Sample records for engine performance emissions

  1. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  2. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    PubMed

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  3. Performance and emissions of an engine fuelled by biogas of palm oil mill effluent

    NASA Astrophysics Data System (ADS)

    Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.

    2018-02-01

    This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.

  4. Two-stroke S.I. engine competitive to four-stroke engine in terms of the exhaust emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavletic, R.; Trenc, F.

    1994-09-01

    A model engine with disintegrated working cycle was built. Its operation is not autonomous; compression of the working air is performed separately outside the engine by the compressed-air line supply. Pre-compressed charge together with the injected fuel is introduced in the combustion chamber. The model engine makes possible to determine indicated performance characteristics and its emission capability. Effective measured engine characteristics are of course not comparable with those obtained by a practical engine. The model presented is a two-stroke cycle engine. Exhaust emission picture of the presented engine is comparable with the emission of a modern four-stroke engine. 2 refs.,more » 13 figs., 2 tabs.« less

  5. Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine

    NASA Technical Reports Server (NTRS)

    Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.

    1983-01-01

    Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.

  6. Review of jet engine emissions

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1972-01-01

    A review of the emission characteristics of jet engines is presented. The sources and concentrations of the various constituents in the engine exhaust and the influence of engine operating conditions on emissions are discussed. Cruise emissions to be expected from supersonic engines are compared with emissions from subsonic engines. The basic operating principles of the gas turbine combustor are reviewed together with the effects of combustor operating conditions on emissions. The performance criteria that determine the design of gas turbine combustors are discussed. Combustor design techniques are considered that may be used to reduce emissions.

  7. Effect of first and second generation biodiesel blends on engine performance and emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. Themore » study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.« less

  8. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  9. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  10. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  11. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...

  12. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...

  13. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES..., replacement, or repair of the emission control devices and systems may be performed by any engine repair... and necessary to ensure the proper functioning of the engine's emission control systems. If the...

  14. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  15. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  16. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  17. Assessment of a 40-kilowatt stirling engine for underground mining applications

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.

    1982-01-01

    An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

  18. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  19. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine.

    PubMed

    Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto

    2017-11-01

    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

  20. Optimization of performance and emission characteristics of PPCCI engine fuelled with ethanol and diesel blends using grey-Taguchi method

    NASA Astrophysics Data System (ADS)

    Natarajan, S.; Pitchandi, K.; Mahalakshmi, N. V.

    2018-02-01

    The performance and emission characteristics of a PPCCI engine fuelled with ethanol and diesel blends were carried out on a single cylinder air cooled CI engine. In order to achieve the optimal process response with a limited number of experimental cycles, multi objective grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a combination of input parameters was prefigured so as to achieve optimum response characteristics. It was observed that 20% premixed ratio of blend was most suitable for use in a PPCCI engine without significantly affecting the engine performance and emissions characteristics.

  1. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huifang; Lam, William; Remias, Joseph

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowdy, M.; Burke, A.; Schneider, H.

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  4. Impact of oxygenated additives to diesel-biodiesel blends in the context of performance and emissions characteristics of a CI engine

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.

    2016-11-01

    Butanol is receiving huge interest in the area of alternative fuel in the compression ignition (CI) engines. In this work, butanol is used as an oxygenated additive to diesel and biodiesel blend fuels to evaluate the performance and emission of CI engine. The commercially available pure diesel fuel (D100) and 80% commercially available diesel- biodiesel bled (5% biodiesel and 95% by volume) and 20% butanol (BU20) fuels were investigated to evaluate the effects of the fuel blends on the performance and exhaust emissions of a single cylinder diesel engine. The experiment was conducted at fixed load of 75% with the five engine speeds (from 1200-2400 rpm with an interval of 300 rpm). The engine performance parameters such as power, torque, fuel consumption and thermal efficiency and exhaust gas emissions such as nitrogen oxides, carbon monoxide, and exhaust gas temperature were analysed from the experimental data. The results shows that although butanol addition has caused a slight reduction in power and torque values (11.1% and 3.5%, respectively), the emission values of the engine were improved. With respect to the exhaust gas temperature, CO and NOx emissions, of BU20 is reported to have reduction by 17.7%, 20% and 3%, respectively than the B100. Therefore, butanol can be used as a fuel additive to diesel-biodiesel blends.

  5. Effect of piston profile on performance and emission characteristics of a GDI engine with split injection strategy - A CFD study

    NASA Astrophysics Data System (ADS)

    Karaya, Y.; Mallikarjuna, J. M.

    2017-09-01

    Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions. But in these engines, the mixture preparation plays an important role which affects combustion, performance and emission characteristics. The mixture preparation in turn depends mainly upon combustion chamber geometry. Therefore, in this study, an attempt has been made to understand the effect of piston profile on the performance and emission characteristics in a GDI engine. The analysis is carried out on a four-stroke wall guided GDI engine using computational fluid dynamics (CFD). The spray breakup model used is validated with the available experimental results from the literature to the extent possible. The analysis is carried out for four piston profiles viz., offset pentroof with offset bowl (OPOB), flat piston with offset bowl (FPOB), offset pentroof with offset scoop (OPOS) and inclined piston with offset bowl (IPOB) fitted in an engine equipped with a six-hole injector with the split injection ratio of 30:70. All the CFD simulations are carried out at the engine speed of 2000 rev/min., with the overall equivalence ratio of about 0.65±0.05. The performance and emission characteristics of the engine are compared while using the above piston profiles. It is found that, the OPOB piston is preferred compared to that of the other pistons because it has better in-cylinder flow, IMEP and lower HC emissions compared to that of other pistons.

  6. U.S. Coast Guard pollution abatement program - Two-stroke cycle outboard engine emissions

    DOT National Transportation Integrated Search

    1975-09-01

    This report documents the results of emissions tests performed on three old and two new outboard engines. Tests of the emissions were made before and after water contact. Older engines were tested in as-received condition, tuned to factory specificat...

  7. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    NASA Astrophysics Data System (ADS)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  8. Measurement and comparison of Bangkok diesel bus emissions and performance using on-board equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnette, A.D.; Kishan, S.; Wangwongwatana, S.

    1997-12-31

    An on-board measurement system was assembled and used to compare the emissions and performance of buses in Bangkok, Thailand under actual driving conditions. Three similar buses were compared: one using an engine without special emissions control design, one with an engine meeting Euro 1 standards, and one with an engine meeting Euro 2 standards. As the buses drove their routes, second-by-second data were collected for engine rpm, throttle position, vehicle speed, exhaust concentrations of hydrocarbons, carbon monoxide, carbon dioxide, oxygen, nitric oxide, and exhaust opacity. Vehicle performance data were calculated using algorithms developed during previous driving studies in Bangkok. Grammore » per liter of fuel used emission factors were developed for gaseous pollutants using combustion calculations and these were translated into gram per kilometer traveled emission factors using the fuel efficiency data for the buses. Smoke data were left in terms of opacity. Test results are designed to be used to compare the cost benefit of upgrading buses with no emissions controls to Euro 1 or Euro 2 technologies. Ongoing tests will help bus companies determine the benefit of incremental improvements to bus engines and other emissions reduction strategies.« less

  9. 40 CFR 1065.518 - Engine preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engine preconditioning. 1065.518... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.518 Engine preconditioning. (a) This section applies for engines where measured emissions are affected by prior operation...

  10. 40 CFR 89.109 - Maintenance instructions and minimum allowable maintenance intervals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Turbocharger. (iii) Electronic engine control unit and its associated sensors and actuators. (iv) Particulate... emission control and whose function is not integral to the design and performance of the engine). (d... once before the low-hour emission test point. Any other engine, emission control system, or fuel system...

  11. 40 CFR 89.109 - Maintenance instructions and minimum allowable maintenance intervals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Turbocharger. (iii) Electronic engine control unit and its associated sensors and actuators. (iv) Particulate... emission control and whose function is not integral to the design and performance of the engine). (d... once before the low-hour emission test point. Any other engine, emission control system, or fuel system...

  12. 40 CFR 89.109 - Maintenance instructions and minimum allowable maintenance intervals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Turbocharger. (iii) Electronic engine control unit and its associated sensors and actuators. (iv) Particulate... emission control and whose function is not integral to the design and performance of the engine). (d... once before the low-hour emission test point. Any other engine, emission control system, or fuel system...

  13. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  14. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  15. Experimental investigation of a multicylinder unmodified diesel engine performance, emission, and heat loss characteristics using different biodiesel blends: rollout of B10 in Malaysia.

    PubMed

    Abedin, M J; Masjuki, H H; Kalam, M A; Varman, M; Arbab, M I; Fattah, I M Rizwanul; Masum, B M

    2014-01-01

    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.

  16. Experimental Investigation of a Multicylinder Unmodified Diesel Engine Performance, Emission, and Heat Loss Characteristics Using Different Biodiesel Blends: Rollout of B10 in Malaysia

    PubMed Central

    Abedin, M. J.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Arbab, M. I.; Fattah, I. M. Rizwanul; Masum, B. M.

    2014-01-01

    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ‘‘energy flows” across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper. PMID:25162046

  17. Influence of maladjustment on emissions from two heavy-duty diesel bus engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullman, T.L.; Hare, C.T.; Baines, T.M.

    1984-01-01

    Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NO/sup x/ emission levels, butmore » higher CO emissions, smoke, and particulate.« less

  18. Engine Performance (Section C: Emission Control Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This engine performance (emission control systems) module is one of a series of competency-based modules in the Missouri Auto Mechanics Curriculum Guide. Topics of this module's five units are: positive crankcase ventilation (PCV) and evaporative emission control systems; exhaust gas recirculation (EGR); air injection and catalytic converters;…

  19. [Preparation of biodiesel from waste edible oils and performance and exhaust emissions of engines fueled with blends of the biodiesel].

    PubMed

    Ge, Yun-shan; Lu, Xiao-ming; Gao, Li-ping; Han, Xiu-kun; Ji, Xing

    2005-05-01

    The purpose of this study is to evaluate the effect of biodiesel on environment and to investigate the effect of the biodiesel made of waste edible oils on the performance and emissions of engines. Life cycle assessment (LCA) of biodiesel and diesel was introduced and the results of the LCA of both the fuels were given. The technological process of biodiesel production from waste edible oils, which is called transesterification of waste oils and methanol catalyzed with NaOH, was presented. Two turbocharged DI engines fueled with different proportions of biodiesel and diesel, namely, B50 (50% biodiesel + 50% diesel) and B20 (20% biodiesel + 80% diesel), were chosen to conduct performance and emission tests on a dynamometer. The results of the study indicate that there was a slight increase in fuel consumption by 8% and a drop in power by 3% with the blends of biodiesel, compared with diesel, and that the best improvements in emissions of smoke, HC, CO and PM were 65%, 11%, 33% and 13% respectively, but NOx emission was increased. The study also shows that it is satisfied to fuel engines with the low proportion blends of the biodiesel, without modifying engines, in performance and emissions.

  20. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł

    2011-06-01

    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  1. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  2. 40 CFR 1054.235 - What exhaust emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...

  3. 40 CFR 1054.235 - What exhaust emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...

  4. 40 CFR 1054.235 - What exhaust emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...

  5. 40 CFR 1054.235 - What exhaust emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...

  6. 40 CFR 1054.235 - What exhaust emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause the engine to exceed...

  7. Automotive technology status and projections. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Dowdy, M.; Burke, A.; Schneider, H.; Edmiston, W.; Klose, G. J.; Heft, R.

    1978-01-01

    Fuel economy, exhaust emissions, multifuel capability, advanced materials and cost/manufacturability for both conventional and advanced alternative power systems were assessed. To insure valid comparisons of vehicles with alternative power systems, the concept of an Otto-Engine-Equivalent (OEE) vehicle was utilized. Each engine type was sized to provide equivalent vehicle performance. Sensitivity to different performance criteria was evaluated. Fuel economy projections are made for each engine type considering both the legislated emission standards and possible future emissions requirements.

  8. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  9. 40 CFR 86.1605 - Information to be submitted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...

  10. 40 CFR 86.1605 - Information to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...

  11. 40 CFR 86.1605 - Information to be submitted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...

  12. 40 CFR 86.1605 - Information to be submitted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be submitted... line, model year, engine displacement, engine family, and exhaust emission control systems...

  13. 40 CFR 86.1605 - Information to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Regulations for Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1605 Information to be..., car line, model year, engine displacement, engine family, and exhaust emission control systems...

  14. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    PubMed

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Emissions and Total Energy Consumption of a Multicylinder Piston Engine Running on Gasoline and a Hydrogen-gasoline Mixture

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1977-01-01

    A multicylinder reciprocating engine was used to extend the efficient lean operating range of gasoline by adding hydrogen. Both bottled hydrogen and hydrogen produced by a research methanol steam reformer were used. These results were compared with results for all gasoline. A high-compression-ratio, displacement production engine was used. Apparent flame speed was used to describe the differences in emissions and performance. Therefore, engine emissions and performance, including apparent flame speed and energy lost to the cooling system and the exhaust gas, were measured over a range of equivalence ratios for each fuel. All emission levels decreased at the leaner conditions. Adding hydrogen significantly increased flame speed over all equivalence ratios.

  16. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    NASA Astrophysics Data System (ADS)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  17. One dimensional modeling of a diesel-CNG dual fuel engine

    NASA Astrophysics Data System (ADS)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  18. Combustion performance and exhaust emissions fuelled with non-surfactant water-in-diesel emulsion fuel made from different water sources.

    PubMed

    Ahmad, Mohamad Azrin; Yahya, Wira Jazair; Ithnin, Ahmad Muhsin; Hasannuddin, A K; Bakar, Muhammad Aiman Abu; Fatah, Abdul Yasser Abd; Sidik, Nor Azwadi Che; Noge, Hirofumi

    2018-06-14

    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NO x ) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.

  19. Experimental Evaluation of a Low Emissions High Performance Duct Burner for Variable Cycle Engines (VCE)

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Mador, R. J.

    1979-01-01

    An evaluation was conducted with a three stage Vorbix duct burner to determine the performance and emissions characteristics of the concept and to refine the configuration to provide acceptable durability and operational characteristics for its use in the variable cycle engine (VCE) testbed program. The tests were conducted at representative takeoff, transonic climb, and supersonic cruise inlet conditions for the VSCE-502B study engine. The test stand, the emissions sampling and analysis equipment, and the supporting flow visualization rigs are described. The performance parameters including the fuel-air ratio, the combustion efficiency/exit temperature, thrust efficiency, and gaseous emissions calculations are defined. The test procedures are reviewed and the results are discussed.

  20. Method for reduction of the NOX emissions in marine auxiliary diesel engine using the fuel mixtures containing biodiesel using HCCI combustion.

    PubMed

    Puškár, Michal; Kopas, Melichar; Puškár, Dušan; Lumnitzer, Ján; Faltinová, Eva

    2018-02-01

    The marine auxiliary diesel engines installed in the large transoceanic ships are used in order to generate the electricity but at the same time these engines are able to produce a significant amount of the harmful exhaust gas emissions. Therefore the International Maritime Organisation (IMO) concluded an agreement, which has to control generating of gaseous emissions in maritime transport. From this reason started to be used some of the alternative fuels in this branch. There was performed a study, which investigated emissions of the auxiliary marine diesel engine during application of the experimental fuels. The different testing fuels were created using the ratios 0%, 50%, 80% and 100% between the biodiesel and the ULSDF (Ultra Low Sulphur Diesel Fuel). The experimental measurements were performed at the different engine loading levels and various engine speeds in order to investigate an influence of the mixed fuels on the engine operational characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  2. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    NASA Astrophysics Data System (ADS)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  3. A numerical study on the effect of various combustion bowl parameters on the performance, combustion, and emission behavior on a single cylinder diesel engine.

    PubMed

    Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai

    2018-01-01

    A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.

  4. 40 CFR 1048.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each fuel type from each engine family, select an emission-data engine with a configuration that is... piece of equipment. (2) Evaporative testing. For each engine family that includes a volatile liquid fuel, select a test fuel system with a configuration that is most likely to exceed the evaporative emission...

  5. 40 CFR 1048.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each fuel type from each engine family, select an emission-data engine with a configuration that is... piece of equipment. (2) Evaporative testing. For each engine family that includes a volatile liquid fuel, select a test fuel system with a configuration that is most likely to exceed the evaporative emission...

  6. 40 CFR 1048.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... each fuel type from each engine family, select an emission-data engine with a configuration that is... piece of equipment. (2) Evaporative testing. For each engine family that includes a volatile liquid fuel, select a test fuel system with a configuration that is most likely to exceed the evaporative emission...

  7. 40 CFR 1048.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each fuel type from each engine family, select an emission-data engine with a configuration that is... piece of equipment. (2) Evaporative testing. For each engine family that includes a volatile liquid fuel, select a test fuel system with a configuration that is most likely to exceed the evaporative emission...

  8. 40 CFR 1048.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... each fuel type from each engine family, select an emission-data engine with a configuration that is... piece of equipment. (2) Evaporative testing. For each engine family that includes a volatile liquid fuel, select a test fuel system with a configuration that is most likely to exceed the evaporative emission...

  9. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the leanmore » operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.« less

  10. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants.

    PubMed

    Ryu, Kyunghyun

    2010-01-01

    The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel.

  11. Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aceves, S.M.; Smith, J.R.

    In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a seriesmore » hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.« less

  12. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    NASA Astrophysics Data System (ADS)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  13. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    PubMed

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  14. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.

    PubMed

    Xinling, Li; Zhen, Huang

    2009-03-15

    A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.

  15. Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program

    NASA Technical Reports Server (NTRS)

    Brewer, Dave

    2001-01-01

    The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.

  16. CHARACTERIZATION OF EMISSIONS FROM HAND-HELD TWO-STROKE ENGINES

    EPA Science Inventory

    Despite their extremely high organic and particulate matter emission rates, two-stroke engines remain among the least studied of engine types. Such studies are rare because they are costly to perform. Results reported in this paper were obtained using a facility that shares e...

  17. Engine performance and exhaust emission analysis of a single cylinder diesel engine fuelled with water-diesel emulsion fuel blended with manganese metal additives

    NASA Astrophysics Data System (ADS)

    Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Baun Fletcher, Jasmine; Kadir, Hasannuddin Abd

    2017-10-01

    Water-in-diesel emulsion fuel (W/D) is one of the alternative fuels that capable to reduce the exhaust emission of diesel engine significantly especially the nitrogen oxides (NOx) and particulate matter (PM). However, the usage of W/D emulsion fuels contributed to higher CO emissions. Supplementing metal additive into the fuel is the alternate way to reduce the CO emissions and improve performance. The present paper investigates the effect of using W/D blended with organic based manganese metal additives on the diesel engine performance and exhaust emission. The test were carried out by preparing and analysing the results observed from five different tested fuel which were D2, emulsion fuel (E10: 89% D2, 10% - water, 1% - surfactant), E10Mn100, E10Mn150, E10Mn200. Organic based Manganese (100ppm, 150ppm, 200ppm) used as the additive in the three samples of the experiments. E10Mn200 achieved the maximum reduction of BSFC up to 13.66% and has the highest exhaust gas temperature. Whereas, E10Mn150 achieved the highest reduction of CO by 14.67%, and slightly increased of NOx emissions as compared to other emulsion fuels. Organic based manganese which act as catalyst promotes improvement of the emulsion fuel performance and reduced the harmful emissions discharged.

  18. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  19. Stratified Charge Engines

    DOT National Transportation Integrated Search

    1976-01-01

    This report reviews stratified charge concepts and engines, with emphasis on the important issues of exhaust emissions, fuel economy, and performance. Divided and open chamber designs are discussed. Potential improvements in exhaust emissions and fue...

  20. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.

    1976-01-01

    The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.

  1. 40 CFR 1045.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...

  2. 40 CFR 1045.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...

  3. 40 CFR 1045.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...

  4. 40 CFR 1045.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...

  5. 40 CFR 1045.235 - What emission testing must I perform for my application for a certificate of conformity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures and equipment specified in subpart F of this part. In the case of dual-fuel engines, measure emissions when operating with each type of fuel for which you intend to certify the engine. In the case of flexible-fuel engines, measure emissions when operating with the fuel mixture that is most likely to cause...

  6. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.

  7. Research of biofuels on performance, emission and noise of diesel engine under high-altitude area

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Huang, Hua

    2018-05-01

    At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).

  8. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.

  9. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  10. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    PubMed

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  11. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    PubMed Central

    Alnefaie, Khaled A.

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218

  12. V-TECS Guide for Automobile Engine Performance Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…

  13. Co-Optimization of Fuels and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    2016-03-24

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less

  14. High emission reduction performance of a novel organic-inorganic composite filters containing sepiolite mineral nanofibers

    PubMed Central

    Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao

    2017-01-01

    In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect. PMID:28252034

  15. High emission reduction performance of a novel organic-inorganic composite filters containing sepiolite mineral nanofibers

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao

    2017-03-01

    In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect.

  16. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    PubMed

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NO x emission. To reduce NO x emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NO x and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  18. 40 CFR 60.2120 - Affirmative Defense for Exceedance of an Emission Limit During Malfunction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards of Performance for Commercial and Industrial Solid Waste Incineration Units Emission Limitations... monitoring methods and engineering judgment, the amount of excess emissions that were the result of the... malfunction event at issue. The analysis shall also specify, using best monitoring methods and engineering...

  19. Performance and Durability Assessment of Two Emission Control Technologies Installed on a Legacy High-Speed Marine Diesel Engine

    DTIC Science & Technology

    2015-11-05

    program investigated cost- effective technologies to reduce emissions from legacy marine engines. High-speed, high-population engine models in both...respectively) were driven by health effects and environmental impacts. The U.S. Navy assessed its contribution to the domestic marine emission inventory...greatest potential. A laboratory developmental assessment was followed by a shipboard evaluation. Effective technology concepts applied to high

  20. Results of the pollution reduction technology program for turboprop engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 50-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  1. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    DOT National Transportation Integrated Search

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  3. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  4. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  5. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  6. A Study of the Applicability of Atomic Emission Spectroscopy (AES), Fourier Transform Infrared (FT-IR) Spectroscopy, Direct Reading and Analytical Ferrography on High Performance Aircraft Engine Lubricating Oils

    DTIC Science & Technology

    1998-01-01

    Ferrography on High Performance Aircraft Engine Lubricating Oils Allison M. Toms, Sharon 0. Hem, Tim Yarborough Joint Oil Analysis Program Technical...turbine engines by spectroscopy (AES and FT-IR) and direct reading and analytical ferrography . A statistical analysis of the data collected is...presented. Key Words: Analytical ferrography ; atomic emission spectroscopy; condition monitoring; direct reading ferrography ; Fourier transform infrared

  7. 40 CFR Table 4 to Subpart IIIi of... - Emission Standards for Stationary Fire Pump Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission Standards for Stationary Fire Pump Engines 4 Table 4 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt. IIII...

  8. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY... hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the EPA received three petitions for...

  9. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    NASA Astrophysics Data System (ADS)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  10. Co-Optimization of Fuels and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    2016-04-11

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less

  11. Regulated and non-regulated emissions from in-use diesel-electric switching locomotives.

    PubMed

    Sawant, Aniket A; Nigam, Abhilash; Miller, J Wayne; Johnson, Kent C; Cocker, David R

    2007-09-01

    Diesel-electric locomotives are vital to the operation of freight railroads in the United States, and emissions from this source category have generated interest in recent years. They are also gaining attention as an important emission source under the larger set of nonroad sources, both from a regulated emissions and health effects standpoint. The present work analyzes regulated (NOx, PM, THC, CO) and non-regulated emissions from three in-use diesel-electric switching locomotives using standardized sampling and analytical techniques. The engines tested in this work were from 1950, 1960, and 1970 and showed a range of NOx and PM emissions. In general, non-regulated gaseous emissions showed a sharp increase as engines shifted from non-idle to idle operating modes. This is interesting from an emissions perspective since activity data shows that these locomotives spend around 60% of their time idling. In terms of polycyclicaromatic hydrocarbon (PAH) contributions, the dominance of naphthalene and its derivatives over the total PAH emissions was apparent, similar to observations for on-road diesel tractors. Among nonnaphthalenic species, itwas observed that lower molecular weight PAHs and n-alkanes dominated their respective compound classes. Regulated emissions from a newer technology engine used in a back-up generator (BUG) application were also compared againstthe present engines; it was determined that use of the newer engine may lower NOx and PM emissions by up to 30%. Another area of interest to regulators is better estimation of the marine engine inventory for port operations. Toward that end, a comparison of emissions from these engines with engine manufacturer data and the newer technology BUG engine was also performed for a marine duty cycle, another application where these engines are used typically with little modifications.

  12. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  13. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  14. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  15. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  16. A comparative study of emission motorcycle with gasoline and CNG fuel

    NASA Astrophysics Data System (ADS)

    Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.

    2016-03-01

    A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline

  17. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  18. Correlating Engine NOx Emission with Biodiesel Composition

    NASA Astrophysics Data System (ADS)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2017-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  19. 40 CFR 63.1260 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Data and rationale used to support an engineering assessment to calculate uncontrolled emissions from... profiles, performance tests, engineering analyses, design evaluations, or calculations used to demonstrate... required calculations and engineering analyses have been performed. For the initial Periodic report, each...

  20. Engine Performance Test of the 1975 GM 140-CID

    DOT National Transportation Integrated Search

    1976-06-01

    An engine test of the 1975 GM 140 cubic-inch-displacement, 4-cylinder engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, and NO/sub x/) maps. The data acquired are summarized.

  1. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  2. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  3. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  4. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    NASA Astrophysics Data System (ADS)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  5. Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran

    NASA Astrophysics Data System (ADS)

    Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin

    2017-05-01

    Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.

  6. Conventional engine technology. Volume 1: Status of OTTO cycle engine technology

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.

    1981-01-01

    Federally-mandated emissions standards have led to major changes in automotive technology during the last decade. Efforts to satisfy the new standards were directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described and the improvement brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  7. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    PubMed

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  8. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    PubMed

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  10. Methanator Fueled Engines for Pollution Control

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  11. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  12. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  13. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    PubMed

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  14. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  15. Experimental investigations of the hydrogen addition effects on diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  16. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine.

    PubMed

    Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir

    2017-10-01

    This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.

  17. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    NASA Astrophysics Data System (ADS)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2018-01-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  18. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less

  19. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeePhD, John; TzanetakisPhD, Tom; Travers, Michael

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modificationmore » to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.« less

  20. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission data engine based on the highest fuel feed per stroke, primarily at the speed of maximum rated... the manufacturer to result in stabilized emissions. The emission performance of the emission data...

  1. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission data engine based on the highest fuel feed per stroke, primarily at the speed of maximum rated... the manufacturer to result in stabilized emissions. The emission performance of the emission data...

  2. Pooled effect of injection pressure and turbulence inducer piston on performance, combustion, and emission characteristics of a DI diesel engine powered with biodiesel blend.

    PubMed

    Isaac JoshuaRamesh Lalvani, J; Parthasarathy, M; Dhinesh, B; Annamalai, K

    2016-12-01

    In this study, the effect of injection pressure on combustion, performance, and emission characteristics of a diesel engine powered with turbulence inducer piston was studied. Engine tests were executed using conventional diesel and 20% blend of adelfa biodiesel [A20]. The results acquired from renewable fuel A20 in the conventional engine showed reduction in brake thermal efficiency being the result of poor air fuel mixing characteristics and the higher viscosity of the tested fuel. This prompted further research aiming at the improvement of turbulence for better air fuel mixing by a novel turbulence inducer piston [TIP]. The investigation was carried out to study the combined effect of injection pressure and turbulence inducer piston. Considerable improvement in the emission characteristics like hydrocarbon, carbon monoxide, smoke was acheived as a result of optimised injection pressure. Nevertheless, the nitrogen oxide emissions were slightly higher than those of the conventional unmodified engine. The engine with turbulence inducer piston shows the scope for reducing the major pollution and thus ensures environmental safety. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Performance of a peroxide-based cetane improvement additive in different diesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, M.K.; Jacobs, D.C.; Liotta, F.J. Jr.

    The implementation of stringent diesel engine emissions regulations is growing worldwide. The use of high cetane diesel fuels is a cost-effective option that can be used to reduce engine emissions. A direct comparison of heavy-duty diesel engine emissions for three different low sulfur diesel fuels treated with di-t-butyl peroxide and 2-ethylhexyl nitrate, at the same cetane level, was evaluated. Both the peroxide and the nitrate cetane improvement additive significantly reduced all regulated and unregulated emissions including the oxides of nitrogen (NOx) emission. Di-t-butyl peroxide shows a small advantage over ethylhexyl nitrate in reducing NOx in all the three fuels. Compatibilitymore » of the peroxide and the nitrate additives, when mixed in a fuel blend, has been demonstrated by cetane response and engine emissions for the fuel blend. 13 refs., 2 figs., 9 tabs.« less

  4. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  5. Field Tests of In-Service Modifications to Improve Performance of An Icebreaker Main Diesel Engine

    DOT National Transportation Integrated Search

    1977-08-01

    Field tests of in-service modifications to improve engine efficiency and lower the emissions were performed on the no. 3 main diesel engine of the USCGC Mackinaw (WAGB-83). This engine is a model 38D8-1/8 manufactured by Colt Industries, Fairbanks Mo...

  6. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  7. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  8. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  9. Advanced Propulsion System Studies for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  10. Design and experimental investigations on six-stroke SI engine using acetylene with water injection.

    PubMed

    Gupta, Keshav; Suthar, Kishanlal; Jain, Sheetal Kumar; Agarwal, Ghanshyam Das; Nayyar, Ashish

    2018-06-02

    In the present study, a four-stroke cycle gasoline engine is redesigned and converted into a six-stroke cycle engine and experimental study has been conducted using gasoline and acetylene as fuel with water injection at the end of the recompression stroke. Acetylene has been used as an alternative fuel along with gasoline and performance of the six-stroke spark ignition (SI) engine with these two fuels has been studied separately and compared. Brake power and thermal efficiency are found to be 5.18 and 1.55% higher with acetylene as compared to gasoline in the six-stroke engine. However, thermal efficiency is found to be 45% higher with acetylene in the six-stroke engine as compared to four-stroke SI engine. The CO and HC emissions were found to be reduced by 13.33 and 0.67% respectively with acetylene as compared to gasoline due to better combustion of acetylene. The NO x emission was reduced by 5.65% with acetylene due to lower peak temperature by water injection. The experimental results showed better engine performance and emissions with acetylene as fuel in the six-stroke engine.

  11. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  12. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  13. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  14. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  15. 77 FR 34129 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... diesel vehicles, including emergency vehicles. Some control system designs and implementation strategies... broad engine families and vehicle test groups that are defined by similar emissions and performance... public safety issue related to design of engines and emission control systems on emergency vehicles that...

  16. Biodiesel Performance with Modern Engines. Cooperative Research and Development Final Report, CRADA Number CRD-05-153

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert

    NREL and the National Biodiesel Board (NBB) will work cooperatively to assess the effects of biodiesel blends on the performance of modern diesel engines and emissions control systems meeting increasingly strict emissions standards. This work will include research to understand the impact of biodiesel blends on the operation and durability of particle filters and NOx control sorbents/catalysts, to quantify the effect on emission control systems performance, and to understand effects on engine component durability. Work to assess the impact of biodiesel blends on real world fleet operations will be performed. Also, research to develop appropriate ASTM standards for biodiesel qualitymore » and stability will be conducted. The cooperative project will involve engine testing and fleet evaluation studies at NREL using biodiesel from a variety of sources. In addition, NREL will work with NBB to set up an Industrial Steering Committee to design the scope for the various projects and to provide technical oversight to these projects. NREL and NBB will cooperatively communicate the study results to as broad an audience as possible.« less

  17. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  18. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    NASA Astrophysics Data System (ADS)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  19. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  20. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  1. Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  2. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  3. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Burrus, D. L.; Sabla, P. E.

    1979-01-01

    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.

  4. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  5. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    PubMed

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.

  6. Pollution reduction technology program for small jet aircraft engines, phase 1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1977-01-01

    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.

  7. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less

  8. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  9. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.

  10. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  11. The influence of the biofuel blends on the energetic and ecological performances of the Diesel engine

    NASA Astrophysics Data System (ADS)

    Benea, B. C.

    2016-08-01

    This study presents the influence of the diesel fuel blended with biodiesel fuel obtained from sunflower oil, corn oil and peanut oil on the energetic performances, combustion process and pollutant emissions. This research was done virtually and experimentally. In this study pure diesel fuel and two concentrations (6% and 10%) of blends with biofuels were used for experimentally tests on a Renault K9K diesel engine. Five parameters were observed during experimental tests: engine power, fuel consumption, cylinder pressure, and the amount of CO and NOx emissions. The same five parameters were simulated using AVL Boost program. The variations of effective power and maximal cylinder pressure are caused due to the lower calorific value of the tested fuels. Better oxidation of the biofuels induces a better combustion in cylinder and less CO and NOx emissions. The CO emissions are either influence by the lower carbon content of biofuels. The results of this study sustain that using 6% and 10% of blended biofuels with diesel fuel decrease the pollutant emissions of the diesel engine. Deviations between experimental and the simulation results confirm the validity of the mathematical model adopted for the simulation.

  12. Avco Lycoming QCGAT program design cycle, demonstrated performance and emissions

    NASA Technical Reports Server (NTRS)

    Fogel, P.; Koschier, A.

    1980-01-01

    A high bypass ratio, twin spool turbofan engine of modular design which incorporates a front fan module driven by a modified LTS101 core engine was tested. The engine is housed in a nacelle incorporating full length fan ducting with sound treatment in both the inlet and fan discharge flow paths. Design goals of components and results of component tests are presented together with full engine test results. The rationale behind the combustor design selected for the engine is presented as well as the emissions test results. Total system (engine and nacelle) test results are included.

  13. Water Injection Feasibility for Boeing 747 Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.

    2005-01-01

    Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.

  14. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions.

    PubMed

    Cardone, Massimo; Prati, Maria Vittoria; Rocco, Vittorio; Seggiani, Maurizia; Senatore, Adolfo; Vitoloi, Sandra

    2002-11-01

    A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The analysis and speciation of the soluble organic fraction of biodiesel particulate suggest that the carcinogenic potential of the biodiesel emissions is probably lower than that of petroleum diesel. Its better adaptivity and productivity in clay and sandy-type soils and in semiarid temperate climate and the fact that the performance of its derived biodiesel is quite similar to commercial biodiesel make B. carinata a promising oil crop that could offer the possibility of exploiting the Mediterranean marginal areas for energetic purposes.

  15. An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines

    NASA Technical Reports Server (NTRS)

    Browning, L. H.; Argenbright, L. A.

    1983-01-01

    A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants.

  16. Performance Evaluation of Particle Sampling Probes for Emission Measurements of Aircraft Jet Engines

    NASA Technical Reports Server (NTRS)

    Lee, Poshin; Chen, Da-Ren; Sanders, Terry (Technical Monitor)

    2001-01-01

    Considerable attention has been recently received on the impact of aircraft-produced aerosols upon the global climate. Sampling particles directly from jet engines has been performed by different research groups in the U.S. and Europe. However, a large variation has been observed among published data on the conversion efficiency and emission indexes of jet engines. The variation results surely from the differences in test engine types, engine operation conditions, and environmental conditions. The other factor that could result in the observed variation is the performance of sampling probes used. Unfortunately, it is often neglected in the jet engine community. Particle losses during the sampling, transport, and dilution processes are often not discussed/considered in literatures. To address this issue, we evaluated the performance of one sampling probe by challenging it with monodisperse particles. A significant performance difference was observed on the sampling probe evaluated under different temperature conditions. Thermophoretic effect, nonisokinetic sampling and turbulence loss contribute to the loss of particles in sampling probes. The results of this study show that particle loss can be dramatic if the sampling probe is not well designed. Further, the result allows ones to recover the actual size distributions emitted from jet engines.

  17. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  18. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  19. Aircraft engine and auxiliary power unit emissions from combusting JP-8 fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimm, L.T.; Sylvia, D.A.; Gerstle, T.C.

    1997-12-31

    Due to safety considerations and in an effort to standardize Department of Defense fuels, the US Air Force (USAF) replaced the naptha-based JP-4, MIL-T-5624, with the kerosene-based JP-8, MIL-T-83133, as the standard turbine fuel. Although engine emissions from combustion of JP-4 are well documented for criteria pollutants, little information exists for criteria and hazardous air pollutants from combustion of JP-8 fuel. Due to intrinsic differences between these two raw fuels, their combustion products were expected to differ. As part of a broader engine testing program, the Air Force, through the Human Systems Center at Brooks AFB, TX, has contracted tomore » have the emissions characterized from aircraft engines and auxiliary power units (APUs). Criteria pollutant and targeted HAP emissions of selected USAF aircraft engines were quantified during the test program. Emission test results will be used to develop emission factors for the tested aircraft engines and APUs. The Air Force intends to develop a mathematical relationship, using the data collected during this series of tests and from previous tests, to extrapolate existing JP-4 emission factors to representative JP-8 emission factors for other engines. This paper reports sampling methodologies for the following aircraft engine emissions tests: F110-GE-100, F101-GE-102, TF33-P-102, F108-CF-100, T56-A-15, and T39-GE-1A/C. The UH-60A helicopter engine, T700-GE-700, and the C-5A/B and C-130H auxiliary power units (GTCP165-1 and GTCP85-180, respectively) were also tested. Testing was performed at various engine settings to determine emissions of particulate matter, carbon monoxide, nitrogen oxides, sulfur oxides, total hydrocarbon, and selected hazardous air pollutants. Ambient monitoring was conducted concurrently to establish background pollutant concentrations for data correction.« less

  20. Assessing and Controlling Blast Noise Emission: SARNAM Noise Impact Software

    DTIC Science & Technology

    2007-12-29

    Engineers, Engineer Research and Development Center Jeffery Mifflin U.S. Army Corps of Engineers, Engineer Research and Development Center Kristy A...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory...6 Figure 5. OneShot control page

  1. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    NASA Astrophysics Data System (ADS)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties, performance and on emissions from diesel engines. Improvement:-This paper presents the literature review on effect of biodiesel additives on properties, performance and on emission.

  2. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  3. Emissions performance of abatement technologies over the proposed EEC extra-urban driving cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanBeckhoven, L.C.; Rijkeboer, R.C.

    1989-01-01

    The definition of what is likely to be the new EEC extra-urban cycle has made it possible to determine the emission characteristics of cars fitted with different emissions control equipment. Central to the evaluation program were three versions of experimental lean and dilute burn engines compared with engine modifications and open and closed loop three-way catalyst systems. This paper describes the evaluation program and evaluates its results.

  4. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  5. Further validation of artificial neural network-based emissions simulation models for conventional and hybrid electric vehicles.

    PubMed

    Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N

    2006-07-01

    With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.

  6. HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, N; Ikonen, M; Laurikko, J

    2003-08-24

    Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable,more » how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological characterization of particles) for up-to-date diesel and natural gas vehicles. The paper describes the methodology used for the measurements on buses, the test matrix and some preliminary emission data on both regulated and unregulated emissions.« less

  7. Applicability of the PEMS technique for simplified NO X monitoring on board ships

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.; Ekström, M.

    The performance of a predictive emission monitoring system (PEMS) as a technique for NO x monitoring on medium speed marine diesel engines has been evaluated for 16 similar engines on four different ships. The PEMS function tested measured O 2 concentration in the exhaust gas, engine load, combustion air temperature and humidity, and barometric pressure to calculate the NO x concentration. Emission measurements were carried out by means of a conventional continuous emission monitoring system (CEMS) and the measured NO x concentrations were compared with those calculated by the PEMS function. For 11 of the 16 engines, the average error between measured and calculated NO x concentration was <10% of the calibration range (1725 ppm). In addition, 10 of the engines displayed correlation coefficients between measured and calculated NO x as 0.90 or higher. For two of the ships, the predicted NO x concentrations from all engines on board gave good agreement with those measured (2.6-4.7% and 2.6-8.0% average error). In other cases however, the performance of the PEMS function was poor e.g. the four engines of ship D showed average errors of 10.3-17.7%. Although similar engine models, fuel and load characteristics were compared in the tests, the specific NO x emissions at steady-state loads used varied from 12.6 up to 15.8 g k -1Wh corr. Although a single PEMS function may prove universal and adequate for calculating NO x emissions from similar engines on board the same ship, an engine specific PEMS function is recommended. The form of the PEMS function, i.e. using exhaust O 2 and engine load as inputs, is however likely to be applicable to most propeller-law diesel engines. Bearing in mind the performance criteria for using PEMS at land-based installations, the results from this study are promising. Viewed as a single data set of 56 h with 16 separate engine comparisons between CEMS and PEMS, the data set shows a relative accuracy of 14.5% i.e. within the 20% requirement of the US Environmental Protection Agency. In light of the increased interest and international guidelines for continuous NO x monitoring on board ships, the PEMS technique can offer a simple but cost-effective option.

  8. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Smith, A. L.

    1980-01-01

    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  9. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  10. 40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... demonstrating for certification that catalyst-equipped engines (or engines equipped with other aftertreatment... engine-out emissions comply with the Tier 2 standards. The catalyst material or other aftertreatment... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering...

  11. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less

  12. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  13. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    PubMed

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  14. Impact of Fire Resistant Fuel Blends on Compression Ignition Engine Performance

    DTIC Science & Technology

    2011-07-01

    EFFECTS ON ENGINE PERFORMANCE FRF blends were tested in the CAT C7 and GEP 6.5L(T) engines to determine the effects of FRF on engine ...impact on efficiency of the Stanadyne rotary injection pump used in the GEP 6.5L(T) engine , thus largely effecting its power output when varying... exhaust backpressure .  Emissions are sampled from an exhaust probe installed between the engine and exhaust system butterfly valve. 

  15. 40 CFR 1065.415 - Durability demonstration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than in-use operation, subject to any pre-approval requirements established in the applicable standard.... Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment...

  16. 40 CFR 1065.415 - Durability demonstration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than in-use operation, subject to any pre-approval requirements established in the applicable standard.... Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment...

  17. 40 CFR 1065.415 - Durability demonstration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than in-use operation, subject to any pre-approval requirements established in the applicable standard.... Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment...

  18. Over compression influence to the performances of the spark ignition engines

    NASA Astrophysics Data System (ADS)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  19. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  20. Compilation of Steady State Automotive Engine Test Data

    DOT National Transportation Integrated Search

    1978-09-01

    Experimental data were obtained in dynamometer tests of automotive engines used in the United States. The objective of this program is to obtain engine performance data for determining fuel consumption and emissions (carbon monoxide, hydrocarbons, an...

  1. A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG

    NASA Astrophysics Data System (ADS)

    Bielaczyc, P.; Szczotka, A.; Woodburn, J.

    2016-09-01

    This paper presents an analysis of THC, NMHC, CO, NOx and CO2 emissions during testing of two bi-fuel vehicles, fuelled with petrol and gaseous fuels, on a chassis dynamometer in the context of the Euro 6 emissions requirements. The analyses were performed on one Euro 5 bi-fuel vehicle (petrol/LPG) and one Euro 5 bi-fuel vehicle (petrol/CNG), both with SI engines equipped with MPI feeding systems operating in closed-loop control, typical three-way-catalysts and heated oxygen sensors. The vehicles had been adapted by their manufacturers for fuelling with LPG or CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured multipoint gas injection systems. The aim of this paper was an analysis of the impact of the gaseous fuels on the exhaust emission in comparison to the emission of the vehicles fuelled with petrol. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from light duty vehicle vehicles with spark-ignition and compression-ignition engines.

  2. On-board measurement of emissions from liquefied petroleum gas, gasoline and diesel powered passenger cars in Algeria.

    PubMed

    Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert

    2014-08-01

    On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.

  3. Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network.

    PubMed

    Liu, Zhen-tao; Fei, Shao-mei

    2004-08-01

    Great efforts have been made to resolve the serious environmental pollution and inevitable declining of energy resources. A review of Chinese fuel reserves and engine technology showed that compressed natural gas (CNG)/diesel dual fuel engine (DFE) was one of the best solutions for the above problems at present. In order to study and improve the emission performance of CNG/diesel DFE, an emission model for DFE based on radial basis function (RBF) neural network was developed which was a black-box input-output training data model not require priori knowledge. The RBF centers and the connected weights could be selected automatically according to the distribution of the training data in input-output space and the given approximating error. Studies showed that the predicted results accorded well with the experimental data over a large range of operating conditions from low load to high load. The developed emissions model based on the RBF neural network could be used to successfully predict and optimize the emissions performance of DFE. And the effect of the DFEmain performance parameters, such as rotation speed, load, pilot quantity and injection timing, were also predicted by means of this model. In resumé, an emission prediction model for CNG/diesel DFE based on RBF neural network was built for analyzing the effect of the main performance parameters on the CO, NOx, emissions of DFE. The predicted results agreed quite well with the traditional emissions model, which indicated that the model had certain application value, although it still has some limitations, because of its high dependence on the quantity of the experimental sample data.

  4. Studies on biogas-fuelled compression ignition engine under dual fuel mode.

    PubMed

    Mahla, Sunil Kumar; Singla, Varun; Sandhu, Sarbjot Singh; Dhir, Amit

    2018-04-01

    Experimental investigation has been carried out to utilize biogas as an alternative source of energy in compression ignition (CI) engine under dual fuel operational mode. Biogas was inducted into the inlet manifold at different flow rates along with fresh air through inlet manifold and diesel was injected as a pilot fuel to initiate combustion under dual fuel mode. The engine performance and emission characteristics of dual fuel operational mode were analyzed at different biogas flow rates and compared with baseline conventional diesel fuel. Based upon the improved performance and lower emission characteristics under the dual fuel operation, the optimum flow rate of biogas was observed to be 2.2 kg/h. The lower brake thermal efficiency (BTE) and higher brake-specific energy consumption (BSEC) were noticed with biogas-diesel fuel under dual fuel mode when compared with neat diesel operation. Test results showed reduced NO x emissions and smoke opacity level in the exhaust tailpipe emissions. However, higher hydrocarbon (HC) and carbon monoxide (CO) emissions were noticed under dual fuel mode at entire engine loads when compared with baseline fossil petro-diesel. Hence, the use of low-cost gaseous fuel such as biogas would be an economically viable proposition to address the current and future problems of energy scarcity and associated environmental concerns.

  5. Lean, premixed, prevaporized fuel combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Fiorentino, A. J.; Greene, W.; Kim, J.

    1979-01-01

    Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered.

  6. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L; Fioroni, Gina; Fatouraie, Mohammad

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulatemore » emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.« less

  7. Impact of antioxidant additives on the performance and emission characteristics of C.I engine fuelled with B20 blend of rice bran biodiesel.

    PubMed

    Alagu, Karthikeyan; Nagappan, Beemkumar; Jayaraman, Jayaprabakar; Arul GnanaDhas, Anderson

    2018-04-17

    This manuscript presents the impact of addition of antioxidant additives to rice bran biodiesel blend on the performance and emission characteristics of compression ignition (C.I) engine. Rice bran methyl ester (RBME) was produced from rice bran oil by transesterification using sodium hydroxide as catalyst. An experimental investigation was conducted on a single-cylinder four-stroke C.I engine to analyze the performance and emission characteristics of rice bran methyl ester (RBME) blended with diesel at 20% by volume (B20) with and without addition of 1000 ppm of two monophenolic antioxidant additives, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). The results showed that the BHA- and BHT-treated B20 blend decreased the brake specific fuel consumption (BSFC) by 2.1 and 1.2% and increased the brake thermal efficiency (BTE) by 1.04 and 0.5% compared to B20. The BHA- and BHT-treated B20 blend produced mean reductions in NOx emission of 12.2 and 9.6%, respectively, compared to B20. The carbon monoxide (CO) and hydrocarbon (HC) emissions of BHA- and BHT-treated B20 were increased by 14.8-16.6% and 10.6-11.2%, respectively, compared to B20. However the emission levels were lower than those of diesel.

  8. Emission calculations for a scramjet powered hypersonic transport

    NASA Technical Reports Server (NTRS)

    Lezberg, E. A.

    1973-01-01

    Calculations of exhaust emissions from a scramjet powered hypersonic transport burning hydrogen fuel were performed over a range of Mach numbers of 5 to 12 to provide input data for wake mixing calculations and forecasts of future levels of pollutants in the stratosphere. The calculations were performed utilizing a one-dimensional chemical kinetics computer program for the combustor and exhaust nozzle of a fixed geometry dual-mode scramjet engine. Inlet conditions to the combustor and engine size was based on a vehicle of 227,000 kg (500,000 lb) gross take of weight with engines sized for Mach 8 cruise. Nitric oxide emissions were very high for stoichiometric engine operation but for Mach 6 cruise at reduced equivalence ratio are in the range predicted for an advanced supersonic transport. Combustor designs which utilize fuel staging and rapid expansion to minimize residence time at high combustion temperatures were found to be effective in preventing nitric oxide formation from reaching equilibrium concentrations.

  9. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required tomore » move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.« less

  10. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... either emission-related or non-emission-related and each of these can be classified as either scheduled... component whose sole or primary purpose is to reduce emissions or whose failure will significantly degrade emissions control and whose function is not integral to the design and performance of the engine.) (iv) For...

  11. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... either emission-related or non-emission-related and each of these can be classified as either scheduled... component whose sole or primary purpose is to reduce emissions or whose failure will significantly degrade emissions control and whose function is not integral to the design and performance of the engine.) (iv...

  12. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    PubMed

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-05-01

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  13. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  14. Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics.

    PubMed

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R; Ireson, Robert G; Weaver, Christopher S; Hesterberg, Thomas W; Larson, Timothy; Davey, Mark; Liu, L J Sally

    2008-08-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

  15. Detailed Characterization and Profiles of Crankcase and Diesel Particular Matter Exhaust Emissions Using Speciated Organics

    PubMed Central

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R.; Ireson, Robert G.; Weaver, Christopher S.; Hesterberg, Thomas W.; Larson, Timothy; Davey, Mark; Liu, L.-J. Sally

    2008-01-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as intentional quantitative tracers for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes, and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 μg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions. PMID:18754490

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT ANR PIPELINE COMPANY PARAMETRIC EMISSIONS MONITORING SYSTEM (PEMS)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of a gaseous-emissions monitoring system for large, natural-gas-fired internal combustion engines. The device tested is the Parametric Emissions Monitoring System (PEMS) manufactured by ANR ...

  17. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  18. Performance Characteristics of 1977 Ford 300 CID Engine

    DOT National Transportation Integrated Search

    1980-02-01

    Experimental data were obtained in dynamometer tests of a 1977 Ford 300 CID engine to determine fuel consumption and emissions (hydrocarbons, carbon monoxide, and oxides of Nitrogen) at steady-state engine operating modes. The objective of the test w...

  19. Performance Characteristics of 1977 Chrysler 318 CID Engine

    DOT National Transportation Integrated Search

    1980-02-01

    Experimental data were obtained in dynamometer tests of a 1977 Chrysler 318 CID engine to determine fuel consumption and emissions (hydrocarbons, carbon monoxide, and oxides of nitrogen) at steady-state engine operating modes. The objective of the te...

  20. Small Engine Technology (SET) - Task 4, Regional Turboprop/Turbofan Engine Advanced Combustor Study

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Srinivasan, Ram; Myers, Geoffrey; Cardenas, Manuel; Penko, Paul F. (Technical Monitor)

    2003-01-01

    Under the SET Program Task 4 - Regional Turboprop/Turbofan Engine Advanced Combustor Study, a total of ten low-emissions combustion system concepts were evaluated analytically for three different gas turbine engine geometries and three different levels of oxides of nitrogen (NOx) reduction technology, using an existing AlliedSignal three-dimensional (3-D) Computational Fluid Dynamics (CFD) code to predict Landing and Takeoff (LTO) engine cycle emission values. A list of potential Barrier Technologies to the successful implementation of these low-NOx combustor designs was created and assessed. A trade study was performed that ranked each of the ten study configurations on the basis of a number of manufacturing and durability factors, in addition to emissions levels. The results of the trade study identified three basic NOx-emissions reduction concepts that could be incorporated in proposed follow-on combustor technology development programs aimed at demonstrating low-NOx combustor hardware. These concepts are: high-flow swirlers and primary orifices, fuel-preparation cans, and double-dome swirlers.

  1. Update of the development on the new Audi NSU rotary engine generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Basshuysen, R.; Wilmers, G.

    At AUDI NSU a new generation of rotary engines has been developed of which the significant layout parameters are outlined. The present status of development is characterized by a lean burn concept with fuel injection and an exhaust emission control system with catalytic converter. Test results indicate that the fuel economy ranges at the same level as comparable reciprocating engines. The future US-exhaust emission standards are kept below but in respect to the Japanese standards further reduction of NO/sub x/ is necessary. Endurance tests proving the durability of the exhaust emission control system have still to be performed.

  2. Combustion characteristics of an SI engine fueled with biogas fuel

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Long, Wuqiang; Song, Peng

    2017-04-01

    An experimental research of the effect of H2 substitution and CO2 dilution on CH4 combustion has been carried out on a spark ignition engine. The results show that H2 addition could improve BMEP, thermal efficiency, CO and THC emissions. NOX emissions increased for higher low heating value (LHV) of H2 than CH4. CO2 dilution could effective reduce NOX emission of H2-CH4 combustion. Although engine performance, thermal efficiency and exhaust get unacceptable under high fuel dilution ratio (F.D.R.) conditions, it could be solved by decreasing F.D.R. and/or increasing hydrogen substitution ratio (H.S.R.).

  3. 40 CFR 1065.501 - Overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine and sampling systems. (7) Sample emissions throughout the duty cycle. (8) Record post-test data. (9) Perform post-test procedures to verify proper operation of certain equipment and analyzers. (10... PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.501 Overview. (a) Use the procedures...

  4. 40 CFR 1065.501 - Overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine and sampling systems. (7) Sample emissions throughout the duty cycle. (8) Record post-test data. (9) Perform post-test procedures to verify proper operation of certain equipment and analyzers. (10... PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.501 Overview. (a) Use the procedures...

  5. 40 CFR 1065.501 - Overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engine and sampling systems. (7) Sample emissions throughout the duty cycle. (8) Record post-test data. (9) Perform post-test procedures to verify proper operation of certain equipment and analyzers. (10... PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.501 Overview. (a) Use the procedures...

  6. 40 CFR 1065.501 - Overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engine and sampling systems. (7) Sample emissions throughout the duty cycle. (8) Record post-test data. (9) Perform post-test procedures to verify proper operation of certain equipment and analyzers. (10... PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.501 Overview. (a) Use the procedures...

  7. 40 CFR 1065.501 - Overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engine and sampling systems. (7) Sample emissions throughout the duty cycle. (8) Record post-test data. (9) Perform post-test procedures to verify proper operation of certain equipment and analyzers. (10... PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.501 Overview. (a) Use the procedures...

  8. Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.

  9. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    PubMed

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Real-world operation conditions and on-road emissions of Beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Johnson, Kent C; Shah, Asad Naeem; Tan, Jianwei; Wang, Chu; Yu, Linxiao

    2011-03-15

    On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    PubMed

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Hydro Carbon (HC) and Nitrogen Oxide (NO x ) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  13. Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel

    PubMed Central

    Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo

    2011-01-01

    A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P1PH NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%–75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%–20.4% when fueled with the biodiesel compared with diesel fuel. PMID:21403894

  14. Evaluation of FIDC system. [fuel vapor injector/ogniter and lean limit controller for automobile engines

    NASA Technical Reports Server (NTRS)

    Hall, R. A.; Dowdy, M. W.; Price, T. W.

    1978-01-01

    A fuel vapor injector/igniter system was evaluated for its effect on automobile engine performance, fuel economy, and exhaust emissions. Improved fuel economy and emissions, found during the single cylinder tests were not realized with a multicylinder engine. Multicylinder engine tests were conducted to compare the system with both a stock and modified stock configuration. A comparison of cylinder-to-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. The multicylinder engine was installed in a vehicle was tested on a chassis dynamometer to compare the system with stock and modified stock configurations. The fuel vapor injector/igniter system (FIDC) configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy. The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. The FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability.

  15. Rapeseed oil monoester of ethylene glycol monomethyl ether as a new biodiesel.

    PubMed

    Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo

    2011-01-01

    A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P(1P)H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%-75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%-20.4% when fueled with the biodiesel compared with diesel fuel.

  16. Evaluating the Impact of E15 on Snowmobile Engine Durability and Vehicle Driveability: September 22, 2010 - August 15, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miers, Scott A.; Blough, Jason R.

    The objective of this study was to evaluate the effects of E15 on current and legacy snowmobile engines and vehicles that could occur due to misfueling by the vehicle owner. Three test scenarios were conducted to evaluate the impact of E15, including cold-start performance and emissions, on-snow vehicle driveability, and laboratory exhaust emissions over the useful life of the engine. The eightengines tested represent current and legacy product that may exhibit sensitivity to increased ethanol blended in gasoline. Because a limited number of snowmobile engines were evaluated for this test program, the results are not statistically significant. However, the broadmore » range of engine and mixture preparation technologies, combined with the various test scenarios provide preliminaryinformation to assess potential issues with E15 use in snowmobiles. Cold-start tests were performed at -6.7 degrees C (20 degrees F), -17.8 degrees C (0 degrees F), and -28.9 degrees C (-20 degrees F). The evaluation included time to start or number of pulls to start, engine speed, exhaust gas temperature, and start-up engine emissions concentrations. Statistically significant differences instarting times were not observed for most vehicles. Snowmobile driveability was analyzed using a subjective evaluation on a controlled test course. The drivers could not easily discern which fuel the snowmobiles were using during the subjective evaluation. Durability tests were conducted to measure the emissions and performance of the snowmobiles over the useful life of the vehicles (5,000miles). There were no fuel-related engine failures on E0 or E15. Carbon monoxide emissions were generally reduced by E15 relative to E0, by from 10% to 35%. Occasional misfueling of snowmobiles with E15 is not likely to cause noticeable or immediate problems for consumers. E15 is not approved for snowmobile use, and observations made during this study support the U.S. Environmental ProtectionAgency's decision to not approve E15 for snowmobiles.« less

  17. Development and validation of spray models for investigating diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  18. Performance Characteristics of Automotive Engines in the United States : Report No. 7. Mercedes Benz Model OM617 Diesel Engine.

    DOT National Transportation Integrated Search

    1977-01-01

    Experimental data were obtained in dynamometer tests of the Mercedes Benz Model OM617 diesel engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitroge, and smoke) at steady-state engine-operating modes. The o...

  19. Performance Characteristics of Automotive Engines in the United States : Report No. 8. Mitsubishi Model 6DS7 Diesel Engine.

    DOT National Transportation Integrated Search

    1977-08-01

    Experimental data were obtained in dynamometer tests of the Mitsubishi Model 6DS7 diesel engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen, and smoke) at steady-state engine operating modes. The obje...

  20. Performance Characteristics of Automotive Engines in the United States : Report No. 10. Chevrolet (1975) 250 CID 1-BBL Engine.

    DOT National Transportation Integrated Search

    1977-08-01

    Experimental data were obtained in dynamometer tests of a 1975 Chevrolet 250-CID, 1-bbl engine to determine fuel consumption and emissions (hydrocarbons, carbon monoxide, and oxides of nitrogen) at steady-state engine operating modes. The objective o...

  1. Performance Characteristics of Automotive Engines in the United States : Report No. 9. Chrysler (1975) 225-CID 1-BBL Engine.

    DOT National Transportation Integrated Search

    1977-08-01

    Experimental data were obtained in dynamometer tests of a 1975 Chrysler 225-CID, 1-bbl engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, and oxides of nitrogen) at steady-state engine operating modes. The objective of ...

  2. 40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices) comply with applicable emission standards. You must use good engineering judgment for all aspects... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering analysis. Include with your application a detailed engineering analysis describing how the test data...

  3. 40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices) comply with applicable emission standards. You must use good engineering judgment for all aspects... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering analysis. Include with your application a detailed engineering analysis describing how the test data...

  4. Performance Characteristics of Automotive Engines in the United States : Report No. 11. Chrysler (1975) 318-CID 2-BBL Engine.

    DOT National Transportation Integrated Search

    1977-08-01

    Experimental data were obtained in dynamometer tests of a 1975 Chrysler 318-CID, 2-bbl engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, and oxides of nitrogen) at steady-state engine operating modes. The objective of ...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.D.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less

  6. Performance Characteristics of 1977 General Motors 350 CID Engine

    DOT National Transportation Integrated Search

    1980-02-01

    Experimental data were obtained in dynamometer tests of a 1977 GM 350 CID engine to determine fuel consumption and emissions (hydrocarbons, carbon monoxide, and oxides of nitrogen) at steady-state engine operating modes. The objective of the test was...

  7. Performance Characteristics of 1977 American Motors 304 CID Engine

    DOT National Transportation Integrated Search

    1980-02-01

    Experimental data were obtained in dynamometer tests of a 1977 AM 304 CID engine to determine fuel consumption and emissions (hydrocarbons, carbon monoxide, and oxides of nitrogen) at steady-state engine operating modes. The objective of the test was...

  8. VSCE technology definition study

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Hunt, R. B.

    1979-01-01

    Refined design definition of the variable stream control engine (VSCE) concept for advanced supersonic transports is presented. Operating and performance features of the VSCE are discussed, including the engine components, thrust specific fuel consumption, weight, noise, and emission system. A preliminary engine design is presented.

  9. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  10. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  11. Road vehicle emission factors development: A review

    NASA Astrophysics Data System (ADS)

    Franco, Vicente; Kousoulidou, Marina; Muntean, Marilena; Ntziachristos, Leonidas; Hausberger, Stefan; Dilara, Panagiota

    2013-05-01

    Pollutant emissions need to be accurately estimated to ensure that air quality plans are designed and implemented appropriately. Emission factors (EFs) are empirical functional relations between pollutant emissions and the activity that causes them. In this review article, the techniques used to measure road vehicle emissions are examined in relation to the development of EFs found in emission models used to produce emission inventories. The emission measurement techniques covered include those most widely used for road vehicle emissions data collection, namely chassis and engine dynamometer measurements, remote sensing, road tunnel studies and portable emission measurements systems (PEMS). The main advantages and disadvantages of each method with regards to emissions modelling are presented. A review of the ways in which EFs may be derived from test data is also performed, with a clear distinction between data obtained under controlled conditions (engine and chassis dynamometer measurements using standard driving cycles) and measurements under real-world operation.

  12. Variable-cycle engines for supersonic cruising aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Welliver, A. D.

    1976-01-01

    The paper reviews the evolution and current status of selected recent variable-cycle engine (VCE) studies and describes how the results are influenced by airplane requirements. The engine/airplane studies are intended to identify promising VCE concepts, simplify their designs and identify the potential benefits in terms of aircraft performance. This includes range, noise, emissions, and the time and effort it may require to ensure technical readiness of sufficient depth to satisfy reasonable economic, performance, and environmental constraints. A brief overview of closely-related, on-going technology programs in acoustics and exhaust emissions is presented. It is shown that realistic technology advancements in critical areas combined with well matched aircraft and selected VCE concepts can lead to significantly improved economic and environmental performance relative to first-generation SST predictions.

  13. Evaluation of emission toxicity of urban bus engines: compressed natural gas and comparison with liquid fuels.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara Laura; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2006-02-15

    Emissions from a spark-ignition (SI) heavy-duty (HD) urban bus engine with a three-way catalyst (TWC), fuelled with compressed natural gas (CNG), were chemically analyzed and tested for genotoxicity. The results were compared with those obtained in a previous study on an equivalent diesel engine, fuelled with diesel oil (D) and a blend of the same with 20% vegetable oil (B20). Experimental procedures were identical, so that emission levels of the CNG engine were exactly comparable to the ones of the diesel engine. The experimental design was focused on carcinogenic compounds and genotoxic activity of exhausts. The results obtained show that the SI CNG engine emissions, with respect to the diesel engine fuelled with D, were nearly 50 times lower for carcinogenic polycyclic aromatic hydrocarbons (PAHs), 20 times lower for formaldehyde, and more than 30 times lower for particulate matter (PM). A 20-30 fold reduction of genotoxic activity was estimated from tests performed. A very high reduction of nitrogen oxides (NO(X)) was also measured. The impact of diesel powered transport on urban air quality, and the potential benefits deriving from the use of CNG for public transport, are discussed.

  14. Partial oxidation for improved cold starts in alcohol-fueled engines: Phase 2 topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    Alcohol fuels exhibit poor cold-start performance because of their low volatility. Neat alcohol engines become difficult, if not impossible, to start at temperatures close to or below freezing. Improvements in the cold-start performance (both time to start and emissions) are essential to capture the full benefits of alcohols as an alternative transportation fuel. The objective of this project was to develop a neat alcohol partial oxidation (POX) reforming technology to improve an alcohol engine`s ability to start at low temperatures (as low as {minus}30 C) and to reduce its cold-start emissions. The project emphasis was on fuel-grade ethanol (E95) butmore » the technology can be easily extended to other alcohol fuels. Ultimately a compact, on-vehicle, ethanol POX reactor was developed as a fuel system component to produce a hydrogen-rich, fuel-gas mixture for cold starts. The POX reactor is an easily controllable combustion device that allows flexibility during engine startup even in the most extreme conditions. It is a small device that is mounted directly onto the engine intake manifold. The gaseous fuel products (or reformate) from the POX reactor exit the chamber and enter the intake manifold, either replacing or supplementing the standard ethanol fuel consumed during an engine start. The combustion of the reformate during startup can reduce engine start time and tail-pipe emissions.« less

  15. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  16. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  17. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically shortmore » injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.« less

  18. Energy efficient engine component development and integration program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.

  19. Dual fuel diesel engine operation using LPG

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  20. Engine Performance Test of the Honda CVCC

    DOT National Transportation Integrated Search

    1975-09-01

    This report presents the data which were obtained from a test of a prototype Honda CVCC, 90.8-cubic-inch, 4-cylinder engine. The data included are sufficient to establish the steady-state engine maps for fuel consumption and emissions (HC, CO, NOx) o...

  1. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    DTIC Science & Technology

    2016-08-17

    and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in

  2. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    PubMed

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  3. Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine.

    PubMed

    Cheng, C H; Cheung, C S; Chan, T L; Lee, S C; Yao, C D

    2008-01-15

    Experiments were conducted on a 4-cylinder direct-injection diesel engine with fumigation methanol injected into the air intake of each cylinder. The fumigation methanol was injected to top up 10%, 20% and 30% of the power output under different engine operating conditions. The effects of fumigation methanol on engine performance, gaseous emissions and particulate emission were investigated. The experimental results show that there is a decrease in the brake thermal efficiency when fumigation methanol is applied, except at the highest load of 0.67 MPa. At low loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions. The concentration of nitrogen oxides (NOx) is significantly reduced except at close to full load condition. There is also a reduction in the smoke opacity and the particulate matter (PM) mass concentration. For the submicron particles, the total number of particles decreases at low and medium loads but increases at high loads. In all cases, there is a shift of the particles towards smaller geometrical mean diameter, especially at high loads. The increase in nano-sized particles and the increase in NO(2) emission could have serious impact on human health.

  4. The engineering options for mitigating the climate impacts of aviation.

    PubMed

    Williams, Victoria

    2007-12-15

    Aviation is a growing contributor to climate change, with unique impacts due to the altitude of emissions. If existing traffic growth rates continue, radical engineering solutions will be required to prevent aviation becoming one of the dominant contributors to climate change. This paper reviews the engineering options for mitigating the climate impacts of aviation using aircraft and airspace technologies. These options include not only improvements in fuel efficiency, which would reduce carbon dioxide (CO2) emissions, but also measures to reduce non-CO2 impacts including the formation of persistent contrails. Integrated solutions to optimize environmental performance will require changes to airframes, engines, avionics, air traffic control systems and airspace design. While market-based measures, such as offset schemes and emissions trading, receive growing attention, this paper sets out the crucial role of engineering in the challenge to develop a 'green air traffic system'.

  5. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  6. 40 CFR 60.2120 - Affirmative defense for violation of emission standards during malfunction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards of Performance for Commercial and Industrial Solid Waste Incineration Units Emission Limitations... malfunction event at issue. The analysis shall also specify, using best monitoring methods and engineering...

  7. Simulation of diesel engine emissions on the example of Fiat Panda in the NEDC test

    NASA Astrophysics Data System (ADS)

    Botwinska, Katarzyna; Mruk, Remigiusz; Słoma, Jacek; Tucki, Karol; Zaleski, Mateusz

    2017-10-01

    Road transport may be deemed a strategic branch of modern economy. Unfortunately, a rapid increase in the number of on-road motor vehicles entails some negative consequences as well, for instance, excessive concentration of exhausts produced by engines which results in deterioration of air quality. EURO emission standards which define acceptable limits for exhaust emissions of power units is an example of an activity performed in attempt to improve air quality. The EURO standard defines permissible amount of exhausts produced by a vehicle. Presently new units are examined through NEDC test. For the purpose of this thesis, a virtual test stand in a form of a computer simulation of a chassis dynamometer was used to simulate emission of a diesel engine (compression-ignition engine) in the NEDC test. Actual parameters of the 1.3 MultiJet engine of the Fiat Panda passenger car of 2014 were applied in the model. The simulation was carried out in the Matlab Simulink environment. The simulation model of the Fiat Panda passenger car enables the designation of the emission waveform for all test stages which corresponds to the values received during an approval test in real-life conditions.

  8. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen) sensor feedback are unable to maintain engine AFR within the required range owing to drift in sensor output over time. In this thesis, the emissions compliance performance of an AFR controller is evaluated over a 6-month period on an engine driving a gas compressor in an active natural gas production field. This AFR controller differentiates itself from other commercially available products by employing a lambda sensor that has been engineered against sensor drift, making it better suited for natural gas engine applications. Also included in this study are the controller's responses to transient loads, diurnal performance, adaptability to seasonal variations in ambient temperature, fuel quality variations (in wellhead gas), engine health considerations for proper AFR control, and controller calibration sensitivity when replacing lambda sensors. During the first three months of operation and subsequent diurnal tests, the controller's performance as a multi-point AFR control system was consistent, demonstrating appropriate AFR adjustments to variation in engine operation, over a wide range of ambient conditions, despite high consumption rate of engine lubrication oil. For the remainder the test, the high levels of lubrication oil consumption, compromised the ability to verify controller performance.

  9. Comparative analysis of the Performance and Emission Characteristics of ethanol-butanol-gasoline blends

    NASA Astrophysics Data System (ADS)

    Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej

    2018-02-01

    Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.

  10. 40 CFR 1065.530 - Emission test sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature continuously to verify that it remains within the pre-test temperature range as specified in... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...

  11. 40 CFR 1065.530 - Emission test sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature continuously to verify that it remains within the pre-test temperature range as specified in... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...

  12. 40 CFR 1065.530 - Emission test sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature continuously to verify that it remains within the pre-test temperature range as specified in... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...

  13. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  14. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  15. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  16. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  17. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    PubMed Central

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  18. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    PubMed

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  19. Novel biofuel formulations for enhanced vehicle performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Dennis; Narayan, Ramani; Berglund, Kris

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbonmore » sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable of producing such performance, thus providing direction for the implementation of renewable fuels for U.S. transportation. The testing and simulation studies have deepened our understanding of combustion 1) by advancing the rigor with which simulations can be carried out and 2) by illustrating that differences in biofuel and petroleum fuel properties can be used to predict differences in combustion behavior in engines. The future viability of biofuels for compression ignition (diesel) engines is now subject to economic (cost) uncertainty more so than to technical barriers, as the advanced biofuel blends developed here can improve cold-weather fuel properties, provide similar engine performance, and reduce emissions.« less

  20. Experimental Clean Combustor Program (ECCP), phase 3. [commercial aircraft turbofan engine tests with double annular combustor

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.

  1. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  2. 40 CFR 1065.530 - Emission test sequence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to verify that it remains within the pre-test temperature range as specified in § 1065.520(b): (1... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...

  3. 40 CFR 1065.530 - Emission test sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to verify that it remains within the pre-test temperature range as specified in § 1065.520(b): (1... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Emission test sequence. 1065.530... CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.530...

  4. Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine.

    PubMed

    Corporan, Edwin; Reich, Richard; Monroig, Orvin; DeWitt, Matthew J; Larson, Venus; Aulich, Ted; Mann, Michael; Seames, Wayne

    2005-07-01

    The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.

  5. DI Diesel Performance and Emissions Models

    DTIC Science & Technology

    2003-06-11

    Skeletal mechanism for NOx chemistry in diesel engines ,” SAE Paper 981450, 1998 SAE Transactions, Vol. 107, Sect. 4, J. Fuels and... mechanism for NOx chemistry proposed by Mellor et al. (1998a) is incorporated in an engine simulation code. The two-zone model, also proposed by Mellor et...34Dynamic Application of a Skeletal Mechanism for DI Diesel NOx Emissions," SAE Paper 2001-01-1984, SAE Trans., J. Fuels & Lubricants,

  6. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  7. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Szetela, E. J.; Vranos, A.

    1978-01-01

    The impact of the use of broad specification fuels on the design, performance durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines was assessed. Single stage, vorbix and lean premixed prevaporized combustors, in the JT9D and an advanced energy efficient engine cycle were evaluated when operating on Jet A and ERBS (Experimental Referee Broad Specification) fuels. Design modifications, based on criteria evolved from a literature survey, were introduced and their effectiveness at offsetting projected deficiencies resulting from the use of ERBS was estimated. The results indicate that the use of a broad specification fuel such as ERBS, will necessitate significant technology improvements and redesign if deteriorated performance, durability and emissions are to be avoided. Higher radiant heat loads are projected to seriously compromise liner life while the reduced thermal stability of ERBS will require revisions to the engine-airframe fuel system to reduce the thermal stress on the fuel. Smoke and emissions output are projected to increase with the use of broad specification fuels. While the basic geometry of the single stage and vorbix combustors are compatible with the use of ERBS, extensive redesign of the front end of the lean premixed prevaporized burner will be required to achieve satisfactory operation and optimum emissions.

  8. 40 CFR 94.907 - Engine dressing exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., element of design, or calibration specified in the engine manufacturer's application for certification... turbocharger with one that matches the performance of the original turbocharger. (iii) Modify or design the... exempted engine, you must send us emission test data on the appropriate marine duty cycles. You can include...

  9. ETV TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: LUBRIZOL ENGINE CONTROL SYSTEMS PURIFILTER SC17L

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Lubrizol Engine Control Systems Purifilter SC17L manufactured by Lubrizol Engine Control Systems. The technology is a precious and base metal, passively regenerated particulate filter...

  10. 30 CFR 7.81 - Purpose and effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in... this subpart E. Subpart E establishes the specific engine performance and exhaust emission requirements for MSHA approval of diesel engines for use in areas of underground coal mines where permissible...

  11. 30 CFR 7.81 - Purpose and effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in... this subpart E. Subpart E establishes the specific engine performance and exhaust emission requirements for MSHA approval of diesel engines for use in areas of underground coal mines where permissible...

  12. 30 CFR 7.81 - Purpose and effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in... this subpart E. Subpart E establishes the specific engine performance and exhaust emission requirements for MSHA approval of diesel engines for use in areas of underground coal mines where permissible...

  13. 30 CFR 7.81 - Purpose and effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in... this subpart E. Subpart E establishes the specific engine performance and exhaust emission requirements for MSHA approval of diesel engines for use in areas of underground coal mines where permissible...

  14. 30 CFR 7.81 - Purpose and effective date.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in... this subpart E. Subpart E establishes the specific engine performance and exhaust emission requirements for MSHA approval of diesel engines for use in areas of underground coal mines where permissible...

  15. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  16. Emission response from extended length, variable geometry gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troth, D.L.; Verdouw, A.J.; Tomlinson, J.G.

    1974-01-01

    A program to analyze, select, and experimentally evaluate low emission combustors for aircraft gas turbine engines is conducted to demonstrate a final combustor concept having a 50 percent reduction in total mass emissions (carbon monoxide, unburnt hydrocarbons, oxides of nitrogen, and exhaust smoke) without an increase in any specific pollutant. Research conducted under an Army Contract established design concepts demonstrating significant reductions in CO and UHC emissions. Two of these concepts were an extended length intermediate zone to consume CO and UHC and variable geometry to control the primary zone fuel air ratio over varying power conditions. Emission reduction featuresmore » were identified by analytical methods employing both reaction kinetics and empirical correlations. Experimental results were obtained on a T63 component combustor rig operating at conditions simulating the engine over the complete power operating range with JP-4 fuel. A combustor incorporating both extended length and variable geometry was evaluated and the performance and emission results are reported. These results are compared on the basis of a helicopter duty cycle and the EPA 1979 turboprop regulation landing take off cycle. The 1979 EPA emission regulations for P2 class engines can be met with the extended length variable geometry combustor on the T63 turboprop engine.« less

  17. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  18. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    NASA Astrophysics Data System (ADS)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-01-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  19. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine

    NASA Astrophysics Data System (ADS)

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, Beemkumar; Pandian, Amith Kishore

    2018-06-01

    Biodiesels from the mustard oil promise to be an alternative to the conventional diesel fuel due to their similarity in properties. Higher alcohols are added to neat Mustard oil biodiesel (M100) to vary the properties of biodiesel for improving its combustion, emission and performance characteristics. N-Octanol has the ability to act as an oxygen buffer during combustion which contributes to the catalytic effect and accelerates the combustion process. N-Octanol is dispersed to neat Mustard oil biodiesel in the form of emulsions at different dosage levels of 10, 20 and 30% by volume. Three emulsion fuels prepared for engine testing constitutes of 90% of biodiesel and 10% of n-Octanol (M90O10), 80% of biodiesel and 20% of n-Octanol (M80O20) and 70% of biodiesel and 30% of n-Octanol (M70O30) by volume respectively. AVL 5402 diesel engine is made to run on these fuels to study the effect of n-Octanol on combustion, emission and performance characteristics of the mustard oil biodiesel. Experimental results show that addition of n-octanol has a positive effect on performance, combustion and emission characteristics owing to its inbuilt oxygen content. N-octanol was found to be the better oxidizing catalyst as it was more effective in reducing HC and CO emissions. A significant reduction in NOx emission was found when fuelled with emulsion techniques. The blending of n-octanol to neat Mustard oil biodiesel reduces the energy and fuel consumption and a marginal increase in brake thermal efficiency. Further, n-octanol also reduces the ignition delay and aids the combustion.

  20. Complete modeling for systems of a marine diesel engine

    NASA Astrophysics Data System (ADS)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  1. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  2. DOT/NASA comparative assessment of Brayton engines for guideway vehicles and busses. Volume 2: Analysis and results

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Gas turbine engines were assessed for application to hear duty transportation. A summary of the assumptions, applications, and methods of analysis is included along with a discussion of the approach taken, the technical program flow chart, and weighting criteria used for performance evaluation. The various engines are compared on the bases of weight, performance, emissions and noise, technology status, and growth potential. The results of the engine screening phase and the conceptual design phase are presented.

  3. Study of Stack Emissions from Coast Guard Cutters

    DOT National Transportation Integrated Search

    1973-09-01

    The gaseous and particulate emissions from 14 cutters and boats in the First Coast Guard District have been measured under typical operating conditions. These measurements were performed on 57 diesel engines and boilers configured as main propulsion ...

  4. Performance Cycle Analysis of a Two-Spool, Separate-Exhaust Turbofan With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This paper presents the performance cycle analysis of a dual-spool, separate-exhaust turbofan engine, with an Interstage Turbine Burner serving as a secondary combustor. The ITB, which is located at the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet engine propulsion. A detailed performance analysis of this engine has been conducted for steady-state engine performance prediction. A code is written and is capable of predicting engine performances (i.e., thrust and thrust specific fuel consumption) at varying flight conditions and throttle settings. Two design-point engines were studied to reveal trends in performance at both full and partial throttle operations. A mission analysis is also presented to assure the advantage of saving fuel by adding ITB.

  5. Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin

    2014-02-15

    A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    NASA Astrophysics Data System (ADS)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  7. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    PubMed

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-04-01

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  8. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  9. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    PubMed

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.

  10. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions. PMID:23021308

  11. Performance Characteristics of Automotive Engines in the United States : Third Series - Report No. 13 - 1977 Chrysler 318 CID (5.2L)

    DOT National Transportation Integrated Search

    1981-06-01

    Experimental data were obtained in dynamometer tests of a 1977 Chrysler 318 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program...

  12. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 10, 1978 Honda, 98 CID (1.6 Liters)

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Honda 98 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program is ...

  13. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 4 - 1976 Chevrolet 85 CID (1.4 Liters), IV.

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1976 Chevrolet 85 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the program...

  14. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 20 - 1975 Chevrolet 350 CID (5.7 Liters) ...

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1975 Chevrolet 350 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the progra...

  15. In use performance of catalytic converters on properly maintained high mileage vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, M.A.; Larson, R.E.; Donahue, K.S.

    1986-01-01

    A test program to evaluate the performance of catalytic converters from fifty-six 1981 and 1982 model year high mileage properly maintained in-use vehicles (from 21 engine families) was performed by the Certification Division of the Office of Mobile Sources (EPA). The program is called the Catalyst Change Program. All program vehicles were screened for proper maintenance and for mileages that ranged from 35,000 to 60,000 miles. Among vehicles belonging to 21 high sales volume and high technology engine and emission control system designs tested, poor catalyst performance was determined to be a significant contributor to emissions failure of properly-maintained vehiclesmore » at or near their warranted useful life mileage.« less

  16. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  17. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    NASA Astrophysics Data System (ADS)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  18. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    NASA Astrophysics Data System (ADS)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn phase. Diesel/phytol blends yield marginally lower power values. In-cylinder soot radiation images show combustion instability at the start of the event for the 20% phytol/diesel blend. Overall, NOx emissions are comparable across the different fuels used and no discernible trend is found in CO emissions.

  19. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    NASA Astrophysics Data System (ADS)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  20. Supersonic variable-cycle engines

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Welliver, A. D.

    1976-01-01

    The evolution and current status of selected recent variable cycle engine (VCE) studies are reviewed, and how the results were influenced by airplane requirements is described. Promising VCE concepts are described, their designs are simplified and the potential benefits in terms of aircraft performance are identified. This includes range, noise, emissions, and the time and effort it may require to ensure technical readiness of sufficient depth to satisfy reasonable economic, performance, and environmental constraints. A brief overview of closely related, ongoing technology programs in acoustics and exhaust emissions is also presented. Realistic technology advancements in critical areas combined with well matched aircraft and selected VCE concepts can lead to significantly improved economic and environmental performance relative to first generation SST predictions.

  1. Analysis of performance and emissions of diesel engine using sunflower biodiesel

    NASA Astrophysics Data System (ADS)

    Tutunea, Dragos; Dumitru, Ilie

    2017-10-01

    The world consumption of fossil fuels is increasing rapidly and it affects the environment by green house gases causing health hazards. Biodiesel is emerging as an important promising alternative energy resource which can be used to reduce or even replace the usage of petroleum. Since is mainly derived from vegetable oil or animal fats can be produce for large scale by local farmers offering a great choice. However the extensive utilization of the biofuels can lead to shortages in the food chain. This paper analyzed the sunflower methyl ester (SFME) and its blends as an alternate source of fuel for diesel engines. Biodiesel was prepared from sunflower oil in laboratory in a small biodiesel installation (30L) by base transesterification. A 4 cylinder Deutz F4L912 diesel engine was used to perform the tests on various blends of sunflower biodiesel. The emissions of CO, HC were lower than diesel fuel for all blends tested. The NOx emissions were higher due to the high volatility and high viscosity of biodiesel.

  2. Lean, Premixed-Prevaporized (LPP) combustor conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.

    1979-01-01

    Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.

  3. History of Significant Vehicle and Fuel Introductions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirk, Matthew; Alleman, Teresa; Melendez, Margo

    This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy (DOE)-sponsored multi-agency project initiated to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development is designed to deliver maximum energy savings, emissions reduction, and on-road performance.

  4. 77 FR 282 - Proposed Settlement Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... revised the National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion... the stationary internal combustion engine new source performance standards (ICE NSPS) to allow owners and operators of emergency stationary internal combustion engines to operate emergency stationary...

  5. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    PubMed

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.

  6. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    NASA Astrophysics Data System (ADS)

    Kannan, Gopal Radhakrishnan

    2018-02-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  7. Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine

    NASA Technical Reports Server (NTRS)

    Heisey, J. B.; Lestz, S. S.

    1981-01-01

    A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.

  8. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  9. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  10. Hydrogen-enriched fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roser, R.

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventionalmore » fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.« less

  11. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    NASA Technical Reports Server (NTRS)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  12. Performance and operational improvements made to the Waukesha AT27-GL engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinbold, E.O.

    1996-12-31

    This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less

  13. Predictive NO x emission monitoring on board a passenger ferry

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.; Andreasson, K.

    NO x emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NO x measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O 2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1-6.9% of the calibration domain (0-1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NO x±38 t and the average NO x emission corrected for ambient conditions 14.3 g kWh corr-1. The exhaust profile of the engine in terms of NO x, CO and CO 2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NO x emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NO x measurements on board ships.

  14. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  15. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less

  17. Influence of Antioxidant Addition in Jatropha Biodiesel on the Performance, Combustion and Emission Characteristics of a DI Diesel Engine

    NASA Astrophysics Data System (ADS)

    Arockiasamy, Prabu; Ramachandran Bhagavathiammal, Anand

    2018-04-01

    An experimental investigation is conducted on a single-cylinder DI diesel engine, to evaluate the performance, combustion and emission characteristics of Jatropha biodiesel with the addition of antioxidants namely, Succinimide (C4H5NO2), N,N-Dimethyl p-phenylenediamine dihydrochloride (C8H14Cl2N2) and N-Phenyl- p-phenylenediamine (C6H5NHC6H4NH2) at 500, 1000 and 2000 ppm. The performance, combustion and emission characteristic tests are conducted at a constant speed of 1500 rpm, injection pressure of 215 bar, injection timing of 26° before top dead centre for the nine test fuels and the experimental results are compared with neat diesel and neat biodiesel as base fuels. The experimental results show that the addition of antioxidant in biodiesel suppresses the NO emission by quenching the OH radicals that are produced by the reaction of hydrocarbon radicals with molecular nitrogen. The maximum percentage reduction of NO emission by 5, 6 and 7% are observed for N-Phenyl- p-phenylenediamine, N,N-Dimethyl p-phenylenediamine dihydrochloride and Succinimide blended test fuels at 2000 ppm antioxidant addition with biodiesel.

  18. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Rogers, D. W.; Bahr, D. W.

    1976-01-01

    The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.

  19. Diesel engine performance and emissions with fuels derived from waste tyres.

    PubMed

    Verma, Puneet; Zare, Ali; Jafari, Mohammad; Bodisco, Timothy A; Rainey, Thomas; Ristovski, Zoran D; Brown, Richard J

    2018-02-06

    The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO 2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

  20. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 12 - 1975 Perkins Diesel 247 CID (4.0 Liters)

    DOT National Transportation Integrated Search

    1978-04-01

    Experimental data were obtained in dynamometer tests of a 1975 Perkins 247-CID diesel engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the p...

  1. Performance Characteristics of Automotive Engines in the United States : Third Series - Report No. 11 - 1978 Oldsmobile Diesel, 350 CID (5.7 Liters)

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Oldsmobile Diesel, 350 CID (5.7 Liters) engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The o...

  2. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 14 - 1975 Mazda Rotary 70 CID (1.1 Liters), 4V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1975 Mazda 70 CID, 4V rotary engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the ...

  3. NREL Bridges Fuels and Engines R&D to Maximize Vehicle Efficiency and

    Science.gov Websites

    innovation-from fuel chemistry, conversion, and combustion to the evaluation of advanced fuels in actual -cylinder engine for advanced compression ignition fuels research will be installed and commissioned in the vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research

  4. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 6, 1978 Volkswagen Diesel, 90 CID (1.5 Liter), F.I.

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 VW 90 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program is to ...

  5. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 7, 1978 Ford, 98 CID (1.6 Liters), 2V

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1977 Chrysler 318 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program...

  6. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 13 - 1975 American Motors 258 CID (4.2 Liters)

    DOT National Transportation Integrated Search

    1978-04-01

    Experimental data were obtained in dynamometer tests of a 1975 AMC 258-CID production 1V engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of th...

  7. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 2, 1978 Pontiac, 301 CID (4.9 Liters), 2V

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Pontiac 301 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program ...

  8. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 17 - 1975 Buick 455 CID (7.5 Liters), 4V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1975 Buick 455 CID, 4V engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the progra...

  9. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 2 - 1976 Chevrolet 305 CID (5.0 Liters), 2V

    DOT National Transportation Integrated Search

    1978-04-01

    Experimental data were obtained in dynamometer tests of a 1976 Chevrolet 305-CID V-8 engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the pr...

  10. Performance Characteristics of Automotive Engines in the United States : Third Series - Report No. 12 - 1978 Ford 140 CID (2.3 Liters), 2V

    DOT National Transportation Integrated Search

    1980-09-01

    Experimental data were obtained in dynamometer tests of a 1978 Ford 140 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program is ...

  11. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 16 - 1975 Volvo 121 CID (2.0 Liters), F.I.

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1975 Volvo, 2.0 liter (121 CID) engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of t...

  12. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 5 - 1977 Ford 140 CID (2.3 Liters), 2V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1977 Ford 2.3 liter (140 CID) engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the...

  13. Performance Characteristics of Automotive Engines in the United States : Third Series - Report No. 1 - 1977 Volvo 130 CID (2.1 Liters), F.I.

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1977 Volvo 130 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the program is...

  14. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 7 - 1977 Ford 171 CID (2.8 Liters), 2V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1977 Ford 171 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the program is ...

  15. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 15 - 1975 Dodge Colt 98 CID (1.6 Liters), 2V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1975 Dodge Colt 1.6 liter (98 CID) engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective o...

  16. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 3 - 1977 Chrysler 225 CID (3.7 Liters), 2V

    DOT National Transportation Integrated Search

    1978-04-01

    Experimental data were obtained in dynamometer tests of a 1977 Chrysler 225-CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the program...

  17. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 9, 1978 Ford, 300 CID (4.9 Liters), 1V

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Ford 140 300 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program...

  18. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 18 - 1976 Ford 400 CID (6.6 Liters), 2V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1976 Ford 400 CID, 2V engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of the program...

  19. Performance Characteristics of Automotive Engines in the United States : First Series - Report No. 19 - 1975 Ford Windsor 351 CID (5.7 Liters), 2V

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1975 Ford 351 CID, 2V, Windsor engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The objective of th...

  20. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 5, 1978 Chevrolet, 200 CID (3.3 Liter), 2V

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Chevrolet 200 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the progra...

  1. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 4, 1978 Pontiac, 151 CID (2.5 Liters), 2V

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Pontiac 151 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program ...

  2. Performance Characteristics of Automotive Engines in the United States, Third Series, Report No. 3, 1978 AMC, 121 CID (2.0 Liters), 2V

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 AMC 121 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program is t...

  3. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 6 - 1976 Nissan Diesel 198 CID (3.2 Liters), F.I.

    DOT National Transportation Integrated Search

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1976 Nissan diesel engine, Model SD-33 CN6-33, to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The object...

  4. High-Temperature Alloys for Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Titran, R. H.

    1986-01-01

    Stirling engine is external-combustion engine that offers fuel economy, low emissions, low noise, and low vibrations. One of most critical areas in engine development concerns material selection for component parts. Alloys CG-27 and XF-818 identified capable of withstanding rigorous requirements of automotive Stirling engine. Alloys chosen for availability, performance, and manufacturability. Advanced iron-base alloys have potential for variety of applications, including stationary solar-power systems.

  5. Investigation of the Behavior of Fuel in the Intake Manifold and its Relation to S. I. Engines, 1980-1983

    NASA Astrophysics Data System (ADS)

    Servati, Hamid Beyragh

    A liquid fuel film formation on the walls of an intake manifold adversely affects the engine performance and alters the overall air/fuel ratio from that scheduled by a fuel injector or carburetor and leads to adverse effects in vehicle driveability, exhaust emissions, and fuel economy. In this dissertation, the intake manifold is simulated by a horizontal circular duct. A model is provided to predict the rate of deposition and evaporation of the droplets in the intake manifold. The liquid fuel flow rate into the cylinders, mean film velocity and film thickness are determined as functions of engine parameters for both steady and transient operating conditions of the engine. A mathematical engine model is presented to simulate the dynamic interactions of the various engine components such as the air/fuel inlet element, intake manifold, combustion, dynamics and exhaust emissions. Inputs of the engine model are the intake manifold pressure and temperature, throttle angle, and air/fuel ratio. The observed parameters are the histories of fuel film thickness and velocity, fuel consumption, engine speed, engine speed hesitation time, and histories of CO, CO(,2), NO(,x), CH(,n), and O(,2). The effects of different air/fuel ratio control strategies on engine performance and observed parameters are also shown.

  6. Reducing emissions by using special air filters for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Birtok-Băneasă, C.; Raţiu, S. A.; Alexa, V.; Crăciun, A. L.; Josan, A.; Budiul-Berghian, A.

    2017-05-01

    This paper presents the experimental methodology to carry out functional performance tests for an air filter with a particular design of its housing, generically named Super absorbing YXV „Air by Corneliu”, patented and homologated by the Romanian Automotive Registry, to which numerous prizes and medals were awarded at national and international innovations salons. The tests were carried out in the Internal Combustion Engines Laboratory, within the specialization “Road vehicles” belonging to the Faculty of Engineering Hunedoara, component of Politehnica University of Timisoara. The scope of the study is to optimise the air intake into the engine cylinders by reducing the gas-dynamic resistances caused by the air filter and, therefore, to achieve higher energy efficiency, i.e. fuel consumption reduction and engine performance increase. We present some comparative values of various operating parameters of the engine fitted, in the first measuring session, with the original filter, and then with the studied filter. The data collected shows a reduction in fuel consumption by using this type of filter, which leads to lower emissions.

  7. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  8. Benchmarking and Hardware-In-The-Loop Operation of a ...

    EPA Pesticide Factsheets

    Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge technologies, advanced high-efficiency transmission, reduced mass, and reduced roadload. Predict future vehicle performance with Atkinson engine. As part of its technology assessment for the upcoming midterm evaluation of the 2017-2025 LD vehicle GHG emissions regulation, EPA has been benchmarking engines and transmissions to generate inputs for use in its ALPHA model

  9. Emission Studies in CI Engine using LPG and Palm Kernel Methyl Ester as Fuels and Di-ethyl Ether as an Additive

    NASA Astrophysics Data System (ADS)

    Dora, Nagaraju; Jothi, T. J. Sarvoththama

    2018-05-01

    The present study investigates the effectiveness of using di-ethyl ether (DEE) as the fuel additive in engine performance and emissions. Experiments are carried out in a single cylinder four stroke diesel engine at constant speed. Two different fuels namely liquefied petroleum gas (LPG) and palm kernel methyl ester (PKME) are used as primary fuels with DEE as the fuel additive. LPG flow rates of 0.6 and 0.8 kg/h are considered, and flow rate of DEE is varied to maintain the constant engine speed. In case of PKME fuel, it is blended with diesel in the latter to the former ratio of 80:20, and DEE is varied in the volumetric proportion of 1 and 2%. Results indicate that for the engine operating in LPG-DEE mode at 0.6 kg/h of LPG, the brake thermal efficiency is lowered by 26%; however, NOx is subsequently reduced by around 30% compared to the engine running with only diesel fuel at 70% load. Similarly, results of PKME blended fuel showed a drastic reduction in the NOx and CO emissions. In these two modes of operation, DEE is observed to be significant fuel additive regarding emissions reduction.

  10. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  11. Study Confirms Biofuels Reduce Jet Engine Pollution on This Week @NASA – March 17, 2017

    NASA Image and Video Library

    2017-03-17

    Findings published March 15 in the journal Nature from a series of flight tests in 2013 and 2014 near NASA’s Armstrong Flight Research Center in California indicate that using biofuels helps jet engines reduce particle emissions in exhaust by as much as 50 to 70 percent. That’s both an economic and an environmental benefit. The findings were based on data from the Alternative Fuel Effects on Contrails and Cruise Emissions Study, or ACCESS. The international research program led by NASA and involving agencies from Germany and Canada, studied the effects of alternative fuels on aircraft-generated contrails, engine performance and emissions. Also, NASA @SXSW Interactive Festival, Satellites See Winter Storm from Space, CST-100 Starliner Parachute Testing, and NASA’s Pi Day Challenge!

  12. Fall 2016 Solicitation Projects Website Info

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diachin, L.

    Spark-ignition engines are the backbone behind people transportation around the world. The efficiency of spark-ignition engines is limited in practice by variations between engine cycles and cylinders within an engine that result from the manufacturing processes/tolerances. These variations impact knock limits and dilution tolerance, which results in more conservative settings for design and calibration settings, such as compression ratio, valve timing, and exhaust gas recirculation rates. Engine variations also have a significant impact on emissions generation, which can have a secondary impact on efficiency. A deeper understanding of the relative importance of these variations and their interactions on the chargemore » preparation process can guide future decisions on machining tolerances and control strategies. This project will develop simulation tools and methodology to include the effects of some key manufacturing tolerances and their impact on engine performance and emissions.« less

  13. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  14. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    PubMed

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  15. Advanced Gas Turbine (AGT)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development and progress of the Advanced Gas Turbine engine program is examined. An analysis of the role of ceramics in the design and major engine components is included. Projected fuel economy, emissions and performance standards, and versatility in fuel use are also discussed.

  16. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  17. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  18. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  19. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  20. 40 CFR 94.908 - National security exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Exclusion and Exemption Provisions § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... armor, permanently affixed weaponry, specialized electronic warfare systems, unique stealth performance...

  1. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    NASA Astrophysics Data System (ADS)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  2. Biodiesel from lemon and lemon grass oil and its effect on engine performance and exhaust emission

    NASA Astrophysics Data System (ADS)

    Dhivagar, R.; Sundararaj, S.; Vignesh, V. R.

    2018-03-01

    In the present scenario many developing countries are depending on oil producing nations for their fuel resources. Due to demand and scarcity of the fuel, there has been a huge increase in fuel prices. The vehicular population is also continuously increasing and becoming a great menace to peoples. This paper aims to provide an alternate solution for petroleum based fuels. It suggests that biodiesel produced from lemon and lemon grass oil can be used as an alternative fuel. This work investigates the thermal performance of four stroke diesel engine using blends of biodiesel and diesel as a fuel. Performance parameters like brake thermal efficiency, mechanical efficiency and specific fuel consumption were measured at different loads for diesel and various combination of biofuel (L10, L20, and L30). The maximum brake thermal efficiency obtained is about 26.12%for L20 which is slightly higher than that of diesel (24.91%). Engine experimental results showed that exhaust emissions including CO2 and HC were reduced by 6% and 5% for L20 mixture of biodiesel whereas CO emission was as same as diesel. However, there was increase in NOxby 26% to the diesel fuel.

  3. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaClean, H.L.; Lave, L.B.

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less

  4. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  5. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  6. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  7. Development of engine activity cycles for the prime movers of unconventional natural gas well development.

    PubMed

    Johnson, Derek; Heltzel, Robert; Nix, Andrew; Barrow, Rebekah

    2017-03-01

    With the advent of unconventional natural gas resources, new research focuses on the efficiency and emissions of the prime movers powering these fleets. These prime movers also play important roles in emissions inventories for this sector. Industry seeks to reduce operating costs by decreasing the required fuel demands of these high horsepower engines but conducting in-field or full-scale research on new technologies is cost prohibitive. As such, this research completed extensive in-use data collection efforts for the engines powering over-the-road trucks, drilling engines, and hydraulic stimulation pump engines. These engine activity data were processed in order to make representative test cycles using a Markov Chain, Monte Carlo (MCMC) simulation method. Such cycles can be applied under controlled environments on scaled engines for future research. In addition to MCMC, genetic algorithms were used to improve the overall performance values for the test cycles and smoothing was applied to ensure regression criteria were met during implementation on a test engine and dynamometer. The variations in cycle and in-use statistics are presented along with comparisons to conventional test cycles used for emissions compliance. Development of representative, engine dynamometer test cycles, from in-use activity data, is crucial in understanding fuel efficiency and emissions for engine operating modes that are different from cycles mandated by the Code of Federal Regulations. Representative cycles were created for the prime movers of unconventional well development-over-the-road (OTR) trucks and drilling and hydraulic fracturing engines. The representative cycles are implemented on scaled engines to reduce fuel consumption during research and development of new technologies in controlled laboratory environments.

  8. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    NASA Astrophysics Data System (ADS)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  9. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  10. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  11. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  12. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing.

    PubMed

    Lau, Jason; Hung, W T; Cheung, C S

    2012-04-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Low Emissions Aftertreatment and Diesel Emissions Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Binmore » 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.« less

  14. Assessment of Particle Pollution from Jetliners: from Smoke Visibility to Nanoparticle Counting.

    PubMed

    Durdina, Lukas; Brem, Benjamin T; Setyan, Ari; Siegerist, Frithjof; Rindlisbacher, Theo; Wang, Jing

    2017-03-21

    Aviation is a substantial and a fast growing emissions source. Besides greenhouse gases, aircraft engines emit black carbon (BC), a climate forcer and air pollutant. Aviation BC emissions have been regulated and estimated through exhaust smoke visibility (smoke number). Their impacts are poorly understood because emission inventories lack representative data. Here, we measured BC mass and number-based emissions of the most popular airliner's engines according to a new emission standard. We used a calibrated engine performance model to determine the emissions on the ground, at cruise altitude, and over entire flight missions. Compared to previous estimates, we found up to a factor of 4 less BC mass emitted from the standardized landing and takeoff cycle and up to a factor of 40 less during taxiing. However, the taxi phase accounted for up to 30% of the total BC number emissions. Depending on the fuel composition and flight distance, the mass and number-based emission indices (/kg fuel burned) were 6.2-14.7 mg and 2.8 × 10 14 - 8.7 × 10 14 , respectively. The BC mass emissions per passenger-km were similar to gasoline vehicles, but the number-based emissions were relatively higher, comparable to old diesel vehicles. This study provides representative data for models and will lead to more accurate assessments of environmental impacts of aviation.

  15. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T.

    2011-08-01

    A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the positioning of ship emissions with a high spatial resolution (typically a few metres). The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM) and carbon monoxide (CO). The presented Ship Traffic Emissions Assessment Model (STEAM2) allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions surrounding the Danish Straits.

  16. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  17. Effect of antioxidants on the performance and emission characteristics of a diesel engine fuelled by waste cooking sunflower methyl ester

    NASA Astrophysics Data System (ADS)

    Reddy, V. Puneeth Kumar; Senthil Kumar, D.; Thirumalini, S.

    2018-02-01

    Biodiesel is a renewable, biodegradable fuel produced from vegetable oils and animal fats. Nonetheless, its extensive utilization is impeded by the auto-oxidation resulting in degradation of the fuel. Adding antioxidants to the biodiesel is a potential solution, but it might have an effect on the clean-burning characteristics of the fuel. This paper investigates the effect of antioxidants on the performance and emission characteristics of a diesel engine fuelled by the waste cooking sunflower methyl ester. The fuel samples tested include B10, B20, B30 and B40, among which B20 produced the best possible results. Antioxidants 2, 6-ditert-butyl-4-methylphenol (BHA) and 2(3)-tert-butyl-4-methoxy phenol (BHT) of two concentrations 1000 ppm, 2000 ppm were added to B20 to evaluate the effectiveness. B20BHA1000 had the best effect with an average decrease of 5.035%, 2.02% in brake specific fuel consumption (BSFC) and exhaust gas temperature (EGT) compared to B20. Regarding the emission characteristics it was observed that B20BHA1000 had produced an increase of 7.21%, 27.79% in NOx and smoke emissions and a decrease of 33.33% in HC emissions when compared to B20. On the whole, without any requirement of alteration in the diesel engines, B20 blends with antioxidant can be utilized as fuel.

  18. Use of an air-assisted fuel nozzle to reduce idle emissions of a jt8d engine combustor

    NASA Technical Reports Server (NTRS)

    Papathakos, L. C.; Jones, R. E.

    1973-01-01

    Tests were performed at typical engine idle conditions on a single-can JT8D combustor installed in a 24 centimeter (9.45 in.) housing to evaluate the effect of an air-assist nozzle on reducing exhaust emissions. By injecting high-pressure air through the secondary-flow passage of a standard duplex fuel nozzle, it was possible to reduce hydrocarbon emissions from 840 parts per million to 95 parts per million and carbon monoxide emissions from 873 parts per million to 258 parts per million. NOX emissions increased slightly from 18 parts per million to 22 parts per million. An air-assist differential pressure of only 20.1 newtons per square centimeter (29.1 psi) and an airflow rate of only 0.22 percent of the total combustor airflow was required.

  19. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  20. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.

  1. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  2. Experimental analysis of performance and emission on DI diesel engine fueled with diesel-palm kernel methyl ester-triacetin blends: a Taguchi fuzzy-based optimization.

    PubMed

    Panda, Jibitesh Kumar; Sastry, Gadepalli Ravi Kiran; Rai, Ram Naresh

    2018-05-25

    The energy situation and the concerns about global warming nowadays have ignited research interest in non-conventional and alternative fuel resources to decrease the emission and the continuous dependency on fossil fuels, particularly for various sectors like power generation, transportation, and agriculture. In the present work, the research is focused on evaluating the performance, emission characteristics, and combustion of biodiesel such as palm kernel methyl ester with the addition of diesel additive "triacetin" in it. A timed manifold injection (TMI) system was taken up to examine the influence of durations of several blends induced on the emission and performance characteristics as compared to normal diesel operation. This experimental study shows better performance and releases less emission as compared with mineral diesel and in turn, indicates that high performance and low emission is promising in PKME-triacetin fuel operation. This analysis also attempts to describe the application of the fuzzy logic-based Taguchi analysis to optimize the emission and performance parameters.

  3. 40 CFR 60.4206 - How long must I meet the emission standards if I am an owner or operator of a stationary CI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards as required in §§ 60.4204 and 60.4205 according to the manufacturer's written... standards if I am an owner or operator of a stationary CI internal combustion engine? 60.4206 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Stationary Compression...

  4. Catalytic combustion for the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.; Mroz, T. S.

    1977-01-01

    Fuel injectors to provide a premixed prevaporized fuel-air mixture are studied. An evaluation of commercial catalysts was performed as part of a program leading to the demonstration of a low emissions combustor for an automotive gas turbine engine. At an inlet temperature of 800 K, a pressure of 500,000 Pa and a velocity of 20 m/s a multiple-jet injector produced less than + or - 10 percent variation in Jet-A fuel-air ratio and 100 percent varporization with less than 0.5 percent pressure drop. Fifteen catalytic reactors were tested with propane fuel at an inlet temperature of 800 K, a pressure of 300,000 Pa and inlet velocities of 10 to 25 m/s. Seven of the reactors had less than 2 percent pressure drop while meeting emissions goals of 13.6 gCO/kg fuel and 1.64 gHC/kg fuel at the velocities and exit temperatures required for operation in an automotive gas turbine engine. NO sub x emissions at all conditions were less than 0.5 ppm. All tests were performed with steady state conditions.

  5. Demonstration and evaluation of gas turbine transit buses

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Gas Turbine Transit Bus Demonstration Program was designed to demonstrate and evaluate the operation of gas turbine engines in transit coaches in revenue service compared with diesel powered coaches. The main objective of the program was to accelerate development and commercialization of automotive gas turbines. The benefits from the installation of this engine in a transit coach were expected to be reduced weight, cleaner exhaust emissions, lower noise levels, reduced engine vibration and maintenance requirements, improved reliability and vehicle performance, greater engine braking capability, and superior cold weather starting. Four RTS-II advanced design transit coaches were converted to gas turbine power using engines and transmissions. Development, acceptance, performance and systems tests were performed on the coaches prior to the revenue service demonstration.

  6. Performance, emissions, and physical characteristics of a rotating combustion aircraft engine, supplement A

    NASA Technical Reports Server (NTRS)

    Lamping, R. K.; Manning, I.; Myers, D.; Tjoa, B.

    1980-01-01

    Testing was conducted using the basic RC2-75 engine, to which several modifications were incorporated which were designed to reduce the hydrocarbon emissions and reduce the specific fuel consumption. The modifications included close-in surface gap spark plugs, increased compression ratio rotors, and provisions for utilizing either side or peripheral intake ports, or a combination of the two if required. The proposed EPA emissions requirements were met using the normal peripheral porting. The specific fuel economy demonstrated for the modified RC2-75 was 283 g/kW-hr at 75% power and 101 brake mean effective pressure (BMEP) and 272.5 g/kW-hr at 75% power and 111 BMEP. The latter would result from rating the engine for takeoff at 285 hp and 5500 rpm, instead of 6000 rpm.

  7. Volvo Penta 4.3 GL E15 Emissions and Durability Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoubul, G.; Cahoon, M.; Kolb, R.

    2011-10-01

    A new Volvo Penta carbureted 4.3 GL engine underwent emissions and dynamometer durability testing from break-in to expected end of life using an accelerated ICOMIA marine emissions cycle and E15 fuel. Only ethanol content was controlled. All aging used splash-blended E15 fuel. Exhaust emissions, exhaust gas temperature, torque, power, barometric pressure, air temperature, and fuel flow were measured at five intervals using site-blended E15 aging fuel and certification fuel (E0). The durability test cycle showed no noticeable impact on mechanical durability or engine power. Emissions performance degraded beyond the certification limit for this engine family, mostly occurring by 28% ofmore » expected life. Such degradation is inconsistent with prior experience. Comparisons showed that E15 resulted in lower CO and HC, but increased NOX, as expected for non-feedback-controlled carbureted engines with increased oxygen in the fuel. Fuel consumption also increased with E15 compared with E0. Throughout testing, poor starting characteristics were exhibited on E15 fuel for hot re-start and cold-start. Cranking time to start and smooth idle was roughly doubled compared with typical E0 operation. The carburetor was factory-set for lean operation to ensure emissions compliance. Test protocols did not include carburetor adjustment to account for increased oxygen in the E15 fuel.« less

  8. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T. Robinson; John Sirman; Prasad Apte

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and inmore » International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.« less

  9. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Taylor, J. R.

    1979-01-01

    Six conceptual combustor designs for the CF6-50 high bypass turbofan engine and six conceptual combustor designs for the NASA/GE E3 high bypass turbofan engine were analyzed to provide an assessment of the major problems anticipated in using broad specification fuels in these aircraft engine combustion systems. Each of the conceptual combustor designs, which are representative of both state-of-the-art and advanced state-of-the-art combustion systems, was analyzed to estimate combustor performance, durability, and pollutant emissions when using commercial Jet A aviation fuel and when using experimental referee board specification fuel. Results indicate that lean burning, low emissions double annular combustor concepts can accommodate a wide range of fuel properties without a serious deterioration of performance or durability. However, rich burning, single annular concepts would be less tolerant to a relaxation of fuel properties. As the fuel specifications are relaxed, autoignition delay time becomes much smaller which presents a serious design and development problem for premixing-prevaporizing combustion system concepts.

  10. Evaluation of the micro-carburetor

    NASA Technical Reports Server (NTRS)

    Weiss, M. F.; Hall, R. A.; Mazor, S. D.

    1981-01-01

    A prototype sonic, variable-venturi automotive carburetor was evaluated for its effects on vehicle performance, fuel economy, and exhaust emissions. A 350 CID Chevrolet Impala vehicle was tested on a chassis dynamometer over the 1975 Federal Test Procedure, urban driving cycle. The Micro-carburetor was tested and compared with stock and modified-stock engine configurations. Subsequently, the test vehicle's performance characteristics were examined with the stock carburetor and again with the Micro-carburetor in a series of on-road driveability tests. The test engine was then removed from the vehicle and installed on an engine dynamometer. Engine tests were conducted to compare the fuel economy, thermal efficiency, and cylinder-to-cylinder mixture distribution of the Micro-carburetor to that of the stock configuration. Test results show increases in thermal efficiency and improvements in fuel economy at all test conditions. Improve fuel/air mixture preparation is implied from the information presented. Further improvements in fuel economy and exhaust emissions are possible through a detailed recalibration of the Micro-carburetor.

  11. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  12. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  13. Optical effects produced by running onboard engines of low-earth-orbit spacecraft

    NASA Astrophysics Data System (ADS)

    Beletskiy, A. B.; Mihalev, A. V.; Hahinov, V. V.; Lebedev, V. P.

    2016-12-01

    This paper presents results of optical observations made during Radar-Progress Experiment performed on April 17, 2013 and July 30, 2014 after approach-correction engines (ACE) of Progress M-17M and Progress M-23M cargo spacecraft in the thermosphere had been started. A region of enhanced emission intensity was recorded during engine operation. This may have been related to the scatter of twilight solar emission along the cargo spacecraft exhaust and to the emergence of additional atomic oxygen [OI] emission at 630 nm. The maximum dimension of the observed emission region was ~330-350 km and ~250-270 km along and across the orbit respectively. For the first time after ACE had been started, an expansion rate of emission region was ~ 7 and ~ 3.5 km/s along and across the orbit respectively. The maximum intensity of the disturbance area for Progress M-17M is estimated as ~40-60 R at 2 nm. Progress M-23M Space Experiment recorded a minor disturbance of atmospheric [OI] 630.0 nm emissions, both in near and in far cargo spacecraft flight paths, which might have been associated with the ACE exhaust gas injection.

  14. Diesel particulate emissions from used cooking oil biodiesel.

    PubMed

    Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R

    2008-03-01

    Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.

  15. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    NASA Astrophysics Data System (ADS)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude environment simulation. To evaluate future testing applications, as well as to understand the abilities of the HARTF to accommodate different sizes and configurations of industrial gas turbine engine combustor hardware, ignition testing was conducted at challenging high-altitude windmilling conditions with a linearly-arranged five-swirler array, replicating the implementation of a multi-cup combustor sector.

  16. 14 CFR 34.89 - Compliance with smoke emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.89 Compliance with smoke emission... in Appendix 6 to ICAO Annex 16, Environmental Protection, Volume II, Aircraft Engine Emissions...

  17. 14 CFR 34.89 - Compliance with smoke emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.89 Compliance with smoke emission... in Appendix 6 to ICAO Annex 16, Environmental Protection, Volume II, Aircraft Engine Emissions...

  18. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T.

    2012-03-01

    A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres). The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM) and carbon monoxide (CO). The presented Ship Traffic Emissions Assessment Model (STEAM2) allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  19. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    NASA Astrophysics Data System (ADS)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  20. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  1. Emission and Performance Analysis of ZrO2 And CeO2 Coated Piston Using Refined Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Hemanandh, J.; Narayanan, K. V.; Manoj, Vemuri

    2017-05-01

    Increase in global warming and pollution leads to look for an alternative fuel. The aim of this paper to improve the performance and to reduce the emissions in DI diesel engine. The 80% of ZrO2 and 20% of CeO2 were mixed and coated on the piston head using plasma spray method. The B10 fuel of various refined vegetable oil methyl esters were used as fuel. The test was conducted in the 4-stroke DI diesel engine at a constant speed of 1500 rpm. The results show that the brake thermal efficiency, NOx and BSFC was increased. The CO and HC were decreased.

  2. DI Diesel Performance and Emissions Model

    DTIC Science & Technology

    1998-03-31

    Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29

  3. Prediction of the production of nitrogen oxide (NOx) in turbojet engines

    NASA Astrophysics Data System (ADS)

    Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo

    Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO database [Goehlich, R.A., 2000. Investigation into the applicability of pollutant emission models for computer aided preliminary aircraft design, Book number 175654, 4.2.2000, pp. 57-79] can now be completed using the approach we propose to complete the whole mission flight NOx emissions.

  4. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    NASA Astrophysics Data System (ADS)

    West, B.; Green, J. B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO(x)) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  5. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  6. NOx Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2016-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.

  7. The activity-based methodology to assess ship emissions - A review.

    PubMed

    Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2017-12-01

    Several studies tried to estimate atmospheric emissions with origin in the maritime sector, concluding that it contributed to the global anthropogenic emissions through the emission of pollutants that have a strong impact on hu' health and also on climate change. Thus, this paper aimed to review published studies since 2010 that used activity-based methodology to estimate ship emissions, to provide a summary of the available input data. After exclusions, 26 articles were analysed and the main information were scanned and registered, namely technical information about ships, ships activity and movement information, engines, fuels, load and emission factors. The larger part of studies calculating in-port ship emissions concluded that the majority was emitted during hotelling and most of the authors allocating emissions by ship type concluded that containerships were the main pollutant emitters. To obtain technical information about ships the combined use of data from Lloyd's Register of Shipping database with other sources such as port authority's databases, engine manufactures and ship-owners seemed the best approach. The use of AIS data has been growing in recent years and seems to be the best method to report activities and movements of ships. To predict ship powers the Hollenbach (1998) method which estimates propelling power as a function of instantaneous speed based on total resistance and use of load balancing schemes for multi-engine installations seemed to be the best practices for more accurate ship emission estimations. For emission factors improvement, new on-board measurement campaigns or studies should be undertaken. Regardless of the effort that has been performed in the last years to obtain more accurate shipping emission inventories, more precise input data (technical information about ships, engines, load and emission factors) should be obtained to improve the methodology to develop global and universally accepted emission inventories for an effective environmental policy plan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electrically-Assisted Turbocharger Development for Performance and Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Milton

    2000-08-20

    Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachinemore » has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.« less

  9. Key fuel properties and engine performances of diesel-ethanol blends, using tetrahydrofuran as surfactant additive

    NASA Astrophysics Data System (ADS)

    Molea, A.; Visuian, P.; Barabás, I.; Suciu, R. C.; Burnete, N. V.

    2017-10-01

    In this paper there were presented researches related to preparation and characterization of physicochemical properties of diesel-ethanol blends stabilized with tetrahydrofuran as surfactant, in order to be used as fuels in compression ignition engines. The main spray characteristics and engine performances of these blends were evaluated by using AVL Fire software. In the first stage of the studies, commercial diesel was mixed with ethanol, in different concentrations (between 2% and 15% v/v), followed by the addition of tetrahydrofuran (THF) until the blends were miscible, i.e. the blends were stabilized. The experiments were done at room temperature (22 °C). The obtained blends were characterized in order to determine the chemical composition and physicochemical properties, i.e. density, kinematic viscosity, surface tension. UV-Vis spectroscopy was utilized in order to determine a semi-quantitative evaluation regarding the chemical composition of the prepared blends and chemical interaction between diesel, ethanol and THF. Based on the determined properties, the fuel spray characteristics, engine performances and emission characteristics were evaluated by simulation using the AVL Fire software. The obtained results regarding physicochemical properties of blends were compared with diesel. Some improvements were observed when operating with the prepared blends compared to diesel with respect to engine performances and emission characteristics. Based on physicochemical evaluation and computer simulation, it was demonstrated that diesel-ethanol-tetrahydrofuran blends can be used as alternative fuel in compression ignition engines.

  10. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls (more than two carbon atoms) showed also more contribution in the emission profile of the HFO fuel (26%) than in DF (22%).

  11. 40 CFR 86.535-90 - Dynamometer procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...

  12. 40 CFR 86.535-90 - Dynamometer procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...

  13. 40 CFR 86.535-90 - Dynamometer procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...

  14. 40 CFR 86.535-90 - Dynamometer procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... minutes. Engine startup (with all accessories turned off), operation over the driving schedule, and engine... driving schedule complete the hot start test. The exhaust emissions are diluted with ambient air and a... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided...

  15. High density fuel qualification for a gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macleod, J.D.; Orbanski, B.; Hastings, P.R.

    1992-01-01

    A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high,more » which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.« less

  16. 40 CFR 94.217 - Emission data engine selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Emission data engine selection. 94.217... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.217 Emission data engine selection. (a) The manufacturer must select for testing, from each engine family, the...

  17. 40 CFR 86.1834-01 - Allowable maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... significantly degrade emissions control and whose function is not integral to the design and performance of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  18. 40 CFR 86.1834-01 - Allowable maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... significantly degrade emissions control and whose function is not integral to the design and performance of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  19. 40 CFR 86.1834-01 - Allowable maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... significantly degrade emissions control and whose function is not integral to the design and performance of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  20. 40 CFR 86.1834-01 - Allowable maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... significantly degrade emissions control and whose function is not integral to the design and performance of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  1. Teleconsultations reduce greenhouse gas emissions.

    PubMed

    Oliveira, Tiago Cravo; Barlow, James; Gonçalves, Luís; Bayer, Steffen

    2013-10-01

    Health services contribute significantly to greenhouse gas emissions. New models of delivering care closer to patients have the potential to reduce travelling and associated emissions. We aimed to compare the emissions of patients attending a teleconsultation - an outpatient appointment using video-conferencing equipment - with those of patients attending a face-to-face appointment. We estimated the total distances travelled and the direct and indirect greenhouse gas emissions for 20,824 teleconsultations performed between 2004 and 2011 in Alentejo, a Portuguese region. These were compared to the distances and emissions that would have resulted if teleconsultations were not available and patients had to attend face-to-face outpatient appointments. Estimates were calculated using survey data on mode of transport, and national aggregate data for car engine size and fuel. A sensitivity analysis using the lower and upper quartiles for survey distances was performed. Teleconsultations led to reductions in distances and emissions of 95%. 2,313,819 km of travelling and 455 tonnes of greenhouse gas emissions were avoided (22 kg of carbon dioxide equivalent per patient). The incorporation of modes of transport and car engine size and fuel in the analysis led to emission estimates which were 12% smaller than those assuming all patients used an average car. The availability of remote care services can significantly reduce road travel and associated emissions. At a time when many countries are committed to reducing their carbon footprint, it is desirable to explore how these reductions could be incorporated into technology assessments and economic evaluations.

  2. Flow Control Opportunities for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cutley, Dennis E.

    2008-01-01

    The advancement of technology in gas turbine engines used for aerospace propulsion has been focused on achieving significant performance improvements. At the system level, these improvements are expressed in metrics such as engine thrust-to-weight ratio and system and component efficiencies. The overall goals are directed at reducing engine weight, fuel burn, emissions, and noise. At a component level, these goals translate into aggressive designs of each engine component well beyond the state of the art.

  3. Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and emission characteristics of a diesel engine with exhaust gas recirculation.

    PubMed

    Anchupogu, Praveen; Rao, Lakshmi Narayana; Banavathu, Balakrishna

    2018-06-04

    In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al 2 O 3 ) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al 2 O 3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.

  4. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  5. Effect of lower and higher alcohol fuel synergies in biofuel blends and exhaust treatment system on emissions from CI engine.

    PubMed

    Subramanian, Thiyagarajan; Varuvel, Edwin Geo; Martin, Leenus Jesu; Beddhannan, Nagalingam

    2017-11-01

    The present study deals with performance, emission and combustion studies in a single cylinder CI engine with lower and higher alcohol fuel synergies with biofuel blends and exhaust treatment system. Karanja oil methyl ester (KOME), widely available biofuel in India, and orange oil (ORG), a low carbon biofuel, were taken for this study, and equal volume blend was prepared for testing. Methanol (M) and n-pentanol (P) was taken as lower and higher alcohol and blended 20% by volume with KOME-ORG blend. Activated carbon-based exhaust treatment indigenous system was designed and tested with KOME-ORG + M20 and KOME-ORG + P20 blend. The tests were carried out at various load conditions at a constant speed of 1500 rpm. The study revealed that considering performance, emission and combustion studies, KOME-ORG + M20 + activated carbon are found optimum in reducing NO, smoke and CO 2 emission. Compared to KOME, for KOME-ORG + M20 + activated carbon, NO emission is reduced from 10.25 to 7.85 g/kWh, the smoke emission is reduced from 49.4 to 28.9%, and CO 2 emission is reduced from 1098.84 to 580.68 g/kWh. However, with exhaust treatment system, an increase in HC and CO emissions and reduced thermal efficiency is observed due to backpressure effects.

  6. Time-resolved characterization of primary and secondary particle emissions of a modern gasoline passenger car

    NASA Astrophysics Data System (ADS)

    Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Dal Maso, M.; Ahlberg, E.; Svenningsson, B.; Brune, W. H.; Hillamo, R.; Keskinen, J.; Rönkkö, T.

    2015-11-01

    Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.

  7. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.

  8. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  9. Test Rig for Active Turbine Blade Tip Clearance Control Concepts: An Update

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn; Steinetz, Bruce; Oswald, Jay; DeCastro, Jonathan; Melcher, Kevin

    2006-01-01

    The objective is to develop and demonstrate a fast-acting active clearance control system to improve turbine engine performance, reduce emissions, and increase service life. System studies have shown the benefits of reducing blade tip clearances in modern turbine engines. Minimizing blade tip clearances throughout the engine will contribute materially to meeting NASA's Ultra-Efficient Engine Technology (UEET) turbine engine project goals. NASA GRC is examining two candidate approaches including rub-avoidance and regeneration which are explained in subsequent slides.

  10. Quiet Clean General Aviation Turbofan (QCGAT) technology study, volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The preliminary design of an engine which satisfies the requirements of a quiet, clean, general aviation turbofan (QCGAT) engine is described. Also an experimental program to demonstrate performance is suggested. The T700 QCGAT engine preliminary design indicates that it will radiate noise at the same level as an aircraft without engine noise, have exhaust emissions within the EPA 1981 Standards, have lower fuel consumption than is available in comparable size engines, and have sufficient life for five years between overhauls.

  11. Automotive Control Systems: For Engine, Driveline, and Vehicle

    NASA Astrophysics Data System (ADS)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  12. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  13. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  14. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  15. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  16. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... Combustion Engines Emission Standards for Manufacturers § 60.4203 How long must my engines meet the emission standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by...

  17. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  18. 40 CFR 60.4232 - How long must my engines meet the emission standards if I am a manufacturer of stationary SI...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards if I am a manufacturer of stationary SI internal combustion engines? 60.4232 Section 60... Internal Combustion Engines Emission Standards for Manufacturers § 60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines? Engines...

  19. Progress with variable cycle engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.

    1980-01-01

    The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.

  20. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2009-07-15

    This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.

  1. Effect of anhydrous ethanol/gasoline blends on performance and exhaust emissions of spark-ignited non-road engines.

    PubMed

    Ribeiro, Camilo Bastos; Martins, Kelly Geronazzo; Gueri, Matheus Vitor Diniz; Pavanello, Guilherme Pozzobom; Schirmer, Waldir Nagel

    2018-06-12

    Ethanol is a renewable fuel and it is considered an alternative to gasoline in Otto-cycle engines. The present study evaluated the behavior of exhaustion gas carbon monoxide (CO) and total hydrocarbons (THC) according to the levels of anhydrous ethyl alcohol (AEA) added to gasoline in different proportions (E0, E10, E20, E27, that is, pure gasoline and its blends with AEA at 10, 20, and 27% v/v) in the use of non-road single cylinder engines of different powers (13 and 6.5 hp), to the loads applied to engine-generators and the air-fuel ratio (A/F) admitted to the engine cylinders. Also, the performance of engine-generators was verified in terms of mass, specific and energetic consumption and efficiency of the evaluated systems for the same blends and loads. The results showed that an increase in the AEA content in the blend resulted in significant drops in CO and THC concentrations for both engine-generators, while fuel consumption showed a slight upward trend; the increases in applied loads resulted in an increase in CO and THC concentrations and fuel consumption. In general, a higher AEA content (oxygenated) in the blends had a greater effect on gaseous emissions compared to the effect on consumption and system efficiency.

  2. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  3. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    PubMed

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

  4. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  5. Supersonic propulsion technology. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  6. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do these requirements apply? (a) This part prescribes fees manufacturers must pay for activities related to EPA's engine... certificates of conformity and performing tests and taking other steps to verify compliance with emission...

  7. Performance Characteristics of Automotive Engines in the United States : Third Series - Report No. 14 - 1978 Buick 196 CID (3.2L)

    DOT National Transportation Integrated Search

    1981-02-01

    Experimental data were obtained in dynamometer tests of a 1978 Buick 231 CID turbocharged to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the prog...

  8. 40 CFR 85.2211 - Engine restart idle test-EPA 81.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Engine restart idle test-EPA 81. 85.2211 Section 85.2211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Emission Control System Performance Warranty Short...

  9. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  10. Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistri, Gayatri K.; Aggarwal, Suresh K.; Longman, Douglas

    Biofuels produced from non-edible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from non-edible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel’s oxidative stability. The biodieselsmore » were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, 4-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in break thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), BSFC (13.1% and 5.6%), and NOx emission (9.8% and 12.9%), and a reduction in BSHC (8.64% and 12.9%), and BSCO (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.« less

  11. Mid-IR fiber optic sensors for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Hall, Matthew J.

    1999-12-01

    Environmental regulations are driving development of cleaner spark ignition, diesel, and gas turbine engines. Emissions of unburned hydrocarbons, NOx, and CO can be affected by the characteristics of the mixing of the fuel with air in the engine, and by the amount of exhaust gas recirculated to the engine intake. Fiber optic sensors have been developed that can measure the local fuel concentration in the combustion chamber of a spark ignition engine near the spark plug. The sensors detect the absorption of 3.4 micrometer radiation corresponding to the strongest absorption band common to all hydrocarbons. The sensors have been applied to both liquid and gaseous hydrocarbon fuels, and liquid fuels injected directly into the engine combustion chamber. The sensors use white light sources and are designed to detect the absorption throughout the entire band minimizing calibration problems associated with pressure and temperature broadening. Other sensors can detect the concentration of CO2 in the engine intake manifold providing time-resolved measurement of exhaust gas recirculation (EGR). Proper EGR levels are critical for achieving low engine-out emissions of NOx while maintaining acceptable engine performance.

  12. Quiet Clean Short-Haul Experimental Engine (QSCEE). Preliminary analyses and design report, volume 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variable-pitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design.

  13. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards must my outboard and personal watercraft engines meet? (a) Duty-cycle emission standards.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust emission standards in paragraphs (a) through (c) of this section over the full useful life as follows: (1) For...

  14. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731 and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these estimates may be used to estimate the levels of PM emissions for other similar engines. Additional measurements steps such as heating of the sampling line, sampling dilution application, sampling line loss estimates, and calculations of the sampling line PM residence times will also be useful future results.

  15. Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: Performance review and identification of high-emitters.

    PubMed

    Huang, Yuhan; Organ, Bruce; Zhou, John L; Surawski, Nic C; Hong, Guang; Chan, Edward F C; Yam, Yat Shing

    2018-06-01

    A two-year remote sensing measurement program was carried out in Hong Kong to obtain a large dataset of on-road diesel vehicle emissions. Analysis was performed to evaluate the effect of vehicle manufacture year (1949-2015) and engine size (0.4-20 L) on the emission rates and high-emitters. The results showed that CO emission rates of larger engine size vehicles were higher than those of small vehicles during the study period, while HC and NO were higher before manufacture year 2006 and then became similar levels between manufacture years 2006 and 2015. CO, HC and NO of all vehicles showed an unexpectedly increasing trend during 1998-2004, in particular ≥6001 cc vehicles. However, they all decreased steadily in the last decade (2005-2015), except for NO of ≥6001 cc vehicles during 2013-2015. The distributions of CO and HC emission rates were highly skewed as the dirtiest 10% vehicles emitted much higher emissions than all the other vehicles. Moreover, this skewness became more significant for larger engine size or newer vehicles. The results indicated that remote sensing technology would be very effective to screen the CO and HC high-emitters and thus control the on-road vehicle emissions, but less effective for controlling NO emissions. No clear correlation was observed between the manufacture year and percentage of high-emitters for ≤3000 cc vehicles. However, the percentage of high-emitters decreased with newer manufacture year for larger vehicles. In addition, high-emitters of different pollutants were relatively independent, in particular NO emissions, indicating that high-emitter screening criteria should be defined on a CO-or-HC-or-NO basis, rather than a CO-and-HC-and-NO basis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    PubMed

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-08-01

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Comparative analysis of emission characteristics and noise test of an I.C. engine using different biodiesel blends

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Alamgir; Rahman, Fariha; Mamun, Maliha; Naznin, Sadia; Rashid, Adib Bin

    2017-12-01

    Biodiesel is a captivating renewable resource providing the potential to reduce particulate emissions in compressionignition engines. A comparative study is conducted to evaluate the effects of using biodiesel on exhaust emissions. Exhaust smokiness, noise and exhaust regulated gas emissions such as carbon di oxides, carbon monoxide and oxygen are measured. It is observed that methanol-biodiesel blends (mustard oil, palm oil) cause reduction of emissions remarkably. Most of the harmful pollutants in the exhaust are reduced significantly with the use of methanol blended fuels. Reduction in CO emission is more with mustard oil blend compared to palm oil blend. Comparatively clean smoke is observed with biodiesel than diesel. It is also observed that, there is a decrease of noise while performing with biodiesel blends which is around 78 dB whereas noise caused by diesel is 80 dB. Biodiesel, more importantly mustard oil is a clean burning fuel that does not contribute to the net increase of carbon dioxide.

  18. Integrated thermal and energy management of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard

    2012-10-01

    In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.

  19. 40 CFR 87.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.71 Compliance with gaseous emission standards. Compliance with each gaseous emission standard by an aircraft engine shall be...

  20. 40 CFR 87.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.71 Compliance with gaseous emission standards. Compliance with each gaseous emission standard by an aircraft engine shall be...

  1. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71... Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26, 1993...

  2. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71... Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26, 1993...

  3. Particular bi-fuel application of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  4. Cleaner emissions from a DI diesel engine fueled with waste plastic oil derived from municipal solid waste under the influence of n-pentanol addition, cold EGR, and injection timing.

    PubMed

    Damodharan, Dillikannan; Sathiyagnanam, Amudhavalli Paramasivam; Rajesh Kumar, Babu; Ganesh, Kuttalam Chidambaradhanu

    2018-05-01

    Urban planning and development is a decisive factor that increases the automobile numbers which leads to increased energy demand across the globe. In order to meet the escalating requirements of energy, it is necessary to find viable alternatives. Waste plastic oil (WPO) is one such alternative which has dual benefits as it reduces the environmental pollution caused by plastic waste and it could possibly meet the energy requirement along with fossil fuels. The study attempted to reduce emissions from a DI diesel engine fueled with WPO using 30% by volume of n-pentanol with fossil diesel (WPO70P30). EGR (10, 20, and 30%) and injection timing modifications were made with the intention to find optimum engine operating conditions. The experimental results indicated that addition of renewable component like n-pentanol had improved the combustion characteristics by igniting WPO more homogeneously producing a higher premixed combustion phase. Smoke density for WPO70P30 was found to be twice lower than that of neat WPO at standard injection timing of 23°CA bTDC at any given EGR rate, NOx emissions were slightly on the higher side about 12% for WPO70P30 blend against WPO at same operating conditions. WPO70P30 showed lowest smoke and carbon monoxide emissions than diesel and WPO while delivering BTE's higher than WPO and closer to diesel at all EGR and injection timings. However NOx and HC emissions increased with n-pentanol addition. The use of EGR reduced NOx emissions but was found to aggravate other emissions. It was concluded WPO70P30 can be favorably used in a DI diesel engine at the engines advanced injection timing for better performance than diesel with a slight penalty in NOx emissions.

  5. Advanced supersonic propulsion study, phases 3 and 4. [variable cycle engines

    NASA Technical Reports Server (NTRS)

    Allan, R. D.; Joy, W.

    1977-01-01

    An evaluation of various advanced propulsion concepts for supersonic cruise aircraft resulted in the identification of the double-bypass variable cycle engine as the most promising concept. This engine design utilizes special variable geometry components and an annular exhaust nozzle to provide high take-off thrust and low jet noise. The engine also provides good performance at both supersonic cruise and subsonic cruise. Emission characteristics are excellent. The advanced technology double-bypass variable cycle engine offers an improvement in aircraft range performance relative to earlier supersonic jet engine designs and yet at a lower level of engine noise. Research and technology programs required in certain design areas for this engine concept to realize its potential benefits include refined parametric analysis of selected variable cycle engines, screening of additional unconventional concepts, and engine preliminary design studies. Required critical technology programs are summarized.

  6. 40 CFR 1048.205 - What must I include in my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...

  7. 40 CFR 1048.205 - What must I include in my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine...'s specifications and other basic parameters of the engine's design and emission controls. List the... each distinguishable engine configuration in the engine family. (b) Explain how the emission control...

  8. 40 CFR 86.884-12 - Test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-12 Test run. (a) The temperature of the air... may be used, if desired, but no allowance will be made for possible increased smoke emissions because... required to perform the acceleration in the dynamometer cycle for smoke emission tests (§ 86.884-7(a)(2...

  9. 40 CFR 86.884-12 - Test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-12 Test run. (a) The temperature of the air... may be used, if desired, but no allowance will be made for possible increased smoke emissions because... required to perform the acceleration in the dynamometer cycle for smoke emission tests (§ 86.884-7(a)(2...

  10. Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.

    2016-01-01

    Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation.

  11. A study of low emissions gas turbine combustions

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.

    1994-01-01

    Analytical studies have been conducted to determine the best methods of reducing NO(x) emissions from proposed civilian supersonic transports. Modifications to the gas turbine engine combustors and the use of additives were both explored. It was found that combustors which operated very fuel rich or lean appear to be able to meet future emissions standards. Ammonia additives were also effective in removing NO(x), but residual ammonia remained a problem. Studies of a novel combustor which reduces emissions and improves performance were initiated. In a related topic, a study was begun on the feasibility of using supersonic aircraft to obtain atmospheric samples. The effects of shock heating and compression on sample integrity were modeled. Certain chemical species, including NO2, HNO3, and ClONO2 were found to undergo changes to their composition after they passed through shock waves at Mach 2. The use of detonation waves to enhance mixing and combustion in supersonic airflows was also investigated. This research is important to the use of airbreathing propulsion to obtain orbital speeds and access to space. Both steady and pulsed detonation waves were shown to improve engine performance.

  12. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  13. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  14. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  15. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  16. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  17. 40 CFR 94.9 - Compliance with emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engineering analysis of information equivalent to such in-use data, such as data from research engines or... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.9 Compliance with emission standards. (a) The general...

  18. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26...

  19. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82..., Environmental Protection, Volume II, Aircraft Engine Emissions, Second Edition, July 1993, effective July 26...

  20. Single-cylinder diesel engine study of four vegetable oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermalmore » efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.« less

Top