engines, and manufacturers of new...
40 CFR 1068.101 - What general actions does this regulation prohibit?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., operating an engine without a supply of appropriate quality urea if the emissions control system relies on urea to reduce NOx emissions or the use of incorrect fuel or engine oil that renders the emissions... manufacturers of new engines, manufacturers of equipment containing these engines, and manufacturers of new...
40 CFR 1068.101 - What general actions does this regulation prohibit?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., operating an engine without a supply of appropriate quality urea if the emissions control system relies on urea to reduce NOx emissions or the use of incorrect fuel or engine oil that renders the emissions... manufacturers of new engines, manufacturers of equipment containing these engines, and manufacturers of new...
Combustion characteristics of an SI engine fueled with biogas fuel
NASA Astrophysics Data System (ADS)
Chen, Lei; Long, Wuqiang; Song, Peng
2017-04-01
An experimental research of the effect of H2 substitution and CO2 dilution on CH4 combustion has been carried out on a spark ignition engine. The results show that H2 addition could improve BMEP, thermal efficiency, CO and THC emissions. NOX emissions increased for higher low heating value (LHV) of H2 than CH4. CO2 dilution could effective reduce NOX emission of H2-CH4 combustion. Although engine performance, thermal efficiency and exhaust get unacceptable under high fuel dilution ratio (F.D.R.) conditions, it could be solved by decreasing F.D.R. and/or increasing hydrogen substitution ratio (H.S.R.).
Lin, Cherng-Yuan; Chen, Lih-Wei; Wang, Li-Ting
2006-05-01
Diesel vehicles are one of the major forms of transportation, especially in metropolitan regions. However, air pollution released from diesel vehicles causes serious damage to both human health and the environment, and as a result is of great public concern. Nitrogen oxides and black smoke are two significant emissions from diesel engines. Understanding the correlation between these two emissions is an important step toward developing the technology for an appropriate strategy to control or eliminate them. This study field-tested 185 diesel vehicles at an engine dynamometer station for their black smoke reflectivity and nitrogen oxides concentration to explore the correlation between these two pollutants. The test results revealed that most of the tested diesel vehicles emitted black smoke with low reflectivity and produced low nitrogen oxides concentration. The age of the tested vehicles has a significant influence on the NOx emission. The older the tested vehicles, the higher the NOx concentrations emitted, however, there was no obvious correlation between the age of the tested diesel vehicles and the black smoke reflectivity. In addition, if the make and engine displacement volume of the tested diesel vehicles are not taken into consideration, then the correlation between the black smoke reflectivity and nitrogen oxides emission weakens. However, when the tested vehicles were classified into various groups based on their makes and engine displacement volumes, then the make of a tested vehicle became a dominant factor for both the quantity and the trend of the black smoke reflectivity, as well as the NOx emission. Higher emission indices of black smoke reflectivity and nitrogen oxides were observed if the diesel vehicles were operated at low engine speed and full engine load conditions. Moreover, the larger the displacement volume of the engine of the tested vehicle, the lower the emission indices of both black smoke reflectivity and nitrogen oxides emitted. The emission indices of black smokes reflectivity and nitrogen oxides emission of the tested diesel vehicles were also influenced by the make of the vehicle. It was observed that the emission indices of black smoke reflectivity decreased nearly linearly with the increase of the emission indices of NOx for the tested vehicles belonging to the same group of make and engine displacement volume.
Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain
NASA Astrophysics Data System (ADS)
Moreno-Gutiérrez, J.; Durán-Grados, V.; Uriondo, Z.; Ángel Llamas, J.
2012-08-01
A reliable and up-to-date maritime emission inventory is essential for atmospheric scientists quantifying the impact of shipping. The objective of this study is to estimate the atmospheric emissions of SO2, NOx, CO2 and PM10 by international merchant shipping in 2007 in the Strait of Gibraltar, Spain, including the Algeciras Bay by two methods. Two methods (both bottom-up) have been used in this study: 1. Establishing engine power-based emission factors (g kWh-1, EPA) or the mass of pollutant per work performed by the engine for each of the relevant components of the exhaust gas from diesel engines and power for each ship. 2. Establishing fuel-based emission factors (kg emitted/t of fuel) or mass of pollutant per mass of combusted fuel for each of the relevant components of the exhaust gas and a fuel-consumption inventory (IMO). In both methods, the means to estimate engine power and fuel-consumption inventories are the same. The exhaust from boilers and incinerators is regarded as a small contributor and excluded. In total, an estimated average of 1 389 111.05 t of CO2, 23 083.09 t of SO2, 32 005.63 t of NOx and 2972 t of PM10 were emitted from January 2007 until December 2007 by international and domestic shipping. The estimated total fuel consumption amounts to 437 405.84 t. The major differences between the estimates generated by the two methods are for NOx (16% in certain cases) and CO (up to 23%). A total difference for all compounds of 3038 t (approximately 2%) has been found between the two methods but it is not areasonable estimate of uncertainty. Therefore, the results for both methods may be considered acceptable because the actual uncontrolled deviations appear in the changes in emission factors that occur for a given engine with age. These deviations are often difficult to quantify and depend on individual shipboard service and maintenance routines. Emission factors for CO and NOx are not constant and depend on engine condition. For example, tests conducted by the authors of this paper demonstrate that when an engine operates under normal in-service conditions, the emissions are within limits. However, with a small fault in injection timing, the NOx emission exceeds the limits (30% higher value in some cases). A fault in the maintenance of the injection nozzles increases the CO emission (15% higher value in some cases).
Advanced Collaborative Emissions Study (ACES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon
2013-12-31
The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less
77 FR 54384 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
...EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs and the Clean Air Act have been met. The NOX standards to which these NCPs apply were established by a rule published on January 18, 2001. In general, NCPs allow a manufacturer of heavy-duty engines (HDEs) whose engines do not conform to applicable emission standards, but do not exceed a designated upper limit, to be issued a certificate of conformity upon payment of a monetary penalty to the United States Government. The upper limit associated with these NCPs is 0.50 grams of NOX per brake horsepower-hour (g/bhp-hr). This Final Rule specifies certain parameters that are entered into the preexisting penalty formulas along with the emissions of the engine and the incorporation of other factors to determine the amount a manufacturer must pay. Key parameters that determine the NCP a manufacturer must pay are EPA's estimated cost of compliance for a near worst-case engine and the degree to which the engine exceeds the emission standard (as measured from production engines). EPA proposed NCPs for medium heavy duty diesel engines. However, EPA is not taking final action with regard to NCPs for these engines at this time because EPA has not completed its review of the data and comments regarding these engines.
DI Diesel Performance and Emissions Model
1998-03-31
Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29
Lean burn natural gas fueled S.I. engine and exhaust emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varde, K.S.; Patro, N.; Drouillard, K.
1995-12-31
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less
Damodharan, Dillikannan; Sathiyagnanam, Amudhavalli Paramasivam; Rajesh Kumar, Babu; Ganesh, Kuttalam Chidambaradhanu
2018-05-01
Urban planning and development is a decisive factor that increases the automobile numbers which leads to increased energy demand across the globe. In order to meet the escalating requirements of energy, it is necessary to find viable alternatives. Waste plastic oil (WPO) is one such alternative which has dual benefits as it reduces the environmental pollution caused by plastic waste and it could possibly meet the energy requirement along with fossil fuels. The study attempted to reduce emissions from a DI diesel engine fueled with WPO using 30% by volume of n-pentanol with fossil diesel (WPO70P30). EGR (10, 20, and 30%) and injection timing modifications were made with the intention to find optimum engine operating conditions. The experimental results indicated that addition of renewable component like n-pentanol had improved the combustion characteristics by igniting WPO more homogeneously producing a higher premixed combustion phase. Smoke density for WPO70P30 was found to be twice lower than that of neat WPO at standard injection timing of 23°CA bTDC at any given EGR rate, NOx emissions were slightly on the higher side about 12% for WPO70P30 blend against WPO at same operating conditions. WPO70P30 showed lowest smoke and carbon monoxide emissions than diesel and WPO while delivering BTE's higher than WPO and closer to diesel at all EGR and injection timings. However NOx and HC emissions increased with n-pentanol addition. The use of EGR reduced NOx emissions but was found to aggravate other emissions. It was concluded WPO70P30 can be favorably used in a DI diesel engine at the engines advanced injection timing for better performance than diesel with a slight penalty in NOx emissions.
40 CFR 89.207 - Credit calculation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... determining credit availability from all engine families generating credits: Emission credits = (Std−FEL... families requiring credits to offset emissions in excess of the standard: Emission credits = (Std−FEL) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...
40 CFR 89.207 - Credit calculation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... determining credit availability from all engine families generating credits: Emission credits = (Std−FEL... families requiring credits to offset emissions in excess of the standard: Emission credits = (Std−FEL) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...
40 CFR 89.207 - Credit calculation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... determining credit availability from all engine families generating credits: Emission credits = (Std−FEL... families requiring credits to offset emissions in excess of the standard: Emission credits = (Std−FEL) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...
EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES
A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...
NASA Project Develops Next-Generation Low-Emissions Combustor Technologies
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Chang, Clarence T.; Herbon, John T.; Kramer, Stephen K.
2013-01-01
NASA's Environmentally Responsible Aviation (ERA) Project is working with industry to develop the fuel flexible combustor technologies for a new generation of low-emissions engine targeted for the 2020 timeframe. These new combustors will reduce nitrogen oxide (NOx) emissions to half of current state-of-the-art (SOA) combustors, while simultaneously reducing noise and fuel burn. The purpose of the low NOx fuel-flexible combustor research is to advance the Technology Readiness Level (TRL) and Integration Readiness Level (IRL) of a low NOx, fuel flexible combustor to the point where it can be integrated in the next generation of aircraft. To reduce project risk and optimize research benefit NASA chose to found two Phase 1 contracts. The first Phase 1 contracts went to engine manufactures and were awarded to: General Electric Company, and Pratt & Whitney Company. The second Phase 1 contracts went to fuel injector manufactures Goodrich Corporation, Parker Hannifin Corporation, and Woodward Fuel System Technology. In 2012, two sector combustors were tested at NASA's ASCR. The results indicated 75% NOx emission reduction below the 2004 CAEP/6 regulation level.
NOx Emissions from a Rotating Detonation-wave Engine
NASA Astrophysics Data System (ADS)
Kailasanath, Kazhikathra; Schwer, Douglas
2016-11-01
Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.
Final Rule for Emission Standards for Locomotives and Locomotive Engines
In 1998, EPA promulgated final exhaust emission standards for oxides of nitrogen (NOx), hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM) and smoke for newly manufactured and remanufactured locomotives and locomotive engines.
NOx reduction by electron beam-produced nitrogen atom injection
Penetrante, Bernardino M.
2002-01-01
Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lips, H.I.; Gotterba, J.A.; Lim, K.J.
1981-07-01
The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.
Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C. (Technical Monitor)
2004-01-01
This report provides the first high level look at system design, airplane performance, maintenance, and cost implications of using water misting and water injection technology in aircraft engines for takeoff and climb-out NOx emissions reduction. With an engine compressor inlet water misting rate of 2.2 percent water-to-air ratio, a 47 percent NOx reduction was calculated. Combustor water injection could achieve greater reductions of about 85 percent, but with some performance penalties. For the water misting system on days above 59 F, a fuel efficiency benefit of about 3.5 percent would be experienced. Reductions of up to 436 F in turbine inlet temperature were also estimated, which could lead to increased hot section life. A 0.61 db noise reduction will occur. A nominal airplane weight penalty of less than 360 lb (no water) was estimated for a 305 passenger airplane. The airplane system cost is initially estimated at $40.92 per takeoff giving an attractive NOx emissions reduction cost/benefit ratio of about $1,663/ton.
Real-Time Control of Lean Blowout in a Turbine Engine for Minimizing No(x) Emissions
NASA Technical Reports Server (NTRS)
Zinn, Ben
2004-01-01
This report describes research on the development and demonstration of a controlled combustor operates with minimal NO, emissions, thus meeting one of NASA s UEET program goals. NO(x) emissions have been successfully minimized by operating a premixed, lean burning combustor (modeling a lean prevaporized, premixed LPP combustor) safely near its lean blowout (LBO) limit over a range of operating conditions. This was accomplished by integrating the combustor with an LBO precursor sensor and closed-loop, rule-based control system that allowed the combustor to operate far closer to the point of LBO than an uncontrolled combustor would be allowed to in a current engine. Since leaner operation generally leads to lower NO, emissions, engine NO, was reduced without loss of safety.
Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1975-01-01
Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.
NASA Astrophysics Data System (ADS)
Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.
2014-01-01
This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.
Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling
NASA Astrophysics Data System (ADS)
Omidvarborna, Hamid
Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO 2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of methyl esters (SME) produced more CO and less CO2 emissions than those with low degrees of unsaturation and short chain lengths (WCO and TO, respectively). In addition, biodiesel fuels with long and unsaturated chains released more CH4 than the ones with shorter and less unsaturated chains. Experimental results on soot particles showed a significant reduction in soot emissions when using biodiesel compared to ULSD. For neat biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles was greater than the average soot particle from biodiesel blends. Eight elements were detected as the marker metals in biodiesel soot particles. The conclusion suggests that selected characterization methods are valuable for studying the structure and distribution of particulates. Experiments on both PM and NOx emissions were conducted on real engines in parallel with laboratory study. Field experiments using TARTA buses were performed on buses equipped with/without post-treatment technologies. The performance of the bus that ran on blended biodiesel was found to be very similar to ULSD. As a part of this study, the toxic nature of engine exhausts under different idling conditions was studied. The results of the PM emission analysis showed that the PM mean value of emission is dependent on the engine operation conditions and fuel type. Besides, different idling modes were investigated with respect to organic carbon (OC), elemental carbon (EC), and elemental analysis of the PMs collected from public transit buses in Toledo, Ohio. In the modeling portion of this work, a simplified model was developed by using artificial neural network (ANN) to predict NOx emissions from TARTA buses via engine parameters. ANN results showed that the developed ANN model was capable of predicting the NOx emissions of the tested engines with excellent correlation coefficients, while root mean square errors (RMSEs) were in acceptable ranges. The ANN study confirmed that ANN can provide an accurate and simple approach in the analysis of complex and multivariate problems, especially for idle engine NOx emissions. Finally, in the last part of the modeling study, a biodiesel surrogate has been proposed and main pathways have been derived to present a simple model for NOx formation in biodiesel combustion via stochastic simulation algorithm (SSA). The main reaction pathways are obtained by simplifying the previously derived skeletal mechanisms, including saturated methyl decenoate (MD), unsaturated methyl 5-decanoate (MD5D), and n-decane (ND). ND is added to match the energy content and the C/H/O ratio of actual biodiesel fuel. The predicted results are in good agreement with a limited number of experimental data at LTC conditions for three different biodiesel fuels consisting of various ratios of unsaturated and saturated methyl esters. The SSA model shows the potential to predict NOx emission concentrations, when the peak combustion temperature increases through the addition of ULSD to biodiesel. The SSA method demonstrates the possibility of reducing the computational complexity in biodiesel emissions modeling. Based on these findings, it can be concluded that both alternative renewable fuels (biodiesel blends) as well as the LTC condition are suitable choices for existing diesel engines to improve the sustainability of fuel and to reduce environmental emissions.
Exhaust emission control and diagnostics
Mazur, Christopher John; Upadhyay, Devesh
2006-11-14
A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.
Multifuel evaluation of rich/quench/lean combustor
NASA Technical Reports Server (NTRS)
Notardonato, J. J.; Novick, A. S.; Troth, D. L.
1982-01-01
The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.
FreedomCAR - Aftertreatment Subsystem Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisa A. Prentiss
2005-09-30
The primary objective of this program was to develop generic aftertreatment technologies applicable for LDV and LDT engines ranging from 55 kW to 200kW, to develop an optimized and integrated aftertreatment system for a LDT (Light Duty Truck) type vehicle, and to demonstrate the technology which will enable light duty diesel engines to meet Federal Tier II regulation with minimum impact on fuel economy. Specifically, the development targets for emissions reduction and fuel injection penalty are given below: (1) NOx conversion efficiency > 90% (hot), > 84% (combined); (2) PM conversion efficiency > 90% (hot), > 84% (combined); (3) Fuelmore » penalty over FTP-75 Less than 5%; and (4) Fuel penalty at Cruise condition Less than 3%. Development of cost-effective, highly efficient diesel exhaust aftertreatment systems in combination with very low engine out emission combustion development are essential elements for realization of Federal Tier II emission standards for Light Duty Trucks and Vehicles. Evaluation of several aftertreatment technologies was completed as part of this program. A combination of Diesel Oxidation Catalyst, NOx Adsorbing Catalyst and Catalyzed Soot Filter was found to provide the levels of conversion efficiency required to achieve the emission targets. While early systems required relatively large catalyst volumes, external dosing, sulfur traps, full bypass configurations and high levels of Platinum metals; the final system is a compact, scalable, flow-through, fully-integrated and engine-managed aftertreatment system capable of commercial application for Light Duty Vehicles and Trucks. NOx adsorber/particulate filter technology is particularly attractive for Light Duty applications due to the lower exhaust flow and temperature requirements as compared to Heavy Duty engines. Despite these strong positive aspects, NOx Adsorbers are challenged by their regeneration requirements and susceptibility to sulfur poisoning and thermal degradation. Capability was developed to regenerate the NOx Adsorber for NOx and SOx as well as the Particulate Filter for soot. This system was fully integrated into a truck and evaluated over the chassis dynamometer for emissions capability and in real-world winter field testing. Durability of the system was evaluated over a variety of accelerated and real-time dynamometer tests. Excellent NOx and PM conversion efficiency was demonstrated, even following 3000 hrs of endurance testing. Unregulated emissions emitted by the system were evaluated as was the fuel penalty associated with the DeNOx and DeSOx regeneration processes. In the final evaluation, the system demonstrated 90% NOx conversion and 99% PM conversion at a 6% fuel penalty over the FTP-75 test cycle. While target fuel penalty levels were demonstrated using full-bypass configuration systems, the cost associated with those systems was prohibitively high and would preclude successful commercialization of the technology. Although the flow-through configuration fell 1% short of the 5% fuel penalty target, the cost of this configuration is such that commercial application is feasible. Cost drivers for the final system configuration were identified and demonstrate areas where future development areas could focus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dill, J.W.; Sowa, W.A.; Samuelsen, G.S.
1996-06-30
Phase I of this project focused on the creation of a spatial emissions map of the plume effluent in the exhaust stream directly behind the engine in a jet engine test cell (JETC). Both afterburning TF30-P111+ and non-after-burning TF33-P9 engines were tested. Measurements were taken in conjunction with actual engine tests for validity of the data. Temperature, oxides of nitrogen (NOx), carbon monoxide (CO) concentration, and velocity were among the characteristics measured radially and axially in the plume for each engine type. The main focus of this study was on NOx, consisting of nitric oxide (NO) and nitrogen dioxide (NO2).more » Measurements in the P111+ plume reveal levels of NOx above 300 ppm along the centerline of the effluent. A dip in the NOx emissions at afterburner shows signs of a reburning and/or dilution effect by the atmospheric combustion in the effluent. Significant amounts of NO2 are present in the effluent over the entire power range. Temperatures at military power reach 1100 deg F along the centerline, and CO values are below 80 ppm. Carbon monoxide concentrations decrease from idle to military power (full power, no afterburner), then rise sharply in afterburner. The CO peaks shift outward from centerline as do the temperatures due to the radial geometry of the afterburner combustion (over 10 percent CO at 2850 deg F).« less
Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...
2015-04-06
We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004...
40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for other testing. (2) NOX standards apply based on the engine's model year and maximum in-use engine... Engines (g/kW-hr) Emission standards Model year Maximum in-use engine speed Less than130 RPM 130-2000RPM a... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004...
DIESEL ENGINE EFFICIENCY AND EMISSIONS IMPROVEMENT VIA PISTON TEMPERATURE CONTROL - PHASE I
Emissions of NO, NO2 and PM from inland shipping
NASA Astrophysics Data System (ADS)
Kurtenbach, Ralf; Vaupel, Kai; Kleffmann, Jörg; Klenk, Ulrich; Schmidt, Eberhard; Wiesen, Peter
2016-11-01
Particulate matter (PM) and nitrogen oxides NOx (NOx = NO2+ NO) are key species for urban air quality in Europe and are emitted by mobile sources. According to European recommendations, a significant fraction of road freight should be shifted to waterborne transport in the future. In order to better consider this emission change pattern in future emission inventories, in the present study inland water transport emissions of NOx, CO2 and PM were investigated under real world conditions on the river Rhine, Germany, in 2013. An average NO2 / NOx emission ratio of 0.08 ± 0.02 was obtained, which is indicative of ship diesel engines without exhaust gas aftertreatment systems. For all measured motor ship types and operation conditions, overall weighted average emission indices (EIs), as emitted mass of pollutant per kg burnt fuel of EINOx = 54 ± 4 g kg-1 and a lower limit EIPM1
Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.
Kotz, Andrew J; Kittelson, David B; Northrop, William F
2016-06-07
In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.
Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides
NASA Technical Reports Server (NTRS)
Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.
2010-01-01
The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.
DOT National Transportation Integrated Search
1978-07-01
Initial efforts with water/fuel emulsions in diesel engines were directed toward the control of NOx. More recent studies emphasized the use of emulsions to improve fuel economy. It is believed that in a diesel engine combustion process, emulsified fu...
SOURCEBOOK: NOX CONTROL TECHNOLOGY DATA
The report, a compilation of available information on the control of nitrogen oxide (NOx) emissions from stationary sources, is provided to assist new source permitting activities by regulatory agencies. he sources covered are combustion turbines, internal combustion engines, non...
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) A RQL combustor can achieve the emissions goal of EINOX = 5 at the Supersonic Cruise operating condition for a HSCT engine.
NASA Technical Reports Server (NTRS)
Tacina, Robert R. (Technical Monitor); Rosfjord, T. J.; Padget, F. C.
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of an HSCT engine cycle. Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NO(x). The spatial profiles of NO(x) and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NO(x). Based on this study, it was also concluded that: (1) While NO(x) formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NO(x) exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) An RQL combustor can achieve the emissions goal of EINO(x) = 5 at the Supersonic Cruise operating condition for an HSCT engine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission standards must my outboard and personal watercraft engines meet? (a) Duty-cycle emission standards...) Pollutant Power 1 Emission standard HC + NOX P ≤ 4.3 kWP > 4.3 kW 30.0 2.1 + 0.09 × (151 + 557/P0.9) CO P ≤ 40 kWP > 40 kW 500 − 5.0 × P300 1 Power (P) = maximum engine power for the engine family, in...
Emission Modeling of an Interturbine Burner Based on Flameless Combustion
2017-01-01
Since its discovery, the flameless combustion (FC) regime has been a promising alternative to reduce pollutant emissions of gas turbine engines. This combustion mode is characterized by well-distributed reaction zones, which potentially decreases temperature gradients, acoustic oscillations, and NOx emissions. Its attainment within gas turbine engines has proved to be challenging because previous design attempts faced limitations related to operational range and combustion efficiency. Along with an aircraft conceptual design, the AHEAD project proposed a novel hybrid engine. One of the key features of the proposed hybrid engine is the use of two combustion chambers, with the second combustor operating in the FC mode. This novel configuration would allow the facilitation of the attainment of the FC regime. The conceptual design was adapted to a laboratory scale combustor that was tested at elevated temperature and atmospheric pressure. In the current work, the emission behavior of this scaled combustor is analyzed using computational fluid dynamics (CFD) and chemical reactor network (CRN). The CFD was able to provide information with the flow field in the combustor, while the CRN was used to model and predict emissions. The CRN approach allowed the analysis of the NOx formation pathways, indicating that the prompt NOx was the dominant pathway in the combustor. The combustor design can be improved by modifying the mixing between fuel and oxidizer as well as the split between combustion and dilution air. PMID:29910533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; Pihl, Josh A.; Toops, Todd J.
A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst.more » Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.« less
Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, M.D.
2008-07-15
The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressuremore » will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by suggestions for improvement in ongoing work and direction for future work. A significant portion of the industrial support was in the form of experimentation, data analysis, data exchange, and technical consultation.« less
The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...
The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...
After 'dieselgate': Regulations or economic incentives for a successful environmental policy?
NASA Astrophysics Data System (ADS)
Zachariadis, Theodoros
2016-08-01
In September 2015 the U.S. Environmental Protection Agency announced that it started investigations against the automaker Volkswagen for illegally installing software that allowed some diesel-powered vehicle models to pass stringent emission tests for type-approval. Although generally prohibited, modern software makes it feasible for vehicles to detect an emission test and modulate engine operation or emission control accordingly. It has also been well known to experts worldwide - and readers of this Journal - that emission tests for motor vehicles are conducted with outdated test procedures which do not reflect today's actual driving conditions and enable automakers to exploit 'flexibilities' so as to yield artificially low emission results. For example, on-road carbon dioxide (CO2) emissions of cars that entered the European market in 2014 were reportedly 40% higher than their formal test emissions, while this gap was less than 10% in the early 2000s (Tietge et al., 2015). In the case of health-related pollutant nitrogen oxides (NOx), this gap seems to be markedly higher, in particular for diesel-powered cars (Weiss et al., 2012) - whereas this does not seem to be a serious problem for other air pollutants. In internal combustion engines of motor vehicles there is still a trade-off between NOx emissions and fuel efficiency (and hence CO2 emissions): a fast combustion with high temperatures is optimal for maximum fuel efficiency and minimum CO2 emissions, whereas these conditions give rise to higher NOx emissions. Conversely, NOx control techniques such as exhaust gas recirculation reduce combustion temperature and often lead to lower fuel efficiency. In short, it becomes ever more difficult for internal combustion engines to meet the increasingly stringent legislated standards for some air pollutants and carbon dioxide at the same time. This increases the probability of applying legal and illegal defeat strategies.
NASA Astrophysics Data System (ADS)
Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji
2007-05-01
There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.
Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.
NASA Astrophysics Data System (ADS)
Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.
2007-12-01
Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.
Assessment of Control Techniques for Reducing Emissions from Locomotive Engines
DOT National Transportation Integrated Search
1973-04-01
The primary objective of this study was to determine the most effective method of reducing emissions of oxides of nitrogen from a two-cylinder version of an EMD series 567C locomotive engine. The NOx control techniques selected for use in this study ...
Huo, Hong; Zhang, Qiang; Liu, Fei; He, Kebin
2013-02-05
Electric vehicles (EVs) and compressed natural gas vehicles (CNGVs), which are mainly coal-based and natural gas-based, are the two most widely proposed replacements of gasoline internal combustion engine vehicles (ICEVs) in P.R. China. We examine fuel-cycle emissions of greenhouse gases (GHGs), PM(2.5), PM(10), NO(x), and SO(2) of CNGVs and EVs relative to gasoline ICEVs and hybrids, by Chinese province. CNGVs can currently reduce emissions of GHGs, PM(10), PM(2,5), NO(x), and SO(2) by approximately 6%, 7%, 20%, 18% and 22%, respectively. EVs can reduce GHG emissions by 20%, but increase PM(10), PM(2.5), NO(x), and SO(2) emissions by approximately 360%, 250%, 120%, and 370%, respectively. Nevertheless, results vary significantly by province. Regarding their contribution to national emissions, PM increases from EVs are unimportant, because light-duty passenger vehicles contribute very little to overall PM emissions nationwide (≤0.05%); however, their NO(x) and SO(2) increases are important. Since China is striving to reduce power plant emissions, EVs are expected to have equivalent or even lower SO(2) and NO(x) emissions relative to ICEVs in the future (2030). Before then, however, EVs should be developed according to the cleanness of regional power mixes. This would lower their SO(2) and NO(x) emissions and earn more GHG reduction credits.
DIESEL NOX CONTROL APPLICATION
The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...
NASA Astrophysics Data System (ADS)
Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.
2009-12-01
The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are responsible for 97% of mobile source emissions of CO, 22% of NOx, 95-97% of aromatics, 72-85% of carbonyls, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction. Nevertheless, the fuel-based inventory suggests that mobile source emissions of CO and NOx are overstated in the official inventory while emissions of VOCs may be understated. For NOx, the fuel-based inventory is lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory.
REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson,G.; Gautam, M; Clark, N
2003-08-24
Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include oceanmore » going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM while not affecting fuel consumption or engine performance compared to the baseline marine diesel. The results showed that a nominal 40% reduction in TPM was realized when switching from the marine diesel to the ULSD. A small reduction in NOx was also shown between the marine fuel and the ULSD. The implementation of the WIS showed that NOx was reduced significantly by between 11% and 17%, depending upon the operating condition. With the WIS, the TPM was reduced by a few percentage points, which was close to the confidence in measurement.« less
Avco Lycoming/NASA contract status. [on reduction of emissions from aircraft piston engines
NASA Technical Reports Server (NTRS)
Duke, L. C.
1976-01-01
The standards promulgated by the Environmental Protection Agency (EPA) for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides-of-nitrogen (NOx) emissions were the basis in a study of ways to reduce emissions from aircraft piston engines. A variable valve timing system, ultrasonic fuel atomization, and ignition system changes were postulated.
Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N
2006-07-01
With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.
Alnefaie, Khaled A.
2015-01-01
This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218
40 CFR 1033.705 - Calculating emission credits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable NOX or PM emission standard in g/bhp-hr (except that Std = previous FEL in g/bhp-hr for... life). FEL = the family emission limit for the engine family in g/bhp-hr. UL = the sales-weighted...
40 CFR 1033.705 - Calculating emission credits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicable NOX or PM emission standard in g/bhp-hr (except that Std = previous FEL in g/bhp-hr for... life). FEL = the family emission limit for the engine family in g/bhp-hr. UL = the sales-weighted...
NASA Technical Reports Server (NTRS)
Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.
1978-01-01
A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.
NASA Technical Reports Server (NTRS)
Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.
1976-01-01
A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.
Mazaheri, M; Johnson, G R; Morawska, L
2009-01-15
A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2 and NOx, were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependent on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16 x 10(15)-5.42 x 10(16) kg(-1), 0.03-0.72 g.kg(-1), and 3.25-37.94 g.kg(-1), respectively, for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4-100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) (Environmental Protection, Annex 16, Vol. II, Aircraft Engine Emissions, 2nd ed.; ICAO--International Civil Aviation Organization: Montreal, 1993).
Evaluation of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides with Top-Down Emissions
NASA Astrophysics Data System (ADS)
Mcdonald, B. C.; Gorchov Negron, A.; McKeen, S. A.; Peischl, J.; Gilman, J.; Ahmadov, R.; Frost, G. J.; Ryerson, T. B.; Thompson, C. R.; Trainer, M.
2017-12-01
Several studies have highlighted overestimates in anthropogenic emissions of nitrogen oxides (NOx) for the U.S., with particular attention on the mobile source sector. In this study, we explore whether there could be overestimates in the emissions of NOx from oil and gas production regions. We construct a bottom-up inventory using publicly available fuel use records of the industry and emission factors reported in the literature. We compare both the NEI 2011 and the fuel-based inventory with top-down emission fluxes derived by aircraft and ground-based field measurement campaigns by NOAA that occurred in 2012-13, including for basins located in Uintah, Haynesville, Marcellus, and Fayetteville. Compared to the top-down fluxes, the NEI overestimates NOx by a factor of 2 across the four basins. However, the discrepancies are not uniform, reflecting variability in oil and gas engine activity and NOx emission factors. We explore this variability with our fuel-based inventory and perform a Monte Carlo analysis to assess uncertainties in emissions. We find that on average the fuel-based inventory improves the agreement with the top-down emissions, and that the top-down emissions are within the uncertainties of our analysis.
Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine
DOT National Transportation Integrated Search
1975-09-01
An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to the following procedures. 2.1.6.1Plot the heat input rate (mmBtu/hr) as the independent (or x... stationary gas turbine, select at least four operating parameters indicative of the turbine's NOX formation... least four operating parameters indicative of the engine's NOX formation characteristics, and define in...
NASA Astrophysics Data System (ADS)
Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.
2017-10-01
Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirske, R.D.; Hauck, P.C.; Kachmar, R.P.
In 1990, the federal government enacted the Clean Air Amendment. This required many public power utilities across the country to make modifications to their fossil fueled power plants to comply with the mandated emission levels by May 1995. At Pennsylvania Electric Company`s (PENELEC) Shawville Station, Units 3 and 4, the mandates established maximum nitrogen oxides (NOx) emission levels at 0.45 lbs/MMBTU. In an effort to comply with the new reduced emission levels, PENELEC chose to implement the Asea Brown Boveri-Combustion Engineering`s (ABB-CE) Low NOx Concentric Firing System III (LNCFS-III). PENELEC also took this opportunity to replace other controls because theirmore » implementation would have relatively little impact on the overall cost of the project and would enhance the ability of the operators to better control NOx emissions. This paper discusses the implementation of the new controls in a distributed control system (DCS), interfacing the DCS with the existing pneumatic combustion controls, and maintaining the boiler control benchboard as the primary operator interface, thereby, reducing the impact of the changes to the MMI and the overall cost of the project.« less
Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx.
Walters, Wendell W; Goodwin, Stanford R; Michalski, Greg
2015-02-17
The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.
Catalysts, systems and methods to reduce NOX in an exhaust gas stream
Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard
2010-07-20
Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.
Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Lezberg, E. A.
1976-01-01
Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.
APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomazic, D; Tatur, M; Thornton, M
A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percentmore » nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.« less
Evaluation of 25-Percent ATJ Fuel Blends in the John Deere 4045HF 280 Engine
2014-08-01
25% ATJ Blend ........ 26 Figure 16 . THC Emissions, Pre-Test, Ambient Temperature ...................................................... 28 Figure...17 . THC Emissions, Pre-Test, Desert Temperature ......................................................... 28 Figure 18 . NOx Emissions, Pre-Test...Emissions, Pre-Test, Desert Temperature (Scaled) ............................................. 32 Figure 23 . THC Emissions, Post-Test, Ambient
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.
Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md
2006-02-01
In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.
Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan
2012-01-01
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Jayaram, Varalakshmi; Agrawal, Harshit; Welch, William A; Miller, J Wayne; Cocker, David R
2011-03-15
Emissions from harbor-craft significantly affect air quality in populated regions near ports and inland waterways. This research measured regulated and unregulated emissions from an in-use EPA Tier 2 marine propulsion engine on a ferry operating in a bay following standard methods. A special effort was made to monitor continuously both the total Particulate Mass (PM) mass emissions and the real-time Particle Size Distribution (PSD). The engine was operated following the loads in ISO 8178-4 E3 cycle for comparison with the certification standards and across biodiesel blends. Real-time measurements were also made during a typical cruise in the bay. Results showed the in-use nitrogen oxide (NOx) and PM(2.5) emission factors were within the not to exceed standard for Tier 2 marine engines. Comparing across fuels we observed the following: a) no statistically significant change in NO(x) emissions with biodiesel blends (B20, B50); b) ∼ 16% and ∼ 25% reduction of PM(2.5) mass emissions with B20 and B50 respectively; c) a larger organic carbon (OC) to elemental carbon (EC) ratio and organic mass (OM) to OC ratio with B50 compared to B20 and B0; d) a significant number of ultrafine nuclei and a smaller mass mean diameter with increasing blend-levels of biodiesel. The real-time monitoring of gaseous and particulate emissions during a typical cruise in the San Francisco Bay (in-use cycle) revealed important effects of ocean/bay currents on emissions: NO(x) and CO(2) increased 3-fold; PM(2.5) mass increased 6-fold; and ultrafine particles disappeared due to the effect of bay currents. This finding has implications on the use of certification values instead of actual in-use emission values when developing inventories. Emission factors for some volatile organic compounds (VOCs), carbonyls, and poly aromatic hydrocarbons (PAHs) are reported as supplemental data.
NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff.
Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E
2004-11-15
In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.
40 CFR 86.540-90 - Exhaust sample analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for... appropriate, NOX. concentrations of samples. (6) Check zero and span points. If difference is greater than 2...
40 CFR 86.540-90 - Exhaust sample analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for... appropriate, NOX. concentrations of samples. (6) Check zero and span points. If difference is greater than 2...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
40 CFR 1043.70 - General recordkeeping and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE... operators of non-Party vessels must keep these records as specified in the NOX Technical Code and... operator has fuel receipts (or equivalent records) for the preceding three years showing it operated using...
Experimental clean combustor program, phase 1
NASA Technical Reports Server (NTRS)
Bahr, D. W.; Gleason, C. C.
1975-01-01
Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.
Clean-burning diesel engines. Interim report, June-December 1985 on Phase 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietzmann, H.E.; Smith, L.R.
Gaseous and particulate emissions were measured from diesel forklift engines under a variety of steady-state conditions. An EPA certification fuel was used to determine CO, CO/sub 2/, NOx, HC, particulate, aldehydes, smoke and SO/sub 2/ emission rates from Isuzu C-240, Peugeot XD3P, and Teledyne TMD-20 diesel engines. Emission rates were reported in b/hp-hr, g/hr, and observed concentration, i.e., ppm, percent, or mg/cu. m.
Pollution reduction technology program for turboprop engines
NASA Technical Reports Server (NTRS)
Tomlinson, J. G.
1977-01-01
The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.
Energy efficient engine flight propulsion system preliminary analysis and design report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.
Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions
NASA Astrophysics Data System (ADS)
Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi
The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays. One droplet array consisted of five droplets (for sounding rocket) and 9 -17 droplets (for drop tower) of the hydrocarbon n-decane (C10 H22 ). While keeping the pressure at 1.0 bar (+/-20 mbar), the combustion chamber temperature and the fuel vaporization time were varied in the range of 300 -500 K and 0.5 -18 s, respectively. Consequently, the total amount of fuel, the local equivalence ratio Φ along the droplet array, and the dimensionless droplet spacing S/d0 , with d0 being the initial droplet diameter, were adapted. Ignition was initiated by a hot-wire igniter from one end of the droplet array. Representative gas samples were collected from every single combustion sequence after flame extinction and stored in specially treated gas sampling cylinders for their succeeding analysis on ground. Visual observation of the combustion process, as well as temperature and pressure logging, supported the scientific interpretation of the gas analysis. With an increase of the preheating temperature, NOX emissions increase due to a higher effec-tive flame temperatures. However, with an increasing pre-vaporization, NOX emissions become lower due to the dropping number and the dropping size of burning droplets, acting as hot spots. A correction for the effect of the preheating temperature was developed. It reveals the effect of pre-vaporization and shows that the NOX emissions are almost independent of it for near-stoichiometric operation. At overall lean conditions the NOX emissions drop non-linearly with the degree of vaporization. Up to now, this leads to the conclusion that a high degree of vaporization is required in order to achieve substantial NOX abatement.
Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars.
Yang, Liuhanzi; Franco, Vicente; Mock, Peter; Kolke, Reinhard; Zhang, Shaojun; Wu, Ye; German, John
2015-12-15
Controlling nitrogen oxides (NOx) emissions from diesel passenger cars during real-world driving is one of the major technical challenges facing diesel auto manufacturers. Three main technologies are available for this purpose: exhaust gas recirculation (EGR), lean-burn NOx traps (LNT), and selective catalytic reduction (SCR). Seventy-three Euro 6 diesel passenger cars (8 EGR only, 40 LNT, and 25 SCR) were tested on a chassis dynamometer over both the European type-approval cycle (NEDC, cold engine start) and the more realistic Worldwide harmonized light-duty test cycle (WLTC version 2.0, hot start) between 2012 and 2015. Most vehicles met the legislative limit of 0.08 g/km of NOx over NEDC (average emission factors by technology: EGR-only 0.07 g/km, LNT 0.04 g/km, and SCR 0.05 g/km), but the average emission factors rose dramatically over WLTC (EGR-only 0.17 g/km, LNT 0.21 g/km, and SCR 0.13 g/km). Five LNT-equipped vehicles exhibited very poor performance over the WLTC, emitting 7-15 times the regulated limit. These results illustrate how diesel NOx emissions are not properly controlled under the current, NEDC-based homologation framework. The upcoming real-driving emissions (RDE) regulation, which mandates an additional on-road emissions test for EU type approvals, could be a step in the right direction to address this problem.
Measuring in-use ship emissions with international and U.S. federal methods.
Khan, M Yusuf; Ranganathan, Sindhuja; Agrawal, Harshit; Welch, William A; Laroo, Christopher; Miller, J Wayne; Cocker, David R
2013-03-01
Regulatory agencies have shifted their emphasis from measuring emissions during certification cycles to measuring emissions during actual use. Emission measurements in this research were made from two different large ships at sea to compare the Simplified Measurement Method (SMM) compliant with the International Maritime Organization (IMO) NOx Technical Code to the Portable Emission Measurement Systems (PEMS) compliant with the US. Environmental Protection Agency (EPA) 40 Code of Federal Regulations (CFR) Part 1065 for on-road emission testing. Emissions of nitrogen oxides (NOx), carbon dioxide (CO2), and carbon monoxide (CO) were measured at load points specified by the International Organization for Standardization (ISO) to compare the two measurement methods. The average percentage errors calculated for PEMS measurements were 6.5%, 0.6%, and 357% for NOx, CO2, and CO, respectively. The NOx percentage error of 6.5% corresponds to a 0.22 to 1.11 g/kW-hr error in moving from Tier III (3.4 g/kW-hr) to Tier I (17.0 g/kW-hr) emission limits. Emission factors (EFs) of NOx and CO2 measured via SMM were comparable to other studies and regulatory agencies estimates. However EF(PM2.5) for this study was up to 26% higher than that currently used by regulatory agencies. The PM2.5 was comprised predominantly of hydrated sulfate (70-95%), followed by organic carbon (11-14%), ash (6-11%), and elemental carbon (0.4-0.8%). This research provides direct comparison between the International Maritime Organization and U.S. Environmental Protection Agency reference methods for quantifying in-use emissions from ships. This research provides correlations for NOx, CO2, and CO measured by a PEMS unit (certified by U.S. EPA for on-road testing) against IMO's Simplified Measurement Method for on-board certification. It substantiates the measurements of NOx by PEMS and quantifies measurement error. This study also provides in-use modal and overall weighted emission factors of gaseous (NOx, CO, CO2, total hydrocarbons [THC], and SO2) and particulate pollutants from the main engine of a container ship, which are helpful in the development of emission inventory.
Cheung, C S; Zhu, Ruijun; Huang, Zuohua
2011-01-01
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Benea, B. C.
2016-08-01
This study presents the influence of the diesel fuel blended with biodiesel fuel obtained from sunflower oil, corn oil and peanut oil on the energetic performances, combustion process and pollutant emissions. This research was done virtually and experimentally. In this study pure diesel fuel and two concentrations (6% and 10%) of blends with biofuels were used for experimentally tests on a Renault K9K diesel engine. Five parameters were observed during experimental tests: engine power, fuel consumption, cylinder pressure, and the amount of CO and NOx emissions. The same five parameters were simulated using AVL Boost program. The variations of effective power and maximal cylinder pressure are caused due to the lower calorific value of the tested fuels. Better oxidation of the biofuels induces a better combustion in cylinder and less CO and NOx emissions. The CO emissions are either influence by the lower carbon content of biofuels. The results of this study sustain that using 6% and 10% of blended biofuels with diesel fuel decrease the pollutant emissions of the diesel engine. Deviations between experimental and the simulation results confirm the validity of the mathematical model adopted for the simulation.
NASA Astrophysics Data System (ADS)
Krishnamoorthi, M.; Malayalamurthi, R.
2018-02-01
The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.
NASA Astrophysics Data System (ADS)
Ogren, Ryan M.
For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.
NASA Astrophysics Data System (ADS)
Ježek, I.; Katrašnik, T.; Westerdahl, D.; Močnik, G.
2015-06-01
The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years, decreased by 60 and 47% from those in use for 5-10 years, respectively, the median NOx and PN EFs, of goods vehicles that were in use for less than five years, decreased from those in use for 5-10 years by 52 and 67%, respectively. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25% of emitting diesel cars contributed 63, 47 and 61% of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements with sophisticated post processing individual vehicles EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving conditions.
Engine Performance Test of the Honda CVCC
DOT National Transportation Integrated Search
1975-09-01
This report presents the data which were obtained from a test of a prototype Honda CVCC, 90.8-cubic-inch, 4-cylinder engine. The data included are sufficient to establish the steady-state engine maps for fuel consumption and emissions (HC, CO, NOx) o...
Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept
NASA Technical Reports Server (NTRS)
Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.
2001-01-01
A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.
Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates
NASA Astrophysics Data System (ADS)
Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.
2017-12-01
Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving mode. Some DPFs on trucks with 2007-2009 model year engines showed deterioration or failure in filter performance, leading to higher BC emission rates compared to the average for trucks without filters. Emission inventories may underestimate total on-road emissions from diesel trucks, especially if particle filter failure rates continue to increase over time.
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... simulation of such, resulting in an increase of 1.5 times the NMHC+NOX standard or FEL above the NMHC+NOX... simulation of such, resulting in exhaust emissions exceeding 1.5 times the applicable standard or FEL for... catastrophically failed, or an electronic simulation of such. (2)(i) Otto-cycle. An engine misfire condition is...
40 CFR 86.004-30 - Certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... simulation of such, resulting in an increase of 1.5 times the NMHC+NOX standard or FEL above the NMHC+NOX... simulation of such, resulting in exhaust emissions exceeding 1.5 times the applicable standard or FEL for... catastrophically failed, or an electronic simulation of such. (2)(i) Otto-cycle. An engine misfire condition is...
40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...
40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...
40 CFR 89.207 - Credit calculation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Trading Provisions § 89.207 Credit calculation. (a) Requirements for calculating NO X credits from Tier 1...) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard...) of this section, to be applied to Tier 1 NOX credits to be banked or traded for determining...
Hybrid vehicle system studies and optimized hydrogen engine design
NASA Astrophysics Data System (ADS)
Smith, J. R.; Aceves, S.
1995-04-01
We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.
40 CFR 91.208 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.208... engines for which certification is requested will not, to the best of the manufacturer's belief, cause the...'s engine families. (2) Declare an FEL for each engine family for HC plus NOX. The FEL must have the...
Lean NOx catalysis for gasoline fueled European cars
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV)more » in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.« less
Evaluating the emissions from heavy-duty construction equipment.
DOT National Transportation Integrated Search
2008-12-01
Gaseous and particle emissions from construction engines are an important fraction of the total air pollutants and are gaining increasing : regulatory attention. Quantification of NOx and PM is necessary to inventory the contribution of the construct...
NASA Astrophysics Data System (ADS)
Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming
2009-06-01
Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennifer Rumsey
2005-12-31
Cummins Inc. is a world leader in the development and production of diesel engines for on-highway vehicles, off-highway industrial machines, and power generation units. Cummins Inc. diesel products cover a 50-3000 HP range. The power range for this project includes 174-750 HP to achieve EPA's Tier 3 emission levels of 4.0 NOx+NMHC gm/kW-hr and 0.2 PM gm/kWhr and Tier 4 Interim emission levels of 2.0 gm/kW-hr NOx and 0.02 gm/kW-hr PM. Cummins' anticipated product offerings for Tier 4 in this range include the following: QSB6.7, QSC8.3, QSL9, QSM11, QSX15, QSK19. (For reference, numerical values indicate engine displacement in liters, themore » letter designation ns indicate the product model). A summary of the EPA's mobile off-highway emissions requirements is given in Figure 1.« less
[Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC].
Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping
2004-07-01
The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Rogers, D. W.; Bahr, D. W.
1976-01-01
The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.
Cooking with Fire: The Mutagenicity- and PAH-Emission ...
Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid-fuel cookstoves for 8 pollutant- and 4 mutagenicity-emission factors, correlated the mutagenicity-emission factors, and compared them to those of other combustion emissions. We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS); we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Other than NOx the emission factors per MJd correlated highly among each other (r2 ≥ 0.92); NOx correlated 0.58-0.76 with the other emission factors. Excluding NOx, the NDS and FDS reduced the emission factors on average 68 and 92%, respectively, relative to the TSF. Nonetheless, the mutagenicity-emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was intermediate to that of a large diesel bus engine and a small diesel generator. Both mutagenicity- and pollutant-emission factors may be informative for characterizing cookstove
SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, W; Huethwohl, G; Maurer, B
2003-08-24
Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used wasmore » anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.« less
NASA Astrophysics Data System (ADS)
Thornhill, D. A.; Williams, A. E.; Onasch, T. B.; Wood, E.; Herndon, S. C.; Kolb, C. E.; Knighton, W. B.; Zavala, M.; Molina, L. T.; Marr, L. C.
2010-04-01
The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx), benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5), and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx, 95-97% of each aromatic species, 72-85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5, and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx and higher for VOCs. For NOx, the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2001-01-01
Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.
NASA Astrophysics Data System (ADS)
Dora, Nagaraju; Jothi, T. J. Sarvoththama
2018-05-01
The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2014 CFR
2014-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2012 CFR
2012-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2013 CFR
2013-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
40 CFR 1043.41 - EIAPP certification process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... test engine you provide must include appropriate manifolds, aftertreatment devices, electronic control... CONTROLS CONTROL OF NOX, SOX, AND PM EMISSIONS FROM MARINE ENGINES AND VESSELS SUBJECT TO THE MARPOL... application for an EIAPP certificate for each engine family. An EIAPP certificate is valid starting with the...
Control of diesel soot and NOx emissions with a particulate trap and EGR.
Liu, Rui-xiang; Gao, Xi-yan; Yang, De-sheng; Xu, Xiao-guang
2005-01-01
The exhaust gas recirculation (EGR), coupled with a high-collection efficiency particulate trap to simultaneously control smoke and NOx emissions from diesel engines were studied. This ceramic trap developed previously provided the soot cleaning efficiency of 99%, the regeneration efficiency reaches 80% and the ratio of success reaches 97%, which make EGR used in diesel possible. At the presence of EGR, opening of the regeneration control valve of the trap was over again optimized to compensate for the decrease of the oxygen concentration in the exhaust gas resulted from EGR. The results indicated the cleaning efficiency and regeneration performance of the trap were maintained at the same level except that the back pressure increased faster. A new EGR system was developed, which is based on a wide range oxygen (UEGO) sensor. Experiments were carried out under steady state conditions while maintaining the engine speed at 1600 r/min, setting the engine loads at 0%, 25%, 50%, 75% and 100% respectively. Throughout each test the EGR rate was kept at nine different settings and data were taken with the gas analyzer and UEGO sensor. Then, the EGR rate and engine load maps, which showed the tendencies of NOx, CO and HC emissions from diesel engine, were made using the measured data. Using the maps, the author set up the EGR regulation, the relationship between the optimal amounts of EGR flow and the equivalence ratio, sigma, where sigma = 14.5/AFR.
System Study: Technology Assessment and Prioritizing Update
NASA Technical Reports Server (NTRS)
2008-01-01
For the Intelligent Engine System (Propulsion 21) study, each technology was evaluated to determine the impact to fuel burn, acoustics, and NOx emissions. The optimum combination of technologies and their overall benefits to the system were also evaluated, resulting in noise improvement potential of 1.89 EPNdB cumulative margin,-1.34 percent fuel burn, and 50 percent NOx reduction from the 2015 UEET-QAT baseline. All the technology evaluations, except T18-20D, were based on newengines, where the engine was resized to obtain the maximum system benefit while maintaining the same cycle parameters as the 2015 UEET-QAT baseline. The impact of turbine clearance control on deteriorated engines, T18-20D, was also evaluated. Recommendations for future system study work include, but were not limited to, validation of a university-developed engine deterioration model and customer value analysis as figures of merit beside fuel burn, emissions, and acoustics.
Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M
2014-12-01
The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. Copyright © 2014. Published by Elsevier B.V.
Mid-IR fiber optic sensors for internal combustion engines
NASA Astrophysics Data System (ADS)
Hall, Matthew J.
1999-12-01
Environmental regulations are driving development of cleaner spark ignition, diesel, and gas turbine engines. Emissions of unburned hydrocarbons, NOx, and CO can be affected by the characteristics of the mixing of the fuel with air in the engine, and by the amount of exhaust gas recirculated to the engine intake. Fiber optic sensors have been developed that can measure the local fuel concentration in the combustion chamber of a spark ignition engine near the spark plug. The sensors detect the absorption of 3.4 micrometer radiation corresponding to the strongest absorption band common to all hydrocarbons. The sensors have been applied to both liquid and gaseous hydrocarbon fuels, and liquid fuels injected directly into the engine combustion chamber. The sensors use white light sources and are designed to detect the absorption throughout the entire band minimizing calibration problems associated with pressure and temperature broadening. Other sensors can detect the concentration of CO2 in the engine intake manifold providing time-resolved measurement of exhaust gas recirculation (EGR). Proper EGR levels are critical for achieving low engine-out emissions of NOx while maintaining acceptable engine performance.
NASA Astrophysics Data System (ADS)
Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.
2013-12-01
Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately 100 nm in diameter and (b) new trucks originally equipped with diesel particle filters were 5 to 6 times more likely than filter-retrofitted trucks and trucks without filters to emit particles characterized by a single mode in the range of 10 to 30 nm in diameter.
Measuring and modeling PM emissions from heavy-duty construction equipment.
DOT National Transportation Integrated Search
2012-01-01
Gaseous and particle emissions from construction engines are an important fraction of the total air : pollutants and are gaining increasing regulatory attention. Quantification of NOx and PM is necessary to : inventory the contribution of the constru...
Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010
NASA Astrophysics Data System (ADS)
Fan, Weiyi; Sun, Yifei; Zhu, Tianle; Wen, Yi
2012-09-01
Civil aviation in China has developed rapidly in recent years, and the effects of civil aviation emissions on the atmospheric environment should not be neglected. The establishment of emission inventories of atmospheric pollutants from civil aviation contributes to related policy formation and pollution control. According to the 2010's China flight schedules, aircraft/engine combination information and revised emission indices from the International Civil Aviation Organization emission data bank based on meteorological data, the fuel consumption and HC, CO, NOx, CO2, SO2 emissions from domestic flights of civil aviation in China (excluding Taiwan Province) in 2010 are estimated in this paper. The results show that fuel consumption in 2010 on domestic flights in China is 12.12 million tons (metric tons), HC, CO, NOx, CO2 and SO2 emissions are 4600 tons, 39,700 tons, 154,100 tons, 38.21 million tons and 9700 tons, respectively. The fuel consumption and pollutant emissions of China Southern Airline are responsible for the largest national proportion of each, accounting for 27% and 25-28%, respectively.
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.
1977-01-01
An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.
Active chlorine and nitric oxide formation from chemical rocket plume afterburning
NASA Astrophysics Data System (ADS)
Leone, D. M.; Turns, S. R.
Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.
Active chlorine and nitric oxide formation from chemical rocket plume afterburning
NASA Technical Reports Server (NTRS)
Leone, D. M.; Turns, S. R.
1994-01-01
Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.
Effect of truck operating weight on heavy-duty diesel emissions.
Gajendran, Prakash; Clark, Nigel N
2003-09-15
Heavy-duty diesel vehicles are substantial contributors of oxides of nitrogen (NO(x)) and particulate matter (PM) while carbon monoxide and hydrocarbon (HC) emissions from diesel vehicles receive less attention. Truck emissions inventories have traditionally employed average fuel economy and engine efficiency factors to translate certification into distance-specific (g/mi) data, so that inventories do not take into account the real effects of truck operating weight on emissions. The objective of this research was to examine weight corrections for class 7 and 8 vehicles (over 26 000 lb (11 793 kg) gross vehicle weight) from a theoretical point of view and to present a collection of original data on the topic. It was found by combining an empirical equation with theoretical truck loads that the NO(x) emissions increased by approximately 54% for a doubling of test weight. Emissions data were gathered from specific tests performed using different test weights and using various test schedules, which can consist of cycles or routes. It was found experimentally that NO(x) emissions have a nearly linear correlation with vehicle weight and did not vary much from vehicle to vehicle. NO(x) emissions were also found to be insensitive to transient operation in the test schedule. The observed trends correlate well with the theory presented, and hence, the NO(x) emissions can be predicted reasonably accurately using the theory. If NO(x) data were considered in fuel-specific (g/gal) units, they did not vary with the test weight. HC emissions were found to be insensitive to the vehicle weight. CO and PM emissions were found to be a strong function of weight during transient operation. Under transient operation, the CO emissions value increased by 36% for an increase in test weight from 42 000 (19 051 kg) to 56 000 lb (25 401 kg). However, CO and PM were found to be insensitive to the vehicle weight during nearly steady-state operation.
NASA Astrophysics Data System (ADS)
Ramirez, Anita I.
The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn phase. Diesel/phytol blends yield marginally lower power values. In-cylinder soot radiation images show combustion instability at the start of the event for the 20% phytol/diesel blend. Overall, NOx emissions are comparable across the different fuels used and no discernible trend is found in CO emissions.
NASA Technical Reports Server (NTRS)
Tacina, Robert; Wey, Changlie; Laing, Peter; Mansour, Adel
2002-01-01
A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2010-01-15
The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.
40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...
40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...
40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...
NASA Astrophysics Data System (ADS)
Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd
2017-10-01
Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.
The near-term, Tier 1 standards in this rule are equivalent to the internationally negotiated emission limits for oxides of nitrogen (NOx). These standards will go into effect in 2004 and are based on readily available emission-control technology.
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam
2017-08-01
Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.
40 CFR 92.305 - Credit generation and use calculation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... megawatt-hrs: Credits for each engine family are calculated as: Emission credits=(Std − FEL) × (UL) × (Production) × (Fp) × (10−3 kW-Mg/MW-g). (2) Where: (i) Std=the applicable locomotive and locomotive engine NOX and/or PM emission standard in grams per kilowatt-hour (exceptions: Std=0.43 g/kW-hr, for Tier 0...
40 CFR 92.305 - Credit generation and use calculation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... megawatt-hrs: Credits for each engine family are calculated as: Emission credits=(Std − FEL) × (UL) × (Production) × (Fp) × (10−3 kW-Mg/MW-g). (2) Where: (i) Std=the applicable locomotive and locomotive engine NOX and/or PM emission standard in grams per kilowatt-hour (exceptions: Std=0.43 g/kW-hr, for Tier 0...
40 CFR 92.305 - Credit generation and use calculation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... megawatt-hrs: Credits for each engine family are calculated as: Emission credits=(Std − FEL) × (UL) × (Production) × (Fp) × (10−3 kW-Mg/MW-g). (2) Where: (i) Std=the applicable locomotive and locomotive engine NOX and/or PM emission standard in grams per kilowatt-hour (exceptions: Std=0.43 g/kW-hr, for Tier 0...
40 CFR 92.305 - Credit generation and use calculation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... megawatt-hrs: Credits for each engine family are calculated as: Emission credits=(Std − FEL) × (UL) × (Production) × (Fp) × (10−3 kW-Mg/MW-g). (2) Where: (i) Std=the applicable locomotive and locomotive engine NOX and/or PM emission standard in grams per kilowatt-hour (exceptions: Std=0.43 g/kW-hr, for Tier 0...
Advanced Low Emissions Subsonic Combustor Study
NASA Technical Reports Server (NTRS)
Smith, Reid
1998-01-01
Recent advances in commercial and military aircraft gas turbines have yielded significant improvements in fuel efficiency and thrust-to-weight ratio, due in large part to increased combustor operating pressures and temperatures. However, the higher operating conditions have increased the emission of oxides of nitrogen (NOx), which is a pollutant with adverse impact on the atmosphere and environment. Since commercial and military aircraft are the only important direct source of NOx emissions at high altitudes, there is a growing consensus that considerably more stringent limits on NOx emissions will be required in the future for all aircraft. In fact, the regulatory communities have recently agreed to reduce NOx limits by 20 percent from current requirements effective in 1996. Further reductions at low altitude, together with introduction of limits on NOx at altitude, are virtual certainties. In addition, the U.S. Government recently conducted hearings on the introduction of federal fees on the local emission of pollutants from all sources, including aircraft. While no action was taken regarding aircraft in this instance, the threat of future action clearly remains. In these times of intense and growing international competition, the U.S. le-ad in aerospace can only be maintained through a clear technological dominance that leads to a product line of maximum value to the global airline customer. Development of a very low NOx combustor will be essential to meet the future needs of both the commercial and military transport markets, if additional economic burdens and/or operational restrictions are to be avoided. In this report, Pratt & Whitney (P&W) presents the study results with the following specific objectives: Development of low-emissions combustor technologies for advances engines that will enter into service circa 2005, while producing a goal of 70 percent lower NOx emissions, compared to 1996 regulatory levels. Identification of solution approaches to barriers to the productization and economic viability of the low-emissions technologies. Preparation of these technologies to facilitate an annular rig high-pressure demonstration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Daw, C Stuart; Wagner, Robert M
2013-01-01
We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reducemore » fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.« less
NASA Astrophysics Data System (ADS)
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
Cocker, David R; Shah, Sandip D; Johnson, Kent; Miller, J Wayne; Norbeck, Joseph M
2004-04-01
Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total capture gaseous on-road emission measurements following the California Air Resources Board (ARB) 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment. NOx mass emission rates (g mi(-1)) for the ARB 4-mode driving cycle, the hot UDDS driving cycle, and the chase experimentwerefoundto exceed current emission factor estimates for the engine type tested by approximately 50%. It was determined that congested traffic flow as well as "off-Federal Test Procedure cycle" emissions can lead to significant increases in per mile NOx emission rates for HDD vehicles.
Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.
2015-01-01
Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment, inventory, and exposure purposes. PMID:25722535
Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.
Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai
2018-01-01
As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small. PMID:29408924
Impact of the Volkswagen emissions control defeat device on US public health
NASA Astrophysics Data System (ADS)
Barrett, Steven R. H.; Speth, Raymond L.; Eastham, Sebastian D.; Dedoussi, Irene C.; Ashok, Akshay; Malina, Robert; Keith, David W.
2015-11-01
The US Environmental Protection Agency (EPA) has alleged that Volkswagen Group of America (VW) violated the Clean Air Act (CAA) by developing and installing emissions control system ‘defeat devices’ (software) in model year 2009-2015 vehicles with 2.0 litre diesel engines. VW has admitted the inclusion of defeat devices. On-road emissions testing suggests that in-use NOx emissions for these vehicles are a factor of 10 to 40 above the EPA standard. In this paper we quantify the human health impacts and associated costs of the excess emissions. We propagate uncertainties throughout the analysis. A distribution function for excess emissions is estimated based on available in-use NOx emissions measurements. We then use vehicle sales data and the STEP vehicle fleet model to estimate vehicle distance traveled per year for the fleet. The excess NOx emissions are allocated on a 50 km grid using an EPA estimate of the light duty diesel vehicle NOx emissions distribution. We apply a GEOS-Chem adjoint-based rapid air pollution exposure model to produce estimates of particulate matter and ozone exposure due to the spatially resolved excess NOx emissions. A set of concentration-response functions is applied to estimate mortality and morbidity outcomes. Integrated over the sales period (2008-2015) we estimate that the excess emissions will cause 59 (95% CI: 10 to 150) early deaths in the US. When monetizing premature mortality using EPA-recommended data, we find a social cost of ˜450m over the sales period. For the current fleet, we estimate that a return to compliance for all affected vehicles by the end of 2016 will avert ˜130 early deaths and avoid ˜840m in social costs compared to a counterfactual case without recall.
Test results of the Chrysler upgraded automotive gas turbine engine: Initial design
NASA Technical Reports Server (NTRS)
Horvath, D.; Ribble, G. H., Jr.; Warren, E. L.; Wood, J. C.
1981-01-01
The upgraded engine as built to the original design was deficient in power and had excessive specific fuel consumption. A high instrumented version of the engine was tested to identify the sources of the engine problems. Analysis of the data shows the major problems to be low compressor and power turbine efficiency and excessive interstage duct losses. In addition, high HC and CO emission were measured at idle, and high NOx emissions at high energy speeds.
NASA Astrophysics Data System (ADS)
Matsumoto, J.
2013-12-01
Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0.1 ppbv for Ox and 0.5 ppbv for NOx (60-s integration, S/N = 3). The observation test in the suburbs of Tokyo was conducted in April 2013 at Tokorozawa Campus, Waseda University. During the campaign, 48 cases of ';NOx spikes', for which NOx levels significantly varied in the second time scale due to local NOx emission, were captured. NO2/NOx ratio in the exhaust gas was estimated as the slope of regression line between 1-s series data of Ox and those of NOx observed during each spike. The average of acquired NO2/NOx ratio was 0.10. Thus, as a result of observations of real atmosphere, the present NO2/NOx ratio in the exhaust gases in the suburbs of Tokyo was 0.10 as average, which was mainly due to exhausts of automobiles. However, when the individual cases were considered, NO2/NOx could vary from 0.00 to 0.30. Such a wide range of NO2/NOx ratio may be due to (1) difference of source types (eg. automobiles, power generator) and (2) difference of conditions of sources (eg. engines, filters of exhaust). For example, NO2/NOx ratio for hybrid electric vehicles may be different from those for conventional cars. When diffusion of such new model cars can change NOx emission in near future, the present method of simultaneous and real-time monitoring of Ox and NOx in the atmosphere can be useful and promising for characterization of NOx emission.
NASA Astrophysics Data System (ADS)
Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.
2016-12-01
Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.
A Probabilistic System Analysis of Intelligent Propulsion System Technologies
NASA Technical Reports Server (NTRS)
Tong, Michael T.
2007-01-01
NASA s Intelligent Propulsion System Technology (Propulsion 21) project focuses on developing adaptive technologies that will enable commercial gas turbine engines to produce fewer emissions and less noise while increasing reliability. It features adaptive technologies that have included active tip-clearance control for turbine and compressor, active combustion control, turbine aero-thermal and flow control, and enabling technologies such as sensors which are reliable at high operating temperatures and are minimally intrusive. A probabilistic system analysis is performed to evaluate the impact of these technologies on aircraft CO2 (directly proportional to fuel burn) and LTO (landing and takeoff) NO(x) reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that NASA s Intelligent Propulsion System technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decisionmaking on the development of the intelligent propulsion system technology portfolio for CO2 and NO(x) reductions.
Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.
Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D
2009-07-15
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.
This rule will adopt the current voluntary NOx and CO emissions standards of the United Nations International Civil Aviation Organization (ICAO), bringing the United States aircraft standards into alignment with the international standards.
Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir
2017-10-01
This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.
Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China
NASA Astrophysics Data System (ADS)
Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker
2016-05-01
Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was one of the most important influence factors for the differences. Emission factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. The test inland ships and some test offshore vessels in China always had higher EFs for CO, NOx, and PM than previous studies. Besides, due to the significant influence of engine type on shipping emissions and that no accurate local EFs could be used in inventory calculation, much more measurement data for different vessels in China are still in urgent need. Best-fit engine speeds during actual operation should be based on both emission factors and economic costs.
The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad
2008-01-01
The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).
Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert
2014-08-01
On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.
Usability of food industry waste oils as fuel for diesel engines.
Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch
2008-02-01
Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.
Study of emissions for a compression ignition engine fueled with a mix of DME and diesel
NASA Astrophysics Data System (ADS)
Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete
2017-10-01
Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin
2014-02-15
A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.
Performance of a Model Rich Burn-quick Mix-lean Burn Combustor at Elevated Temperature and Pressure
NASA Technical Reports Server (NTRS)
Peterson, Christopher O.; Sowa, William A.; Samuelsen, G. S.
2002-01-01
As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.
NASA Astrophysics Data System (ADS)
Ježek, I.; Katrašnik, T.; Westerdahl, D.; Močnik, G.
2015-10-01
The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote-sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years decreased by 60 and 47 % from those in use for 5-10 years, respectively; the median NOx and PN EFs of goods vehicles that were in use for less than 5 years decreased from those in use for 5-10 years by 52 and 67 %, respectively. Surprisingly, we found an increase of BC EFs in the newer goods vehicle fleet compared to the 5-10-year old one. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally, a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25 % of emitting diesel cars contributed 63, 47 and 61 % of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements and sophisticated post processing, individual vehicle EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving conditions.
Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation
NASA Astrophysics Data System (ADS)
Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.
1981-10-01
The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.
Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation
NASA Technical Reports Server (NTRS)
Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.
1981-01-01
The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.
Sustained Low Temperature NOx Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Yuhui
Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oCmore » range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.« less
Prucz, J C; Clark, N N; Gautam, M; Lyons, D W
2001-05-01
In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions.
An Assessment of NASA Aeropropulsion Technologies: A System Study
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.
2007-01-01
Aviation industry s robust growth rate has given rise to growing concerns about the contribution that aviation emissions will make to local air quality and global climate change. Over the last several years, NASA has been engaged in the development of aeropropulsion technologies with specific objectives to reduce aircraft emissions. A system analysis was performed to evaluate the potential impact of these propulsion technologies on aircraft CO2 (directly proportional to fuel burn) and NOx reductions. A large subsonic aircraft, with two 396-kN thrust (85,000-pound) engines was chosen for the study. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of these technologies. The results show that NASA s aeropropulsion technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decision-making on the development of aeropropulsion technology portfolio for CO2 and NO(x) reductions.
Potential Environmental Effects of Aircraft Emissions.
1979-10-15
and fleet projections used by Oliver et al. (1977) in their Table 2-33. The projection used by Oliver et al. (1977) was based on A. D. Little, Inc...than used by A. D. Little, Inc. (1976) for CF6 engines (which Oliver et al., 1977, treated as having the same emissions indexes as JT9D engines). The NO...x emission index for SSrs was assumed to be 20 g NO 2 /kg fuel. In converting the projected emissions in Table 2.33 of Oliver et al. (1977) to a
The development of exhaust speciation profiles for commercial jet engines.
DOT National Transportation Integrated Search
2007-10-01
This study reports the emissions of CO, CO2, NOx, Particulate Matter (PM) mass, : speciated PM and speciated hydrocarbons at six thrust settings: 4%, 7%, 30%, 40%, 65% : and 85%, measured from both engines on four parked 737 aircraft at the Oakland :...
40 CFR 94.8 - Exhaust emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Engines fueled with alcohol fuel shall comply with THCE+NOX standards that are numerically equivalent to... advance by the Administrator. (g) Standards for alternative fuels. The standards described in this section apply to compression-ignition engines, irrespective of fuel, with the following two exceptions for...
Final Rule for Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines
EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs.
NASA Astrophysics Data System (ADS)
Ait-Helal, W.; Beeldens, A.; Boonen, E.; Borbon, A.; Boréave, A.; Cazaunau, M.; Chen, H.; Daële, V.; Dupart, Y.; Gaimoz, C.; Gallus, M.; George, C.; Grand, N.; Grosselin, B.; Herrmann, H.; Ifang, S.; Kurtenbach, R.; Maille, M.; Marjanovic, I.; Mellouki, A.; Miet, K.; Mothes, F.; Poulain, L.; Rabe, R.; Zapf, P.; Kleffmann, J.; Doussin, J.-F.
2015-12-01
Emission factors (EFs) of pollutants emitted by light-duty vehicles (LDV) were investigated in the Leopold II tunnel in Brussels city center (Belgium), in September 2011 and in January 2013, respectively. Two sampling sites were housing the instruments for the measurements of a large range of air pollutants, including non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx) and carbon dioxide (CO2). The NMVOCs and NOx traffic EFs for LDV were determined from their correlation with CO2 using a single point analysis method. The emission factor of NOx is (544 ± 199) mg vehicle-1 km-1; NMVOCs emission factors vary from (0.26 ± 0.09) mg vehicle-1 km-1 for cis-but-2-ene to (8.11 ± 2.71) mg vehicle-1 km-1 for toluene. Good agreement is observed between the EFs determined in the Leopold II tunnel and the most recent EFs determined in another European roadway tunnel in 2004, with only a slight decrease of the EFs during the last decade. An historical perspective is provided and the observed trend in the NMVOCs emission factors reflect changes in the car fleet composition, the fuels and/or the engine technology that have occurred within the last three decades in Europe.
CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pihl, Josh A; West, Brian H; Toops, Todd J
2011-10-01
Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar enginemore » installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in development of model-based ammonia injection control algorithms.ORNL, working closely with partners at Navistar and Mi« less
Effects of Changing Emissions on Ozone and Particulates in the Northeastern United States
NASA Astrophysics Data System (ADS)
Frost, G. J.; McKeen, S.; Trainer, M.; Ryerson, T.; Holloway, J.; Brock, C.; Middlebrook, A.; Wollny, A.; Matthew, B.; Williams, E.; Lerner, B.; Fortin, T.; Sueper, D.; Parrish, D.; Fehsenfeld, F.; Peckham, S.; Grell, G.; Peltier, R.; Weber, R.; Quinn, P.; Bates, T.
2004-12-01
Emissions of nitrogen oxides (NOx) from electric power generation have decreased in recent years due to changes in burner technology and fuels used. Mobile NOx emissions assessments are less certain, since they must account for increases in vehicle miles traveled, changes in the proportion of diesel and gasoline vehicles, and more stringent controls on engines and fuels. The impact of these complicated emission changes on a particular region's air quality must be diagnosed by a combination of observation and model simulation. The New England Air Quality Study - Intercontinental Transport and Chemical Transformation 2004 (NEAQS-ITCT 2004) program provides an opportunity to test the effects of changes in emissions of NOx and other precursors on air quality in the northeastern United States. An array of ground, marine, and airborne observation platforms deployed during the study offer checks on emission inventories and air quality model simulations, like those of the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Retrospective WRF-Chem runs are carried out with two EPA inventories, one compiled for base year 1999 and an update for 2004 incorporating projected and known changes in emissions during the past 5 years. Differences in model predictions of ozone, particulates, and other tracers using the two inventories are investigated. The inventories themselves and the model simulations are compared with the extensive observations available during NEAQS-ITCT 2004. Preliminary insights regarding the sensitivity of the model to NOx emission changes are discussed.
Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt
2015-04-21
Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.
Onboard Plasmatron Hydrogen Production for Improved Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi
2005-12-31
A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less
Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J
2009-08-15
Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Rajan, K.; Senthil Kumar, K. R.; Maiyappan, K.; Rasheed, Usama Tariq
2017-05-01
The experimental investigation is conducted to evaluate the effects by using Diethyl ether (DEE) as an additive. The Cashew Nut Shell Oil diesel blends (CDB) are tested in a 4-stroke single cylinder DI unmodified diesel engine, rated power is 4.4 kW at a speed of 1500 rpm. The effect of combustion analysis of test fuels on net heat release rate, cylinder pressure, engine power, BSFC, BTE, EGT were observed by the performance tests. The combustion and emission characteristics of a diesel engine with an additive of high cetane number is utilized with CDB and thus investigated. The influence of blends on CO, CO2, HC, NOx and smoke opacity is investigated by emission tests. Initially, the experiment was conducted with different blends of CDB diesel blends like 10%, 20%, & 30% by volume basis in a diesel engine. Among this blends B20 shows reasonable result and heat dissipation rate at full load conditions. The BTE of B20 is 27.52% whereas base diesel fuel is 29.73%. Addition of the DEE by 5%, 10% and 15% by volume basis with B20 which is a base fuel has resulted with improved estimates. The result shows that at full load conditions BTE of B20D10 is 28.96% which is close to the base fuel i.e. B20. The emissions like CO2 shows reducing trends while HC emission rises with increase in CNSO blends. The HC in diesel corresponds to 30ppm and in B20 it is 34ppm, but addition of DEE shows a decreasing trend as in B20D5 has 29ppm and B20D15 has 23ppm respectively. NOx also shows increasing trends with CNSO blend, after addition of DEE it shows declining trend. The NOx for diesel, B20, B30, B20D5, B20D10 and B20D15 emits 1195, 1450, 1511, 1327, 1373 and 1200ppm respectively. The smoke emission is 3.96, 3.38, 3.15 FSN of B20, B20D15 and diesel respectively.
CO2, NOx, and particle emissions from aircraft and support activities at a regional airport.
Klapmeyer, Michael E; Marr, Linsey C
2012-10-16
The goal of this research was to quantify emissions of carbon dioxide (CO(2)), nitrogen oxides (NO(x)), particle number, and black carbon (BC) from in-use aircraft and related activity at a regional airport. Pollutant concentrations were measured adjacent to the airfield and passenger terminal at the Roanoke Regional Airport in Virginia. Observed NO(x) emission indices (EIs) for jet-powered, commuter aircraft were generally lower than those contained in the International Civil Aviation Organization databank for both taxi (same as idle) and takeoff engine settings. NO(x) EIs ranged from 1.9 to 3.7 g (kg fuel)(-1) across five types of aircraft during taxiing, whereas EIs were consistently higher, 8.8-20.6 g (kg fuel)(-1), during takeoff. Particle number EIs ranged from 1.4 × 10(16) to 7.1 × 10(16) (kg fuel)(-1) and were slightly higher in taxi mode than in takeoff mode for four of the five types of aircraft. Diurnal patterns in CO(2) and NO(x) concentrations were influenced mainly by atmospheric conditions, while patterns in particle number concentrations were attributable mainly to patterns in aircraft activity. CO(2) and NO(x) fluxes measured by eddy covariance were higher at the terminal than at the airfield and were lower than found in urban areas.
Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; LaClair, Tim J; Daw, C Stuart
2014-01-01
We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends inmore » the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael; Wereszczak, Andrew; Toops, Todd J.
2016-04-05
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1,001 hr using B20 doped with 14 ppm Na. During the study, oxides of nitrogen (NOx) emissions exceeded the engine certification limit of 0.33 g/bhp-hr beforemore » the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals contamination that increased ammonia oxidation, and lowered NOx reduction. Therefore, it was determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less
Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.
Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D
2014-07-15
As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Briggs, Thomas E; Cho, Kukwon
2011-01-01
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less
40 CFR 75.70 - NOX mass emissions provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false NOX mass emissions provisions. 75.70... (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.70 NOX mass emissions... subpart to the extent that compliance is required by an applicable State or federal NOX mass emission...
Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz
2011-12-15
The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.
Lean, Premixed-Prevaporized (LPP) combustor conceptual design study
NASA Technical Reports Server (NTRS)
Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.
1979-01-01
Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.
14 CFR 34.23 - Exhaust Emission Standards for Engines Manufactured on and after July 18, 2012.
Code of Federal Regulations, 2014 CFR
2014-01-01
... output less than 26.7 kN (6,000 lb) manufactured on and after July 18, 2012: SN = 83.6(rO) −0.274 or 50.0... Engines Class Rated pressure ratio—rPR Rated output rO(kN) NOX (g/kN) TF, T3, T8 rPR ≤ 30 26.7 89.0 16.72...) NOX (g/kN) CO(g/kN) TSS All 36 + 2.42 (rPR) 4,550 (rPR) −1.03 1 rO is the rated output with...
Real-time CO2 sensor for the optimal control of electronic EGR system
NASA Astrophysics Data System (ADS)
Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul
2013-12-01
In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.
P and W propulsion systems studies results/status
NASA Technical Reports Server (NTRS)
Smith, Martin G., Jr.; Champagne, George A.
1992-01-01
The topics covered include the following: Pratt and Whitney (P&W) propulsion systems studies - NASA funded efforts to date; P&W engine concepts; P&W combustor focus - rich burn quick quench (RBQQ) concept; mixer ejector nozzle concept - large flow entrainment reduces jet noise; technology impact on NO(x) emissions - mature RBQQ combustor reduces NO(x) up to 85 percent; technology impact on sideline noise characteristics of Mach 2.4 turbine bypass engines (TBE's) - 600 lb/sec airflow size; technology impact on takeoff gross weight (TOGW) - provides up to 12 percent TOGW reduction; HSCT quiet engine concepts; TBE inlet valve/ejector nozzle concept schematic; mixed flow turbofan study; and exhaust nozzle conceptual design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stang, John H.
2005-12-19
Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lowermore » Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stang, John H.
1997-12-01
Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2more » regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.« less
Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies
NASA Astrophysics Data System (ADS)
Ma, Zizhen; Deng, Jianguo; Li, Zhen; Li, Qing; Zhao, Ping; Wang, Liguo; Sun, Yezhu; Zheng, Hongxian; Pan, Li; Zhao, Shun; Jiang, Jingkun; Wang, Shuxiao; Duan, Lei
2016-04-01
Coal combustion in coal-fired power plants is one of the important anthropogenic NOx sources, especially in China. Many policies and methods aiming at reducing pollutants, such as increasing installed capacity and installing air pollution control devices (APCDs), especially selective catalytic reduction (SCR) units, could alter NOx emission characteristics (NOx concentration, NO2/NOx ratio, and NOx emission factor). This study reported the NOx characteristics of eight new coal-fired power-generating units with different boiler patterns, installed capacities, operating loads, and coal types. The results showed that larger units produced less NOx, and anthracite combustion generated more NOx than bitumite and lignite combustion. During formation, the NOx emission factors varied from 1.81 to 6.14 g/kg, much lower than those of older units at similar scales. This implies that NOx emissions of current and future units could be overestimated if they are based on outdated emission factors. In addition, APCDs, especially SCR, greatly decreased NOx emissions, but increased NO2/NOx ratios. Regardless, the NO2/NOx ratios were lower than 5%, in accordance with the guidelines and supporting the current method for calculating NOx emissions from coal-fired power plants that ignore NO2.
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
40 CFR 91.426 - Dilute emission sampling calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., CO, CO2, or NOX) for a test [g/kW-hr]. Wi=Average mass flow rate of an emission from a test engine... (Wi) of an emission for mode i is determined from the following equation: ER04OC96.035 Where: Qi... pressure [kPa]. (g) The fuel mass flow rate Fi can be either measured or calculated using the following...
NASA Technical Reports Server (NTRS)
Moss, J. E., Jr.
1981-01-01
Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J
Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less
Shorter, Joanne H; Herndon, Scott; Zahniser, Mark S; Nelson, David D; Wormhoudt, Joda; Demerjian, Kenneth L; Kolb, Charles E
2005-10-15
New diesel engine technologies and alternative fuel engines are being introduced into fleets of mass transit buses to try to meet stricter emission regulations of nitrogen oxides and particulates: Real-time instruments including an Aerodyne Research tunable infrared laser differential absorption spectrometer (TILDAS) were deployed in a mobile laboratory to assess the impact of the implementation of the new technologies on nitrogen oxide emissions in real world driving conditions. Using a "chase" vehicle sampling strategy, the mobile laboratory followed target vehicles, repeatedly sampling their exhaust. Nitrogen oxides from approximately 170 in-use New York City mass transit buses were sampled during the field campaigns. Emissions from conventional diesel buses, diesel buses with continuously regenerating technology (CRT), diesel hybrid electric buses, and compressed natural gas (CNG) buses were compared. The chase vehicle sampling method yields real world emissions that can be included in more realistic emission inventories. The NO, emissions from the diesel and CNG buses were comparable. The hybrid electric buses had approximately one-half the NOx emissions. In CRT diesels, NO2 accounts for about one-third of the NOx emitted in the exhaust, while for non-CRT buses the NO2 fraction is less than 10%.
Vehicle NOx emission plume isotopic signatures: Spatial variability across the eastern United States
NASA Astrophysics Data System (ADS)
Miller, David J.; Wojtal, Paul K.; Clark, Sydney C.; Hastings, Meredith G.
2017-04-01
On-road vehicle nitrogen oxide (NOx) sources currently dominate the U.S. anthropogenic emission budgets, yet vehicle NOx emissions have uncertain contributions to oxidized nitrogen (N) deposition patterns. Isotopic signatures serve as a potentially valuable observational tool to trace source contributions to NOx chemistry and N deposition, yet in situ emission signatures are underconstrained. We characterize the spatiotemporal variability of vehicle NOx emission isotopic signatures (δ15N-NOx) representative of U.S. vehicle fleet-integrated emission plumes. A novel combination of on-road mobile and stationary urban measurements is performed using a field and laboratory-verified technique for actively capturing NOx in solution to quantify δ15N-NOx at hourly resolution. On-road δ15N-NOx upwind of Providence, RI, ranged from -7 to -3‰. Simultaneous urban background δ15N-NOx observations showed comparable range and variations with on-road measurements, suggesting that vehicles dominate NOx emissions in the Providence area. On-road spatial δ15N-NOx variations of -9 to -2‰ were observed under various driving conditions in six urban metropolitan areas and rural interstate highways during summer and autumn in the U.S. Northeast and Midwest. Although isotopic signatures were insensitive to on-road driving mode variations, statistically significant correlations were found between δ15N-NOx and NOx emission factor extremes associated with heavy diesel emitter contributions. Overall, these results constrain an isotopic signature of fleet-integrated roadway NOx emission plumes, which have important implications for distinguishing vehicle NOx from other sources and tracking emission contributions to NOx chemistry and N deposition.
NASA Technical Reports Server (NTRS)
Menon, Suresh
1992-01-01
An advanced gas turbine engine to power supersonic transport aircraft is currently under study. In addition to high combustion efficiency requirements, environmental concerns have placed stringent restrictions on the pollutant emissions from these engines. A combustor design with the potential for minimizing pollutants such as NO(x) emissions is undergoing experimental evaluation. A major technical issue in the design of this combustor is how to rapidly mix the hot, fuel-rich primary zone product with the secondary diluent air to obtain a fuel-lean mixture for combustion in the second stage. Numerical predictions using steady-state methods cannot account for the unsteady phenomena in the mixing region. Therefore, to evaluate the effect of unsteady mixing and combustion processes, a novel unsteady mixing model is demonstrated here. This model has been used to study multispecies mixing as well as propane-air and hydrogen-air jet nonpremixed flames, and has been used to predict NO(x) production in the mixing region. Comparison with available experimental data show good agreement, thereby providing validation of the mixing model. With this demonstration, this mixing model is ready to be implemented in conjunction with steady-state prediction methods and provide an improved engineering design analysis tool.
40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (or group of identical units) equipped with SCR (or SNCR) and uses dry low-NOX technology to control... with add-on NOX emission controls, and for units that use dry low-NOX technology, the owner or operator... mass emissions unit that uses dry low-NOX premix technology to control NOX emissions, proper operation...
Description of the most current draft of the NONROAD model and how it version differs from prior versions. Nationwide model outputs are presented and compared for HC, CO, NOx, PM, SOx (SO2), and fuel consumption, for diesel and for sparkignition engines.
A study of low emissions gas turbine combustions
NASA Technical Reports Server (NTRS)
Adelman, Henry G.
1994-01-01
Analytical studies have been conducted to determine the best methods of reducing NO(x) emissions from proposed civilian supersonic transports. Modifications to the gas turbine engine combustors and the use of additives were both explored. It was found that combustors which operated very fuel rich or lean appear to be able to meet future emissions standards. Ammonia additives were also effective in removing NO(x), but residual ammonia remained a problem. Studies of a novel combustor which reduces emissions and improves performance were initiated. In a related topic, a study was begun on the feasibility of using supersonic aircraft to obtain atmospheric samples. The effects of shock heating and compression on sample integrity were modeled. Certain chemical species, including NO2, HNO3, and ClONO2 were found to undergo changes to their composition after they passed through shock waves at Mach 2. The use of detonation waves to enhance mixing and combustion in supersonic airflows was also investigated. This research is important to the use of airbreathing propulsion to obtain orbital speeds and access to space. Both steady and pulsed detonation waves were shown to improve engine performance.
Emission characteristics of kerosene-air spray combustion with plasma assistance
NASA Astrophysics Data System (ADS)
Liu, Xingjian; He, Liming; Zeng, Hao; Jin, Tao; Chen, Yi; Zhang, Yihan; Liu, Pengfei
2015-09-01
A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.
Evaluation of Mobile Source Emissions and Trends
NASA Astrophysics Data System (ADS)
Dallmann, Timothy Ryan
Mobile sources contribute significantly to air pollution problems. Relevant pollutants include numerous gaseous and particle-phase species that can affect human health, ecosystems, and climate. Accurate inventories of emissions from these sources are needed to help understand possible adverse impacts, and to develop effective air quality management strategies. Unfortunately large uncertainties persist in the understanding of mobile source emissions, and how these emissions are changing over time. This dissertation aims to evaluate long-term trends in mobile source emissions in the United States, and to make detailed measurements of emissions from present-day fleets of on-road vehicles operating in California. Long-term trends in mobile source emissions of nitrogen oxides (NO x) and fine particulate matter (PM2.5) in the United States were investigated through development of a fuel-based emission inventory. Annual emissions from on- and off-road gasoline and diesel engines were quantified for the years 1996-2006. Diesel engines were found to be the dominant mobile source of NOx and PM2.5, and on-road diesel vehicles were identified as the single largest anthropogenic source of NOx emissions in the United States as of 2005. The importance of diesel engines as a source of exhaust particulate matter emissions has led to the recent introduction of advanced emission control technologies in the United States, such as diesel particle filters (DPF), which have been required since 2007 for all new on-road heavy-duty (HD) diesel engines. In addition to national requirements for the use of such control devices on new engines, California has mandated accelerated clean-up of statewide emissions from older in-use diesel engines. The plume capture method was further applied to measure emissions from a more diverse population of trucks observed at the Caldecott tunnel in summer 2010. Emissions from hundreds of individual trucks were measured, and emission factor distributions were characterized for nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde, BC, as well as optical properties of the emitted particles. Emission factor distributions for all species were skewed, with a small fraction of trucks contributing disproportionately to total emissions. These findings confirm that the use of catalyzed DPF systems is leading to increased primary NO2 emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 +/- 0.03. This value of aerosol SSA is very low compared to typical values (0.90-0.99) observed in ambient air studies. It is indicative of a strongly light-absorbing aerosol, due to the high BC emissions that are a characteristic feature of diesel exhaust PM emissions. Measurements at the Caldecott tunnel also included efforts to quantify light-duty (LD) gasoline vehicle emission factors, and further investigation of the relative contributions of on-road gasoline and diesel engines to air pollutant emissions. Measurements of CO, NOx, PM2.5, BC, and organic aerosol (OA) were made in a tunnel traffic bore where LD vehicles account for >99% of total traffic. Measured pollutant concentrations were apportioned between LD gasoline vehicles and diesel trucks, and fleet-average emission factors were quantified for LD gasoline vehicles using a carbon balance method. Diesel trucks contributed 18 +/- 3, 22 +/- 5, 44 +/- 8% of measured NOx, OA, and BC concentrations, respectively, despite accounting for <1% of total vehicles. Emission factors and overall fuel consumption for gasoline and diesel engines were used to describe the relative contributions of these sources to overall on-road vehicle emissions. Gasoline engines were found to be the dominant source of CO, an insignificant source of BC, and a relatively minor source of on-road OA emissions at urban, state, and national scales. Measurements at the Caldecott tunnel also featured use of a new high-resolution time-of-flight aerosol mass spectrometer, which was used to characterize the chemical composition of PM emitted by gasoline and diesel vehicles. Measurements of PM in the exhaust of individual HD trucks show a predominance of cyclyoalkane-derived ion signals relative to saturated alkane ion signals in the truck exhaust OA spectra, indicating that lubricating oil, rather than diesel fuel, was the dominant source of OA emitted by diesel trucks. This conclusion is supported by the presence of lubricant-derived trace elements in truck exhaust, emitted relative to total OA at levels that correspond to their weight fractions in bulk oil. Furthermore, comparison of mass spectra for sampling periods with varying levels of diesel influence found a high degree of similarity in the chemical composition of OA emitted by gasoline and diesel engines, suggesting a common lubricating oil rather than fuel-derived source for OA emissions. (Abstract shortened by UMI.).
Global atmospheric response to emissions from a proposed reusable space launch system
NASA Astrophysics Data System (ADS)
Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.
2017-01-01
Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.
Combustor materials requirements and status of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Hecht, Ralph J.; Johnson, Andrew M.
1992-01-01
The HSCT combustor will be required to operate with either extremely rich or lean fuel/air ratios to reduce NO(x) emission. NASA High Speed Research (HSR) sponsored programs at Pratt & Whitney (P&W) and GE Aircraft Engines (GEAE) have been studying rich and lean burn combustor design approaches which are capable of achieving the aggressive HSCT NO(x) emission goals. In both of the combustor design approaches under study, high temperature (2400-3000 F) materials are necessary to meet the HSCT emission goals of 3-8 gm/kg. Currently available materials will not meet the projected requirements for the HSCT combustor. The development of new materials is an enabling technology for the successful introduction to service of the HSCT.
Zhang, Junfeng; Nazarenko, Yevgen; Zhang, Lin; Calderon, Leonardo; Lee, Ki-Bum; Garfunkel, Eric; Schwander, Stephan; Tetley, Teresa D.; Chung, Kian Fan; Porter, Alexandra E.; Ryan, Mary; Kipen, Howard; Lioy, Paul J.; Mainelis, Gediminas
2014-01-01
Fuel additives incorporating nanosized ceria have been increasingly used in diesel engines as combustion promoters. However, few studies have assessed the impact of these nanotechnology-based additives on pollutant emissions. Here, we systematically compare emission rates of particulate and gaseous pollutants from a single-cylinder, four-cycle diesel engine using fuel mixes containing nanoceria of varying concentrations. The test fuels were made by adding different amounts of a commercial fuel additive Envirox into an ultralow-sulfur diesel fuel at 0 (base fuel), 0.1-, 1-, and 10-fold the manufacturer-recommended concentration of 0.5 mL Envirox per liter of fuel. The addition of Envirox resulted in ceria-concentration-dependent emission reductions of CO2, CO, total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic aromatic hydrocarbons. These reductions at the manufacturer-recommended doping concentration, however, were accompanied by a substantial increase of certain other air pollutants, specifically the number of ultrafine particles (+32%), NOx (+9.3%), and the particle-phase benzo[a]pyrene toxic equivalence quotient (+35%). Increasing fuel ceria concentrations also led to decreases in the size of emitted particles. Given health concerns related to ultrafine particles and NOx, our findings call for additional studies to further evaluate health risks associated with the use of nanoceria additives in various engines under various operating conditions. PMID:24144266
DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cygan, David
Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely usedmore » together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu/h, to 49 vppm. CO emissions fluctuated with the oxygen content and remained below 135 vppm during all tests. The boiler’s maximum output was not achieved due to a limitation dictated by the host site natural gas supply. The FIR burner benefits the public by simultaneously addressing the problems of air pollution and energy conservation through a low-NOx combustion technology that does not increase energy consumption. Continuing activities include the negotiation of a license with Hamworthy Peabody Combustion, Incorporated (Hamworthy Peabody) to commercialize the FIR burner for steel industry applications. Hamworthy Peabody is one of the largest U.S. manufacturers of combustion equipment for boilers in the Steel Industry, and has stated their intention to commercialize the FIR burner.« less
Global emission projections for the transportation sector using dynamic technology modeling
NASA Astrophysics Data System (ADS)
Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.
2014-06-01
In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a robust and plausible projection of what future emissions may be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.
Global emission projections for the transportation sector using dynamic technology modeling
NASA Astrophysics Data System (ADS)
Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.
2013-09-01
In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the Former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a more realistic projection of what future emissions are likely to be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.
Global emission projections for the transportation sector using dynamic technology modeling
NASA Astrophysics Data System (ADS)
Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.
2013-12-01
In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to global CO and THC emissions in the year 2010; this dominance shifts to Africa and South Asia in the future. By the year 2050, for CO and THC emissions, non-road engines contribute the greatest fraction in Asia and the Former USSR, while on-road vehicles make the largest contribution in Latin America, Africa, and the Middle East; for NOx and PM emissions, shipping controls the trend in most regions. These forecasts include a formal treatment of the factors that drive technology choices in the global vehicle sector and therefore represent a more realistic projection of what future emissions are likely to be. These results have important implications for emissions of gases and aerosols that influence air quality, human health, and climate change.
40 CFR 1042.110 - Recording reductant use and other diagnostic functions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...
40 CFR 1042.110 - Recording reductant use and other diagnostic functions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...
40 CFR 1042.110 - Recording reductant use and other diagnostic functions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...
40 CFR 1042.110 - Recording reductant use and other diagnostic functions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... all the information broadcast by an engine's onboard computers and electronic control units. (d) For Category 3 engines equipped with on-off NOX controls (as allowed by § 1042.115(g)), you must also equip... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION...
Karthikeya Sharma, T
2015-11-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.
Vehicle Real Driving Emissions of Nitrogen Oxides in an Urban Area from a large Vehicle Fleet
NASA Astrophysics Data System (ADS)
Pöhler, Denis; Horbanski, Martin; Oesterle, Tobias; Adler, Tim; Reh, Miriam; Tirpitz, Lukas; Kanatschnig, Florian; Lampel, Joahnnes; Platt, Ulrich
2016-04-01
Nitrogen Oxide (NOx=NO +NO2) emissions by road vehicles are the major contributor for poor air quality in urban areas. High NOx concentrations, and especially NO2, are typically the most problematic pollution in cities. However, emissions vary significantly depending on the type of vehicle, its engine, the age, condition of the vehicle, driving properties, modifications and many more. Even if official NOx emission data of the manufacturer exist, they are only valid for new vehicles and the current vehicle emission scandal shows clearly that these data are often wrong. Thus, real driving emissions (RDE) of the current vehicle fleet is required. With such data the contribution of individual vehicles to the NO2 and NOx levels in urban areas can be estimated. Significant reduction of NOx concentrations can be achieved by identifying the strong emitting vehicles and excluding, replace or modify them. We developed a precise and fast ICAD (Iterative CAvity DOAS) NO2 instrument which can measure the concentration within the emission plume of vehicles under real driving conditions. The sampling was performed with an inlet at the front of a car which was following the investigated vehicles. The instrument measure NO2 and additionally CO2 with a time resolution of 2 seconds. With the observed NO2 values already strong emitters can easily be identified. With the use of known CO2 emissions, more reliable emissions for NO2 can be calculated for each vehicle. Currently the system is expanded with a NOx channel to derive the total nitrogen oxide emissions. The system was successfully applied in several studies over the last two years to investigate NO2 RDE. More than thousand vehicles were investigated. We observed that several vehicles from various brands show much higher emissions than allowed (more than a factor of 5). Highest emissions correlate for trucks and busses typically to older vehicles, what is not the case for cars. A large variability between different cars was found which could often make up a factor of 10 or more. Often new Diesel cars are one of the strongest emitters, which agree well with other findings. However, older busses and trucks feature regularly the highest emissions, but also here strong variability between different vehicle types with different exhaust treatment and modification is observed. This is especially a problem with busses from the public transport which significantly contribute to urban air pollution. Identifying first the strongest emitting busses, which should be replaced first, can help to faster improve urban air quality. New busses and trucks, beside from few exceptions, show surprisingly relatively low emissions. The exceptions indicate potentially broken NOx exhaust treatment. All these findings show that regular RDE are necessary for the whole vehicle fleet to identify strongest NOx emitters and develop strategies to reduce their emissions. They also allow to provide more accurate model calculations on total emissions in urban areas.
Lance, Michael J.; Wereszczak, Andrew A; Toops, Todd J.; ...
2016-10-17
Here we report that for renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent tomore » exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals (PGM) contamination that increased NH3 oxidation, and lowered NOx reduction. Therefore, we determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lance, Michael J.; Wereszczak, Andrew A; Toops, Todd J.
Here we report that for renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent tomore » exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals (PGM) contamination that increased NH3 oxidation, and lowered NOx reduction. Therefore, we determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trimble, T.; North, D.R.; Green, K.A.H.
1994-05-27
The regulatory impact analysis and support document provides additional information in support of the Final Rulemaking (FRM). This FRM will regulate all new nonroad compression-ignition engines greater than or equal to 37 kilowatts (50 hp), except engines which propel or are used on marine vessels, aircraft engines, engines which propel locomotives, and engines regulated by the Mining, Safety, and Health Administration. The regulated engines are hereafter referred to as nonroad large CI engines. The goal of this regulation is to substantially reduce NOx emission and smoke from nonroad large CI engines beginning in the 1996 model year.
Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan
2018-02-01
In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.
Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.
2015-01-01
Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236
Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine
NASA Astrophysics Data System (ADS)
Loeper, C. Paul
Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.
Estimating shipping emissions in the region of the Sea of Marmara, Turkey.
Deniz, Cengiz; Durmuşoğlu, Yalçin
2008-02-01
Ship emissions are significantly increasing globally and have remarkable impact on air quality on sea and land. These emissions contribute serious adverse health and environmental effects. Territorial waters, inland seas and ports are the regions most affected by ship emissions. As an inland sea the Sea of Marmara is an area that has too much ship traffic. Since the region of the Marmara is highly urbanized, emissions from ships affect human health and the overall environment. In this paper exhaust gas emissions from ships in the Sea of Marmara and the Turkish Straits are calculated by utilizing the data acquired in 2003. Main engine types, fuel types, operations types, navigation times and speeds of vessels are taken into consideration in the study. Total emissions from ships in the study area were estimated as 5,451,224 t y(-1) for CO(2), 111,039 t y(-1) for NO(x), 87,168 t y(-1) for SO(2), 20,281 t y(-1) for CO, 5801 t y(-1) for VOC, 4762 t y(-1) for PM. The shipping emissions in the region are equivalent to 11% of NO(x) 0.1% of CO and 0.12% of PM of the corresponding total emissions in Turkey. The shipping emissions in the area are 46% of NO(x), 25% of PM and 1.5% of CO of road traffic emissions in Turkey data between which and correspond to a higher level than aircraft emissions and rail emissions in Turkey.
Burgard, Daniel A; Provinsal, Melissa N
2009-12-01
A remote sensing device was used to obtain on-road and in-use gaseous emission measurements from three fleets of schools buses at two locations in Washington State. This paper reports each fleet's carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), and nitrogen dioxide (NO2) mean data. The fleets represent current emission retrofit technologies, such as diesel particulate filters and diesel oxidation catalysts, and a control fleet. This study shows that CO and HC emissions decrease with the use of either retrofit technology when compared with control buses of the same initial emission standards. The CO and HC emission reductions are consistent with published U.S. Environmental Protection Agency verified values. The total oxides of nitrogen (NOx), NO, and the NO2/NOx ratio all increase with each retrofit technology when compared with control buses. As was expected, the diesel particulate filters emitted significantly higher levels of NO2 than the control fleet because of the intentional conversion of NO to NO2 by these systems. Most prior research suggests that NOx emissions are unaffected by the retrofits; however, these previous studies have not included measurements from retrofit devices on-road and after nearly 5 yr of use. Two 2006 model-year buses were also measured. These vehicles did not have retrofit devices but were built to more stringent new engine standards. Reductions in HCs and NOx were observed for these 2006 vehicles in comparison to other non-retrofit earlier model-year vehicles.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
...EPA is adopting several new aircraft engine emission standards for oxides of nitrogen (NOX), compliance flexibilities, and other regulatory requirements for aircraft turbofan or turbojet engines with rated thrusts greater than 26.7 kilonewtons (kN). We also are adopting certain other requirements for gas turbine engines that are subject to exhaust emission standards as follows. First, we are clarifying when the emission characteristics of a new turbofan or turbojet engine model have become different enough from its existing parent engine design that it must conform to the most current emission standards. Second, we are establishing a new reporting requirement for manufacturers of gas turbine engines that are subject to any exhaust emission standard to provide us with timely and consistent emission- related information. Third, and finally, we are establishing amendments to aircraft engine test and emissions measurement procedures. EPA actively participated in the United Nations' International Civil Aviation Organization (ICAO) proceedings in which most of these requirements were first developed. These regulatory requirements have largely been adopted or are actively under consideration by its member states. By adopting such similar standards, therefore, the United States maintains consistency with these international efforts.
Pollution technology program, can-annular combustor engines
NASA Technical Reports Server (NTRS)
Roberts, R.; Fiorentino, A. J.; Greene, W.
1976-01-01
A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.
Investigation of diesel-powered vehicle emissions. Part VII. Final report Jun 74--Nov 76
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, K.J.
Five light duty diesel vehicles and five heavy duty diesel engines were tested over various test cycles for both regulated and unregulated emissions. A Mercedes 220 D, Mercedes 240 D, Mercedes 300 D, Peugeot 2040, and an International Harvester pick-up truck with a Perkins 6-247 engine were the light duty diesel vehicles tested. The heavy duty diesels included a Detroit Diesel 6V-71 city bus engine with two injector designs, a Cummins NTC-290 truck engine operated with and without variable timing, and a Detroit Diesel 8V-71TA truck engine. Emissions measured included HC, CO, NOx, CO2, smoke, aldehydes, exhaust odor, benzo (a)more » pyrene, sulfate, sulfur dioxide, and particulate mass.« less
Heavy-Duty Diesel Fuel Analysis
EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.
Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.
Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma
2011-03-15
The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Borucki, W. J.; Poppoff, I. G.; Latt, L.; Widhopf, G. F.; Capone, L. A.; Reigel, C. A.
1981-01-01
For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone.
Demonstration of Diesel Engine Air Emissions Reduction Technologies
2008-12-01
16 Figure 5. Plots of Cheyenne Mountain Operating Cycle and Reference CBD Driving...Air Act CARB California Air Resources Board CBD Central Business District CCR California Code of Regulations CES Cummins Emissions Solutions CFR...matter ppb parts per billion ppm parts per million PuriNOx Proprietary Water / Diesel Emulsified Fuel RPF robust particulate filter THC total
Karthikeya Sharma, T.
2014-01-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby J. Baumgard; Richard E. Winsor
2009-12-31
The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less
Characterization of fine particle and gaseous emissions during school bus idling.
Kinsey, J S; Williams, D C; Dong, Y; Logan, R
2007-07-15
The particulate matter (PM) and gaseous emissions from six diesel school buses were determined over a simulated waiting period typical of schools in the northeastern U.S. Testing was conducted for both continuous idle and hot restart conditions using a suite of on-line particle and gas analyzers installed in the U.S. Environmental Protection Agency's Diesel Emissions Aerosol Laboratory. The specific pollutants measured encompassed total PM-2.5 mass (PM < or = 2.5 microm in aerodynamic diameter), PM-2.5 number concentration, particle size distribution, particle-surface polycyclic aromatic hydrocarbons (PAHs), and a tracer gas (1,1,1,2,3,3,3-heptafluoropropane) in the diluted sample stream. Carbon monoxide (CO), carbon dioxide, nitrogen oxides (NO(x)), total hydrocarbons (THC), oxygen, formaldehyde, and the tracer gas were also measured in the raw exhaust. Results of the study showed little difference in the measured emissions between a 10 min post-restart idle and a 10 min continuous idle with the exception of THC and formaldehyde. However, an emissions pulse was observed during engine restart. A predictive equation was developed from the experimental data, which allows a comparison between continuous idle and hot restart for NO(x), CO, PM2.5, and PAHs and which considers factors such as the restart emissions pulse and periods when the engine is not running. This equation indicates that restart is the preferred operating scenario as long as there is no extended idling after the engine is restarted.
NASA Astrophysics Data System (ADS)
Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.
2017-06-01
In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.
Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Reed M; Curran, Scott; Wagner, Robert M
2012-01-01
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injectionmore » (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.« less
40 CFR 89.207 - Credit calculation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) × (Volume) × (AvgPR) × (UL) × (Adjustment) × (10−6) (ii) For determining credit usage for all engine...) × (Volume) × (AvgPR) × (UL) × (10−6) Where: Std = the applicable Tier 1 NOX nonroad engine emission standard... for end-of-year compliance determination. AvgPR = the average power rating of all of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled... programs is voluntary. (2)(i) Engine families with FELs exceeding the applicable standard shall obtain emission credits in a mass amount sufficient to address the shortfall. Credits may be obtained from...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled... programs is voluntary. (2)(i) Engine families with FELs exceeding the applicable standard shall obtain emission credits in a mass amount sufficient to address the shortfall. Credits may be obtained from...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
...This action proposes several new NOX emission standards, compliance flexibilities, and other regulatory requirements for aircraft turbofan or turbojet engines with rated thrusts greater than 26.7 kilonewtons (kN). We also are proposing certain other requirements for gas turbine engines that are subject to exhaust emission standards. First, we are proposing to clarify when the emission characteristics of a new turbofan or turbojet engine model have become different enough from its existing parent engine design that it must conform to the most current emission standards. Second, we are proposing a new reporting requirement for manufacturers of gas turbine engines that are subject to any exhaust emission standard to provide us with timely and consistent emission-related information. Third, and finally, we are proposing amendments to aircraft engine test and emissions measurement procedures. EPA actively participated in the United Nation's International Civil Aviation Organization (ICAO) proceedings in which most of these proposed requirements were first developed. These proposed regulatory requirements have largely been adopted or are actively under consideration by its member states. By adopting such similar standards, therefore, the United States will maintain consistency with these international efforts.
Low Emissions Aftertreatment and Diesel Emissions Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-05-27
Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Binmore » 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.« less
Series hybrid vehicles and optimized hydrogen engine design
NASA Astrophysics Data System (ADS)
Smith, J. R.; Aceves, S.; Vanblarigan, P.
1995-05-01
Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO(x) emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier-2 emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.
Homogeneous charge combustion of aqueous ethanol
DOT National Transportation Integrated Search
2001-02-01
The goal of this research is to reduce nitrous oxide (NOx) and carbon monoxide (CO) emissions and to retain the performance characteristics of a diesel engine by modifying the in-cylinder combustion process. To accomplish this goal, a direct-injected...
Puškár, Michal; Kopas, Melichar; Puškár, Dušan; Lumnitzer, Ján; Faltinová, Eva
2018-02-01
The marine auxiliary diesel engines installed in the large transoceanic ships are used in order to generate the electricity but at the same time these engines are able to produce a significant amount of the harmful exhaust gas emissions. Therefore the International Maritime Organisation (IMO) concluded an agreement, which has to control generating of gaseous emissions in maritime transport. From this reason started to be used some of the alternative fuels in this branch. There was performed a study, which investigated emissions of the auxiliary marine diesel engine during application of the experimental fuels. The different testing fuels were created using the ratios 0%, 50%, 80% and 100% between the biodiesel and the ULSDF (Ultra Low Sulphur Diesel Fuel). The experimental measurements were performed at the different engine loading levels and various engine speeds in order to investigate an influence of the mixed fuels on the engine operational characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Ponnusamy, Senthil
2006-01-01
Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Determination of NOX mass emissions... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING NOX Mass Emissions Provisions § 75.72 Determination of NOX mass emissions for common stack and multiple stack...
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE; ORNL; NREL
1999-10-15
The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices formore » multiple levels of fuel sulfur content. This interim report discusses the results of the DECSE test program that demonstrates the potential of NOx adsorber catalyst technology across the range of diesel engine operation with a fuel economy penalty less than 4%.« less
Fontaras, Georgios; Martini, Giorgio; Manfredi, Urbano; Marotta, Alessandro; Krasenbrink, Alois; Maffioletti, Francesco; Terenghi, Roberto; Colombo, Mauro
2012-06-01
This paper summarizes the results of an extensive experimental study aiming to evaluate the performance and pollutant emissions of diesel and CNG waste collection trucks under realistic and controlled operating conditions in order to support a fleet renewal initiative in the city of Milan. Four vehicles (1 diesel and 3 CNG) were tested in two phases using a portable emission measurement system. The first phase included real world operation in the city of Milan while the second involved controlled conditions in a closed track. Emissions recorded from the diesel truck were on average 2.4 kg/km for CO(2), 0.21 g/km for HC, 7.4 g/km for CO, 32.3 g/km for NO(x) and 46.4 mg/km for PM. For the CNG the values were 3.6 kg/km for CO(2), 2.19 g/km for HC, 15.8 g/km for CO, 4.38 g/km for NO(x) and 11.4 mg/km for PM. CNG vehicles presented an important advantage with regards to NO(x) and PM emissions but lack the efficiency of their diesel counterparts when it comes to CO, HC and particularly greenhouse gas emissions. This tradeoff needs to be carefully analyzed prior to deciding if a fleet should be shifted towards either technology. In addition it was shown that existing emission factors, used in Europe for environmental assessment studies, reflect well the operation for CNG but were not so accurate when it came to the diesel engine truck particularly for CO(2) and NO(x). With regard to NO(x), it was also shown that the limits imposed by current emission standards are not necessarily reflected in real world operation, under which the diesel vehicle presented almost 4 times higher emissions. Regarding CO(2), appropriate use of PEMS data and vehicle information allows for accurate emission monitoring through computer simulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Selective catalytic reduction manages ships' emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, K.R.
1994-10-01
Ships employed by USS-Posco Industries are the first seagoing vessels that use selective catalytic reduction in marine diesel engine design, resulting in a 90 percent reduction of nitrogen oxide emissions. The vessels, which deliver semifinished steel coils, or hot bands'', to the company's terminal in the San Francisco Bay area, were commissioned for $120 million by Pohang Iron and Steel Co. Ltd., one of UPI's parent companies. Installing the catalytic reduction equipment cost $12 million. As anticipated, NOx concentrations were reduced between 90 percent and 95 percent. However, achieving high mass NOx reduction proved more difficult, because exhaust gas hadmore » to be maintained within the desired temperature range.« less
Pollution Reduction Technology Program, Turboprop Engines, Phase 1
NASA Technical Reports Server (NTRS)
Anderson, R. D.; Herman, A. S.; Tomlinson, J. G.; Vaught, J. M.; Verdouw, A. J.
1976-01-01
Exhaust pollutant emissions were measured from a 501-D22A turboprop engine combustor and three low emission combustor types -- reverse flow, prechamber, and staged fuel, operating over a fuel-air ratio range of .0096 to .020. The EPAP LTO cycle data were obtained for a total of nineteen configurations. Hydrocarbon emissions were reduced from 15.0 to .3 lb/1000 Hp-Hr/cycle, CO from 31.5 to 4.6 lb/1000 Hp-Hr/cycle with an increase in NOx of 17 percent, which is still 25% below the program goal. The smoke number was reduced from 59 to 17. Emissions given here are for the reverse flow Mod. IV combustor which is the best candidate for further development into eventual use with the 501-D22A turboprop engine. Even lower emissions were obtained with the advanced technology combustors.
Investigation of NO(x) Removal from Small Engine Exhaust
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1999-01-01
Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.
Investigation of NOx Removal from Small Engine Exhaust
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1999-01-01
Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.
40 CFR 1051.145 - What provisions apply only for a limited time?
Code of Federal Regulations, 2012 CFR
2012-07-01
... nitrogen in g/kW-hr. (ii) For engines below 225 cc, use the following equation: NER = 9.898 × log [(HC+NOX... oxides of nitrogen in g/kW-hr. (c) [Reserved] (d) Phase-in flexibility. For model years before 2014, if... model years, you may have a negative balance of emission credits relative to the permeation emission...
40 CFR 1051.145 - What provisions apply only for a limited time?
Code of Federal Regulations, 2013 CFR
2013-07-01
... nitrogen in g/kW-hr. (ii) For engines below 225 cc, use the following equation: NER = 9.898 × log [(HC+NOX... oxides of nitrogen in g/kW-hr. (c) [Reserved] (d) Phase-in flexibility. For model years before 2014, if... model years, you may have a negative balance of emission credits relative to the permeation emission...
40 CFR 1051.145 - What provisions apply only for a limited time?
Code of Federal Regulations, 2014 CFR
2014-07-01
... nitrogen in g/kW-hr. (ii) For engines below 225 cc, use the following equation: NER = 9.898 × log [(HC+NOX... oxides of nitrogen in g/kW-hr. (c) [Reserved] (d) Phase-in flexibility. For model years before 2014, if... model years, you may have a negative balance of emission credits relative to the permeation emission...
40 CFR 1051.145 - What provisions apply only for a limited time?
Code of Federal Regulations, 2011 CFR
2011-07-01
... nitrogen in g/kW-hr. (ii) For engines below 225 cc, use the following equation: NER = 9.898 × log [(HC+NOX... oxides of nitrogen in g/kW-hr. (c) [Reserved] (d) Phase-in flexibility. For model years before 2014, if... model years, you may have a negative balance of emission credits relative to the permeation emission...
40 CFR 1051.145 - What provisions apply only for a limited time?
Code of Federal Regulations, 2010 CFR
2010-07-01
... nitrogen in g/kW-hr. (ii) For engines below 225 cc, use the following equation: NER = 9.898 × log [(HC+NOX... oxides of nitrogen in g/kW-hr. (c) [Reserved] (d) Phase-in flexibility. For model years before 2014, if... model years, you may have a negative balance of emission credits relative to the permeation emission...
System and method for diagnosing EGR performance using NOx sensor
Mazur, Christopher John
2003-12-23
A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.
ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1982-01-01
A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.
Progress in catalytic ignition fabrication and modeling : fabrication part 1.
DOT National Transportation Integrated Search
2012-06-01
Previous engine testing with Catalytic Plasma Torch (CPT) technology at the University of Idaho has shown promising results in : the reduction of NOx and CO emissions. Because this technology is not yet well characterized, past research has indicated...
NOx emissions in China: historical trends and future perspectives
NASA Astrophysics Data System (ADS)
Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.
2013-10-01
Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... NOX plus NMHC standard may not exceed 50 percent of the manufacturer's U.S.-directed production of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a coal...
Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun
2011-10-01
Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, highmore » resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 ºC promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.« less
Estimating nitrogen oxides emissions at city scale in China with a nightlight remote sensing model.
Jiang, Jianhui; Zhang, Jianying; Zhang, Yangwei; Zhang, Chunlong; Tian, Guangming
2016-02-15
Increasing nitrogen oxides (NOx) emissions over the fast developing regions have been of great concern due to their critical associations with the aggravated haze and climate change. However, little geographically specific data exists for estimating spatio-temporal trends of NOx emissions. In order to quantify the spatial and temporal variations of NOx emissions, a spatially explicit approach based on the continuous satellite observations of artificial nighttime stable lights (NSLs) from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) was developed to estimate NOx emissions from the largest emission source of fossil fuel combustion. The NSL based model was established with three types of data including satellite data of nighttime stable lights, geographical data of administrative boundaries, and provincial energy consumptions in China, where a significant growth of NOx emission has experienced during three policy stages corresponding to the 9th-11th)Five-Year Plan (FYP, 1995-2010). The estimated national NOx emissions increased by 8.2% per year during the study period, and the total annual NOx emissions in China estimated by the NSL-based model were approximately 4.1%-13.8% higher than the previous estimates. The spatio-temporal variations of NOx emissions at city scale were then evaluated by the Moran's I indices. The global Moran's I indices for measuring spatial agglomerations of China's NOx emission increased by 50.7% during 1995-2010. Although the inland cities have shown larger contribution to the emission growth than the more developed coastal cities since 2005, the High-High clusters of NOx emission located in Beijing-Tianjin-Hebei regions, the Yangtze River Delta, and the Pearl River Delta should still be the major focus of NOx mitigation. Our results indicate that the readily available DMSP/OLS nighttime stable lights based model could be an easily accessible and effective tool for achieving strategic decision making toward NOx reduction. Copyright © 2015 Elsevier B.V. All rights reserved.
Low Emissions RQL Flametube Combustor Test Results
NASA Technical Reports Server (NTRS)
Chang, Clarence T.; Holdeman, James D.
2001-01-01
The overall objective of this test program was to demonstrate and evaluate the capability of the Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept for HSR applications. This test program was in support of the Pratt & Whitney and GE Aircraft Engines HSR low-NOx Combustor Program. Collaborative programs with Parker Hannifin Corporation and Textron Fuel Systems resulted in the development and testing of the high-flow low-NOx rich-burn zone fuel-to-air ratio research fuel nozzles used in this test program. Based on the results obtained in this test program, several conclusions can be made: (1) The RQL tests gave low NOx and CO emissions results at conditions corresponding to HSR cruise. (2) The Textron fuel nozzle design with optimal multiple partitioning of fuel and air circuits shows potential of providing an acceptable uniform local fuel-rich region in the rich burner. (3) For the parameters studied in this test series, the tests have shown T3 is the dominant factor in the NOx formation for RQL combustors. As T3 increases from 600 to 1100 F, EI(NOx) increases approximately three fold. (4) Factors which appear to have secondary influence on NOx formation are P4, T4, infinity(sub rb), V(sub ref,ov). (5) Low smoke numbers were measured for infinity(sub rb) of 2.0 at P4 of 120 psia.
APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, C; Weber, P; Thornton,M
2003-08-24
The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT)more » or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)« less
Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei
2009-06-15
Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... section, the NOX emission rate and NOX concentration values substituted for missing data under subpart D... report the NOX mass emissions data and heat input data for such unit, in an electronic quarterly report... emissions) for such unit for the entire year and report the NOX mass emissions data and heat input data for...
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: (1) If the CAIR NOX Ozone Season unit is subject to an Acid Rain emissions limitation or a CAIR NOX... Acid Rain emissions limitation or a CAIR NOX emissions limitation, then the CAIR designated...) of this chapter. (4) For CAIR NOX Ozone Season units that are also subject to an Acid Rain emissions...
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: (1) If the CAIR NOX Ozone Season unit is subject to an Acid Rain emissions limitation or a CAIR NOX... Acid Rain emissions limitation or a CAIR NOX emissions limitation, then the CAIR designated...) of this chapter. (4) For CAIR NOX Ozone Season units that are also subject to an Acid Rain emissions...
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: (1) If the CAIR NOX Ozone Season unit is subject to an Acid Rain emissions limitation or a CAIR NOX... Acid Rain emissions limitation or a CAIR NOX emissions limitation, then the CAIR designated...) of this chapter. (4) For CAIR NOX Ozone Season units that are also subject to an Acid Rain emissions...
40 CFR 97.374 - Recordkeeping and reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) If the CAIR NOX Ozone Season unit is subject to an Acid Rain emissions limitation or a CAIR NOX... Acid Rain emissions limitation or a CAIR NOX emissions limitation, then the CAIR designated...) of this chapter. (4) For CAIR NOX Ozone Season units that are also subject to an Acid Rain emissions...
Low NO/x/ heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1980-01-01
The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Variation of radiative forcings and global warming potentials from regional aviation NOx emissions
NASA Astrophysics Data System (ADS)
Skowron, Agnieszka; Lee, David S.; De León, Ruben R.
2015-03-01
The response to hemispherical and regional aircraft NOx emissions is explored by using two climate metrics: radiative forcing (RF) and Global Warming Potential (GWP). The global chemistry transport model, MOZART-3 CTM, is applied in this study for a series of incremental aircraft NOx emission integrations to different regions. It was found that the sensitivity of chemical responses per unit emission rate from regional aircraft NOx emissions varies with size of aircraft NOx emission rate and that climate metric values decrease with increasing aircraft NOx emission rates, except for Southeast Asia. Previous work has recognized that aircraft NOx GWPs may vary regionally. However, the way in which these regional GWPs are calculated are critical. Previous studies have added a fixed amount of NOx to different regions. This approach can heavily bias the results of a regional GWP because of the well-established sensitivity of O3 production to background NOx whereby the Ozone Production Efficiency (OPE) is greater at small background NOx. Thus, even a small addition of NOx in a clean-air area can produce a large O3 response. Using this 'fixed addition' method of 0.035 Tg(N) yr-1, results in the greatest effect observed for North Atlantic and Brazil, ∼10.0 mW m-2/Tg(N) yr-1. An alternative 'proportional approach' is also taken that preserves the subtle balance of local NOx-O3-CH4 systems with the existing emission patterns of aircraft and background NOx, whereby a proportional amount of aircraft NOx, 5% (N) yr-1, is added to each region in order to determine the response. This results in the greatest effect observed for North Pacific that with its net NOx RF of 23.7 mW m-2/Tg(N) yr-1 is in contrast with the 'fixed addition' method. For determining regional NOx GWPs, it is argued that the 'proportional' approach gives more representative results. However, a constraint of both approaches is that the regional GWP determined is dependent on the relative global emission pattern, so if that changes in the future, the regional NOx GWP will change.
Fu, Mingliang; Ge, Yunshan; Tan, Jianwei; Zeng, Tao; Liang, Bin
2012-10-15
Non-road machinery, especially construction equipment could be an important pollutant source of the deterioration in air quality in Chinese urban areas due to its large quantity and to the absence of stringent emission requirements. In this study, emission tests were performed on 12 excavators and 8 wheel loaders by using portable emission measurement system (PEMS) to determine their emission characteristics. The typical operating modes were categorized as idling mode, moving mode and working mode. Compared with those during idling and moving modes, the average time-based emission factors during working mode of HC were 2.61 and 1.27 times higher, NO(x) were 3.66 and 1.36 times higher, and PM were 4.05 and 1.95 times higher, respectively. Under all conditions, categories of the measured emissions increased with the rise in engine power. Compared with those of Stage I emission standard equipment, gaseous emissions and PM emitted from Stage II emission standard equipment were lower. The results indicated that, from Stage I to Stage II, the average reductions of HC, NO(x) and PM were 56%, 37% and 29% for the working mode, respectively. Those results also demonstrated the effectiveness of emission control regulation and the improvement of emission control technology. The data and tests show that the longer the accumulated working hours, the higher HC and NO(x) average fuel-based emission factors are. The emissions measured from the construction vehicles employed in this study were higher than the data collected in previous studies, which shows that it is critical for the government to put into effect more stringent emission regulations to further improve the air quality in Chinese urban areas. Copyright © 2012 Elsevier B.V. All rights reserved.
Lobo, Prem; Rye, Lucas; Williams, Paul I; Christie, Simon; Uryga-Bugajska, Ilona; Wilson, Christopher W; Hagen, Donald E; Whitefield, Philip D; Blakey, Simon; Coe, Hugh; Raper, David; Pourkashanian, Mohamed
2012-10-02
Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.
Low NOx, Lean Direct Wall Injection Combustor Concept Developed
NASA Technical Reports Server (NTRS)
Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.
2003-01-01
The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.
NASA Astrophysics Data System (ADS)
Yao, Zhiliang; Wu, Bobo; Wu, Yunong; Cao, Xinyue; Jiang, Xi
2015-12-01
To mitigate NOx and other emissions from diesel vehicles, China I, China II, China III and China IV emissions standards for new vehicles have been implemented nationwide. However, recent on-road measurements using a portable emission measurement system (PEMS) have revealed no significant reductions in the NOx emissions factors of diesel trucks due to the change from China II emissions standards to the more stringent China III standards. Thus, it is important to understand the effect of the China IV emissions standard on NOx emissions. In this study, nine China III and nine China IV diesel trucks of three sizes (light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs)) were tested on real roads in Beijing using a PEMS. Compared to the tested China III diesel trucks, the China IV diesel trucks showed significant reductions of the average NOx emissions factors in terms of both distance travelled and fuel consumption. However, the driving conditions had an important impact on the reduction. Under non-highway driving (NHD), several of the tested China IV diesel trucks experienced no reduction or an increase in NOx emissions compared to their China III counterparts. The NOx emissions factors of the 18 tested diesel trucks under NHD were on average 1.5-times greater than those under highway driving (HD), and the effects on NOx emissions removal from China III to China IV diesel trucks were greater under HD than under NHD. In addition, no significant reduction of NOx based on fuel consumption for China IV diesel trucks was observed for MDDTs and HDDTs compared to the test results for similar China II vehicles reported in a previous study. To reduce NOx emissions in China, additional control measures of vehicular NOx emissions should be formulated.
Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Liu, Junheng; Sun, Ping; Zhang, Buyun
2017-09-01
In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.
Herndon, Scott C; Jayne, John T; Lobo, Prem; Onasch, Timothy B; Fleming, Gregg; Hagen, Donald E; Whitefield, Philip D; Miake-Lye, Richard C
2008-03-15
The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atlanta International Airport. Using the aircraft tail numbers, 376 plumes were associated with specific engine models. In general, for takeoff plumes, the measured NOx emission index is lower (approximately 18%) than that predicted by engine certification data corrected for ambient conditions. These results are an in-service observation of the practice of "reduced thrust takeoff". The CO emission index observed in ground idle plumes was greater (up to 100%) than predicted by engine certification data for the 7% thrust condition. Significant differences are observed in the emissions of black carbon and particle number among different engine models/technologies. The presence of a mode at approximately 65 nm (mobility diameter) associated with takeoff plumes and a smaller mode at approximately 25 nm associated with idle plumes has been observed. An anticorrelation between particle mass loading and particle number concentration is observed.
Parse, simulation, and prediction of NOx emission across the Midwestern United States
NASA Astrophysics Data System (ADS)
Fang, H.; Michalski, G. M.; Spak, S.
2017-12-01
Accurately constraining N emissions in space and time has been a challenge for atmospheric scientists. It has been suggested that 15N isotopes may be a way of tracking N emission sources across various spatial and temporal scales. However, the complexity of multiple N sources that can quickly change in intensity has made this a difficult problem. We have used a SMOKE emission model to parse NOx emission across the Midwestern United States for a one-year simulation. An isotope mass balance methods was used to assign 15N values to road, non-road, point, and area sources. The SMOKE emissions and isotope mass balance were then combined to predict the 15N of NOx emissions (Figure 1). This ^15N of NOx emissions model was then incorporated into CMAQ to assess the role of transport and chemistry would impact the 15N value of NOx due to mixing and removal processes. The predicted 15N value of NOx was compared to those in recent measurements of NOx and atmospheric nitrate.
Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D
2008-12-01
The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...
NASA Astrophysics Data System (ADS)
Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.
2013-06-01
Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.
Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi
2013-05-07
To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.
Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1981-01-01
A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SIP revisions relating to budgets for SO2 and NOX emissions. 51.125 Section 51.125 Protection of... SIP revisions relating to budgets for SO2 and NOX emissions. (a) For its transport SIP revision under § 51.123 and/or 51.124, each State must submit to EPA SO2 and/or NOX emissions data as described in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Kwak, Ja Hun; Lee, Jong H.
2013-02-14
Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of themore » catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.« less
Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.
Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin
2007-01-01
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.
Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment
NASA Astrophysics Data System (ADS)
Liu, Z. Gerald; Ottinger, Nathan A.; Cremeens, Christopher M.
2015-03-01
Vanadium-based selective catalytic reduction (V-SCR) catalysts are currently used for the reduction of nitrogen oxides (NOx) in worldwide diesel applications including Euro IV, V, and VI as well as U.S. nonroad Tier 4 Final. Although V-SCR catalysts are attractive because of their high NOx conversion, low cost, resistance to sulfur poisoning, and ability to reduce hydrocarbon emissions, there is concern that V-SCR washcoat material (e.g., vanadium and tungsten) and its derivatives may be released into the atmosphere, potentially harming human health and the environment. In this study, vanadium and tungsten release measurements are made with both a reactor- and engine-based approach in order to determine the potential release of these metals from diesel exhaust aftertreatment systems that contain a V-SCR catalyst. Results for a commercially available V-SCR reveal that both V and W release begin at 500 °C, and both reactor- and engine-based methods are capable of measuring qualitatively similar release. Emissions with the engine-based method are higher at all temperatures evaluated, likely due to this method's ability to capture particle-phase and vapor-phase emissions which become particle-bound after their evolution from the catalyst surface. Certification relevant data (NRTC and NRSC) from a nonroad engine is used to understand probable emissions from V-SCR aftertreatment architectures. Finally, results from a V-SCR catalyst formulated for improved thermal durability illustrate that it is possible to increase the maximum temperature for V-SCR catalysts. This comprehensive understanding of the temperature dependence of vanadium and tungsten volatility can be used to further analyze the full impact of diesel aftertreatment on exhaust emissions and their impact on human health and environmental toxicity.
Anchupogu, Praveen; Rao, Lakshmi Narayana; Banavathu, Balakrishna
2018-06-04
In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al 2 O 3 ) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al 2 O 3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.
Methodology for Determination of Grade Crossing Resource-Allocation Guidelines
DOT National Transportation Integrated Search
1975-04-01
The primary objective of this study was to determine the most effective method of reducing emissions of oxides of nitrogen from a two-cylinder version of an EMD series 567C locomotive engine. The NOx control techniques selected for use in this study ...
Stirling heat pump external heat systems - An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, Andrew D.; Thomas, John F.
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Stirling heat pump external heat systems: An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, A. D.; Thomas, J. F.
1992-08-01
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Verification of NOx emission inventories over North Korea.
Kim, Na Kyung; Kim, Yong Pyo; Morino, Yu; Kurokawa, Jun-ichi; Ohara, Toshimasa
2014-12-01
In this study, the top-down NOx emissions estimated from satellite observations of NO2 vertical column densities over North Korea from 1996 to 2009 were analyzed. Also, a bottom-up NOx emission inventory from REAS 1.1 from 1980 to 2005 was analyzed with several statistics. REAS 1.1 was in good agreement with the top-down approach for both trend and amount. The characteristics of NOx emissions in North Korea were quite different from other developed countries including South Korea. In North Korea, emissions from industry sector was the highest followed by transportation sector in the 1980s. However, after 1990, the NOx emissions from other sector, mainly agriculture, became the 2nd highest. Also, no emission centers such as urban areas or industrial areas were distinctively observed. Finally, the monthly NOx emissions were high during the warm season. Copyright © 2014 Elsevier Ltd. All rights reserved.
Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M
2009-11-01
This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP HP 25 HP Table 1 to Subpart JJJJ of...
Lee, Taewoo; Park, Junhong; Kwon, Sangil; Lee, Jongtae; Kim, Jeongsoo
2013-09-01
The objective of this study is to quantify the differences in NO(x) emissions between standard and non-standard driving and vehicle operating conditions, and to estimate by how much NO(x) emissions exceed the legislative emission limits under typical Korean road traffic conditions. Twelve Euro 3-5 light-duty diesel vehicles (LDDVs) manufactured in Korea were driven on a chassis dynamometer over the standard New European Driving Cycle (NEDC) and a representative Korean on-road driving cycle (KDC). NO(x) emissions, average speeds and accelerations were calculated for each 1-km trip segment, so called averaging windows. The results suggest that the NO(x) emissions of the tested vehicles are more susceptible to variations in the driving cycles than to those in the operating conditions. Even under comparable operating conditions, the NO(x) control capabilities of vehicles differ from each other, i.e., NO(x) control is weaker for the KDC than for the NEDC. The NO(x) emissions over the KDC for given vehicle operating conditions exceed those over the NEDC by more than a factor of 8. Consequently, on-road NO(x) emission factors are estimated here to exceed the Euro 5 emission limit by up to a factor of 8, 4 and 3 for typical Korean urban, rural, and motorway road traffic conditions, respectively. Our findings support the development of technical regulations for supplementary real-world emission tests for emission certification and the corresponding research actions taken by automotive industries. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, F.E.
1993-01-01
Uncontrolled NOx emissions from a variety of pulse combustors were measured. The implementation of flue-gas recirculation to reduce NOx was studied. A flexible workstation for parametric testing was built and used to study the phasing between pressure and heat release, and effects of fuel/air mixing on performance. Exhaust-pipe heat transfer was analyzed. An acoustic model of pulse combustion was developed. Technical support was provided to manufacturers on noise, ignition and condensation. A computerized bibliographic database on pulse combustion was created.
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2014-02-01
As precursors to tropospheric ozone and nitrate, nitrogen oxide (NOx) in the present atmosphere and its transformation in response to emission and climate perturbations are studied by using the CAM-Chem model and air quality measurements from the National Emissions Inventory (NEI), Clean Air Status and Trends Network (CASTNET), and Environmental Protection Agency Air Quality System (EPA AQS). It is found that NOx transformations in present atmospheric conditions show different sensitivities over industrial and non-industrial regions. As a result, the surface ozone and nitrate formations can be divided into several regimes associated with the dominant emission types and relative levels of NOx and volatile organic compounds (VOC). Ozone production in industrial regions (the main NOx emission source areas) increases in warmer conditions and slightly decreases following an increase in NOx emissions due to NOx titration, which is opposite to the response in non-industrial regions. The ozone decrease following a temperature increase in non-industrial regions indicates that ozone production in regions that lack NOx emission sources may be sensitive to NOx transformation in remote source regions. The increase in NO2 from NOx titration over industrial regions results in an increase rate of total nitrate that remains higher than the increase rate of NOx emissions. The presented findings indicate that a change in the ozone concentration is more directly affected by changes in climate and precursor emissions, while a change in the nitrate concentration is affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that a warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations of the historical emissions and air quality records of a typical NOx-limited area, such as Atlanta and a VOC-limited area, such as Los Angeles further confirm the conclusions drawn from the modeling experiments.
Nabi, Md Nurun; Hustad, Johan Einar
2012-01-01
This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.
Effects of biodiesel on emissions of a bus diesel engine.
Kegl, Breda
2008-03-01
This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.
Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation
NASA Technical Reports Server (NTRS)
Novick, A. S.; Troth, D. L.
1982-01-01
The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazowski, W.S.
1976-05-01
The proposed conversion of predominant Air Force fuel usage from JP-4 to JP-8 has created the need to examine the dependence of engine pollutant emission on fuel type. Available data concerning the effect of fuel type on emissions has been reviewed. T56 single combustor testing has been undertaken to determine JP-4/JP-8 emission variations over a wide range of simulated engine cycle operating conditions at idle. In addition, a J85-5 engine was tested using JP-4 and JP-8. Results of the previous and new data collectively led to the following conclusions regarding conversion to JP-8: (a) HC and CO emission changes willmore » depend upon individual combustor design features, (b) no change to NOx emission will occur, and (c) an increase in smoke/particulate emissions will result. It is recommended that these findings be incorporated into air quality analytical models to define the overall impact of the proposed conversion. Further, it is recommended that combustor analytical models be employed to attempt prediction of the results described herein. Should these models be successful, analytical prediction of JP-8 emissions from other Air Force engine models may be substituted for more combustor rig or engine testing. (auth)« less
NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS
The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
NASA Technical Reports Server (NTRS)
Marek, C. John; Smith, Timothy D.; Kundu, Krishna
2005-01-01
One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NOx) emissions and combustion performance at inlet conditions of 600 to 1000 deg F, 60 to 200 pounds per square inch absolute (psia), and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen based premixing combustion systems is flashback since hydrogen has a reaction rate over seven times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 2.5 and 3.5-in. diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NOx emissions and combustion efficiency for the hydrogen injectors at 1.0, 3.125, and 5.375 in. from the injector face. Results show that for some configurations, NOx emissions are comparable to that of state of the art Jet-A LDI combustor concepts.
Low-Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
NASA Technical Reports Server (NTRS)
Marek, C. John; Smith, Timothy D.; Kundu, Krishna
2007-01-01
One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NO(x)) emissions and combustion performance at inlet conditions of 588 to 811 K, 0.4 to 1.4 MPa, and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen-based premixing combustion systems is flashback since hydrogen has a reaction rate over 7 times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 6.35- and 8.9-cm-diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NO(x) emissions and combustion efficiency for the hydrogen injectors at 2.540, 7.937, and 13.652 cm from the injector face. Results show that for some configurations, NO(x) emissions are comparable to that of state of the art Jet-A LDI combustor concepts.
Mutlu, Esra; Warren, Sarah H.; Ebersviller, Seth M.; Kooter, Ingeborg M.; Schmid, Judith E.; Dye, Janice A.; Linak, William P.; Gilmour, M. Ian; Jetter, James J.; Higuchi, Mark; DeMarini, David M.
2016-01-01
Background: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. Objective: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. Methods: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Results: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58–0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. Conclusions: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. Citation: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter JJ, Higuchi M, DeMarini DM. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environ Health Perspect 124:974–982; http://dx.doi.org/10.1289/ehp.1509852 PMID:26895221
40 CFR 76.10 - Alternative emission limitations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; and (ii) The installed NOX emission control system has been designed to meet the applicable emission... that the unit and NOX emission control system were operated in accordance with the bid and design specifications on which the design of the NOX emission control system was based; and (C) Unit operating data as...
40 CFR 76.10 - Alternative emission limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; and (ii) The installed NOX emission control system has been designed to meet the applicable emission... that the unit and NOX emission control system were operated in accordance with the bid and design specifications on which the design of the NOX emission control system was based; and (C) Unit operating data as...
Song, Chong-Lin; Bin, Feng; Tao, Ze-Min; Li, Fang-Cheng; Huang, Qi-Fei
2009-07-15
The main target of this work is to characterize the abatements of particulate matter (PM), hydrocarbons (HC) and nitrogen oxides (NO(x)) from an actual diesel exhaust using dielectric barrier discharge technology (DBD). The effects of several parameters, such as peak voltage, frequency and engine load, on the contaminant removals have been investigated intensively. The present study shows that for a given frequency, the removals of PM and HC are enhanced with the increase of peak voltage and level off at higher voltage, while in the range of higher voltages a decline of NO(x) removal efficiency is observed. For a given voltage, the maximums of specific energy density (SED) and removal efficiency are attained at resonance point. The increase of peak voltage will result in a significant decrease of energy utilization efficiency of DBD at most engine loads. Alkanes in soluble organic fraction (SOF) are more readily subjected to removals than polycyclic aromatic hydrocarbons (PAHs).
Agriculture is a major source of NOx pollution in California
Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z.
2018-01-01
Nitrogen oxides (NOx = NO + NO2) are a primary component of air pollution—a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NOx pollution, several of the United States’ worst–air quality districts remain in rural regions of the state. Site-based findings suggest that NOx emissions from California’s agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NOx pollution in California, with especially high soil NOx emissions from the state’s Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NOx emissions and (ii) top-down airborne observations of atmospheric NOx concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NOx source from cropland soil, which is estimated to increase the NOx budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NOx emissions from the soil. Our results highlight opportunities to limit NOx emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California. PMID:29399630
40 CFR 92.9 - Compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology (e.g., catalyst). For HC, THCE, NMHC, CO, NOX. and PM, additive deterioration factors shall be... locomotives or locomotive engines utilizing aftertreatment technology (e.g., catalyst). For HC, THCE, NMHC, CO... certificates of conformity from EPA that allow the manufacturer or remanufacturer to introduce into commerce...
DOT National Transportation Integrated Search
2016-08-01
Although it is generally accepted : that biodiesel fuel contributes : to the reduction of pollutants, : biodiesel still needs more study : for better control of combustion emissions and engine performance. Biodiesel has very diverse : sources of feed...
Compliance of Royal Naval ships with nitrogen oxide emissions legislation.
Blatcher, D J; Eames, I
2013-09-15
Nitrogen oxide (NOx) emissions from marine diesel engines pose a hazard to human health and the environment. From 2021, demanding emissions limits are expected to be applied to sea areas that the Royal Navy (RN) accesses. We analyze how these future constraints affect the choice of NOx abatement systems for RN ships, which are subject to more design constraints than civilian ships. A weighted matrix approach is used to facilitate a quantitative assessment. For most warships to be built soon after 2021 Lean Nitrogen Traps (LNT) in conjunction with Exhaust Gas Recirculation (EGR) represents a relatively achievable option with fewer drawbacks than other system types. Urea-selective catalytic reduction is likely to be most appropriate for ships that are built to civilian standards. The future technologies that are at an early stage of development are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Two-stage combustion for reducing pollutant emissions from gas turbine combustors
NASA Technical Reports Server (NTRS)
Clayton, R. M.; Lewis, D. H.
1981-01-01
Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.
NASA Astrophysics Data System (ADS)
Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn
2016-02-01
The annual NO2 concentrations in many European cities exceed the established air quality standard. This situation is mainly caused by Diesel cars whose NOx emissions are higher on the road than during type approval in the laboratory. Moreover, the fraction of NO2 in the NOx emissions of modern diesel cars appears to have increased as compared to previous models. In this paper, we assess 1) to which level the distance-specific NOx emissions of Diesel cars should be reduced to meet established air quality standards and 2) if it would be useful to introduce a complementary NO2 emissions limit. We develop a NO2 pollution model that accounts in an analysis of 9 emission scenarios for changes in both, the urban background NO2 concentrations and the local NO2 emissions at street level. We apply this model to the city of Antwerp, Belgium. The results suggest that a reduction in NOx emissions decreases the regional and urban NO2 background concentration; high NO2 fractions increase the ambient NO2 concentrations only in close spatial proximity to the emission source. In a busy access road to the city centre, the average NO2 concentration can be reduced by 23% if Diesel cars emitted 0.35 g NOx/km instead of the current 0.62 g NOx/km. Reductions of 45% are possible if the NOX emissions of Diesel cars decreased to the level of gasoline cars (0.03 g NOx/km). Our findings suggest that the Real-Driving Emissions (RDE) test procedure can solve the problem of NO2 exceedances in cities if it reduced the on-road NOx emissions of diesel cars to the permissible limit of 0.08 g/km. The implementation of a complementary NO2 emissions limit may then become superfluous. If Diesel cars continue to exceed by several factors their NOx emissions limit on the road, a shift of the vehicle fleet to gasoline cars may be necessary to solve persisting air quality problems.
NASA Astrophysics Data System (ADS)
Lamsal, L. N.; Martin, R. V.; Padmanabhan, A.; van Donkelaar, A.; Zhang, Q.; Sioris, C. E.; Chance, K.; Kurosu, T. P.; Newchurch, M. J.
2011-03-01
Anthropogenic emissions of nitrogen oxides (NOx) can change rapidly due to economic growth or control measures. Bottom-up emissions estimated using source-specific emission factors and activity statistics require years to compile and can become quickly outdated. We present a method to use satellite observations of tropospheric NO2 columns to estimate changes in NOx emissions. We use tropospheric NO2 columns retrieved from the SCIAMACHY satellite instrument for 2003-2009, the response of tropospheric NO2 columns to changes in NOx emissions determined from a global chemical transport model (GEOS-Chem), and the bottom-up anthropogenic NOx emissions for 2006 to hindcast and forecast the inventories. We evaluate our approach by comparing bottom-up and hindcast emissions for 2003. The two inventories agree within 6.0% globally and within 8.9% at the regional scale with consistent trends in western Europe, North America, and East Asia. We go on to forecast emissions for 2009. During 2006-2009, anthropogenic NOx emissions over land increase by 9.2% globally and by 18.8% from East Asia. North American emissions decrease by 5.7%.
A study of a direct-injection stratified-charge rotary engine for motor vehicle application
NASA Astrophysics Data System (ADS)
Kagawa, Ryoji; Okazaki, Syunki; Somyo, Nobuhiro; Akagi, Yuji
1993-03-01
A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.
Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph
2015-06-16
The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend.
Worldwide biogenic soil NOx emission estimates from OMI NO2 observations and the GEOS-Chem model
NASA Astrophysics Data System (ADS)
Vinken, Geert; Boersma, Folkert; Maasakkers, Bram; Martin, Randall
2014-05-01
Bacteria in soils are an important source of biogenic nitrogen oxides (NOx = NO + NO2), which are important precursors for ozone (O3) formation. Furthermore NOx emissions contribute to increased nitrogen deposition and particulate matter formation. Bottom-up estimates of global soil NOx emissions range from 4 to 27 Tg N / yr, reflecting our incomplete knowledge of emission factors and processes driving these emissions. In this study we used, for the first time, OMI NO2 columns on all continents to reduce the uncertainty in soil NOx emissions. Regions and months dominated by soil NOx emissions were identified using a filtering scheme in the GEOS-Chem chemistry transport model. Consequently, we compared OMI observed NO2 observed columns to GEOS-Chem simulated columns and provide constraints for these months in 11 regions. This allows us to provide a top-down emission inventory for 2005 for soil NOx emissions from all continents. Our total global soil NOx emission inventory amounts to 10 Tg N / yr. Our estimate is 4% higher than the GEOS-Chem a priori (Hudman et al., 2012), but substantial regional differences exist (e.g. +20% for Sahel and India; and -40% for mid-USA). We furthermore observed a stronger seasonal cycle in the Sahel region, indicating directions for possible future improvements to the parameterization currently used in GEOS-Chem. We validated NO2 concentrations simulated with this new top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. On the whole, we conclude that simulations with our new top-down inventory better agree with measurements. Our work shows that satellite retrieved NO2 columns can improve estimates of soil NOx emissions over sparsely monitored remote rural areas. We show that the range in previous estimates of soil NOx emissions is too large, and global emissions are most likely around 10 Tg N/yr, in agreement with the most recent parameterizations.
MENU OF NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS
The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...
Emission inventories for ships in the arctic based on satellite sampled AIS data
NASA Astrophysics Data System (ADS)
Winther, Morten; Christensen, Jesper H.; Plejdrup, Marlene S.; Ravn, Erik S.; Eriksson, Ómar F.; Kristensen, Hans Otto
2014-07-01
This paper presents a detailed BC, NOx and SO2 emission inventory for ships in the Arctic in 2012 based on satellite AIS data, ship engine power functions and technology stratified emission factors. Emission projections are presented for the years 2020, 2030 and 2050. Furthermore, the BC, SO2 and O3 concentrations and the deposition of BC are calculated for 2012 and for two arctic shipping scenarios - with or without arctic diversion routes due to a possible polar sea ice extent in the future. In 2012, the largest shares of Arctic ships emissions are calculated for fishing ships (45% for BC, 38% for NOx, 23% for SO2) followed by passenger ships (20%, 17%, 25%), tankers (9%, 13%, 15%), general cargo (8%, 11%, 12%) and container ships (5%, 7%, 8%). In 2050, without arctic diversion routes, the total emissions of BC, NOx and SO2 are expected to change by +16%, -32% and -63%, respectively, compared to 2012. The results for fishing ships are the least certain, caused by a less precise engine power - sailing speed relation. The calculated BC, SO2, and O3 surface concentrations and BC deposition contributions from ships are low as a mean for the whole Arctic in 2012, but locally BC additional contributions reach up to 20% around Iceland, and high additional contributions (100-300%) are calculated in some sea areas for SO2. In 2050, the arctic diversion routes highly influence the calculated surface concentrations and the deposition of BC in the Arctic. During summertime navigation contributions become very visible for BC (>80%) and SO2 (>1000%) along the arctic diversion routes, while the O3 (>10%) and BC deposition (>5%) additional contributions, respectively, get highest over the ocean east of Greenland and in the High Arctic. The geospatial ship type specific emission results presented in this paper have increased the accuracy of the emission inventories for ships in the Arctic. The methodology can be used to estimate shipping emissions in other regions of the world, and hence may serve as an input for other researchers and policy makers working in this field.
Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions
NASA Astrophysics Data System (ADS)
Pallavkar, Sameer M.
The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.
NASA Astrophysics Data System (ADS)
Avianto Sugeng, Dhani; Zahari, Mohamad Fathur Hafeezat Mohd; Muhsin Ithnin, Ahmad; Jazair Yahya, Wira
2017-10-01
Efforts in making water in diesel emulsion (W/D) with the absence of surfactant have been developed to address the issues of long-term stability and the dependence on surfactants. This paper discusses an alternative formation method of a non-surfactant W/D, e.g. by steam condensation. By injecting steam into a batch of colder diesel fuel, fine water droplets are formed and suspended in the fuel forming an emulsion. The droplets are confirmed to be in the size range of hundreds of nanometers. The emissions of NOx is reduced by a maximum of 71%, whereas the CO and UHC emissions are increased by maximum respectively 180% and a surprising 517%. Not less interesting is the lower BSFC which was measured at a maximum reduction of 18.4%. These results on emission analysis together with the brake specific fuel consumption confirm this method to resemble the combustion behaviour of a conventional emulsion fuel of lower NOx and BSFC, yet higher CO and UHC
Using satellite data to guide emission control strategies for surface ozone pollution
NASA Astrophysics Data System (ADS)
Jin, X.; Fiore, A. M.
2017-12-01
Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL... NOX emissions data as described in this section. (c) Each revision must provide for periodic reporting by the state of NOX emissions data to demonstrate whether the state's emissions are consistent with...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL... NOX emissions data as described in this section. (c) Each revision must provide for periodic reporting by the state of NOX emissions data to demonstrate whether the state's emissions are consistent with...
NASA Astrophysics Data System (ADS)
Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny
2012-09-01
Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine
Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel
Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo
2011-01-01
A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P1PH NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%–75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%–20.4% when fueled with the biodiesel compared with diesel fuel. PMID:21403894
Rapeseed oil monoester of ethylene glycol monomethyl ether as a new biodiesel.
Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo
2011-01-01
A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P(1P)H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%-75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%-20.4% when fueled with the biodiesel compared with diesel fuel.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...
NASA Astrophysics Data System (ADS)
Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat
2017-09-01
Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.
Rapid mix concepts for low emission combustors in gas turbine engines
NASA Technical Reports Server (NTRS)
Talpallikar, Milind V.; Smith, Clifford E.; Lai, Ming-Chia
1990-01-01
NASA LeRC has identified the Rich burn/Quick mix/Lean burn (RQL) combustor as a potential gas turbine combustor concept to reduce NOx emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NOx levels, NASA LeRC soon will test a flametube version of an RQL combustor. The critical technology needed for the RQL combustor is a method of quickly mixing combustion air with rich burn gases. Two concepts were proposed to enhance jet mixing in a circular cross-section: the Asymmetric Jet Penetration (AJP) concept; and the Lobed Mixer (LM) concept. In Phase 1, two preliminary configurations of the AJP concept were compared with a conventional 12-jet radial-inflow slot design. The configurations were screened using an advanced 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Both non-reacting and reacting analyses were performed. For an objective comparison, the conventional design was optimized by parametric variation of the jet-to-mainstream momentum flux (J) ratio. The optimum J was then employed in the AJP simulations. Results showed that the three-jet AJP configuration was superior in overall mixedness compared to the conventional design. However, in regards to NOx emissions, the AJP configuration was inferior. The higher emission level for AJP was caused by a single hot spot located in the wake of the central jet as it entered the combustor. Ways of maintaining good mixedness while eliminating the hot spot were identified for Phase 2 study. Overall, Phase 1 showed the viability of using CFD analyses to evaluate quick-mix concepts. A high probability exists that advancing mixing concepts will reduce NOx emissions in RQL combustors, and should be explored in Phase 2, by parallel numerical and experimental work.
Zhang, Guo-Chang; Turner, Timothy L; Jin, Yong-Su
2017-03-01
Accumulation of reduced byproducts such as glycerol and xylitol during xylose fermentation by engineered Saccharomyces cerevisiae hampers the economic production of biofuels and chemicals from cellulosic hydrolysates. In particular, engineered S. cerevisiae expressing NADPH-linked xylose reductase (XR) and NAD + -linked xylitol dehydrogenase (XDH) produces substantial amounts of the reduced byproducts under anaerobic conditions due to the cofactor difference of XR and XDH. While the additional expression of a water-forming NADH oxidase (NoxE) from Lactococcus lactis in engineered S. cerevisiae with the XR/XDH pathway led to reduced glycerol and xylitol production and increased ethanol yields from xylose, volumetric ethanol productivities by the engineered yeast decreased because of growth defects from the overexpression of noxE. In this study, we introduced noxE into an engineered yeast strain (SR8) exhibiting near-optimal xylose fermentation capacity. To overcome the growth defect caused by the overexpression of noxE, we used a high cell density inoculum for xylose fermentation by the SR8 expressing noxE. The resulting strain, SR8N, not only showed a higher ethanol yield and lower byproduct yields, but also exhibited a high ethanol productivity during xylose fermentation. As noxE overexpression elicits a negligible growth defect on glucose conditions, the beneficial effects of noxE overexpression were substantial when a mixture of glucose and xylose was used. Consumption of glucose led to rapid cell growth and therefore enhanced the subsequent xylose fermentation. As a result, the SR8N strain produced more ethanol and fewer byproducts from a mixture of glucose and xylose than the parental SR8 strain without noxE overexpression. Our results suggest that the growth defects from noxE overexpression can be overcome in the case of fermenting lignocellulose-derived sugars such as glucose and xylose.
Overview of NASA's Propulsion 21 Effort
NASA Technical Reports Server (NTRS)
Long-Davis, Mary Jo
2006-01-01
Propulsion 21 technologies contribute to reducing CO2 and NO(x) emissions and noise. Integrated Government/Industry/University research efforts have produced promising initial technical results. Graduate students from 5 partnering universities will benefit from this collaborative research--> educating the future engineering workforce. Phase 2 Efforts scheduled to be completed 3QFY06.
NASA Astrophysics Data System (ADS)
Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi
Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.
40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...
40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...
40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...
40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...
40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...
NASA Technical Reports Server (NTRS)
Moss, J. E.; Cullom, R. R.
1981-01-01
Emissions of carbon monoxide, total oxides of nitrogen, unburned hydrocarbons, and carbon dioxide from an F100, afterburning, two spool turbofan engine at simulated flight conditions are reported. For each flight condition emission measurements were made for two or three power levels from intermediate power (nonafterburning) through maximum afterburning. The data showed that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate power (nonafterburning) and partial afterburning, but regions of high carbon monoxide were present downstream of the flame holder at maximum afterburning. Unburned hydrocarbon emissions were low for most of the simulated flight conditions. The local NOX concentrations and their variability with power level increased with increasing flight Mach number at constant altitude, and decreased with increasing altitude at constant Mach number. Carbon dioxide emissions were proportional to local fuel air ratio for all conditions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.
2003-12-01
To address the problem of elevated O3 concentrations throughout the northeastern United States in summer, a NOx cap-and-trade program was implemented that reduced NOx emissions from large point sources by nearly 50%. To determine whether this program has been successful, we examine O3, NO and temperature measurements collected in the EPA-AIRS network prior to and after the cap-and-trade program went into effect in 1999. Ambient NO concentrations as measured in the EPA-AIRS network are lower in the post-cap period in all months except July. We find that the upper half of the distribution of O3 concentrations within the region is essentially unchanged (or slightly higher) in May and June, modestly reduced in July and August (except the highest concentrations which are larger in August), and significantly lower in September (ranging from 0-20 ppb lower between the mean and highest concentrations) in the 1999-2001 post-cap period relative to the 1995-1998 pre-cap period. Except for September, the frequency with which the 80ppb 8-hour NAAQS standard for O3 is exceeded has not decreased. Temperatures during the post-cap period were slightly higher in June, July and August, and slightly lower in September - likely contributing to reduced O3 levels during September in the post-cap period. To explore the possibility that trading, or selective emissions over the course of the summer, could influence regional O3 concentrations, we conduct chemical transport modeling experiments using the CAMx regional model. Even within May-September for a single year, demands for electrical power and hence NOx emissions are greater during hot than cool periods. We demonstrate that substantially more O3 is produced from identical NOx emissions from a single power plant on high temperature than on low temperature days in July 1995. Thus a lack of temporal restrictions on when in a single summer month NOx emissions may occur can result in higher O3 levels. We also demonstrate that identical NOx emissions in regions of high (low) isoprene emission result in greater (lesser) O3 production. This indicates that NOx trades from locations with low to high isoprene emissions likely result in increases in O3 production. Since the objective of reducing O3 concentrations is to reduce the impact elevated O3 has on human health and welfare, we examine the mortalities that result from the O3 produced from a fixed NOx emission in the two cases described above as well as in regions of high and low population. We estimate substantially higher mortality rates from a unit NOx emission as a result of elevated O3 concentrations for high temperature days, in regions of high isoprene emissions, and for emissions occurring upwind of large populations. We attempt to assign a monetary value to the loss of life resulting from the enhanced O3 concentrations that result from these NOx emissions. We propose, as an alternative to NOx emissions cap and trade programs, a system by which NOx emitters are charged for the marginal damage they cause as a result of the O3 produced from the NOx they emit. Rather than resulting in a reduction in total NOx emissions without necessarily reducing O3 concentrations (as a cap-and-trade program does), this alternative system provides a direct incentive to reduce NOx emissions at times and places where they cause the most harm.
Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines
NASA Astrophysics Data System (ADS)
Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.
2016-03-01
A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.
Bugarski, Aleksandar D; Hummer, Jon A; Vanderslice, Shawn
2016-01-01
This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC.
Bugarski, Aleksandar D.; Hummer, Jon A.; Vanderslice, Shawn
2017-01-01
This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels on NO2 concentrations were masked by the more prominent effects of DOC. PMID:26588029
40 CFR 75.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring, recordkeeping, and reporting of NOX mass emissions with which EPA, individual States, or groups of States may require sources to comply in order to demonstrate compliance with a NOX mass emission... estimating SO2 mass emissions from gas-fired or oil-fired units and NOX emissions from gas-fired peaking or...