Sample records for engine performance estimation

  1. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  2. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data is described. The method estimates the installed performance of aircraft gas turbine engines. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag.

  3. On the estimation algorithm used in adaptive performance optimization of turbofan engines

    NASA Technical Reports Server (NTRS)

    Espana, Martin D.; Gilyard, Glenn B.

    1993-01-01

    The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.

  4. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2015-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  5. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  6. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  7. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 3: Library of maps

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. The use of two data base files to represent the engine and the inlet/nozzle/aftbody performance characteristics is discussed. The existing library of performance characteristics for inlets and nozzle/aftbodies and an example of the 1000 series of engine data tables is presented.

  8. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.

  9. Computer code for estimating installed performance of aircraft gas turbine engines. Volume 2: Users manual

    NASA Technical Reports Server (NTRS)

    Kowalski, E. J.

    1979-01-01

    A computerized method which utilizes the engine performance data and estimates the installed performance of aircraft gas turbine engines is presented. This installation includes: engine weight and dimensions, inlet and nozzle internal performance and drag, inlet and nacelle weight, and nacelle drag. A user oriented description of the program input requirements, program output, deck setup, and operating instructions is presented.

  10. Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    An on-board diagnostic architecture for aircraft turbofan engine performance trending, parameter estimation, and gas-path fault detection and isolation has been developed and evaluated in a simulation environment. The architecture incorporates two independent models: a realtime self-tuning performance model providing parameter estimates and a performance baseline model for diagnostic purposes reflecting long-term engine degradation trends. This architecture was evaluated using flight profiles generated from a nonlinear model with realistic fleet engine health degradation distributions and sensor noise. The architecture was found to produce acceptable estimates of engine health and unmeasured parameters, and the integrated diagnostic algorithms were able to perform correct fault isolation in approximately 70 percent of the tested cases

  11. Optimized tuner selection for engine performance estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)

    2013-01-01

    A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.

  12. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  13. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  14. Supersonic through-flow fan assessment

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1988-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.

  15. Apparatus for sensor failure detection and correction in a gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Spang, H. A., III; Wanger, R. P. (Inventor)

    1981-01-01

    A gas turbine engine control system maintains a selected level of engine performance despite the failure or abnormal operation of one or more engine parameter sensors. The control system employs a continuously updated engine model which simulates engine performance and generates signals representing real time estimates of the engine parameter sensor signals. The estimate signals are transmitted to a control computational unit which utilizes them in lieu of the actual engine parameter sensor signals to control the operation of the engine. The estimate signals are also compared with the corresponding actual engine parameter sensor signals and the resulting difference signals are utilized to update the engine model. If a particular difference signal exceeds specific tolerance limits, the difference signal is inhibited from updating the model and a sensor failure indication is provided to the engine operator.

  16. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  17. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  18. An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    imon, Donald L.; Armstrong, Jeffrey B.

    2012-01-01

    A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.

  19. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  20. Potential impacts of Brayton and Stirling cycle engines

    NASA Astrophysics Data System (ADS)

    Heft, R. C.

    1980-11-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  1. Potential impacts of Brayton and Stirling cycle engines

    NASA Technical Reports Server (NTRS)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  2. Performance and Weight Estimates for an Advanced Open Rotor Engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.

  3. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  4. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  5. On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.

    1992-01-01

    We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.

  6. Performance estimation for a highly loaded eight-blade propeller combined with an advanced technology turboshaft engine

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.

    1979-01-01

    Performance estimation, weights, and scaling laws for an eight-blade highly loaded propeller combined with an advanced turboshaft engine are presented. The data are useful for planned aircraft mission studies using the turboprop propulsion system. Comparisons are made between the performance of the 1990+ technology turboprop propulsion system and the performance of both a current technology turbofan and an 1990+ technology turbofan.

  7. Toward a Real-Time Measurement-Based System for Estimation of Helicopter Engine Degradation Due to Compressor Erosion

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Simo, Donald L.

    2007-01-01

    This paper presents a preliminary demonstration of an automated health assessment tool, capable of real-time on-board operation using existing engine control hardware. The tool allows operators to discern how rapidly individual turboshaft engines are degrading. As the compressor erodes, performance is lost, and with it the ability to generate power. Thus, such a tool would provide an instant assessment of the engine s fitness to perform a mission, and would help to pinpoint any abnormal wear or performance anomalies before they became serious, thereby decreasing uncertainty and enabling improved maintenance scheduling. The research described in the paper utilized test stand data from a T700-GE-401 turboshaft engine that underwent sand-ingestion testing to scale a model-based compressor efficiency degradation estimation algorithm. This algorithm was then applied to real-time Health Usage and Monitoring System (HUMS) data from a T700-GE-701C to track compressor efficiency on-line. The approach uses an optimal estimator called a Kalman filter. The filter is designed to estimate the compressor efficiency using only data from the engine s sensors as input.

  8. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  9. Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin

    2014-08-01

    Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.

  10. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  11. Study of LH2-fueled topping cycle engine for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  12. Performance estimation for highly loaded six and ten blade propellers combined with an advanced technology turboshaft engine

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.

    1980-01-01

    Performance estimations, weights, and scaling laws for the six blade and ten blade highly loaded propellers combined with an advanced turboshaft engine are presented. These data are useful for aircraft mission studies using the turboprop system. Comparisons are made between the performance of post 1980 technology turboprop propulsion systems and the performance of both a current technology turbofan and a post 1990 technology turbofan.

  13. Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project; an engine system study has been undertaken to help define and understand some of the major gas turbine engine parameters required to meet performance and weight requirements as defined by earlier vehicle system studies. These previous vehicle studies will be reviewed to help define gas turbine performance goals. Assumptions and analysis methods used will be described. Performance and weight estimates for a few conceptual gas turbine engines meeting these requirements will be given and discussed. Estimated performance for these conceptual engines over a wide speed variation (down to 50 percent power turbine rpm at high torque) will be presented. Finally, areas needing further effort will be suggested and discussed.

  14. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  15. A simulation study of turbofan engine deterioration estimation using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Lambert, Heather H.

    1991-01-01

    Deterioration of engine components may cause off-normal engine operation. The result is an unecessary loss of performance, because the fixed schedules are designed to accommodate a wide range of engine health. These fixed control schedules may not be optimal for a deteriorated engine. This problem may be solved by including a measure of deterioration in determining the control variables. These engine deterioration parameters usually cannot be measured directly but can be estimated. A Kalman filter design is presented for estimating two performance parameters that account for engine deterioration: high and low pressure turbine delta efficiencies. The delta efficiency parameters model variations of the high and low pressure turbine efficiencies from nominal values. The filter has a design condition of Mach 0.90, 30,000 ft altitude, and 47 deg power level angle (PLA). It was evaluated using a nonlinear simulation of the F100 engine model derivative (EMD) engine, at the design Mach number and altitude over a PLA range of 43 to 55 deg. It was found that known high pressure turbine delta efficiencies of -2.5 percent and low pressure turbine delta efficiencies of -1.0 percent can be estimated with an accuracy of + or - 0.25 percent efficiency with a Kalman filter. If both the high and low pressure turbine are deteriorated, the delta efficiencies of -2.5 percent to both turbines can be estimated with the same accuracy.

  16. Energy efficient engine: Propulsion system-aircraft integration evaluation

    NASA Technical Reports Server (NTRS)

    Owens, R. E.

    1979-01-01

    Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.

  17. A proposed Kalman filter algorithm for estimation of unmeasured output variables for an F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Alag, Gurbux S.; Gilyard, Glenn B.

    1990-01-01

    To develop advanced control systems for optimizing aircraft engine performance, unmeasurable output variables must be estimated. The estimation has to be done in an uncertain environment and be adaptable to varying degrees of modeling errors and other variations in engine behavior over its operational life cycle. This paper represented an approach to estimate unmeasured output variables by explicitly modeling the effects of off-nominal engine behavior as biases on the measurable output variables. A state variable model accommodating off-nominal behavior is developed for the engine, and Kalman filter concepts are used to estimate the required variables. Results are presented from nonlinear engine simulation studies as well as the application of the estimation algorithm on actual flight data. The formulation presented has a wide range of application since it is not restricted or tailored to the particular application described.

  18. Study of a LH2-fueled topping cycle engine for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942

  19. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  20. Manifold absolute pressure estimation using neural network with hybrid training algorithm

    PubMed Central

    Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli

    2017-01-01

    In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779

  1. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  2. The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  3. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  4. Performance seeking control (PSC) for the F-15 highly integrated digital electronic control (HIDEC) aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.

    1995-01-01

    The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.

  5. EGADS: A microcomputer program for estimating the aerodynamic performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Melton, John E.

    1994-01-01

    EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.

  6. 48 CFR 9904.401-60 - Illustrations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manufacturing overhead to be applied to an estimated direct labor base. He identifies the items included in his... performance 4. Contractor estimates a total dollar amount for engineering labor which includes disparate and significant elements or functions of engineering labor. Contractor does not provide supporting data...

  7. 48 CFR 9904.401-60 - Illustrations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... manufacturing overhead to be applied to an estimated direct labor base. He identifies the items included in his... performance 4. Contractor estimates a total dollar amount for engineering labor which includes disparate and significant elements or functions of engineering labor. Contractor does not provide supporting data...

  8. 48 CFR 9904.401-60 - Illustrations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manufacturing overhead to be applied to an estimated direct labor base. He identifies the items included in his... performance 4. Contractor estimates a total dollar amount for engineering labor which includes disparate and significant elements or functions of engineering labor. Contractor does not provide supporting data...

  9. Fuel Consumption Reduction and Weight Estimate of an Intercooled-Recuperated Turboprop Engine

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Ingenito, Antonella; Gamma, Fausto

    2012-09-01

    The introduction of intercooling and regeneration in a gas turbine engine can lead to performance improvement and fuel consumption reduction. Moreover, as first consequence of the saved fuel, also the pollutant emission can be greatly reduced. Turboprop seems to be the most suitable gas turbine engine to be equipped with intercooler and heat recuperator thanks to the relatively small mass flow rate and the small propulsion power fraction due to the exhaust nozzle. However, the extra weight and drag due to the heat exchangers must be carefully considered. An intercooled-recuperated turboprop engine is studied by means of a thermodynamic numeric code that, computing the thermal cycle, simulates the engine behavior at different operating conditions. The main aero engine performances, as specific power and specific fuel consumption, are then evaluated from the cycle analysis. The saved fuel, the pollution reduction, and the engine weight are then estimated for an example case.

  10. Helicopter rotor and engine sizing for preliminary performance estimation

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Bowles, J. V.; Lee, H. C.

    1986-01-01

    Methods are presented for estimating some of the more fundamental design variables of single-rotor helicopters (tip speed, blade area, disk loading, and installed power) based on design requirements (speed, weight, fuselage drag, and design hover ceiling). The well-known constraints of advancing-blade compressibility and retreating-blade stall are incorporated into the estimation process, based on an empirical interpretation of rotor performance data from large-scale wind-tunnel tests. Engine performance data are presented and correlated with a simple model usable for preliminary design. When approximate results are required quickly, these methods may be more convenient to use and provide more insight than large digital computer programs.

  11. Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors

    NASA Astrophysics Data System (ADS)

    Naderi, E.; Khorasani, K.

    2018-02-01

    In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.

  12. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  13. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    NASA Technical Reports Server (NTRS)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  14. A Computer Code for Gas Turbine Engine Weight And Disk Life Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Ghosn, Louis J.; Halliwell, Ian; Wickenheiser, Tim (Technical Monitor)

    2002-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. In this paper, the major enhancements to NASA's engine-weight estimate computer code (WATE) are described. These enhancements include the incorporation of improved weight-calculation routines for the compressor and turbine disks using the finite-difference technique. Furthermore, the stress distribution for various disk geometries was also incorporated, for a life-prediction module to calculate disk life. A material database, consisting of the material data of most of the commonly-used aerospace materials, has also been incorporated into WATE. Collectively, these enhancements provide a more realistic and systematic way to calculate the engine weight. They also provide additional insight into the design trade-off between engine life and engine weight. To demonstrate the new capabilities, the enhanced WATE code is used to perform an engine weight/life trade-off assessment on a production aircraft engine.

  15. Research requirements for development of regenerative engines for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semple, R.D.

    1976-12-01

    The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.

  16. Research requirements for development of regenerative engines for helicopters

    NASA Technical Reports Server (NTRS)

    Semple, R. D.

    1976-01-01

    The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.

  17. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  18. Design and performance of duct acoustic treatment

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.

    1991-01-01

    The procedure for designing acoustic treatment panels used to line the walls of aircraft engine ducts and for estimating the resulting suppression of turbofan engine duct noise is discussed. This procedure is intended to be used for estimating noise suppression of existing designs or for designing new acoustic treatment panels and duct configurations to achieve desired suppression levels.

  19. Generalization of turbojet and turbine-propeller engine performance in windmilling condition

    NASA Technical Reports Server (NTRS)

    Wallner, Ewis E; Welna, Henry J

    1951-01-01

    Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.

  20. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  1. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Advanced expander cycle engine optimization

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1979-01-01

    The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.

  2. Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.

  3. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  4. Study on the Modifications Required to Re-Engine the Lockheed D-21 Drone

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report was prepared by Lockheed Martin (LM). The purpose of this 45 day study contract was to investigate the feasibility of using the D-21 as a Rocket Based Combined Cycle engine test-bed. The new NASA engine is entitled "Demonstration of Rocket Combined Cycle Operations (DRACO)". Four objectives were defined and modification study provide an estimation of the: (1) mudified vehicle performance; (2) required engine performance; (3) required vehicle modification; and (4) modification cost and schedule.

  5. Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques

    NASA Astrophysics Data System (ADS)

    Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.

    2000-11-01

    The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.

  6. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  7. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  8. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  9. The Impact of Measurement Noise in GPA Diagnostic Analysis of a Gas Turbine Engine

    NASA Astrophysics Data System (ADS)

    Ntantis, Efstratios L.; Li, Y. G.

    2013-12-01

    The performance diagnostic analysis of a gas turbine is accomplished by estimating a set of internal engine health parameters from available sensor measurements. No physical measuring instruments however can ever completely eliminate the presence of measurement uncertainties. Sensor measurements are often distorted by noise and bias leading to inaccurate estimation results. This paper explores the impact of measurement noise on Gas Turbine GPA analysis. The analysis is demonstrated with a test case where gas turbine performance simulation and diagnostics code TURBOMATCH is used to build a performance model of a model engine similar to Rolls-Royce Trent 500 turbofan engine, and carry out the diagnostic analysis with the presence of different levels of measurement noise. Conclusively, to improve the reliability of the diagnostic results, a statistical analysis of the data scattering caused by sensor uncertainties is made. The diagnostic tool used to deal with the statistical analysis of measurement noise impact is a model-based method utilizing a non-linear GPA.

  10. Modelling and Prediction of Spark-ignition Engine Power Performance Using Incremental Least Squares Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Wong, Pak-kin; Vong, Chi-man; Wong, Hang-cheong; Li, Ke

    2010-05-01

    Modern automotive spark-ignition (SI) power performance usually refers to output power and torque, and they are significantly affected by the setup of control parameters in the engine management system (EMS). EMS calibration is done empirically through tests on the dynamometer (dyno) because no exact mathematical engine model is yet available. With an emerging nonlinear function estimation technique of Least squares support vector machines (LS-SVM), the approximate power performance model of a SI engine can be determined by training the sample data acquired from the dyno. A novel incremental algorithm based on typical LS-SVM is also proposed in this paper, so the power performance models built from the incremental LS-SVM can be updated whenever new training data arrives. With updating the models, the model accuracies can be continuously increased. The predicted results using the estimated models from the incremental LS-SVM are good agreement with the actual test results and with the almost same average accuracy of retraining the models from scratch, but the incremental algorithm can significantly shorten the model construction time when new training data arrives.

  11. Performance deterioration based on existing (historical) data; JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1978-01-01

    The results of the collection and analysis of historical data pertaining to the deterioration of JT9D engine performance are presented. The results of analyses of prerepair and postrepair engine test stand performance data from a number of airlines to establish the individual as well as average losses in engine performance with respect to service use are included. Analysis of the changes in mechanical condition of parts, obtained by inspection of used gas-path parts of varying age, allowed preliminary assessments of component performance deterioration levels and identification of the causitive factors. These component performance estimates, refined by data from special engine back-to-back testing related to module performance restoration, permitted the development of preliminary models of engine component/module performance deterioration with respect to usage. The preliminary assessment of the causes of module performance deterioration and the trends with usage are explained, along with the role each module plays in overall engine performance deterioration. Preliminary recommendations with respect to operating and maintenance practices which could be adopted to control the level of performance deterioration are presented. The needs for additional component sensitivity testing as well as outstanding issues are discussed.

  12. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  13. Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance

    NASA Technical Reports Server (NTRS)

    Morris, C. I.

    2003-01-01

    Pulse detonation engines (PDB) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional gas turbines and rocket engines. The detonative mode of combustion employed by these devices offers a theoretical thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional engines. However, the unsteady blowdown process intrinsic to all pulse detonation devices has made realistic estimates of the actual propulsive performance of PDES problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models.

  14. Hypersonic trajectory control of aerospace plane with integrated SCRAMJET engine

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi

    The aerospace plane is an airbreathing 'propulsion configured' vehicle having proper forebody contour for inflow pre-compression to the inlet and afterbody that operates as an external expansion nozzle. Since the whole lower side of the body acts as important compression and expansion elements for the airbreathing engine, the flight attitude influences its performance such as specific impulse and thrust coefficient considerably. The stability of ascent trajectory controlling dynamic pressure or heat-input rate is analyzed considering the performance change due to attitude fluctuation. The performance of scramjet engine, a typical hypersonic airbreathing engine, is estimated by a rapid prediction methodology of the combustor proposed by Ikawa.

  15. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  16. WFIRST: Coronagraph Systems Engineering and Performance Budgets

    NASA Astrophysics Data System (ADS)

    Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.

  17. Computational Infrastructure for Engine Structural Performance Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Select computer codes developed over the years to simulate specific aspects of engine structures are described. These codes include blade impact integrated multidisciplinary analysis and optimization, progressive structural fracture, quantification of uncertainties for structural reliability and risk, benefits estimation of new technology insertion and hierarchical simulation of engine structures made from metal matrix and ceramic matrix composites. Collectively these codes constitute a unique infrastructure readiness to credibly evaluate new and future engine structural concepts throughout the development cycle from initial concept, to design and fabrication, to service performance and maintenance and repairs, and to retirement for cause and even to possible recycling. Stated differently, they provide 'virtual' concurrent engineering for engine structures total-life-cycle-cost.

  18. Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.; Powers, S. A.; Roush, R. T.

    1982-01-01

    A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.

  19. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  20. A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.

    In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less

  1. A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

    DOE PAGES

    Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.

    2017-03-28

    In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less

  2. Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)

    2003-01-01

    In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.

  3. Derated ion thruster design issues

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1991-01-01

    Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.

  4. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  5. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  6. Water Misting and Injection of Commercial Aircraft Engines to Reduce Airport NOx

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C. (Technical Monitor)

    2004-01-01

    This report provides the first high level look at system design, airplane performance, maintenance, and cost implications of using water misting and water injection technology in aircraft engines for takeoff and climb-out NOx emissions reduction. With an engine compressor inlet water misting rate of 2.2 percent water-to-air ratio, a 47 percent NOx reduction was calculated. Combustor water injection could achieve greater reductions of about 85 percent, but with some performance penalties. For the water misting system on days above 59 F, a fuel efficiency benefit of about 3.5 percent would be experienced. Reductions of up to 436 F in turbine inlet temperature were also estimated, which could lead to increased hot section life. A 0.61 db noise reduction will occur. A nominal airplane weight penalty of less than 360 lb (no water) was estimated for a 305 passenger airplane. The airplane system cost is initially estimated at $40.92 per takeoff giving an attractive NOx emissions reduction cost/benefit ratio of about $1,663/ton.

  7. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior.

    PubMed

    Bizarro, João P S; Rodrigues, Paulo

    2012-11-01

    For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W

  8. CF6 jet engine performance improvement program. Task 1: Feasibility analysis

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    Technical and economic engine improvement concepts selected for subsequent development include: (1) fan improvement; (2) short core exhaust; (3) HP turbine aerodynamic improvement; (4) HP turbine roundness control; (5) HP turbine active clearance control; and (6) cabin air recirculation. The fuel savings for the selected engine modification concepts for the CF6 fleet are estimated.

  9. Minimum time and fuel flight profiles for an F-15 airplane with a Highly Integrated Digital Electronic Control (HIDEC) system

    NASA Technical Reports Server (NTRS)

    Haering, E. A., Jr.; Burcham, F. W., Jr.

    1984-01-01

    A simulation study was conducted to optimize minimum time and fuel consumption paths for an F-15 airplane powered by two F100 Engine Model Derivative (EMD) engines. The benefits of using variable stall margin (uptrim) to increase performance were also determined. This study supports the NASA Highly Integrated Digital Electronic Control (HIDEC) program. The basis for this comparison was minimum time and fuel used to reach Mach 2 at 13,716 m (45,000 ft) from the initial conditions of Mach 0.15 at 1524 m (5000 ft). Results were also compared to a pilot's estimated minimum time and fuel trajectory determined from the F-15 flight manual and previous experience. The minimum time trajectory took 15 percent less time than the pilot's estimate for the standard EMD engines, while the minimum fuel trajectory used 1 percent less fuel than the pilot's estimate for the minimum fuel trajectory. The F-15 airplane with EMD engines and uptrim, was 23 percent faster than the pilot's estimate. The minimum fuel used was 5 percent less than the estimate.

  10. Development and Applications of a Stage Stacking Procedure

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.

    2012-01-01

    The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.

  11. Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1992-01-01

    An investigation is underway to determine the benefits of a new propulsion system optimization algorithm in an F-15 airplane. The performance seeking control (PSC) algorithm optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses an onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. As part of the PSC test program, the F-15 aircraft was operated on a horizontal thrust stand. Thrust was measured with highly accurate load cells. The measured thrust was compared to onboard model estimates and to results from posttest performance programs. Thrust changes using the various PSC modes were recorded. Those results were compared to benefits using the less complex highly integrated digital electronic control (HIDEC) algorithm. The PSC maximum thrust mode increased intermediate power thrust by 10 percent. The PSC engine model did very well at estimating measured thrust and closely followed the transients during optimization. Quantitative results from the evaluation of the algorithms and performance calculation models are included with emphasis on measured thrust results. The report presents a description of the PSC system and a discussion of factors affecting the accuracy of the thrust stand load measurements.

  12. Evolution of deep-bed filtration of engine exhaust particulates with trapped mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Sandeep; Rothamer, David A.; Foster, David E.

    Micro-scale filtration experiments were performed on cordierite filter samples using particulate matter (PM) generated by a spark-ignition direct-injection (SIDI) engine fueled with tier II EEE certification gasoline. Size-resolved mass and number concentrations were obtained from several engine operating conditions. The resultant mass-mobility relationships showed weak dependence on the operating condition. An integrated particle size distribution (IPSD) method was used estimate the PM mass concentration in the exhaust stream from the SIDI engine and a heavy duty diesel (HDD) engine. The average estimated mass concentration between all conditions was ~77****** % of the gravimetric measurements performed on Teflon filters. Despite themore » relatively low elemental carbon fraction (~0.4 to 0.7), the IPSD mass for stoichiometric SIDI exhaust was ~83±38 % of the gravimetric measurement. Identical cordierite filter samples with properties representative of diesel particulate filters were sequentially loaded with PM from the different SIDI engine operating conditions, in order of increasing PM mass concentration. Simultaneous particle size distribution measurements upstream and downstream of the filter sample were used to evaluate filter performance evolution and the instantaneous trapped mass within the filter for two different filter face velocities. The evolution of filtration performance for the different samples was sensitive only to trapped mass, despite using PM from a wide range of operating conditions. Higher filtration velocity resulted in a more rapid shift in the most penetrating particle size towards smaller mobility diameters.« less

  13. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  14. 3D engineered fiberboard : finite element analysis of a new building product

    Treesearch

    John F. Hunt

    2004-01-01

    This paper presents finite element analyses that are being used to analyze and estimate the structural performance of a new product called 3D engineered fiberboard in bending and flat-wise compression applications. A 3x3x2 split-plot experimental design was used to vary geometry configurations to determine their effect on performance properties. The models are based on...

  15. Quantum Tunneling Affects Engine Performance.

    PubMed

    Som, Sibendu; Liu, Wei; Zhou, Dingyu D Y; Magnotti, Gina M; Sivaramakrishnan, Raghu; Longman, Douglas E; Skodje, Rex T; Davis, Michael J

    2013-06-20

    We study the role of individual reaction rates on engine performance, with an emphasis on the contribution of quantum tunneling. It is demonstrated that the effect of quantum tunneling corrections for the reaction HO2 + HO2 = H2O2 + O2 can have a noticeable impact on the performance of a high-fidelity model of a compression-ignition (e.g., diesel) engine, and that an accurate prediction of ignition delay time for the engine model requires an accurate estimation of the tunneling correction for this reaction. The three-dimensional model includes detailed descriptions of the chemistry of a surrogate for a biodiesel fuel, as well as all the features of the engine, such as the liquid fuel spray and turbulence. This study is part of a larger investigation of how the features of the dynamics and potential energy surfaces of key reactions, as well as their reaction rate uncertainties, affect engine performance, and results in these directions are also presented here.

  16. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport

    NASA Technical Reports Server (NTRS)

    Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.

    1989-01-01

    The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.

  17. Assessment of exposure to polycyclic aromatic hydrocarbons in engine rooms by measurement of urinary 1-hydroxypyrene.

    PubMed Central

    Moen, B E; Nilsson, R; Nordlinder, R; Ovrebø, S; Bleie, K; Skorve, A H; Hollund, B E

    1996-01-01

    OBJECTIVE: Machinists have an increased risk of lung cancer and bladder cancer, and this may be caused by exposure to carcinogenic compounds such as asbestos and polycyclic aromatic hydrocarbons (PAHs) in the engine room. The aim of this study was to investigate the exposure of engine room personnel to PAHs, with 1-hydroxypyrene in urine as a biomarker. METHODS: Urine samples from engine room personnel (n = 51) on 10 ships arriving in different harbours were collected, as well as urine samples from a similar number of unexposed controls (n = 47) on the same ships. Urinary 1-hydroxypyrene was quantitatively measured by high performance liquid chromatography. The exposure to PAHs was estimated by a questionnaire answered by the engine room personnel. On two ships, air monitoring of PAHs in the engine room was performed at sea. Both personal monitoring and area monitoring were performed. The compounds were analysed by gas chromatography of two types (with a flame ionisation detector and with a mass spectrometer). RESULTS: Significantly more 1-hydroxypyrene was found in urine of personnel who had been working in the engine room for the past 24 hours, than in that of the unexposed seamen. The highest concentrations of 1-hydroxypyrene were found among engine room personnel who had experienced oil contamination of the skin during their work in the engine room. Stepwise logistic regression analysis showed a significant relation between the concentrations of 1-hydroxypyrene, smoking, and estimated exposure to PAHs. No PAHs were detected in the air samples. CONCLUSION: Engine room personnel who experience skin exposure to oil and oil products are exposed to PAHs during their work. This indicates that dermal uptake of PAHs is the major route of exposure. PMID:8943834

  18. Downsizing assessment of automotive Stirling engines

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  19. Space Transportation Booster Engine Configuration Study. Volume 3: Program Cost estimates and work breakdown structure and WBS dictionary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  20. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  1. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  2. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2005-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  3. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  4. Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu

    2003-01-01

    This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.

  5. Requirements Flowdown for Prognostics and Health Management

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saxena, Abhinav; Roychoudhury, Indranil; Celaya, Jose R.; Saha, Bhaskar; Saha, Sankalita

    2012-01-01

    Prognostics and Health Management (PHM) principles have considerable promise to change the game of lifecycle cost of engineering systems at high safety levels by providing a reliable estimate of future system states. This estimate is a key for planning and decision making in an operational setting. While technology solutions have made considerable advances, the tie-in into the systems engineering process is lagging behind, which delays fielding of PHM-enabled systems. The derivation of specifications from high level requirements for algorithm performance to ensure quality predictions is not well developed. From an engineering perspective some key parameters driving the requirements for prognostics performance include: (1) maximum allowable Probability of Failure (PoF) of the prognostic system to bound the risk of losing an asset, (2) tolerable limits on proactive maintenance to minimize missed opportunity of asset usage, (3) lead time to specify the amount of advanced warning needed for actionable decisions, and (4) required confidence to specify when prognosis is sufficiently good to be used. This paper takes a systems engineering view towards the requirements specification process and presents a method for the flowdown process. A case study based on an electric Unmanned Aerial Vehicle (e-UAV) scenario demonstrates how top level requirements for performance, cost, and safety flow down to the health management level and specify quantitative requirements for prognostic algorithm performance.

  6. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  7. Space shuttle engineering and operations support. Orbiter to spacelab electrical power interface. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Emmons, T. E.

    1976-01-01

    The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.

  8. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  9. Determination of Uncertainties for the New SSME Model

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.; Hawk, Clark W.

    1996-01-01

    This report discusses the uncertainty analysis performed in support of a new test analysis and performance prediction model for the Space Shuttle Main Engine. The new model utilizes uncertainty estimates for experimental data and for the analytical model to obtain the most plausible operating condition for the engine system. This report discusses the development of the data sets and uncertainty estimates to be used in the development of the new model. It also presents the application of uncertainty analysis to analytical models and the uncertainty analysis for the conservation of mass and energy balance relations is presented. A new methodology for the assessment of the uncertainty associated with linear regressions is presented.

  10. Turbofan engine demonstration of sensor failure detection

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Abdelwahab, Mahmood

    1991-01-01

    In the paper, the results of a full-scale engine demonstration of a sensor failure detection algorithm are presented. The algorithm detects, isolates, and accommodates sensor failures using analytical redundancy. The experimental hardware, including the F100 engine, is described. Demonstration results were obtained over a large portion of a typical flight envelope for the F100 engine. They include both subsonic and supersonic conditions at both medium and full, nonafter burning, power. Estimated accuracy, minimum detectable levels of sensor failures, and failure accommodation performance for an F100 turbofan engine control system are discussed.

  11. Improving Space Project Cost Estimating with Engineering Management Variables

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph W.; Roth, Axel (Technical Monitor)

    2001-01-01

    Current space project cost models attempt to predict space flight project cost via regression equations, which relate the cost of projects to technical performance metrics (e.g. weight, thrust, power, pointing accuracy, etc.). This paper examines the introduction of engineering management parameters to the set of explanatory variables. A number of specific engineering management variables are considered and exploratory regression analysis is performed to determine if there is statistical evidence for cost effects apart from technical aspects of the projects. It is concluded that there are other non-technical effects at work and that further research is warranted to determine if it can be shown that these cost effects are definitely related to engineering management.

  12. A Methodology to Assess the Capability of Engine Designs to Meet Closed-Loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95 percent response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible controller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed-loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76 percent. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76 percent. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the characterization to other attributes that contribute to the performance or operability of the engine. Metrics are proposed that, together, provide information on the shape of the trade-off between response time and minimum HPC SM, and how much each varies throughout the life cycle, at the limiting design points. These metrics also facilitate comparison of the expected transient behavior for multiple engine models.

  13. A Methodology to Assess the Capability of Engine Designs to Meet Closed-loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey T.

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95% response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible con- troller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed- loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76%. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76%. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the characterization to other attributes that contribute to the performance or operability of the engine. Metrics are proposed that, together, provide information on the shape of the trade-off between response time and minimum HPC SM, and how much each varies throughout the life cycle, at the limiting design points. These metrics also facilitate comparison of the expected transient behavior for multiple engine models.

  14. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Manski, Detlef; Martin, James A.

    1988-07-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  15. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Manski, Detlef; Martin, James A.

    1988-01-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  16. Radiation shielding estimates for manned Mars space flight.

    PubMed

    Dudkin, V E; Kovalev, E E; Kolomensky, A V; Sakovich, V A; Semenov, V F; Demin, V P; Benton, E V

    1992-01-01

    In the analysis of the required radiation shielding protection of spacecraft during a Mars flight, specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low- and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons.

  17. Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2003-01-01

    In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.

  18. The influence of mixture preparation in the intake port on the performance of a spark-ignited four-stroke engine

    NASA Astrophysics Data System (ADS)

    Daniels, Charles Howard

    An experimental technique is developed for evaluating the influence of mixture preparation in the intake port on the performance of a spark ignited engine. The preparation components studied are fuel vapor, droplets, and liquid streams. The fuel in these three distinct forms are produced and varied in a specially designed mixture preparation system, which delivers an air/fuel mixture to a test cylinder of an engine. Incorporated in the preparation system are devices for measuring the flow rates of fuel in these forms. A method of estimating the vapor concentration of a gasoline in the preparation channel by the use of simple temperature measurements is also presented. The effect of these fuel forms on in-cylinder pressure performance and exhaust gas concentrations are investigated in a 1.9 L Ford engine. A matrix of engine operations are studied along with two gasolines of different volatilities. The results of this investigation show that the operation of the engine at low speeds and low manifold absolute pressures is most susceptible to the effects mixture preparation. For those engine operating conditions affected, the results show that by increasing the amount of fuel in liquid stream form, the performance of the engine is generally diminished. In addition, 'equivalent' mixtures resulting from a conventional injector and a pneumatic atomizer in the intake port are identified relative to engine performance.

  19. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  20. Performance of the UK Prospective Diabetes Study Risk Engine and the Framingham Risk Equations in Estimating Cardiovascular Disease in the EPIC- Norfolk Cohort

    PubMed Central

    Simmons, Rebecca K.; Coleman, Ruth L.; Price, Hermione C.; Holman, Rury R.; Khaw, Kay-Tee; Wareham, Nicholas J.; Griffin, Simon J.

    2009-01-01

    OBJECTIVE The purpose of this study was to examine the performance of the UK Prospective Diabetes Study (UKPDS) Risk Engine (version 3) and the Framingham risk equations (2008) in estimating cardiovascular disease (CVD) incidence in three populations: 1) individuals with known diabetes; 2) individuals with nondiabetic hyperglycemia, defined as A1C ≥6.0%; and 3) individuals with normoglycemia defined as A1C <6.0%. RESEARCH DESIGN AND METHODS This was a population-based prospective cohort (European Prospective Investigation of Cancer-Norfolk). Participants aged 40–79 years recruited from U.K. general practices attended a health examination (1993–1998) and were followed for CVD events/death until April 2007. CVD risk estimates were calculated for 10,137 individuals. RESULTS Over 10.1 years, there were 69 CVD events in the diabetes group (25.4%), 160 in the hyperglycemia group (17.7%), and 732 in the normoglycemia group (8.2%). Estimated CVD 10-year risk in the diabetes group was 33 and 37% using the UKPDS and Framingham equations, respectively. In the hyperglycemia group, estimated CVD risks were 31 and 22%, respectively, and for the normoglycemia group risks were 20 and 14%, respectively. There were no significant differences in the ability of the risk equations to discriminate between individuals at different risk of CVD events in each subgroup; both equations overestimated CVD risk. The Framingham equations performed better in the hyperglycemia and normoglycemia groups as they did not overestimate risk as much as the UKPDS Risk Engine, and they classified more participants correctly. CONCLUSIONS Both the UKPDS Risk Engine and Framingham risk equations were moderately effective at ranking individuals and are therefore suitable for resource prioritization. However, both overestimated true risk, which is important when one is using scores to communicate prognostic information to individuals. PMID:19114615

  1. Development and application of theoretical models for Rotating Detonation Engine flowfields

    NASA Astrophysics Data System (ADS)

    Fievisohn, Robert

    As turbine and rocket engine technology matures, performance increases between successive generations of engine development are becoming smaller. One means of accomplishing significant gains in thermodynamic performance and power density is to use detonation-based heat release instead of deflagration. This work is focused on developing and applying theoretical models to aid in the design and understanding of Rotating Detonation Engines (RDEs). In an RDE, a detonation wave travels circumferentially along the bottom of an annular chamber where continuous injection of fresh reactants sustains the detonation wave. RDEs are currently being designed, tested, and studied as a viable option for developing a new generation of turbine and rocket engines that make use of detonation heat release. One of the main challenges in the development of RDEs is to understand the complex flowfield inside the annular chamber. While simplified models are desirable for obtaining timely performance estimates for design analysis, one-dimensional models may not be adequate as they do not provide flow structure information. In this work, a two-dimensional physics-based model is developed, which is capable of modeling the curved oblique shock wave, exit swirl, counter-flow, detonation inclination, and varying pressure along the inflow boundary. This is accomplished by using a combination of shock-expansion theory, Chapman-Jouguet detonation theory, the Method of Characteristics (MOC), and other compressible flow equations to create a shock-fitted numerical algorithm and generate an RDE flowfield. This novel approach provides a numerically efficient model that can provide performance estimates as well as details of the large-scale flow structures in seconds on a personal computer. Results from this model are validated against high-fidelity numerical simulations that may require a high-performance computing framework to provide similar performance estimates. This work provides a designer a new tool to conduct large-scale parametric studies to optimize a design space before conducting computationally-intensive, high-fidelity simulations that may be used to examine additional effects. The work presented in this thesis not only bridges the gap between simple one-dimensional models and high-fidelity full numerical simulations, but it also provides an effective tool for understanding and exploring RDE flow processes.

  2. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  3. Modular Engine Noise Component Prediction System (MCP) Program Users' Guide

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Herkes, William H.; Reed, David H.

    2004-01-01

    This is a user's manual for Modular Engine Noise Component Prediction System (MCP). This computer code allows the user to predict turbofan engine noise estimates. The program is based on an empirical procedure that has evolved over many years at The Boeing Company. The data used to develop the procedure include both full-scale engine data and small-scale model data, and include testing done by Boeing, by the engine manufacturers, and by NASA. In order to generate a noise estimate, the user specifies the appropriate engine properties (including both geometry and performance parameters), the microphone locations, the atmospheric conditions, and certain data processing options. The version of the program described here allows the user to predict three components: inlet-radiated fan noise, aft-radiated fan noise, and jet noise. MCP predicts one-third octave band noise levels over the frequency range of 50 to 10,000 Hertz. It also calculates overall sound pressure levels and certain subjective noise metrics (e.g., perceived noise levels).

  4. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.

    PubMed

    Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A

    2008-08-01

    A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.

  5. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  6. Ignition and combustion characteristics of metallized propellants, phase 2

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine Isp efficiencies, accounting for radiation and two phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of five.

  7. Biomechanical, Physiological, and Agility Performance of Soldiers Carrying Loads: A Comparison of the Modular Lightweight Load Carrying Equipment and a Lightning Packs, LLC, Prototype

    DTIC Science & Technology

    2016-12-27

    2015 Approved for public release; distribution is unlimited U.S. Army Natick Soldier Research, Development and Engineering Center...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...MODULAR LIGHTWEIGHT LOAD CARRYING EQUIPMENT) HUMAN FACTORS ENGINEERING U.S. Army Natick Soldier Research, Development and Engineering Center ATTN

  8. Autoregressive Methods for Spectral Estimation from Interferograms.

    DTIC Science & Technology

    1986-09-19

    RL83 6?6 AUTOREGRESSIVE METHODS FOR SPECTRAL. ESTIMTION FROM / SPACE ENGINEERING E N RICHARDS ET AL. 19 SEPINEFRGAS.()UA TT NV GNCNE O C: 31SSF...was AUG1085 performed under subcontract to . Center for Space Engineering Utah State University Logan, UT 84322-4140 4 4 Scientific Report No. 17 AFGL...MONITORING ORGANIZATION Center for Space Engineering (iapplicable) Air Force Geophysics Laboratory e. AORESS (City. State and ZIP Code) 7b. AOORESS (City

  9. Advanced Control Considerations for Turbofan Engine Design

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  10. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowski, Alexander; Splitter, Derek A

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less

  12. Rover/NERVA-derived near-term nuclear propulsion

    NASA Technical Reports Server (NTRS)

    1993-01-01

    FY-92 accomplishments centered on conceptual design and analyses for 25, 50, and 75 K engines with emphasis on the 50 K engine. During the first period of performance, flow and energy balances were prepared for each of these configurations and thrust-to-weight values were estimated. A review of fuel technology and key data from the Rover/NERVA program established a baseline for proven reactor performance and areas of enhancement to meet near-term goals. Studies were performed of the criticality and temperature profiles for probable fuel and moderator loadings for the three engine sizes, with a more detailed analysis of the 50 K size. During the second period of performance, analyses of the 50 K engine continued. A chamber/nozzle contour was selected and heat transfer and fatigue analyses were performed for likely construction materials. Reactor analyses were performed to determine component radiation heating rates, reactor radiation fields, water immersion poisoning requirements, temperature limits for restartability, and a tie-tube thermal analysis. Finally, a brief assessment of key enabling technologies was made, with a view toward identifying development issues and identification of the critical path toward achieving engine qualification within 10 years.

  13. Use of expert judgment elicitation to estimate seismic vulnerability of selected building types

    USGS Publications Warehouse

    Jaiswal, K.S.; Aspinall, W.; Perkins, D.; Wald, D.; Porter, K.A.

    2012-01-01

    Pooling engineering input on earthquake building vulnerability through an expert judgment elicitation process requires careful deliberation. This article provides an overview of expert judgment procedures including the Delphi approach and the Cooke performance-based method to estimate the seismic vulnerability of a building category.

  14. Parameter estimation in spiking neural networks: a reverse-engineering approach.

    PubMed

    Rostro-Gonzalez, H; Cessac, B; Vieville, T

    2012-04-01

    This paper presents a reverse engineering approach for parameter estimation in spiking neural networks (SNNs). We consider the deterministic evolution of a time-discretized network with spiking neurons, where synaptic transmission has delays, modeled as a neural network of the generalized integrate and fire type. Our approach aims at by-passing the fact that the parameter estimation in SNN results in a non-deterministic polynomial-time hard problem when delays are to be considered. Here, this assumption has been reformulated as a linear programming (LP) problem in order to perform the solution in a polynomial time. Besides, the LP problem formulation makes the fact that the reverse engineering of a neural network can be performed from the observation of the spike times explicit. Furthermore, we point out how the LP adjustment mechanism is local to each neuron and has the same structure as a 'Hebbian' rule. Finally, we present a generalization of this approach to the design of input-output (I/O) transformations as a practical method to 'program' a spiking network, i.e. find a set of parameters allowing us to exactly reproduce the network output, given an input. Numerical verifications and illustrations are provided.

  15. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  16. Thermal efficiency and environmental performances of a biogas-diesel stationary engine.

    PubMed

    Bilcan, A; Le Corre, O; Delebarre, A

    2003-09-01

    Municipal and agricultural waste, and sludge from wastewater treatment represent a large source of pollution. Gaseous fuels can be produced from waste decomposition and then used to run internal combustion engines for power and heat generation. The present paper focuses on thermal efficiency and environmental performances of dual-fuel engines fuelled with biogas. Experiments have been carried out on a Lister-Petter single cylinder diesel engine, modified for dual-fuel operation. Natural gas was first used as the primary fuel. An empirical correlation was determined to predict the engine load for a given mass flow rate for the pilot fuel (diesel) and for the primary fuel (natural gas). That correlation has then been tested for three synthesized biogas compositions. Computations were performed and the error was estimated to be less than 10%. Additionally, NOx and CO2 contents were measured from exhaust gases. Based on exhausts gas temperature, the activation energy and the pre-exponential factor of an Arrhenius law were then proposed, resulting in a simpler mean to predict NOx.

  17. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Hess, J. R.; Bear, R. L.

    1982-01-01

    A viable, single engine, supersonic V/STOL fighter/attack aircraft concept was defined. This vectored thrust, canard wing configuration utilizes an advanced technology separated flow engine with fan stream burning. The aerodynamic characteristics of this configuration were estimated and performance evaluated. Significant aerodynamic and aerodynamic propulsion interaction uncertainties requiring additional investigation were identified. A wind tunnel model concept and test program to resolve these uncertainties and validate the aerodynamic prediction methods were defined.

  18. Internal Circulation in Tidal Channels and Straits: a Comparison of Observed and Numerical Turbulence Estimates (AASERT)

    DTIC Science & Technology

    2000-09-30

    Environmental Science and Engineering Oregon Graduate Institute 20000 NW Walker Road Beaverton, OR 97006-8921 Phone: 1-503-748-1372 Fax: 1-503-748...Department of Environmental Science and Engineering,,Oregon Graduate Institute,20000 NW Walker Road,,Beaverton,,OR,97006 8. PERFORMING ORGANIZATION... Environmental Science and Engineering, Oregon Graduate Institute, 97 pp. Fain, A.M.V., D. A. Jay, D. J. Wilson, P. M. Orton, and A. M. Baptista, 2000

  19. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  20. Performance deterioration based on simulated aerodynamic loads test, JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Stromberg, W. J.

    1981-01-01

    An engine was specially prepared with extensive instrumentation to monitor performance, case temperatures, and clearance changes. A special loading device was used to apply known loads on the engine by the use of cables placed around the flight inlet. These loads simulated the estimated aerodynamic pressure distributions that occur on the inlet in various segments of a typical airplane flight. Test results indicate that the engine lost 1.3 percent in take-off thrust specific fuel consumption (TSFC) during the course of the test effort. Permanent clearance changes due to the loads accounted for 1.1 percent; increase in low pressure compressor airfoil roughness and thermal distortion in the high pressure turbine accounted for 0.2 percent. Pretest predicted performance loss due to clearance changes was 0.9 percent in TSFC. Therefore, the agreement between measurement and prediction is considered to be excellent.

  1. System identification of jet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, N.

    2000-01-01

    System identification plays an important role in advanced control systems for jet engines, in which controls are performed adaptively using data from the actual engine and the identified engine. An identification technique for jet engine using the Constant Gain Extended Kalman Filter (CGEKF) is described. The filter is constructed for a two-spool turbofan engine. The CGEKF filter developed here can recognize parameter change in engine components and estimate unmeasurable variables over whole flight conditions. These capabilities are useful for an advanced Full Authority Digital Electric Control (FADEC). Effects of measurement noise and bias, effects of operating point and unpredicted performancemore » change are discussed. Some experimental results using the actual engine are shown to evaluate the effectiveness of CGEKF filter.« less

  2. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.

  3. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.

  4. Outdoor test stand performance of a convertible engine with variable inlet guide vanes for advanced rotorcraft propulsion

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1986-01-01

    A variable inlet guide van (VIGV) type convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip airflow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss than was originally estimated. The new calculations confirm that using convertible engines rather than separate lift and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

  5. Effects of Structural Deformations of the Crank-Slider Mechanism on the Estimation of the Instantaneous Engine Friction Torque

    NASA Astrophysics Data System (ADS)

    CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.

    1999-07-01

    The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.

  6. Aircraft engine sensor fault diagnostics using an on-line OBEM update method.

    PubMed

    Liu, Xiaofeng; Xue, Naiyu; Yuan, Ye

    2017-01-01

    This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault.

  7. Aircraft engine sensor fault diagnostics using an on-line OBEM update method

    PubMed Central

    Liu, Xiaofeng; Xue, Naiyu; Yuan, Ye

    2017-01-01

    This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault. PMID:28182692

  8. Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh

    1991-01-01

    The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.

  9. Weight Assessment for Fuselage Shielding on Aircraft With Open-Rotor Engines and Composite Blade Loss

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William

    2013-01-01

    The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the shielding material is not used for dual purpose, and is only used for shielding, then the additional weight per aircraft is estimated to be 428 lb. This weight estimate is based upon a number of assumptions that would need to be revised when applying this concept to an actual airplane design. For example, the weight savings that will result when there is no fan blade containment system, manufacturing limitations which may increase the weight where variable thicknesses was assumed, engine placement on the wing versus aft fuselage, etc.

  10. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  11. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues.

    PubMed

    Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane

    2015-08-01

    The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.

  12. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    The paper deals with the development of a design method for a servo component in the frequency domain using singular values and its application to a reusable rocket engine. A general methodology used to design a class of linear multivariable controllers for intelligent control systems is presented. Focus is placed on performance and robustness characteristics, and an estimator design performed in the framework of the Kalman-filter formalism with emphasis on using a sensor set different from the commanded values is discussed. It is noted that loop transfer recovery modifies the nominal plant noise intensities in order to obtain the desired degree of robustness to uncertainty reflected at the plant input. Simulation results demonstrating the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation are discussed.

  13. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  14. Robust detection, isolation and accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.

    1986-01-01

    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques

  15. Engine-propeller power plant aircraft community noise reduction key methods

    NASA Astrophysics Data System (ADS)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  16. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  17. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  18. Estimation of F-3 and F-4 knock-limited performance ratings for ternary and quaternary blends containing triptane or other high-antiknock aviation-fuel blending agents

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C

    1948-01-01

    Charts are presented that permit the estimation of F-3 and F-4 knock-limited performance ratings for certain ternary and quaternary fuel blends. Ratings for various ternary and quaternary blends estimated from these charts compare favorably with experimental F-3 and F-4 ratings. Because of the unusual behavior of some of the aromatic blends in the F-3 engine, the charts for aromatic-paraffinic blends are probably less accurate than the charts for purely paraffinic blends.

  19. Skylon Aerodynamics and SABRE Plumes

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  20. Effects of bleed air extraction on thrust levels on the F404-GE-400 turbofan engine

    NASA Technical Reports Server (NTRS)

    Yuhas, Andrew J.; Ray, Ronald J.

    1992-01-01

    A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases in bleed flow rate.

  1. Space shuttle propulsion estimation development verification, volume 1

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The results of the Propulsion Estimation Development Verification are summarized. A computer program developed under a previous contract (NAS8-35324) was modified to include improved models for the Solid Rocket Booster (SRB) internal ballistics, the Space Shuttle Main Engine (SSME) power coefficient model, the vehicle dynamics using quaternions, and an improved Kalman filter algorithm based on the U-D factorized algorithm. As additional output, the estimated propulsion performances, for each device are computed with the associated 1-sigma bounds. The outputs of the estimation program are provided in graphical plots. An additional effort was expended to examine the use of the estimation approach to evaluate single engine test data. In addition to the propulsion estimation program PFILTER, a program was developed to produce a best estimate of trajectory (BET). The program LFILTER, also uses the U-D factorized algorithm form of the Kalman filter as in the propulsion estimation program PFILTER. The necessary definitions and equations explaining the Kalman filtering approach for the PFILTER program, the models used for this application for dynamics and measurements, program description, and program operation are presented.

  2. A particle filter for ammonia coverage ratio and input simultaneous estimations in Diesel-engine SCR system.

    PubMed

    Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun

    2018-01-01

    As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.

  3. A particle filter for ammonia coverage ratio and input simultaneous estimations in Diesel-engine SCR system

    PubMed Central

    Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai

    2018-01-01

    As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small. PMID:29408924

  4. Loss modeling for pricing catastrophic bonds.

    DOT National Transportation Integrated Search

    2008-12-01

    In the research, a loss estimation framework is presented that directly relates seismic : hazard to seismic response to damage and hence to losses. A Performance-Based Earthquake : Engineering (PBEE) approach towards assessing the seismic vulnerabili...

  5. The Accuracy and Correction of Fuel Consumption from Controller Area Network Broadcast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Gonder, Jeffrey D; Wood, Eric W

    Fuel consumption (FC) has always been an important factor in vehicle cost. With the advent of electronically controlled engines, the controller area network (CAN) broadcasts information about engine and vehicle performance, including fuel use. However, the accuracy of the FC estimates is uncertain. In this study, the researchers first compared CAN-broadcasted FC against physically measured fuel use for three different types of trucks, which revealed the inaccuracies of CAN-broadcast fueling estimates. To match precise gravimetric fuel-scale measurements, polynomial models were developed to correct the CAN-broadcasted FC. Lastly, the robustness testing of the correction models was performed. The training cycles inmore » this section included a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. The mean relative differences were reduced noticeably.« less

  6. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  8. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  9. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  10. Maritime patrol aircraft engine study, General Electric Derivative Engines. Volume II. Appendix A: performance data, Ge27/T3 study A1 turboprop. Final report, October 1978-April 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschkron, R.; Davis, R.H.; Warren, R.E.

    1979-04-30

    This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less

  11. Maritime patrol aircraft engine study, General Electric Derivative Engines. Volume IV. Apendix C: performance data, F404/T1 study A1 turboprop. Final report, October 1978-April 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschkron, R.; Davis, R.H.; Warren, R.E.

    1979-04-30

    This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less

  12. Maritime patrol aircraft engine study, General Electric Derivative Engines. Volume III. Appendix B: performance data, TF 34/T7 study AL turboprop. Final report October 1978-April 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschkron, R.; Davis, R.H.; Warren, R.E.

    1979-04-30

    This study developed data on General Electric common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential General Electric turbofan and turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates. Screening of General Electric derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: TF34 growth derivative version with boost and new LPTmore » (TF34/T7 Study A1), F404 derivative with booster stages and new LPT (F404/T1 Study A1), and GE27 scaled and boosted study engine (GE27/T3 Study A1). Volume I summarizes the screening analysis and contains technical, planning, installation, cost and development data for the three selected turboprop engines. Volumes II, III and IV of this report contain the detailed performance data estimates for the GE27/T3 Study A1, TF34/T7 Study A1 and F404/T1 Study A1 turboprop engines, respectively.« less

  13. Nuclear thermal propulsion engine system design analysis code development

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.

    1992-01-01

    A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.

  14. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  15. F-15/nonaxisymmetric nozzle system integration study support program

    NASA Technical Reports Server (NTRS)

    Stevens, H. L.

    1978-01-01

    Nozzle and cooling methods were defined and analyzed to provide a viable system for demonstration 2-D nozzle technology on the F-15 aircraft. Two candidate cooling systems applied to each nozzle were evaluated. The F-100 engine mount and case modifications requirements were analyzed and the actuation and control system requirements for two dimensional nozzles were defined. Nozzle performance changes relative to the axisymmetric baseline nozzle were evaluated and performance and weight characteristics for axisymmetric reference configurations were estimated. The infrared radiation characteristics of these nozzles installed on the F-100 engine were predicted. A full scale development plan with associated costs to carry the F100 engine/two-dimensional (2-D) nozzle through flight tests was defined.

  16. General Cognitive Ability Predicts Job Performance

    DTIC Science & Technology

    1992-01-01

    of criteria has been and remains the center of controversy. Early intelligence test developers such as Binet and Simon were proponents of g but...Vocational Behavior ( Gottfredson , 1986) documen --,d the renewed interest as did the evidence emerging from validity generalization studies (Hunter, 1983...Among the jobs with highest average estimated intelligence were accounting, engineering, and medicine. Jobs with middling average estimated intelligence

  17. Nuclear electric propulsion mission engineering study development program and costs estimates, Phase 2 review

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second six-month performance period of the Nuclear Electric Propulsion Mission Engineering Study. A brief overview of the program, identifying the study objectives and approach, and a discussion of the program status and schedule are presented. The program results are reviewed and key conclusions to date are summarized. Planned effort for the remainder of the program is reviewed.

  18. Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile

    DTIC Science & Technology

    2012-01-01

    II), and engine performance was estimated with the Numerical Propulsion System Simulation ( NPSS ). Design trades for the ACE vs. VSPT are presented...Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft NPSS Numerical Propulsion System...System Simulation ( NPSS ). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and

  19. Status of an inlet configuration trade study for the Douglas HSCT

    NASA Technical Reports Server (NTRS)

    Jones, Jay R.; Welge, H. Robert

    1992-01-01

    An inlet concept integration trade study for an HSCT is being conducted under contract to NASA LeRC. The HSCT mission has a supersonic cruise Mach number of 2.4 and a subsonic cruise Mach number of 0.95. The engine selected for this study is the GE VCE (variable cycle engine) with FLADE (fan on blade). Six inlet configurations will be defined. Inlet configurations will be axisymmetric and rectangular mixed-compression inlets in single-engine nacelles. Airplane performance for each inlet configuration will be estimated and then compared. The most appropriate inlet configuration for this airplane/engine combination will be determined by Sep. 1991.

  20. D-score: a search engine independent MD-score.

    PubMed

    Vaudel, Marc; Breiter, Daniela; Beck, Florian; Rahnenführer, Jörg; Martens, Lennart; Zahedi, René P

    2013-03-01

    While peptides carrying PTMs are routinely identified in gel-free MS, the localization of the PTMs onto the peptide sequences remains challenging. Search engine scores of secondary peptide matches have been used in different approaches in order to infer the quality of site inference, by penalizing the localization whenever the search engine similarly scored two candidate peptides with different site assignments. In the present work, we show how the estimation of posterior error probabilities for peptide candidates allows the estimation of a PTM score called the D-score, for multiple search engine studies. We demonstrate the applicability of this score to three popular search engines: Mascot, OMSSA, and X!Tandem, and evaluate its performance using an already published high resolution data set of synthetic phosphopeptides. For those peptides with phosphorylation site inference uncertainty, the number of spectrum matches with correctly localized phosphorylation increased by up to 25.7% when compared to using Mascot alone, although the actual increase depended on the fragmentation method used. Since this method relies only on search engine scores, it can be readily applied to the scoring of the localization of virtually any modification at no additional experimental or in silico cost. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An analytical method of estimating turbine performance

    NASA Technical Reports Server (NTRS)

    Kochendorfer, Fred D; Nettles, J Cary

    1949-01-01

    A method is developed by which the performance of a turbine over a range of operating conditions can be analytically estimated from the blade angles and flow areas. In order to use the method, certain coefficients that determine the weight flow and the friction losses must be approximated. The method is used to calculate the performance of the single-stage turbine of a commercial aircraft gas-turbine engine and the calculated performance is compared with the performance indicated by experimental data. For the turbine of the typical example, the assumed pressure losses and the tuning angles give a calculated performance that represents the trends of the experimental performance with reasonable accuracy. The exact agreement between analytical performance and experimental performance is contingent upon the proper selection of a blading-loss parameter.

  2. The Flight Optimization System Weights Estimation Method

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; Horvath, Bryce L.; McCullers, Linwood A.

    2017-01-01

    FLOPS has been the primary aircraft synthesis software used by the Aeronautics Systems Analysis Branch at NASA Langley Research Center. It was created for rapid conceptual aircraft design and advanced technology impact assessments. FLOPS is a single computer program that includes weights estimation, aerodynamics estimation, engine cycle analysis, propulsion data scaling and interpolation, detailed mission performance analysis, takeoff and landing performance analysis, noise footprint estimation, and cost analysis. It is well known as a baseline and common denominator for aircraft design studies. FLOPS is capable of calibrating a model to known aircraft data, making it useful for new aircraft and modifications to existing aircraft. The weight estimation method in FLOPS is known to be of high fidelity for conventional tube with wing aircraft and a substantial amount of effort went into its development. This report serves as a comprehensive documentation of the FLOPS weight estimation method. The development process is presented with the weight estimation process.

  3. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  4. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  5. Experimental Study of Propulsion Performance by Single-Pulse Rotating Detonation with Gaseous Fuels-Oxygen Mixtures

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Hara, Kosei; Mikajiri, Shuuto; Takiguchi, Naoki

    2016-12-01

    A rotating detonation engine (RDE) is one of candidates of aerospace engines for supersonic cruse, which is better for propulsion system than a pulse detonation engine (PDE) from the view of continuous thrust and simple structure. The propulsion performance of a proto-type RDE and a PDE by single pulse explosion with methane-oxygen is investigated. Furthermore, the performance of the RDE with acetylene-oxygen gas mixtures is investigated. Its impulse is estimated through ballistic pendulum method with maximum displacement and damping ratio. The comparison of specific impulses of the mixture gases at atmospheric pressure is shown. The specific impulses of the RDE and the PDE are almost same with methane-oxygen gas. Furthermore, the fuel-base specific impulse of the RDE with acetylene-oxygen gas is about over twice as large as one of methane-oxygen, and its maximum specific impulse is 1100 seconds.

  6. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  7. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  8. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. Themore » reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.« less

  9. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  10. Weight and cost estimating relationships for heavy lift airships

    NASA Technical Reports Server (NTRS)

    Gray, D. W.

    1979-01-01

    Weight and cost estimating relationships, including additional parameters that influence the cost and performance of heavy-lift airships (HLA), are discussed. Inputs to a closed loop computer program, consisting of useful load, forward speed, lift module positive or negative thrust, and rotors and propellers, are examined. Detail is given to the HLA cost and weight program (HLACW), which computes component weights, vehicle size, buoyancy lift, rotor and propellar thrust, and engine horse power. This program solves the problem of interrelating the different aerostat, rotors, engines and propeller sizes. Six sets of 'default parameters' are left for the operator to change during each computer run enabling slight data manipulation without altering the program.

  11. Using Internet search engines to estimate word frequency.

    PubMed

    Blair, Irene V; Urland, Geoffrey R; Ma, Jennifer E

    2002-05-01

    The present research investigated Internet search engines as a rapid, cost-effective alternative for estimating word frequencies. Frequency estimates for 382 words were obtained and compared across four methods: (1) Internet search engines, (2) the Kucera and Francis (1967) analysis of a traditional linguistic corpus, (3) the CELEX English linguistic database (Baayen, Piepenbrock, & Gulikers, 1995), and (4) participant ratings of familiarity. The results showed that Internet search engines produced frequency estimates that were highly consistent with those reported by Kucera and Francis and those calculated from CELEX, highly consistent across search engines, and very reliable over a 6-month period of time. Additional results suggested that Internet search engines are an excellent option when traditional word frequency analyses do not contain the necessary data (e.g., estimates for forenames and slang). In contrast, participants' familiarity judgments did not correspond well with the more objective estimates of word frequency. Researchers are advised to use search engines with large databases (e.g., AltaVista) to ensure the greatest representativeness of the frequency estimates.

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  13. T/BEST: Technology Benefit Estimator for Composites and Applications to Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos

    1997-01-01

    Progress in the field of aerospace propulsion has heightened the need to combine advanced technologies. These benefits will provide guidelines for identifying and prioritizing high-payoff research areas, will help manage research with limited resources, and will show the link between advanced and basic concepts. An effort was undertaken at the NASA Lewis Research Center to develop a formal computational method, T/BEST (Technology Benefit Estimator), to assess advanced aerospace technologies, such as fibrous composites, and credibly communicate the benefits of research. Fibrous composites are ideal for structural applications such as high-performance aircraft engine blades where high strength-to-weight and stiffness-to-weight ratios are required. These factors - along with the flexibility to select the composite system and layup, and to favorably orient fiber directions - reduce the displacements and stresses caused by large rotational speeds in aircraft engines.

  14. Forecasting Construction Cost Index based on visibility graph: A network approach

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong

    2018-03-01

    Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.

  15. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  16. Field performance of a genetically engineered strain of pink bollworm.

    PubMed

    Simmons, Gregory S; McKemey, Andrew R; Morrison, Neil I; O'Connell, Sinead; Tabashnik, Bruce E; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S; Phillips, Caroline E; Miller, Ernie D; Rose, Robert I; Staten, Robert T; Donnelly, Christl A; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.

  17. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  18. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  19. Research on performance requirements of turbofan engine used on carrier-based UAV

    NASA Astrophysics Data System (ADS)

    Zhao, Shufan; Li, Benwei; Zhang, Wenlong; Wu, Heng; Feng, Tang

    2017-05-01

    According to the mission requirements of the carrier-based unmanned aerial vehicle (UAV), a mode level flight was established to calculate the thrust requirements from altitude 9 km to 13 km. Then, the estimation method of flight profile was used to calculate the weight of UAV in each stage to get the specific fuel consumption requirements of the UAV in standby stage. The turbofan engine of carrier-based UAV should meet the thrust and specific fuel consumption requirements. Finally, the GSP software was used to verify the simulation of a small high-bypass turbofan engine. The conclusion is useful for the turbofan engine selection of carrier-based UAV.

  20. System engineering of the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Bhatia, Ravinder; Marti, Javier; Sugimoto, Masahiro; Sramek, Richard; Miccolis, Maurizio; Morita, Koh-Ichiro; Arancibia, Demián.; Araya, Andrea; Asayama, Shin'ichiro; Barkats, Denis; Brito, Rodrigo; Brundage, William; Grammer, Wes; Haupt, Christoph; Kurlandczyk, Herve; Mizuno, Norikazu; Napier, Peter; Pizarro, Eduardo; Saini, Kamaljeet; Stahlman, Gretchen; Verzichelli, Gianluca; Whyborn, Nick; Yagoubov, Pavel

    2012-09-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) will be composed of 66 high precision antennae located at 5000 meters altitude in northern Chile. This paper will present the methodology, tools and processes adopted to system engineer a project of high technical complexity, by system engineering teams that are remotely located and from different cultures, and in accordance with a demanding schedule and within tight financial constraints. The technical and organizational complexity of ALMA requires a disciplined approach to the definition, implementation and verification of the ALMA requirements. During the development phase, System Engineering chairs all technical reviews and facilitates the resolution of technical conflicts. We have developed analysis tools to analyze the system performance, incorporating key parameters that contribute to the ultimate performance, and are modeled using best estimates and/or measured values obtained during test campaigns. Strict tracking and control of the technical budgets ensures that the different parts of the system can operate together as a whole within ALMA boundary conditions. System Engineering is responsible for acceptances of the thousands of hardware items delivered to Chile, and also supports the software acceptance process. In addition, System Engineering leads the troubleshooting efforts during testing phases of the construction project. Finally, the team is conducting System level verification and diagnostics activities to assess the overall performance of the observatory. This paper will also share lessons learned from these system engineering and verification approaches.

  1. On predicting monitoring system effectiveness

    NASA Astrophysics Data System (ADS)

    Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo

    2015-03-01

    While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.

  2. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    NASA Technical Reports Server (NTRS)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  3. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  4. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  5. Turbine Engine Fault Detection and Isolation Program. Volume I. Turbine Engine Performance Estimation Methods

    DTIC Science & Technology

    1982-08-01

    DATA NUMBER OF POINTS 1988 CHANNEL MINIMUM MAXIMUM 1 PHMG -130.13 130.00 2 PS3 -218.12 294.77 3 T3 -341.54 738.15 4 T5 -464.78 623.47 5 PT51 12.317...Continued) CRUISE AND TAKE-OFF MODE DATA I NUMBER OF POINTS 4137 CHANNEL MINIMUM MAXIMUM 1 PHMG -130.13 130.00 2 P53 -218.12 376.60 3 T3 -482.72

  6. Air Force Civil Engineer, Volume 15, Number 4, 2007, 2007 Almanac

    DTIC Science & Technology

    2007-01-01

    Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Civil Engineer (AFCESA/PCT),139 Barnes Drive, Suite 1 ,Tyndall AFB,FL,32403-5319 8

  7. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  8. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  9. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  10. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2014-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  11. Role of geologist in estimating value of projects and assets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lankford, S.M.; Nilssen, T.J.; Hill, J.M.

    1987-05-01

    During this period of depressed oil prices, the economic viability of many capital projects has become marginal at best. When considering new drilling or property acquisition, it is essential that a sound financial analysis be performed. Unless the geologist understands the theoretic basis and operational significance of the engineer's role and the financial concepts, the final evaluation will not be as accurate as it should be. Geologists should understand all of the steps in a property evaluation as they no longer can rely on increasing prices to bail out poor investments. Five essential steps in performing a complete property evaluationmore » are (1) geologic review, (2) engineering review, (3) economic premises, (4) development plan, and (5) financial analysis. It is crucial that the geologist and engineer cooperate in describing the physical and chemical character of the reservoir and the trapped fluids. Only in this way can one be satisfied that the estimated future production stream is maximized yet realistic. Oil in the ground is not reserves unless it can be extracted at a profit. The technical and financial personnel will need to cooperate to determine which proposed wells are economically viable and then to rank them. The construction of the best possible development plan requires input from the financial analyst as well as geologists and engineers. When the best possible development plan has been generated, it is then possible to perform the calculations required to determine the most likely value of a property or decide which new well(s) to drill.« less

  12. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  13. Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam

    2004-01-01

    Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.

  14. Process-based Cost Estimation for Ramjet/Scramjet Engines

    NASA Technical Reports Server (NTRS)

    Singh, Brijendra; Torres, Felix; Nesman, Miles; Reynolds, John

    2003-01-01

    Process-based cost estimation plays a key role in effecting cultural change that integrates distributed science, technology and engineering teams to rapidly create innovative and affordable products. Working together, NASA Glenn Research Center and Boeing Canoga Park have developed a methodology of process-based cost estimation bridging the methodologies of high-level parametric models and detailed bottoms-up estimation. The NASA GRC/Boeing CP process-based cost model provides a probabilistic structure of layered cost drivers. High-level inputs characterize mission requirements, system performance, and relevant economic factors. Design alternatives are extracted from a standard, product-specific work breakdown structure to pre-load lower-level cost driver inputs and generate the cost-risk analysis. As product design progresses and matures the lower level more detailed cost drivers can be re-accessed and the projected variation of input values narrowed, thereby generating a progressively more accurate estimate of cost-risk. Incorporated into the process-based cost model are techniques for decision analysis, specifically, the analytic hierarchy process (AHP) and functional utility analysis. Design alternatives may then be evaluated not just on cost-risk, but also user defined performance and schedule criteria. This implementation of full-trade study support contributes significantly to the realization of the integrated development environment. The process-based cost estimation model generates development and manufacturing cost estimates. The development team plans to expand the manufacturing process base from approximately 80 manufacturing processes to over 250 processes. Operation and support cost modeling is also envisioned. Process-based estimation considers the materials, resources, and processes in establishing cost-risk and rather depending on weight as an input, actually estimates weight along with cost and schedule.

  15. Identifyability measures to select the parameters to be estimated in a solid-state fermentation distributed parameter model.

    PubMed

    da Silveira, Christian L; Mazutti, Marcio A; Salau, Nina P G

    2016-07-08

    Process modeling can lead to of advantages such as helping in process control, reducing process costs and product quality improvement. This work proposes a solid-state fermentation distributed parameter model composed by seven differential equations with seventeen parameters to represent the process. Also, parameters estimation with a parameters identifyability analysis (PIA) is performed to build an accurate model with optimum parameters. Statistical tests were made to verify the model accuracy with the estimated parameters considering different assumptions. The results have shown that the model assuming substrate inhibition better represents the process. It was also shown that eight from the seventeen original model parameters were nonidentifiable and better results were obtained with the removal of these parameters from the estimation procedure. Therefore, PIA can be useful to estimation procedure, since it may reduce the number of parameters that can be evaluated. Further, PIA improved the model results, showing to be an important procedure to be taken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:905-917, 2016. © 2016 American Institute of Chemical Engineers.

  16. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  17. A real time neural net estimator of fatigue life

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1990-01-01

    A neural net architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the Intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopump blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines. This neural net estimator of fatigue life is seen as the enabling technology to achieve component life prognosis, and therefore would be an important part of life extending control for reusable rocket engines.

  18. Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer

    NASA Astrophysics Data System (ADS)

    Li, Yong-Fu; Xiao-Pei, Kou; Zheng, Tai-Xiong; Li, Yin-Guo

    2015-05-01

    In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT-Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing, China (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing, China (Grant No. cstc2014yykfB40001), the Natural Science Funds of Chongqing, China (Grant No. cstc2014jcyjA60003), and the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-26).

  19. Solid rocket motor cost model

    NASA Technical Reports Server (NTRS)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  20. 48 CFR 436.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for architect-engineer work. 436.605 Section 436.605 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Service 436.605 Government cost estimate for architect-engineer work. The contracting...

  1. 48 CFR 436.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for architect-engineer work. 436.605 Section 436.605 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Service 436.605 Government cost estimate for architect-engineer work. The contracting...

  2. 48 CFR 36.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for architect-engineer work. 36.605 Section 36.605 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 36.605 Government cost estimate for architect-engineer work. (a) An independent...

  3. 48 CFR 1336.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for architect-engineer work. 1336.605 Section 1336.605 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1336.605 Government cost estimate for architect-engineer work. After award, the...

  4. 48 CFR 1336.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for architect-engineer work. 1336.605 Section 1336.605 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1336.605 Government cost estimate for architect-engineer work. After award, the...

  5. 48 CFR 1336.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for architect-engineer work. 1336.605 Section 1336.605 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1336.605 Government cost estimate for architect-engineer work. After award, the...

  6. 48 CFR 36.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for architect-engineer work. 36.605 Section 36.605 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 36.605 Government cost estimate for architect-engineer work. (a) An independent...

  7. 48 CFR 36.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for architect-engineer work. 36.605 Section 36.605 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 36.605 Government cost estimate for architect-engineer work. (a) An independent...

  8. 48 CFR 436.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for architect-engineer work. 436.605 Section 436.605 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Service 436.605 Government cost estimate for architect-engineer work. The contracting...

  9. 48 CFR 436.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for architect-engineer work. 436.605 Section 436.605 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Service 436.605 Government cost estimate for architect-engineer work. The contracting...

  10. 48 CFR 1336.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for architect-engineer work. 1336.605 Section 1336.605 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1336.605 Government cost estimate for architect-engineer work. After award, the...

  11. 48 CFR 36.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for architect-engineer work. 36.605 Section 36.605 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 36.605 Government cost estimate for architect-engineer work. (a) An independent...

  12. 48 CFR 436.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for architect-engineer work. 436.605 Section 436.605 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Service 436.605 Government cost estimate for architect-engineer work. The contracting...

  13. 48 CFR 36.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for architect-engineer work. 36.605 Section 36.605 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 36.605 Government cost estimate for architect-engineer work. (a) An independent...

  14. 48 CFR 1336.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for architect-engineer work. 1336.605 Section 1336.605 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1336.605 Government cost estimate for architect-engineer work. After award, the...

  15. Relative performance comparison between baseline labyrinth and dual-brush compressor discharge seals in a T-700 engine test

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Griffin, Thomas A.; Kline, Teresa R.; Csavina, Kristine R.; Pancholi, Arvind; Sood, Devendra

    1995-01-01

    In separate series of YT-700 engine tests, direct comparisons were made between the forward-facing labyrinth and dual brush compressor discharge seals. Compressor speeds to 43 000 rpm, surface speeds to 160 m/s (530 ft/s), pressures to 1 MPa (145 psi), and temperatures to 680 K (765 F) characterized these tests. The wear estimate for 46 hr of engine operations was less than 0.025 mm (0.001 in.) of the Haynes 25 alloy bristles running against a chromium-carbide-coated rub runner. The pressure drops were higher for the dual-brush seal than for the forward-facing labyrinth seal and leakage was lower-with the labyrinth seal leakage being 2-1/2 times greater-implying better seal characteristics, better secondary airflow distribution, and better engine performance (3 percent at high pressure to 5 percent at lower pressure) for the brush seal. (However, as brush seals wear down (after 500 to 1000 hr of engine operation), their leakage rates will increase.) Modification of the secondary flow path requires that changes in cooling air and engine dynamics be accounted for.

  16. Test bed ion engine development

    NASA Technical Reports Server (NTRS)

    Aston, G.; Deininger, W. D.

    1984-01-01

    A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.

  17. EDIN design study alternate space shuttle booster replacement concepts. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.

  18. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Taylor, J. R.

    1979-01-01

    Six conceptual combustor designs for the CF6-50 high bypass turbofan engine and six conceptual combustor designs for the NASA/GE E3 high bypass turbofan engine were analyzed to provide an assessment of the major problems anticipated in using broad specification fuels in these aircraft engine combustion systems. Each of the conceptual combustor designs, which are representative of both state-of-the-art and advanced state-of-the-art combustion systems, was analyzed to estimate combustor performance, durability, and pollutant emissions when using commercial Jet A aviation fuel and when using experimental referee board specification fuel. Results indicate that lean burning, low emissions double annular combustor concepts can accommodate a wide range of fuel properties without a serious deterioration of performance or durability. However, rich burning, single annular concepts would be less tolerant to a relaxation of fuel properties. As the fuel specifications are relaxed, autoignition delay time becomes much smaller which presents a serious design and development problem for premixing-prevaporizing combustion system concepts.

  19. C-5 Reliability Enhancement and Re-engining Program (C-5 RERP)

    DTIC Science & Technology

    2015-12-01

    Production Estimate Current APB Production Objective/Threshold Demonstrated Performance Current Estimate Time To Climb/Initial Level Off 837,000 lbs...RCR - Runway Condition Reading SDD - System Design and Development SL - Sea Level C-5 RERP December 2015 SAR March 23, 2016 16:10:28 UNCLASSIFIED 12...5.3 5.3 Acq O&M 0.0 0.0 -- 0.0 0.0 0.0 0.0 Total 7146.6 7135.7 N/A 6698.0 7694.1 7510.7 7066.6 Confidence Level Confidence Level of cost estimate

  20. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. © 2013 ISA Published by ISA All rights reserved.

  1. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal site

    USGS Publications Warehouse

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W.

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas:Estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge);Analyzing the hydrologic performance of engineered components of a facility;Evaluating the application of models to the prediction of facility performance; andEstimating the uncertainty in predicted facility performance.An estimate of recharge at a LLW site is important since recharge is a principal factor in controlling the release of contaminants via the groundwater pathway. The most common methods for estimating recharge are discussed in Chapter 2. Many factors affect recharge; the natural recharge at an undisturbed site is not necessarily representative either of the recharge that will occur after the site has been disturbed or of the flow of water into a disposal facility at the site. Factors affecting recharge are discussed in Chapter 2.At many sites engineered components are required for a LLW facility to meet performance requirements. Chapter 3 discusses the use of engineered barriers to control the flow of water in a LLW facility, with a particular emphasis on cover systems. Design options and the potential performance and degradation mechanisms of engineered components are also discussed.Water flow in a LLW disposal facility must be evaluated before construction of the facility. In addition, hydrologic performance must be predicted over a very long time frame. For these reasons, the hydrologic evaluation relies on the use of predictive modeling. In Chapter 4, the evaluation of unsaturated water flow modeling is discussed. A checklist of items is presented to guide the evaluation. Several computer simulation codes that were used in the examples (Chapter 6) are discussed with respect to this checklist. The codes used include HELP, UNSAT-H, and VAM3DCG.To provide a defensible estimate of water flow in a LLW disposal facility, the uncertainty associated with model predictions must be considered. Uncertainty arises because of the highly heterogeneous nature of most subsurface environments and the long time frame required in the analysis. Sources of uncertainty in hydrologic evaluation of the unsaturated zone and several approaches for analysis are discussed in Chapter 5. The methods of analysis discussed include a bounding approach, sensitivity analysis, and Monte Carlo simulation.To illustrate the application of the discussion in Chapters 2 through 5, two examples are presented in Chapter 6. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.The report concludes with some final observations and recommendations.

  2. Engineering Design Handbook. Helicopter Engineering. Part Two. Detail Design

    DTIC Science & Technology

    1976-01-01

    rates are sp-ed for a given amount of power available, involved in both symmetrical and turning maneu- Normally•, the high - speed performance problem...safe mnain rotor specls. cessive oiling should be avoided. Good estimations of The power losses of a typical high - speed twin- gear windage losses F...rotor gearbox and consise.d of two hy- gearbox is pitting or spa,:,iig of the gears and draulic pumps and a high - speed generator. bearinbs (par. 4-2.1

  3. Current and future technology in radial and axial gas turbines

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.

    1983-01-01

    Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.

  4. Proceedings of a Seminar on Initial Project Management Plans for Hydrologic Engineering and Economic Analysis Held at Otter Rock, Oregon on 22-24 September 1992

    DTIC Science & Technology

    1992-09-24

    for the fifteen remaining study sites. The total number of structures to be surveyed was estimated at 800 to 1,000. When the contract was complete...Corps of Engineers real estate appraisers or contract appraisers, should be listed as a separate task. The approximate number of structures to be...DOWNGRADING SCHEDULE Distribution of this document is unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER (S) S. MONITORING ORGANIZATION REPORT NUMBER (S

  5. Beyond Crystal Engineering: Significant Enhancement of C2H2/CO2 Separation by Constructing Composite Material.

    PubMed

    Wu, Hui Qiong; Yan, Chang Sheng; Luo, Feng; Krishna, Rajamani

    2018-04-02

    Different from the established crystal engineering method for enhancing gas-separation performance, we demonstrate herein a distinct approach. In contrast to the pristine MOF (metal-organic framework) material, the C 2 H 2 /CO 2 separation ability for the resultant Ag NPs (nanoparticle)@Fe 2 O 3 @MOF composite material, estimated from breakthrough calculations, is greatly enhanced by 2 times, and further magnified up to 3 times under visible light irradiation.

  6. Development and Testing of a High Stability Engine Control (HISTEC) System

    NASA Technical Reports Server (NTRS)

    Orme, John S.; DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Doane, Paul M.

    1998-01-01

    Flight tests were recently completed to demonstrate an inlet-distortion-tolerant engine control system. These flight tests were part of NASA's High Stability Engine Control (HISTEC) program. The objective of the HISTEC program was to design, develop, and flight demonstrate an advanced integrated engine control system that uses measurement-based, real-time estimates of inlet airflow distortion to enhance engine stability. With improved stability and tolerance of inlet airflow distortion, future engine designs may benefit from a reduction in design stall-margin requirements and enhanced reliability, with a corresponding increase in performance and decrease in fuel consumption. This paper describes the HISTEC methodology, presents an aircraft test bed description (including HISTEC-specific modifications) and verification and validation ground tests. Additionally, flight test safety considerations, test plan and technique design and approach, and flight operations are addressed. Some illustrative results are presented to demonstrate the type of analysis and results produced from the flight test program.

  7. A web-based rapid assessment tool for production publishing solutions

    NASA Astrophysics Data System (ADS)

    Sun, Tong

    2010-02-01

    Solution assessment is a critical first-step in understanding and measuring the business process efficiency enabled by an integrated solution package. However, assessing the effectiveness of any solution is usually a very expensive and timeconsuming task which involves lots of domain knowledge, collecting and understanding the specific customer operational context, defining validation scenarios and estimating the expected performance and operational cost. This paper presents an intelligent web-based tool that can rapidly assess any given solution package for production publishing workflows via a simulation engine and create a report for various estimated performance metrics (e.g. throughput, turnaround time, resource utilization) and operational cost. By integrating the digital publishing workflow ontology and an activity based costing model with a Petri-net based workflow simulation engine, this web-based tool allows users to quickly evaluate any potential digital publishing solutions side-by-side within their desired operational contexts, and provides a low-cost and rapid assessment for organizations before committing any purchase. This tool also benefits the solution providers to shorten the sales cycles, establishing a trustworthy customer relationship and supplement the professional assessment services with a proven quantitative simulation and estimation technology.

  8. Attitude Control Flight Experience: Coping with Solar Radiation and Ion Engines Leak Thrust in Hayabusa (MUSES-C)

    NASA Technical Reports Server (NTRS)

    Kawaguchi, Jun'ichiro; Kominato, Takashi; Shirakawa, Ken'ichi

    2007-01-01

    The paper presents the attitude reorientation taking the advantage of solar radiation pressure without use of any fuel aboard. The strategy had been adopted to make Hayabusa spacecraft keep pointed toward the Sun for several months, while spinning. The paper adds the above mentioned results reported in Sedona this February showing another challenge of combining ion engines propulsion tactically balanced with the solar radiation torque with no spin motion. The operation has been performed since this March for a half year successfully. The flight results are presented with the estimated solar array panel diffusion coefficient and the ion engine's swirl torque.

  9. A Risk Management Architecture for Emergency Integrated Aircraft Control

    NASA Technical Reports Server (NTRS)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  10. MODELING OF ION-EXCHANGE FOR CESIUM REMOVAL FROM DISSOLVED SALTCAKE IN SRS TANKS 1-3, 37 AND 41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F

    2007-08-15

    This report presents an evaluation of the expected performance of engineered Crystalline Silicotitanate (CST) and spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from dissolved saltcake in SRS Tanks 1-3, 37 and 41. The application presented in this report reflects the expected behavior of engineered CST IE-911 and spherical RF resin manufactured at the intermediate-scale (approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in RF resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary. As such,more » the predictions provided within this report should provide reasonable estimates of production-scale column performance. Two versions of the RF cesium isotherm were used. The older version provides a conservative estimate of the resin capacity while the newer version more accurately fits the most recent experimental data.« less

  11. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  12. 48 CFR 736.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for architect-engineer work. 736.605 Section 736.605 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 736.605 Government cost estimate for architect-engineer work. See 736.602-3(c)(5). ...

  13. 48 CFR 736.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for architect-engineer work. 736.605 Section 736.605 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 736.605 Government cost estimate for architect-engineer work. See 736.602-3(c)(5). ...

  14. 48 CFR 736.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for architect-engineer work. 736.605 Section 736.605 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 736.605 Government cost estimate for architect-engineer work. See 736.602-3(c)(5). ...

  15. 48 CFR 736.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for architect-engineer work. 736.605 Section 736.605 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 736.605 Government cost estimate for architect-engineer work. See 736.602-3(c)(5). ...

  16. 48 CFR 736.605 - Government cost estimate for architect-engineer work.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for architect-engineer work. 736.605 Section 736.605 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 736.605 Government cost estimate for architect-engineer work. See 736.602-3(c)(5). ...

  17. Static test-stand performance of the YF-102 turbofan engine with several exhaust configurations for the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Moore, A. S.

    1979-01-01

    The performance of a YF-102 turbofan engine was measured in an outdoor test stand with a bellmouth inlet and seven exhaust-system configurations. The configurations consisted of three separate-flow systems of various fan and core nozzle sizes and four confluent-flow systems of various nozzle sizes and shapes. A computer program provided good estimates of the engine performance and of thrust at maximum rating for each exhaust configuration. The internal performance of two different-shaped core nozzles for confluent-flow configurations was determined to be satisfactory. Pressure and temperature surveys were made with a traversing probe in the exhaust-nozzle flow for some confluent-flow configurations. The survey data at the mixing plane, plus the measured flow rates, were used to calculate the static-pressure variation along the exhaust nozzle length. The computed pressures compared well with experimental wall static-pressure data. External-flow surveys were made, for some confluent-flow configurations, with a large fixed rake at various locations in the exhaust plume.

  18. A preliminary evaluation of an F100 engine parameter estimation process using flight data

    NASA Technical Reports Server (NTRS)

    Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.

    1990-01-01

    The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.

  19. A preliminary evaluation of an F100 engine parameter estimation process using flight data

    NASA Technical Reports Server (NTRS)

    Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.

    1990-01-01

    The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.

  20. Software Cost Measuring and Reporting. One of the Software Acquisition Engineering Guidebook Series.

    DTIC Science & Technology

    1979-01-02

    through the peripherals. How- and performance criteria), ever, his interaction is usually minimal since, by difinition , the automatic test Since TS...performs its Software estimating is still heavily intended functions properly. dependent on experienced judgement. However, quantitative methods...apply to systems of totally different can be distributed to specialists who content. The Quantitative guideline may are most familiar with the work. One

  1. Life-Extending Control for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Te-Huei

    2002-01-01

    Current aircraft engine controllers are designed and operated to provide both performance and stability margins. However, the standard method of operation results in significant wear and tear on the engine and negatively affects the on-wing life--the time between cycles when the engine must be physically removed from the aircraft for maintenance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward a new control concept that will include engine life usage as part of the control function. The resulting controller will be able to significantly extend the engine's on-wing life with little or no impact on engine performance and operability. The new controller design will utilize damage models to estimate and mitigate the rate and overall accumulation of damage to critical engine parts. The control methods will also provide a means to assess tradeoffs between performance and structural durability on the basis of mission requirements and remaining engine life. Two life-extending control methodologies were studied to reduce the overall life-cycle cost of aircraft engines. The first methodology is to modify the baseline control logic to reduce the thermomechanical fatigue (TMF) damage of cooled stators during acceleration. To accomplish this, an innovative algorithm limits the low-speed rotor acceleration command when the engine has reached a threshold close to the requested thrust. This algorithm allows a significant reduction in TMF damage with only a very small increase in the rise time to reach the commanded rotor speed. The second methodology is to reduce stress rupture/creep damage to turbine blades and uncooled stators by incorporating an engine damage model into the flight mission. Overall operation cost is reduced by an optimization among the flight time, fuel consumption, and component damages. Recent efforts have focused on applying life-extending control technology to an existing commercial turbine engine, and doing so without modifying the hardware or adding sensors. This approach makes it possible to retrofit existing engines with life-extending control technology by changing only the control software in the full-authority digital engine controller (FADEC). The significant results include demonstrating a 20- to 30-percent reduction in TMF damage to the hot section by developing and implementing smart acceleration logic during takeoff. The tradeoff is an increase, from 5.0 to 5.2 sec, in the time required to reach maximum power from ground idle. On a typical flight profile of a cruise at Mach 0.8 at an altitude of 41,000 ft, and cruise time of 104 min, the optimized system showed that a reduction in cruise speed from Mach 0.8 to 0.79 can achieve an estimated 25-to 35-percent creep/rupture damage reduction in the engine's hot section and a fuel savings of 2.1 percent. The tradeoff is an increase in flight time of 1.3 percent (1.4 min).

  2. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood ofmore » fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.« less

  3. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  4. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  5. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet

    NASA Technical Reports Server (NTRS)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined, where the second cone of a two cone center body collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  6. An automated performance budget estimator: a process for use in instrumentation

    NASA Astrophysics Data System (ADS)

    Laporte, Philippe; Schnetler, Hermine; Rees, Phil

    2016-08-01

    Current day astronomy projects continue to increase in size and are increasingly becoming more complex, regardless of the wavelength domain, while risks in terms of safety, cost and operability have to be reduced to ensure an affordable total cost of ownership. All of these drivers have to be considered carefully during the development process of an astronomy project at the same time as there is a big drive to shorten the development life-cycle. From the systems engineering point of view, this evolution is a significant challenge. Big instruments imply management of interfaces within large consortia and dealing with tight design phase schedules which necessitate efficient and rapid interactions between all the stakeholders to firstly ensure that the system is defined correctly and secondly that the designs will meet all the requirements. It is essential that team members respond quickly such that the time available for the design team is maximised. In this context, performance prediction tools can be very helpful during the concept phase of a project to help selecting the best design solution. In the first section of this paper we present the development of such a prediction tool that can be used by the system engineer to determine the overall performance of the system and to evaluate the impact on the science based on the proposed design. This tool can also be used in "what-if" design analysis to assess the impact on the overall performance of the system based on the simulated numbers calculated by the automated system performance prediction tool. Having such a tool available from the beginning of a project can allow firstly for a faster turn-around between the design engineers and the systems engineer and secondly, between the systems engineer and the instrument scientist. Following the first section we described the process for constructing a performance estimator tool, followed by describing three projects in which such a tool has been utilised to illustrate how such a tool have been used in astronomy projects. The three use-cases are; EAGLE, one of the European Extremely Large Telescope (E-ELT) Multi-Object Spectrograph (MOS) instruments that was studied from 2007 to 2009, the Multi-Object Optical and Near-Infrared Spectrograph (MOONS) for the European Southern Observatory's Very Large Telescope (VLT), currently under development and SST-GATE.

  7. The assessment of engine losses due to friction and lubricant limitations. Final report May 80-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.

    A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less

  8. Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain

    NASA Astrophysics Data System (ADS)

    Moreno-Gutiérrez, J.; Durán-Grados, V.; Uriondo, Z.; Ángel Llamas, J.

    2012-08-01

    A reliable and up-to-date maritime emission inventory is essential for atmospheric scientists quantifying the impact of shipping. The objective of this study is to estimate the atmospheric emissions of SO2, NOx, CO2 and PM10 by international merchant shipping in 2007 in the Strait of Gibraltar, Spain, including the Algeciras Bay by two methods. Two methods (both bottom-up) have been used in this study: 1. Establishing engine power-based emission factors (g kWh-1, EPA) or the mass of pollutant per work performed by the engine for each of the relevant components of the exhaust gas from diesel engines and power for each ship. 2. Establishing fuel-based emission factors (kg emitted/t of fuel) or mass of pollutant per mass of combusted fuel for each of the relevant components of the exhaust gas and a fuel-consumption inventory (IMO). In both methods, the means to estimate engine power and fuel-consumption inventories are the same. The exhaust from boilers and incinerators is regarded as a small contributor and excluded. In total, an estimated average of 1 389 111.05 t of CO2, 23 083.09 t of SO2, 32 005.63 t of NOx and 2972 t of PM10 were emitted from January 2007 until December 2007 by international and domestic shipping. The estimated total fuel consumption amounts to 437 405.84 t. The major differences between the estimates generated by the two methods are for NOx (16% in certain cases) and CO (up to 23%). A total difference for all compounds of 3038 t (approximately 2%) has been found between the two methods but it is not areasonable estimate of uncertainty. Therefore, the results for both methods may be considered acceptable because the actual uncontrolled deviations appear in the changes in emission factors that occur for a given engine with age. These deviations are often difficult to quantify and depend on individual shipboard service and maintenance routines. Emission factors for CO and NOx are not constant and depend on engine condition. For example, tests conducted by the authors of this paper demonstrate that when an engine operates under normal in-service conditions, the emissions are within limits. However, with a small fault in injection timing, the NOx emission exceeds the limits (30% higher value in some cases). A fault in the maintenance of the injection nozzles increases the CO emission (15% higher value in some cases).

  9. Automated Power Assessment for Helicopter Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Litt, Jonathan S.

    2008-01-01

    An accurate indication of available power is required for helicopter mission planning purposes. Available power is currently estimated on U.S. Army Blackhawk helicopters by performing a Maximum Power Check (MPC), a manual procedure performed by maintenance pilots on a periodic basis. The MPC establishes Engine Torque Factor (ETF), an indication of available power. It is desirable to replace the current manual MPC procedure with an automated approach that will enable continuous real-time assessment of available power utilizing normal mission data. This report presents an automated power assessment approach which processes data currently collected within helicopter Health and Usage Monitoring System (HUMS) units. The overall approach consists of: 1) a steady-state data filter which identifies and extracts steady-state operating points within HUMS data sets; 2) engine performance curve trend monitoring and updating; and 3) automated ETF calculation. The algorithm is coded in MATLAB (The MathWorks, Inc.) and currently runs on a PC. Results from the application of this technique to HUMS mission data collected from UH-60L aircraft equipped with T700-GE-701C engines are presented and compared to manually calculated ETF values. Potential future enhancements are discussed.

  10. Cost-engineering modeling to support rapid concept development of an advanced infrared satellite system

    NASA Astrophysics Data System (ADS)

    Bell, Kevin D.; Dafesh, Philip A.; Hsu, L. A.; Tsuda, A. S.

    1995-12-01

    Current architectural and design trade techniques often carry unaffordable alternatives late into the decision process. Early decisions made during the concept exploration and development (CE&D) phase will drive the cost of a program more than any other phase of development; thus, designers must be able to assess both the performance and cost impacts of their early choices. The Space Based Infrared System (SBIRS) cost engineering model (CEM) described in this paper is an end-to-end process integrating engineering and cost expertise through commonly available spreadsheet software, allowing for concurrent design engineering and cost estimation to identify and balance system drives to reduce acquisition costs. The automated interconnectivity between subsystem models using spreadsheet software allows for the quick and consistent assessment of the system design impacts and relative cost impacts due to requirement changes. It is different from most CEM efforts attempted in the past as it incorporates more detailed spacecraft and sensor payload models, and has been applied to determine the cost drivers for an advanced infrared satellite system acquisition. The CEM is comprised of integrated detailed engineering and cost estimating relationships describing performance, design, and cost parameters. Detailed models have been developed to evaluate design parameters for the spacecraft bus and sensor; both step-starer and scanner sensor types incorporate models of focal plane array, optics, processing, thermal, communications, and mission performance. The current CEM effort has provided visibility to requirements, design, and cost drivers for system architects and decision makers to determine the configuration of an infrared satellite architecture that meets essential requirements cost effectively. In general, the methodology described in this paper consists of process building blocks that can be tailored to the needs of many applications. Descriptions of the spacecraft and payload subsystem models provide insight into The Aerospace Corporation expertise and scope of the SBIRS concept development effort.

  11. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less

  12. Sensor Fault Detection and Diagnosis Simulation of a Helicopter Engine in an Intelligent Control Framework

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet

    1994-01-01

    This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.

  13. Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition

    NASA Astrophysics Data System (ADS)

    Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi

    2017-02-01

    An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.

  14. Wrappers for Performance Enhancement and Oblivious Decision Graphs

    DTIC Science & Technology

    1995-09-01

    always select all relevant features. We test di erent search engines to search the space of feature subsets and introduce compound operators to speed...distinct instances from the original dataset appearing in the test set is thus 0:632m. The 0i accuracy estimate is derived by using bootstrap sample...i for training and the rest of the instances for testing . Given a number b, the number of bootstrap samples, let 0i be the accuracy estimate for

  15. Evaluation of solar thermal power plants using economic and performance simulations

    NASA Technical Reports Server (NTRS)

    El-Gabawali, N.

    1980-01-01

    An energy cost analysis is presented for central receiver power plants with thermal storage and point focusing power plants with electrical storage. The present approach is based on optimizing the size of the plant to give the minimum energy cost (in mills/kWe hr) of an annual plant energy production. The optimization is done by considering the trade-off between the collector field size and the storage capacity for a given engine size. The energy cost is determined by the plant cost and performance. The performance is estimated by simulating the behavior of the plant under typical weather conditions. Plant capital and operational costs are estimated based on the size and performance of different components. This methodology is translated into computer programs for automatic and consistent evaluation.

  16. The convertible engine: A dual-mode propulsion system

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1988-01-01

    A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss that was originally estimated. The calculations confirm that using convertible engines rather than separate life and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

  17. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  18. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  19. Characteristics of Schools Successful in STEM: Evidence from Two States' Longitudinal Data

    ERIC Educational Resources Information Center

    Hansen, Michael

    2014-01-01

    Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels…

  20. Engineering and Techno-Economic Assessment | Concentrating Solar Power |

    Science.gov Websites

    performance and technology deployment, and investigates the environmental benefits and impacts of utility System (ReEDS) is a software model used to determine energy and environmental impacts. Learn more[BROKEN estimates the economic impacts of constructing and operating power generation and biofuel plants at the

  1. Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.

  2. The Doghouse Plot: History, Construction Techniques, and Application

    NASA Astrophysics Data System (ADS)

    Wilson, John Robert

    The Doghouse Plot visually represents an aircraft's performance during combined turn-climb maneuvers. The Doghouse Plot completely describes the turn-climb capability of an aircraft; a single plot demonstrates the relationship between climb performance, turn rate, turn radius, stall margin, and bank angle. Using NASA legacy codes, Empirical Drag Estimation Technique (EDET) and Numerical Propulsion System Simulation (NPSS), it is possible to reverse engineer sufficient basis data for commercial and military aircraft to construct Doghouse Plots. Engineers and operators can then use these to assess their aircraft's full performance envelope. The insight gained from these plots can broaden the understanding of an aircraft's performance and, in turn, broaden the operational scope of some aircraft that would otherwise be limited by the simplifications found in their Airplane Flight Manuals (AFM). More importantly, these plots can build on the current standards of obstacle avoidance and expose risks in operation.

  3. Progress in Open Rotor Research: A U.S. Perspective

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.

    2015-01-01

    In response to the 1970s oil crisis, NASA created the Advanced Turboprop Project (ATP) to mature technologies for high-speed propellers to enable large reductions in fuel burn relative to turbofan engines of that era. Both single rotation and contra- rotation concepts were designed and tested in ground based facilities as well as flight. Some novel concepts/configurations were proposed as part of the effort. The high-speed propeller concepts did provide fuel burn savings, albeit with some acoustics and structural challenges to overcome. When fuel prices fell, the business case for radical new engine configurations collapsed and the research emphasis returned to high bypass ducted configurations. With rising oil prices and increased environmental concerns there is renewed interest in high-speed propeller based engine architectures. Contemporary analysis tools for aerodynamics and aeroacoustics have enabled a new era of blade designs that have both high efficiency and lower noise characteristics. A recent series of tests in the U.S. have characterized the aerodynamic performance and noise from these modern contra-rotating propeller designs. Additionally the installation and noise shielding aspects for conventional airframes and blended wing bodies have been studied. Historical estimates of 'propfan' performance have relied on legacy propeller performance and acoustics data. Current system studies make use of the modern propeller data and higher fidelity installation effects data to estimate the performance of a contemporary aircraft system. Contemporary designs have demonstrated high net efficiency, approximately 86%, at 0.78 Mach, and low noise, greater than 15 EPNdB cumulative margin to Chapter 4 when analyzed on a NASA derived aircraft/mission. This paper presents the current state of high-speed propeller/open rotor research within the U.S. from an overall viewpoint of the various efforts ongoing. The remaining technical challenges to a production engine include propulsion airframe integration, acoustic sensitivity to aircraft weight and certification issues.

  4. Experimental study on the thrust modulation performance of powdered magnesium and CO2 bipropellant engine

    NASA Astrophysics Data System (ADS)

    Li, Chao; Hu, Chunbo; Zhu, Xiaofei; Hu, Jiaming; Li, Yue; Hu, Xu

    2018-06-01

    Powdered Mg and CO2 bipropellant engine providing a practical demonstration of in situ resource utilization (ISRU) for Mars Sample Return (MSR) mission seems to be feasible by current investigations. However, essential functions of the engine to satisfy the complicated ballistics requirements such as thrust modulation and multiple pulse have not been established yet. The aim of this experimental study is to evaluate the engine's thrust modulation feasibility and to investigate its thrust modulation characteristics. A powdered Mg and CO2 bipropellant engine construction aiming to achieve thrust modulation ability was proposed. A mass flow rate calibration experiment to evaluate the gas-solid mass flow rate regulating performance was conducted before fire tests. Fire test result shows that the engine achieved successful ignition as well as self-sustaining combustion; Thrust modulation of the engine is feasible, detail thrust estimating result of the test shows that maximum thrust is 135.91 N and the minimum is 5.65 N with a 22.11 thrust modulation ratio, moreover, the transportation period is quick and the thrust modulation ratio is adjustable. At the same time, the powder feed system reaches a two-step flow rate regulating with a modulation ratio of 4.5-5. What' more, caused by the uneven engine working conditions, there is an obvious difference in combustion efficiency value, maximum combustion efficiency of the powdered Mg and CO2 bipropellant engine is 80.20%.

  5. The PIT MkV pulsed inductive thruster

    NASA Technical Reports Server (NTRS)

    Dailey, C. Lee; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.

  6. Control-enhanced multiparameter quantum estimation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Yuan, Haidong

    2017-10-01

    Most studies in multiparameter estimation assume the dynamics is fixed and focus on identifying the optimal probe state and the optimal measurements. In practice, however, controls are usually available to alter the dynamics, which provides another degree of freedom. In this paper we employ optimal control methods, particularly the gradient ascent pulse engineering (GRAPE), to design optimal controls for the improvement of the precision limit in multiparameter estimation. We show that the controlled schemes are not only capable to provide a higher precision limit, but also have a higher stability to the inaccuracy of the time point performing the measurements. This high time stability will benefit the practical metrology, where it is hard to perform the measurement at a very accurate time point due to the response time of the measurement apparatus.

  7. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided.

  8. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  9. Jet Engine Operating and Support Cost Estimating Relationship Development.

    DTIC Science & Technology

    1985-09-01

    0 H COX UCSSFE SEP 85 RFIT/GSM/LSY/85S-S F/G 14/1 M liiiI~ 1.8 2. I...~ 0 1.8 11111 ~ *& 11110 .8 MICR~OCOPY RESOLUTION TEST CHART N AT-N AL BUEA O... testing equipment, and more highly skilled laborers to maintain the engines. Variables indicative of technology and performance are specific fuel...Qualification Test (MlOT) date. October 1942 was slected because it was the date when the first US turbojet- 50 powered aircraft -Flew (26s14. Another time

  10. Energy Savings and Sustainability Opportunities at US Army Corps of Engineers Facilities: A Guide to Identify, Prioritize, and Estimate Projects at Complexes That Have Not Conducted a Facility-Level Energy and Water Evaluation

    DTIC Science & Technology

    2012-06-16

    Engineers to help identify and develop energy and water conservation projects in the facilities for which they are responsible. DISCLAIMER: The...and water throughout their facility. To identify energy and water conservation measures (ECMs), an energy manager would generally start by performing...an Energy and Water Conservation Assessment, essentially a facility-level evaluation of the en- ergy and water consuming equipment and systems that

  11. A 3-Component Mixture of Rayleigh Distributions: Properties and Estimation in Bayesian Framework

    PubMed Central

    Aslam, Muhammad; Tahir, Muhammad; Hussain, Zawar; Al-Zahrani, Bander

    2015-01-01

    To study lifetimes of certain engineering processes, a lifetime model which can accommodate the nature of such processes is desired. The mixture models of underlying lifetime distributions are intuitively more appropriate and appealing to model the heterogeneous nature of process as compared to simple models. This paper is about studying a 3-component mixture of the Rayleigh distributionsin Bayesian perspective. The censored sampling environment is considered due to its popularity in reliability theory and survival analysis. The expressions for the Bayes estimators and their posterior risks are derived under different scenarios. In case the case that no or little prior information is available, elicitation of hyperparameters is given. To examine, numerically, the performance of the Bayes estimators using non-informative and informative priors under different loss functions, we have simulated their statistical properties for different sample sizes and test termination times. In addition, to highlight the practical significance, an illustrative example based on a real-life engineering data is also given. PMID:25993475

  12. Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results obtained from application to a turbofan engine model. This model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  13. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    NASA Astrophysics Data System (ADS)

    Demuth, O. J.

    1984-06-01

    The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  14. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  15. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  16. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  17. Cost and price estimate of Brayton and Stirling engines in selected production volumes

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.; Mayers, H. F.

    1980-01-01

    The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs.

  18. Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2003-01-01

    This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.

  19. Among friends: the role of academic-preparedness diversity in individual performance within a small-group STEM learning environment

    NASA Astrophysics Data System (ADS)

    Micari, Marina; Van Winkle, Zachary; Pazos, Pilar

    2016-08-01

    In this study, we investigate the relationship between academic-preparedness diversity within small learning groups and individual academic performance in science, technology, engineering, and mathematics (STEM) university courses. We further examine whether academic-preparedness diversity impacts academically more- and less-prepared students differently. We use data from 5367 university students nested within 1141 science, engineering, and mathematics learning groups and use a regression analysis to estimate the effect of group diversity, measured in two ways, on course performance. Our results indicate that academic-preparedness diversity is generally associated with positive learning outcomes, that academically less-prepared students derive greater benefit, and that less-prepared students fare best when they are not alone in a group of highly prepared students. Implications for teaching and small-group facilitation are addressed.

  20. Expanded study of feasibility of measuring in-flight 747/JT9D loads, performance, clearance, and thermal data

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.; Martin, R. L.

    1980-01-01

    The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.

  1. DC-9 Flight Demonstration Program with Refanned JT8D Engines. Volume 3; Performance and Analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The JT8D-109 engine has a sea level static, standard day bare engine takeoff thrust of 73,840 N. At sea level standard day conditions the additional thrust of the JT8D-109 results in 2,040 kg additional takeoff gross weight capability for a given field length. Range loss of the DC-9 Refan airplane for long range cruise was determined. The Refan airplane demonstrated stall, static longitudinal stability, longitudinal control, longitudinal trim, minimum control speeds, and directional control characteristics similar to the DC-9-30 production airplane and complied with airworthiness requirements. Cruise, climb, and thrust reverser performance were evaluated. Structural and dynamic ground test, flight test and analytical results substantiate Refan Program requirements that the nacelle, thrust reverser hardware, and the airplane structural modifications are flightworthy and certifiable and that the airplane meets flutter speed margins. Estimated unit cost of a DC-9 Refan retrofit program is 1.338 million in mid-1975 dollars with about an equal split in cost between airframe and engine.

  2. DHLAS: A web-based information system for statistical genetic analysis of HLA population data.

    PubMed

    Thriskos, P; Zintzaras, E; Germenis, A

    2007-03-01

    DHLAS (database HLA system) is a user-friendly, web-based information system for the analysis of human leukocyte antigens (HLA) data from population studies. DHLAS has been developed using JAVA and the R system, it runs on a Java Virtual Machine and its user-interface is web-based powered by the servlet engine TOMCAT. It utilizes STRUTS, a Model-View-Controller framework and uses several GNU packages to perform several of its tasks. The database engine it relies upon for fast access is MySQL, but others can be used a well. The system estimates metrics, performs statistical testing and produces graphs required for HLA population studies: (i) Hardy-Weinberg equilibrium (calculated using both asymptotic and exact tests), (ii) genetics distances (Euclidian or Nei), (iii) phylogenetic trees using the unweighted pair group method with averages and neigbor-joining method, (iv) linkage disequilibrium (pairwise and overall, including variance estimations), (v) haplotype frequencies (estimate using the expectation-maximization algorithm) and (vi) discriminant analysis. The main merit of DHLAS is the incorporation of a database, thus, the data can be stored and manipulated along with integrated genetic data analysis procedures. In addition, it has an open architecture allowing the inclusion of other functions and procedures.

  3. Complete modeling for systems of a marine diesel engine

    NASA Astrophysics Data System (ADS)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  4. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  5. Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.; Hertzberg, D. W.

    1991-01-01

    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.

  6. EDIN design study alternate space shuttle booster replacement concepts. Volume 2: Design simulation results

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    Historical weight estimating relationships were developed for the liquid rocket booster (LRB) using Saturn technology, and modified as required to support the EDIN05 study. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the EDIN05 designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut-off points. Performance analysis was based on a point design trajectory model which optimized initial tilt rate and exo-atmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle-of-attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary.

  7. DC-9/JT8D refan, Phase 1. [technical and economic feasibility of retrofitting DC-9 aircraft with refan engine to achieve desired acoustic levels

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Analyses and design studies were conducted on the technical and economic feasibility of installing the JT8D-109 refan engine on the DC-9 aircraft. Design criteria included minimum change to the airframe to achieve desired acoustic levels. Several acoustic configurations were studied with two selected for detailed investigations. The minimum selected acoustic treatment configuration results in an estimated aircraft weight increase of 608 kg (1,342 lb) and the maximum selected acoustic treatment configuration results in an estimated aircraft weight increase of 809 kg (1,784 lb). The range loss for the minimum and maximum selected acoustic treatment configurations based on long range cruise at 10 668 m (35,000 ft) altitude with a typical payload of 6 804 kg (15,000 lb) amounts to 54 km (86 n. mi.) respectively. Estimated reduction in EPNL's for minimum selected treatment show 8 EPNdB at approach, 12 EPNdB for takeoff with power cutback, 15 EPNdB for takeoff without power cutback and 12 EPNdB for sideline using FAR Part 36. Little difference was estimated in EPNL between minimum and maximum treatments due to reduced performance of maximum treatment. No major technical problems were encountered in the study. The refan concept for the DC-9 appears technically feasible and economically viable at approximately $1,000,000 per airplane. An additional study of the installation of JT3D-9 refan engine on the DC-8-50/61 and DC-8-62/63 aircraft is included. Three levels of acoustic treatment were suggested for DC-8-50/61 and two levels for DC-8-62/63. Results indicate the DC-8 technically can be retrofitted with refan engines for approximately $2,500,000 per airplane.

  8. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  9. A Simplified Quaternion-Based Algorithm for Orientation Estimation From Earth Gravity and Magnetic Field Measurements

    DTIC Science & Technology

    2008-03-01

    1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School...Department of Electrical and Computer Engineering,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S

  10. Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1997-01-01

    NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.

  11. Curve number method response to historical climate variability and trends

    USDA-ARS?s Scientific Manuscript database

    With the dependence on the curve number (CN) model by the engineering community, the question arises as to whether changes in climate may affect the performance of the CN algorithm which impacts estimates of runoff. A study was conducted to determine the effects of “climate period” (period of unifor...

  12. Army Corps of Engineers: Cost Increases in Flood Control Projects and Improving Communication with Nonfederal Sponsors

    DTIC Science & Technology

    2013-12-01

    such poor condition that it had to have major rehabilitation work performed. Work to fix the deteriorated tunnel cost $10 million more than had...originally been estimated.19 Corps officials on the Little Calumet project said during construction they encountered a former landfill along one portion

  13. Mass and Performance Estimates for 5 to 1000 kW(e) Nuclear Reactor Power Systems for Space Applications

    DTIC Science & Technology

    1990-12-01

    Albany Street Cambridge, MA 02139 Dave Berwald Grumman Aerospace Corporation MS B20-05 Bethpage, NY 11714 F. Best Assistant Professor Texas A&M... Zielinski U. S. Department of Energy SAN-ACR Division 13333 Broadway Oakland, CA 94612 G. L. Zigler Science & Engineering Associates 6301

  14. Progress in Open Rotor Research: A U.S. Perspective

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.

    2015-01-01

    In response to the 1970s oil crisis, NASA created the Advanced Turboprop Project (ATP) to mature technologies for high-speed propellers to enable large reductions in fuel burn relative to turbofan engines of that era. Both single rotation and contra-rotation concepts were designed and tested in ground based facilities as well as flight. Some novel concepts configurations that were not well publicized at the time, were proposed as part of the effort. The high-speed propeller concepts did provide fuel burn savings, albeit with some acoustics and structural challenges to overcome. When fuel prices fell, the business case for radical new engine configurations collapsed and the research emphasis returned to high bypass ducted configurations. With rising oil prices and increased environmental concerns there is renewed interest in high-speed propeller based engine architectures. Contemporary analysis tools for aerodynamics and aeroacoustics have enabled a new era of blade designs that have both high efficiency and acceptable noise characteristics. A recent series of tests in the U.S. have characterized the aerodynamic performance and noise from these modern contra-rotating propeller designs. Additionally the installation and noise shielding aspects for conventional airframes and blended wing bodies have been studied. Historical estimates of propfan performance have relied on legacy propeller performance and acoustics data. Current system studies make use of the modern propeller data with higher fidelity installation effects data to estimate the performance of a contemporary aircraft system with favorable results. This paper presents the current state of high-speed propeller open rotor research within the U.S. from an overall viewpoint of the various efforts ongoing. The current projections for the technology are presented.

  15. Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.

    PubMed

    Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles

    2007-07-01

    Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.

  16. Space Shuttle Main Engine performance analysis

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    For a number of years, NASA has relied primarily upon periodically updated versions of Rocketdyne's power balance model (PBM) to provide space shuttle main engine (SSME) steady-state performance prediction. A recent computational study indicated that PBM predictions do not satisfy fundamental energy conservation principles. More recently, SSME test results provided by the Technology Test Bed (TTB) program have indicated significant discrepancies between PBM flow and temperature predictions and TTB observations. Results of these investigations have diminished confidence in the predictions provided by PBM, and motivated the development of new computational tools for supporting SSME performance analysis. A multivariate least squares regression algorithm was developed and implemented during this effort in order to efficiently characterize TTB data. This procedure, called the 'gains model,' was used to approximate the variation of SSME performance parameters such as flow rate, pressure, temperature, speed, and assorted hardware characteristics in terms of six assumed independent influences. These six influences were engine power level, mixture ratio, fuel inlet pressure and temperature, and oxidizer inlet pressure and temperature. A BFGS optimization algorithm provided the base procedure for determining regression coefficients for both linear and full quadratic approximations of parameter variation. Statistical information relative to data deviation from regression derived relations was also computed. A new strategy for integrating test data with theoretical performance prediction was also investigated. The current integration procedure employed by PBM treats test data as pristine and adjusts hardware characteristics in a heuristic manner to achieve engine balance. Within PBM, this integration procedure is called 'data reduction.' By contrast, the new data integration procedure, termed 'reconciliation,' uses mathematical optimization techniques, and requires both measurement and balance uncertainty estimates. The reconciler attempts to select operational parameters that minimize the difference between theoretical prediction and observation. Selected values are further constrained to fall within measurement uncertainty limits and to satisfy fundamental physical relations (mass conservation, energy conservation, pressure drop relations, etc.) within uncertainty estimates for all SSME subsystems. The parameter selection problem described above is a traditional nonlinear programming problem. The reconciler employs a mixed penalty method to determine optimum values of SSME operating parameters associated with this problem formulation.

  17. Real-Time Diagnosis of Faults Using a Bank of Kalman Filters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2006-01-01

    A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.

  18. A Framework for Automating Cost Estimates in Assembly Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calton, T.L.; Peters, R.R.

    1998-12-09

    When a product concept emerges, the manufacturing engineer is asked to sketch out a production strategy and estimate its cost. The engineer is given an initial product design, along with a schedule of expected production volumes. The engineer then determines the best approach to manufacturing the product, comparing a variey of alternative production strategies. The engineer must consider capital cost, operating cost, lead-time, and other issues in an attempt to maximize pro$ts. After making these basic choices and sketching the design of overall production, the engineer produces estimates of the required capital, operating costs, and production capacity. 177is process maymore » iterate as the product design is refined in order to improve its pe~ormance or manufacturability. The focus of this paper is on the development of computer tools to aid manufacturing engineers in their decision-making processes. This computer sof~are tool provides aj?amework in which accurate cost estimates can be seamlessly derivedfiom design requirements at the start of any engineering project. Z+e result is faster cycle times through first-pass success; lower ll~e cycie cost due to requirements-driven design and accurate cost estimates derived early in the process.« less

  19. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  20. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  1. Strategy Developed for Selecting Optimal Sensors for Monitoring Engine Health

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Sensor indications during rocket engine operation are the primary means of assessing engine performance and health. Effective selection and location of sensors in the operating engine environment enables accurate real-time condition monitoring and rapid engine controller response to mitigate critical fault conditions. These capabilities are crucial to ensure crew safety and mission success. Effective sensor selection also facilitates postflight condition assessment, which contributes to efficient engine maintenance and reduced operating costs. Under the Next Generation Launch Technology program, the NASA Glenn Research Center, in partnership with Rocketdyne Propulsion and Power, has developed a model-based procedure for systematically selecting an optimal sensor suite for assessing rocket engine system health. This optimization process is termed the systematic sensor selection strategy. Engine health management (EHM) systems generally employ multiple diagnostic procedures including data validation, anomaly detection, fault-isolation, and information fusion. The effectiveness of each diagnostic component is affected by the quality, availability, and compatibility of sensor data. Therefore systematic sensor selection is an enabling technology for EHM. Information in three categories is required by the systematic sensor selection strategy. The first category consists of targeted engine fault information; including the description and estimated risk-reduction factor for each identified fault. Risk-reduction factors are used to define and rank the potential merit of timely fault diagnoses. The second category is composed of candidate sensor information; including type, location, and estimated variance in normal operation. The final category includes the definition of fault scenarios characteristic of each targeted engine fault. These scenarios are defined in terms of engine model hardware parameters. Values of these parameters define engine simulations that generate expected sensor values for targeted fault scenarios. Taken together, this information provides an efficient condensation of the engineering experience and engine flow physics needed for sensor selection. The systematic sensor selection strategy is composed of three primary algorithms. The core of the selection process is a genetic algorithm that iteratively improves a defined quality measure of selected sensor suites. A merit algorithm is employed to compute the quality measure for each test sensor suite presented by the selection process. The quality measure is based on the fidelity of fault detection and the level of fault source discrimination provided by the test sensor suite. An inverse engine model, whose function is to derive hardware performance parameters from sensor data, is an integral part of the merit algorithm. The final component is a statistical evaluation algorithm that characterizes the impact of interference effects, such as control-induced sensor variation and sensor noise, on the probability of fault detection and isolation for optimal and near-optimal sensor suites.

  2. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    NASA Astrophysics Data System (ADS)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  3. Preliminary MIPCC Enhanced F-4 and F-15 Performance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  4. Refan Engine in the Propulsion Systems Laboratory

    NASA Image and Video Library

    1974-10-21

    A refanned Pratt and Whitney JT-8D-109 turbofan engine installed in Cell 4 of the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. NASA Lewis’ Refan Program sought to demonstrate that noise reduction modifications could be applied to existing aircraft engines with minimal costs and without diminishing the engine’s performance or integrity. At the time, Pratt and Whitney’s JT-8D turbofans were one of the most widely used engines in the commercial airline industry. The engines powered Boeing’s 727 and 737 and McDonnell Douglas’ DC-9 aircraft. Pratt and Whitney worked with the airline manufacturers on a preliminary study that verified feasibility of replacing the JT-8D’s two-stage fan with a larger single-stage fan. The new fan slowed the engine’s exhaust, which significantly reduced the amount of noise it generated. Booster stages were added to maintain the proper level of airflow through the engine. Pratt and Whitney produced six of the modified engines, designated JT-8D-109, and performed the initial testing. One of the JT-8D-109 engines, seen here, was tested in simulated altitude conditions in NASA Lewis’ Propulsion Systems Laboratory. The Refan engine was ground-tested on an actual aircraft before making a series of flight tests on 727 and DC-9 aircraft in early 1976. The Refan Program reduced the JT-8D’s noise by 50 percent while increasing the fuel efficiency. The retro-fit kits were estimated to cost between $1 million and $1.7 million per aircraft.

  5. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  6. Advanced transportation system studies, technical area 3. Alternate propulsion subsystem concepts: J-2S restart study

    NASA Astrophysics Data System (ADS)

    Vilja, John; Levack, Daniel

    1993-04-01

    The objectives were to assess what design changes would be required to remit late production of the J-2S engine for use as a large high energy upper stage engine. The study assessed design changes required to perform per the J-2S model specification, manufacturing changes required due to obsolescence or improvements in state-of-the-practice, availability issues for supplier provided items, and provided cost and schedule estimates for this configuration. The confidence that J-2S production could be reinitiated within reasonable costs and schedules was provided. No significant technical issues were identified in either the producibility study or in the review of previous technical data. Areas of potential cost reduction were identified which could be quantified to a greater extent with further manufacturing planning. The proposed schedule can be met with no foreseeable impacts. The results of the study provided the necessary foundation for the detailed manufacturing and test plans and non-recurring and recurring cost estimates that are needed to complete the effort to reinitiate production of the J-2S engine system.

  7. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.

    2014-12-01

    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  8. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The propulsion performance, acoustic, structural, and systems changes to a 727-200 airplane retrofitted with a refan modification of the JT8D turbofan engine are evaluated. Model tests, design of certifiable airplane retrofit kit hardware, manufacture of test hardware, ground test of a current production JT8D engine, followed by test of the same engine modified to the refan configuration, detailed analyses of the retrofit impact on airplane airworthiness, performance, and noise, and a preliminary analysis of retrofit costs are included. Results indicate that the refan retrofit of the 727-200 would be certifiable and would result in a 6-to 8 EPNdb reduction in effective perceived noise level (EPNL) at the FAR 36 measuring points and an annoyance-weighted footprint area reduction of 68% to 83%. The installed refan engine is estimated to provide 14% greater takeoff thrust at zero velocity and 10% greater thrust at 100 kn (51.4 m/s). There would be an approximate 0.6% increase in cruise specific fuel consumption (SFC). The refan engine performance in conjunction with the increase in stalled weight results in a range reduction of approximately 15% over the unmodified airplane at the same brake release gross weight (BRGW), with a block fuel increase of 1.5% to 3%. With the particular model 727 that was studied, however, it is possible to operate the airplane (with minor structural modifications) at a higher BRGW and increase the range up to approximately 15% relative to the nonrefanned airplane (with equal or slightly increased noise levels). The JT8D refan engine also improves the limited-field range of the airplane.

  9. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  10. Wind/Tornado Guidelines Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, D.S.; Holman, G.S.

    1991-10-01

    This report documents the strategy employed to develop recommended wind/tornado hazard design guidelines for a New Production Reactor (NRP) currently planned for either the Idaho National Engineering Laboratory (INEL) or the Savannah River (SR) site. The Wind/Tornado Working Group (WTWG), comprising six nationally recognized experts in structural engineering, wind engineering, and meteorology, formulated an independent set of guidelines based on site-specific wind/tornado hazard curves and state-of-the-art tornado missile technology. The basic philosophy was to select realistic wind and missile load specifications, and to meet performance goals by applying conservative structural response evaluation and acceptance criteria. Simplified probabilistic risk analyses (PRAs)more » for wind speeds and missile impact were performed to estimate annual damage risk frequencies for both the INEL and SR sites. These PRAs indicate that the guidelines will lead to facilities that meet the US Department of Energy (DOE) design requirements and that the Nuclear Regulatory Commission guidelines adopted by the DOE for design are adequate to meet the NPR safety goals.« less

  11. A feasibility work on the applications of MRE to automotive components

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.

    2018-03-01

    A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.

  12. Nose-to-tail analysis of an airbreathing hypersonic vehicle using an in-house simplified tool

    NASA Astrophysics Data System (ADS)

    Piscitelli, Filomena; Cutrone, Luigi; Pezzella, Giuseppe; Roncioni, Pietro; Marini, Marco

    2017-07-01

    SPREAD (Scramjet PREliminary Aerothermodynamic Design) is a simplified, in-house method developed by CIRA (Italian Aerospace Research Centre), able to provide a preliminary estimation of the performance of engine/aeroshape for airbreathing configurations. It is especially useful for scramjet engines, for which the strong coupling between the aerothermodynamic (external) and propulsive (internal) flow fields requires real-time screening of several engine/aeroshape configurations and the identification of the most promising one/s with respect to user-defined constraints and requirements. The outcome of this tool defines the base-line configuration for further design analyses with more accurate tools, e.g., CFD simulations and wind tunnel testing. SPREAD tool has been used to perform the nose-to-tail analysis of the LAPCAT-II Mach 8 MR2.4 vehicle configuration. The numerical results demonstrate SPREAD capability to quickly predict reliable values of aero-propulsive balance (i.e., net-thrust) and aerodynamic efficiency in a pre-design phase.

  13. Introduction to State Estimation of High-Rate System Dynamics.

    PubMed

    Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan

    2018-01-13

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.

  14. Research study entitled advanced X-ray astrophysical observatory (AXAF). [system engineering for a total X-ray telescope assembly

    NASA Technical Reports Server (NTRS)

    Rasche, R. W.

    1979-01-01

    General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.

  15. Retooling Predictive Relations for non-volatile PM by Comparison to Measurements

    NASA Astrophysics Data System (ADS)

    Vander Wal, R. L.; Abrahamson, J. P.

    2015-12-01

    Non-volatile particulate matter (nvPM) emissions from jet aircraft at cruise altitude are of particular interest for climate and atmospheric processes but are difficult to measure and are normally approximated. To provide such inventory estimates the present approach is to use measured, ground-based values with scaling to cruise (engine operating) conditions. Several points are raised by this approach. First is what ground based values to use. Empirical and semi-empirical approaches, such as the revised first order approximation (FOA3) and formation-oxidation (FOX) methods, each with embedded assumptions are available to calculate a ground-based black carbon concentration, CBC. Second is the scaling relation that can depend upon the ratios of fuel-air equivalence, pressure, and combustor flame temperature. We are using measured ground-based values to evaluate the accuracy of present methods towards developing alternative methods for CBCby smoke number or via a semi-empirical kinetic method for the specific engine, CFM56-2C, representative of a rich-dome style combustor, and as one of the most prevalent engine families in commercial use. Applying scaling relations to measured ground based values and comparison to measurements at cruise evaluates the accuracy of current scaling formalism. In partnership with GE Aviation, performing engine cycle deck calculations enables critical comparison between estimated or predicted thermodynamic parameters and true (engine) operational values for the CFM56-2C engine. Such specific comparisons allow tracing differences between predictive estimates for, and measurements of nvPM to their origin - as either divergence of input parameters or in the functional form of the predictive relations. Such insights will lead to development of new predictive tools for jet aircraft nvPM emissions. Such validated relations can then be extended to alternative fuels with confidence in operational thermodynamic values and functional form. Comparisons will then be made between these new predictive relationships and measurements of nvPM from alternative fuels using ground and cruise data - as collected during NASA-led AAFEX and ACCESS field campaigns, respectively.

  16. Research requirements for development of improved helicopter rotor efficiency

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1976-01-01

    The research requirements for developing an improved-efficiency rotor for a civil helicopter are documented. The various design parameters affecting the hover and cruise efficiency of a rotor are surveyed, and the parameters capable of producing the greatest potential improvement are identified. Research and development programs to achieve these improvements are defined, and estimated costs and schedules are presented. Interaction of the improved efficiency rotor with other technological goals for an advanced civil helicopter is noted, including its impact on engine noise, hover and cruise performance, one-engine-inoperative hover capability, and maintenance and reliability.

  17. Analysis, design, fabrication and testing of an optical tip clearance sensor. [turbocompressor blade tips

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Marple, D. T. F.; Kingsley, J. D.

    1981-01-01

    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed.

  18. Thermomechanical Multiaxial Fatigue Testing Capability Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.

  19. Reducing the Time and Cost of Testing Engines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.

  20. Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Building Structures

    USGS Publications Warehouse

    Çelebi, Mehmet

    1998-01-01

    Several approaches are used to assess the performance of the built environment following an earthquake -- preliminary damage surveys conducted by professionals, detailed studies of individual structures, and statistical analyses of groups of structures. Reports of damage that are issued by many organizations immediately following an earthquake play a key role in directing subsequent detailed investigations. Detailed studies of individual structures and statistical analyses of groups of structures may be motivated by particularly good or bad performance during an earthquake. Beyond this, practicing engineers typically perform stress analyses to assess the performance of a particular structure to vibrational levels experienced during an earthquake. The levels may be determined from recorded or estimated ground motions; actual levels usually differ from design levels. If a structure has seismic instrumentation to record response data, the estimated and recorded response and behavior of the structure can be compared.

  1. Method of Estimating the Principal Characteristics of an Infantry Fighting Vehicle from Basic Performance Requirements

    DTIC Science & Technology

    2013-08-01

    Balliett, “Investigation of Cast Austempered Ductile Iron ( CADI ) Trackshoes in T-158 Configuration,” US TACOM Report 13575 (Warren, MI: US Army Tank...Engineers, 11th Ed. New York, NY: McGraw Hill, 2007. Balliett, T. “Investigation of Cast Austempered Ductile Iron ( CADI ) Trackshoes in T-158

  2. Linear Spectral Analysis of Plume Emissions Using an Optical Matrix Processor

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Plume spectrometry provides a means to monitor the health of a burning rocket engine, and optical matrix processors provide a means to analyze the plume spectra in real time. By observing the spectrum of the exhaust plume of a rocket engine, researchers have detected anomalous behavior of the engine and have even determined the failure of some equipment before it would normally have been noticed. The spectrum of the plume is analyzed by isolating information in the spectrum about the various materials present to estimate what materials are being burned in the engine. Scientists at the Marshall Space Flight Center (MSFC) have implemented a high resolution spectrometer to discriminate the spectral peaks of the many species present in the plume. Researchers at the Stennis Space Center Demonstration Testbed Facility (DTF) have implemented a high resolution spectrometer observing a 1200-lb. thrust engine. At this facility, known concentrations of contaminants can be introduced into the burn, allowing for the confirmation of diagnostic algorithms. While the high resolution of the measured spectra has allowed greatly increased insight into the functioning of the engine, the large data flows generated limit the ability to perform real-time processing. The use of an optical matrix processor and the linear analysis technique described below may allow for the detailed real-time analysis of the engine's health. A small optical matrix processor can perform the required mathematical analysis both quicker and with less energy than a large electronic computer dedicated to the same spectral analysis routine.

  3. 40 CFR 63.506 - General recordkeeping and reporting provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring and recordkeeping, or alternative controls; requesting approval to use engineering assessment to... request for approval to use engineering assessment to estimate emissions from a batch emissions episode...)(3)(v) of this section; to use engineering assessment to estimate emissions from a batch emissions...

  4. Program Analyzes Radar Altimeter Data

    NASA Technical Reports Server (NTRS)

    Vandemark, Doug; Hancock, David; Tran, Ngan

    2004-01-01

    A computer program has been written to perform several analyses of radar altimeter data. The program was designed to improve on previous methods of analysis of altimeter engineering data by (1) facilitating and accelerating the analysis of large amounts of data in a more direct manner and (2) improving the ability to estimate performance of radar-altimeter instrumentation and provide data corrections. The data in question are openly available to the international scientific community and can be downloaded from anonymous file-transfer- protocol (FTP) locations that are accessible via links from altimetry Web sites. The software estimates noise in range measurements, estimates corrections for electromagnetic bias, and performs statistical analyses on various parameters for comparison of different altimeters. Whereas prior techniques used to perform similar analyses of altimeter range noise require comparison of data from repetitions of satellite ground tracks, the present software uses a high-pass filtering technique to obtain similar results from single satellite passes. Elimination of the requirement for repeat-track analysis facilitates the analysis of large amounts of satellite data to assess subtle variations in range noise.

  5. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  6. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  7. The common engine concept for ALS application - A cost reduction approach

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Schindler, C. M.

    1989-01-01

    Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.

  8. Performance modeling for large database systems

    NASA Astrophysics Data System (ADS)

    Schaar, Stephen; Hum, Frank; Romano, Joe

    1997-02-01

    One of the unique approaches Science Applications International Corporation took to meet performance requirements was to start the modeling effort during the proposal phase of the Interstate Identification Index/Federal Bureau of Investigations (III/FBI) project. The III/FBI Performance Model uses analytical modeling techniques to represent the III/FBI system. Inputs to the model include workloads for each transaction type, record size for each record type, number of records for each file, hardware envelope characteristics, engineering margins and estimates for software instructions, memory, and I/O for each transaction type. The model uses queuing theory to calculate the average transaction queue length. The model calculates a response time and the resources needed for each transaction type. Outputs of the model include the total resources needed for the system, a hardware configuration, and projected inherent and operational availability. The III/FBI Performance Model is used to evaluate what-if scenarios and allows a rapid response to engineering change proposals and technical enhancements.

  9. Performance Analysis of Scientific and Engineering Applications Using MPInside and TAU

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Mehrotra, Piyush; Taylor, Kenichi Jun Haeng; Shende, Sameer Suresh; Biswas, Rupak

    2010-01-01

    In this paper, we present performance analysis of two NASA applications using performance tools like Tuning and Analysis Utilities (TAU) and SGI MPInside. MITgcmUV and OVERFLOW are two production-quality applications used extensively by scientists and engineers at NASA. MITgcmUV is a global ocean simulation model, developed by the Estimating the Circulation and Climate of the Ocean (ECCO) Consortium, for solving the fluid equations of motion using the hydrostatic approximation. OVERFLOW is a general-purpose Navier-Stokes solver for computational fluid dynamics (CFD) problems. Using these tools, we analyze the MPI functions (MPI_Sendrecv, MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.) with respect to message size of each rank, time consumed by each function, and how ranks communicate. MPI communication is further analyzed by studying the performance of MPI functions used in these two applications as a function of message size and number of cores. Finally, we present the compute time, communication time, and I/O time as a function of the number of cores.

  10. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  11. Preliminary Assessment of Variable Speed Power Turbine Technology on Civil Tiltrotor Size and Performance

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Acree, Cecil W., Jr.

    2012-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing capability. This paper performs a preliminary assessment of variable-speed power turbine technology on LCTR2 sizing, while maintaining the same, advanced technology engine core. Six concepts were studied; an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE) using a multi-speed (shifting) gearbox. There were five variable-speed power turbine (VSPT) engine concepts, comprising a matrix of either three or four turbine stages, and fixed or variable guide vanes; plus a minimum weight, twostage, fixed-geometry VSPT. The ACE is the lightest engine, but requires a multi-speed (shifting) gearbox to maximize its fuel efficiency, whereas the VSPT concepts use a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle gross and empty weight, propulsion system weight and mission fuel burn for the civil mission. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. Major study assumptions are presented and discussed. Impressive engine power-to-weight and fuel efficiency reduced vehicle sensitivity to propulsion system choice. The 10% weight penalty for multi-speed gearbox was more significant than most engine technology weight penalties to the vehicle design because drive system weight is more than two times engine weight. Based on study assumptions, fixed-geometry VSPT concept options performed better than their variable-geometry counterparts. Optimum design gross weights varied 1% or less and empty weights less than 2% among the concepts studied, while optimum fuel burns varied up to 5%. The outcome for some optimum configurations was so unexpected as to recommend a deeper look at the underlying technology assumptions.

  12. Conceptual design study for the use of COBE rocket engines on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this conceptual design study is to verify that the Cosmic Background Explorer (COBE) Hydrazine Propulsion Subsystem (HPS) Rocket Engine Assembly (REA) will satisfy the Tropical Rainfall Measuring Mission (TRMM) requirements and to develop a preliminary thruster module design using the existing REAs. The performance of the COBE HPS 5 lbf thrusters meet the TRMM mission requirements. The preliminary design consists of a single 5 lbf REA REM which is isolation mounted to a spacecraft interface angle bracket (5 or 10 deg angle). The REM incorporates a catalyst bed heater and sensor assembly, and propellant thermal control is achieved by thermostatically controlled heaters on the thruster valves. A ROM cost of approx. $950 K has been estimated for the phase 2 program to finalize the design, fabricate, and test the hardware using mechanical thermostats for thermal control. In the event that solid state thermostats are used, the cost is estimated to be $160 K higher. A ROM cost is approx. $145 K is estimated to study the effects of using Japanese manufactured hydrazine for the TRMM mission.

  13. A real time neural net estimator of fatigue life

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1990-01-01

    A neural network architecture is proposed to estimate, in real-time, the fatigue life of mechanical components, as part of the intelligent Control System for Reusable Rocket Engines. Arbitrary component loading values were used as input to train a two hidden-layer feedforward neural net to estimate component fatigue damage. The ability of the net to learn, based on a local strain approach, the mapping between load sequence and fatigue damage has been demonstrated for a uniaxial specimen. Because of its demonstrated performance, the neural computation may be extended to complex cases where the loads are biaxial or triaxial, and the geometry of the component is complex (e.g., turbopumps blades). The generality of the approach is such that load/damage mappings can be directly extracted from experimental data without requiring any knowledge of the stress/strain profile of the component. In addition, the parallel network architecture allows real-time life calculations even for high-frequency vibrations. Owing to its distributed nature, the neural implementation will be robust and reliable, enabling its use in hostile environments such as rocket engines.

  14. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  15. Application of expert systems in project management decision aiding

    NASA Technical Reports Server (NTRS)

    Harris, Regina; Shaffer, Steven; Stokes, James; Goldstein, David

    1987-01-01

    The feasibility of developing an expert systems-based project management decision aid to enhance the performance of NASA project managers was assessed. The research effort included extensive literature reviews in the areas of project management, project management decision aiding, expert systems technology, and human-computer interface engineering. Literature reviews were augmented by focused interviews with NASA managers. Time estimation for project scheduling was identified as the target activity for decision augmentation, and a design was developed for an Integrated NASA System for Intelligent Time Estimation (INSITE). The proposed INSITE design was judged feasible with a low level of risk. A partial proof-of-concept experiment was performed and was successful. Specific conclusions drawn from the research and analyses are included. The INSITE concept is potentially applicable in any management sphere, commercial or government, where time estimation is required for project scheduling. As project scheduling is a nearly universal management activity, the range of possibilities is considerable. The INSITE concept also holds potential for enhancing other management tasks, especially in areas such as cost estimation, where estimation-by-analogy is already a proven method.

  16. Relation of Fuel-Air Ratio to Engine Performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.

  17. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  18. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  19. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters.... Engineering assessment may be used to estimate organic HAP emissions from a batch emission episode only under... (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6)(ii) of this...

  20. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...

  1. 40 CFR 63.1414 - Test methods and emission estimation equations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (D) Design analysis based on accepted chemical engineering principles, measurable process parameters... paragraph (d)(5) of this section. Engineering assessment may be used to estimate organic HAP emissions from... defined in paragraph (d)(5) of this section; through engineering assessment, as defined in paragraph (d)(6...

  2. Advanced Propfan Engine Technology (APET) and Single-rotation Gearbox/Pitch Change Mechanism

    NASA Technical Reports Server (NTRS)

    Sargisson, D. F.

    1985-01-01

    The projected performance, in the 1990's time period, of the equivalent technology level high bypass ratio turbofan powered aircraft (at the 150 passenger size) is compared with advanced turboprop propulsion systems. Fuel burn analysis, economic analysis, and pollution (noise, emissions) estimates were made. Three different cruise Mach numbers were investigated for both the turbofan and the turboprop systems. Aerodynamic design and performance estimates were made for nacelles, inlets, and exhaust systems. Air to oil heat exchangers were investigated for oil cooling advanced gearboxes at the 12,500 SHP level. The results and conclusions are positive in that high speed turboprop aircraft will exhibit superior fuel burn characteristics and lower operating costs when compared with equivalent technology turbofan aircraft.

  3. Dual nozzle aerodynamic and cooling analysis study

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1981-01-01

    Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.

  4. Comparison of Mars Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2003-01-01

    The propulsion system is a critical aspect of the performance and feasibility of a Mars aircraft. Propulsion system mass and performance greatly influence the aircraft s design and mission capabilities. Various propulsion systems were analyzed to estimate the system mass necessary for producing 35N of thrust within the Mars environment. Three main categories of propulsion systems were considered: electric systems, combustion engine systems and rocket systems. Also, the system masses were compared for mission durations of 1, 2, and 4 h.

  5. Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Snyder, Christopher A.

    2012-01-01

    The Large Civil Tiltrotor (LCTR) was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nm at 300 knots, with vertical takeoff and landing. This paper examines the impact of advanced propulsion system concepts on LCTR2 sizing. Two concepts were studied: an advanced, single-speed engine with a conventional power turbine layout (Advanced Conventional Engine, or ACE), and a variable-speed power turbine engine (VSPT). The ACE is the lighter engine, but requires a multi-speed (shifting) gearbox, whereas the VSPT uses a lighter, fixed-ratio gearbox. The NASA Design and Analysis of Rotorcraft (NDARC) design code was used to study the trades between rotor and engine efficiency and weight. Rotor performance was determined by Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II), and engine performance was estimated with the Numerical Propulsion System Simulation (NPSS). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and range; the effect of different One Engine Inoperative (OEI) criteria are also examined. Because of its strong effect on gearbox weight and on both rotor and engine efficiency, rotor speed was chosen as the reference design variable for comparing design trades. The two propulsion concepts had nearly identical vehicle weights and mission fuel consumption, and their relative advantages varied little with cruise altitude, mission range, or OEI criteria; high cruise altitude and low cruise tip speed were beneficial for both concepts.

  6. Magnesium and Carbon Dioxide - A Rocket Propellant for Mars Missions

    NASA Technical Reports Server (NTRS)

    Shafirovich, E. IA.; Shiriaev, A. A.; Goldshleger, U. I.

    1993-01-01

    A rocket engine for Mars missions is proposed that could utilize CO2 accumulated from the Martian atmosphere as an oxidizer. For use as possible fuel, various metals, their hydrides, and mixtures with hydrogen compounds are considered. Thermodynamic calculations show that beryllium fuels ensure the most impulse but poor inflammability of Be and high toxicity of its compounds put obstacles to their applications. Analysis of the engine performance for other metals together with the parameters of ignition and combustion show that magnesium seems to be the most promising fuel. Ballistic estimates imply that a hopper with the chemical rocket engine on Mg + CO2 propellant could be readily developed. This vehicle would be able to carry out 2-3 ballistic flights on Mars before the final ascent to orbit.

  7. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. Themore » IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.« less

  8. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  9. Preliminary MIPCC Enhanced F-4 and F-15 Preformance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Clark, Casie M.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  10. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less

  11. Introduction to State Estimation of High-Rate System Dynamics

    PubMed Central

    Dodson, Jacob; Joyce, Bryan

    2018-01-01

    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model. PMID:29342855

  12. Waste Heat Recovery from a High Temperature Diesel Engine

    NASA Astrophysics Data System (ADS)

    Adler, Jonas E.

    Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.

  13. A Procedure for Structural Weight Estimation of Single Stage to Orbit Launch Vehicles (Interim User's Manual)

    NASA Technical Reports Server (NTRS)

    Martinovic, Zoran N.; Cerro, Jeffrey A.

    2002-01-01

    This is an interim user's manual for current procedures used in the Vehicle Analysis Branch at NASA Langley Research Center, Hampton, Virginia, for launch vehicle structural subsystem weight estimation based on finite element modeling and structural analysis. The process is intended to complement traditional methods of conceptual and early preliminary structural design such as the application of empirical weight estimation or application of classical engineering design equations and criteria on one dimensional "line" models. Functions of two commercially available software codes are coupled together. Vehicle modeling and analysis are done using SDRC/I-DEAS, and structural sizing is performed with the Collier Research Corp. HyperSizer program.

  14. Software Cost Estimation Using a Decision Graph Process: A Knowledge Engineering Approach

    NASA Technical Reports Server (NTRS)

    Stukes, Sherry; Spagnuolo, John, Jr.

    2011-01-01

    This paper is not a description per se of the efforts by two software cost analysts. Rather, it is an outline of the methodology used for FSW cost analysis presented in a form that would serve as a foundation upon which others may gain insight into how to perform FSW cost analyses for their own problems at hand.

  15. TRAC performance estimates

    NASA Technical Reports Server (NTRS)

    Everett, L.

    1992-01-01

    This report documents the performance characteristics of a Targeting Reflective Alignment Concept (TRAC) sensor. The performance will be documented for both short and long ranges. For long ranges, the sensor is used without the flat mirror attached to the target. To better understand the capabilities of the TRAC based sensors, an engineering model is required. The model can be used to better design the system for a particular application. This is necessary because there are many interrelated design variables in application. These include lense parameters, camera, and target configuration. The report presents first an analytical development of the performance, and second an experimental verification of the equations. In the analytical presentation it is assumed that the best vision resolution is a single pixel element. The experimental results suggest however that the resolution is better than 1 pixel. Hence the analytical results should be considered worst case conditions. The report also discusses advantages and limitations of the TRAC sensor in light of the performance estimates. Finally the report discusses potential improvements.

  16. Evaluation of emission toxicity of urban bus engines: compressed natural gas and comparison with liquid fuels.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara Laura; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2006-02-15

    Emissions from a spark-ignition (SI) heavy-duty (HD) urban bus engine with a three-way catalyst (TWC), fuelled with compressed natural gas (CNG), were chemically analyzed and tested for genotoxicity. The results were compared with those obtained in a previous study on an equivalent diesel engine, fuelled with diesel oil (D) and a blend of the same with 20% vegetable oil (B20). Experimental procedures were identical, so that emission levels of the CNG engine were exactly comparable to the ones of the diesel engine. The experimental design was focused on carcinogenic compounds and genotoxic activity of exhausts. The results obtained show that the SI CNG engine emissions, with respect to the diesel engine fuelled with D, were nearly 50 times lower for carcinogenic polycyclic aromatic hydrocarbons (PAHs), 20 times lower for formaldehyde, and more than 30 times lower for particulate matter (PM). A 20-30 fold reduction of genotoxic activity was estimated from tests performed. A very high reduction of nitrogen oxides (NO(X)) was also measured. The impact of diesel powered transport on urban air quality, and the potential benefits deriving from the use of CNG for public transport, are discussed.

  17. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    NASA Technical Reports Server (NTRS)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  18. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  19. Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Su, Yanzhao; Hu, Minghui; Su, Ling; Qin, Datong; Zhang, Tong; Fu, Chunyun

    2018-07-01

    The fuel economy of the hybrid electric vehicles (HEVs) can be effectively improved by the mode transition (MT). However, for a power-split powertrain whose power-split transmission is directly connected to the engine, the engine ripple torque (ERT), inconsistent dynamic characteristics (IDC) of engine and motors, model estimation inaccuracies (MEI), system parameter uncertainties (SPU) can cause jerk and vibration of transmission system during the MT process, which will reduce the driving comfort and the life of the drive parts. To tackle these problems, a dynamic coordinated control strategy (DCCS), including a staged engine torque feedforward and feedback estimation (ETFBC) and an active damping feedback compensation (ADBC) based on drive shaft torque estimation (DSTE), is proposed. And the effectiveness of this strategy is verified using a plant model. Firstly, the powertrain plant model is established, and the MT process and problems are analyzed. Secondly, considering the characteristics of the engine torque estimation (ETE) model before and after engine ignition, a motor torque compensation control based on the staged ERT estimation is developed. Then, considering the MEI, SPU and the load change, an ADBC based on a real-time nonlinear reduced-order robust observer of the DSTE is designed. Finally, the simulation results show that the proposed DCCS can effectively improve the driving comfort.

  20. Characterization of hybrid lighting systems of the Electrical Engineering Building in the Industrial University of Santander

    NASA Astrophysics Data System (ADS)

    Galvis, D.; Exposito, C.; Osma, G.; Amado, L.; Ordóñez, G.

    2016-07-01

    This paper presents an analysis of hybrid lighting systems of Electrical Engineering Building in the Industrial University of Santander, which is a pilot of green building for warm- tropical conditions. Analysis of lighting performance of inner spaces is based on lighting curves obtained from characterization of daylighting systems of these spaces. A computation tool was made in Excel-Visual Basic to simulate the behaviour of artificial lighting system considering artificial control system, user behaviour and solar condition. Also, this tool allows to estimate the electrical energy consumption of the lighting system for a day, a month and a year.

  1. Biosonar-inspired technology: goals, challenges and insights.

    PubMed

    Müller, Rolf; Kuc, Roman

    2007-12-01

    Bioinspired engineering based on biosonar systems in nature is reviewed and discussed in terms of the merits of different approaches and their results: biosonar systems are attractive technological paragons because of their capabilities, built-in task-specific knowledge, intelligent system integration and diversity. Insights from the diverse set of sensing tasks solved by bats are relevant to a wide range of application areas such as sonar, biomedical ultrasound, non-destructive testing, sensors for autonomous systems and wireless communication. Challenges in the design of bioinspired sonar systems are posed by transducer performance, actuation for sensor mobility, design, actuation and integration of beamforming baffle shapes, echo encoding for signal processing, estimation algorithms and their implementations, as well as system integration and feedback control. The discussed examples of experimental systems have capabilities that include localization and tracking using binaural and multiple-band hearing as well as self-generated dynamic cues, classification of small deterministic and large random targets, beamforming with bioinspired baffle shapes, neuromorphic spike processing, artifact rejection in sonar maps and passing range estimation. In future research, bioinspired engineering could capitalize on some of its strengths to serve as a model system for basic automation methodologies for the bioinspired engineering process.

  2. The activity-based methodology to assess ship emissions - A review.

    PubMed

    Nunes, R A O; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2017-12-01

    Several studies tried to estimate atmospheric emissions with origin in the maritime sector, concluding that it contributed to the global anthropogenic emissions through the emission of pollutants that have a strong impact on hu' health and also on climate change. Thus, this paper aimed to review published studies since 2010 that used activity-based methodology to estimate ship emissions, to provide a summary of the available input data. After exclusions, 26 articles were analysed and the main information were scanned and registered, namely technical information about ships, ships activity and movement information, engines, fuels, load and emission factors. The larger part of studies calculating in-port ship emissions concluded that the majority was emitted during hotelling and most of the authors allocating emissions by ship type concluded that containerships were the main pollutant emitters. To obtain technical information about ships the combined use of data from Lloyd's Register of Shipping database with other sources such as port authority's databases, engine manufactures and ship-owners seemed the best approach. The use of AIS data has been growing in recent years and seems to be the best method to report activities and movements of ships. To predict ship powers the Hollenbach (1998) method which estimates propelling power as a function of instantaneous speed based on total resistance and use of load balancing schemes for multi-engine installations seemed to be the best practices for more accurate ship emission estimations. For emission factors improvement, new on-board measurement campaigns or studies should be undertaken. Regardless of the effort that has been performed in the last years to obtain more accurate shipping emission inventories, more precise input data (technical information about ships, engines, load and emission factors) should be obtained to improve the methodology to develop global and universally accepted emission inventories for an effective environmental policy plan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  4. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  5. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initialmore » value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.« less

  6. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  7. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  8. "Peer Review: Nonroad (NR) Updates to Population Growth, Compression Ignition (CI) Criteria, Toxic Emission Factors and Speciation Profiles"

    EPA Science Inventory

    This report focuses on the methodology for estimating growth in NR engine populations as used in the MOVES201X-NONROAD emission inventory model. MOVES NR growth rates start with base year engine populations and estimate growth in the populations of NR engines, while applying cons...

  9. Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2007-01-01

    This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine s life. The estimate generated by the off-line algorithm is used to update the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

  10. Effect of corrosion on the buckling capacity of tubular members

    NASA Astrophysics Data System (ADS)

    Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.

    2017-12-01

    Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.

  11. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  12. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  13. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in themore » TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.« less

  14. Cost Risk Analysis Based on Perception of the Engineering Process

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.; Wood, Darrell A.; Moore, Arlene A.; Bogart, Edward H.

    1986-01-01

    In most cost estimating applications at the NASA Langley Research Center (LaRC), it is desirable to present predicted cost as a range of possible costs rather than a single predicted cost. A cost risk analysis generates a range of cost for a project and assigns a probability level to each cost value in the range. Constructing a cost risk curve requires a good estimate of the expected cost of a project. It must also include a good estimate of expected variance of the cost. Many cost risk analyses are based upon an expert's knowledge of the cost of similar projects in the past. In a common scenario, a manager or engineer, asked to estimate the cost of a project in his area of expertise, will gather historical cost data from a similar completed project. The cost of the completed project is adjusted using the perceived technical and economic differences between the two projects. This allows errors from at least three sources. The historical cost data may be in error by some unknown amount. The managers' evaluation of the new project and its similarity to the old project may be in error. The factors used to adjust the cost of the old project may not correctly reflect the differences. Some risk analyses are based on untested hypotheses about the form of the statistical distribution that underlies the distribution of possible cost. The usual problem is not just to come up with an estimate of the cost of a project, but to predict the range of values into which the cost may fall and with what level of confidence the prediction is made. Risk analysis techniques that assume the shape of the underlying cost distribution and derive the risk curve from a single estimate plus and minus some amount usually fail to take into account the actual magnitude of the uncertainty in cost due to technical factors in the project itself. This paper addresses a cost risk method that is based on parametric estimates of the technical factors involved in the project being costed. The engineering process parameters are elicited from the engineer/expert on the project and are based on that expert's technical knowledge. These are converted by a parametric cost model into a cost estimate. The method discussed makes no assumptions about the distribution underlying the distribution of possible costs, and is not tied to the analysis of previous projects, except through the expert calibrations performed by the parametric cost analyst.

  15. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  16. A new statistical method for design and analyses of component tolerance

    NASA Astrophysics Data System (ADS)

    Movahedi, Mohammad Mehdi; Khounsiavash, Mohsen; Otadi, Mahmood; Mosleh, Maryam

    2017-03-01

    Tolerancing conducted by design engineers to meet customers' needs is a prerequisite for producing high-quality products. Engineers use handbooks to conduct tolerancing. While use of statistical methods for tolerancing is not something new, engineers often use known distributions, including the normal distribution. Yet, if the statistical distribution of the given variable is unknown, a new statistical method will be employed to design tolerance. In this paper, we use generalized lambda distribution for design and analyses component tolerance. We use percentile method (PM) to estimate the distribution parameters. The findings indicated that, when the distribution of the component data is unknown, the proposed method can be used to expedite the design of component tolerance. Moreover, in the case of assembled sets, more extensive tolerance for each component with the same target performance can be utilized.

  17. The Joint Confidence Level Paradox: A History of Denial

    NASA Technical Reports Server (NTRS)

    Butts, Glenn; Linton, Kent

    2009-01-01

    This paper is intended to provide a reliable methodology for those tasked with generating price tags on construction (C0F) and research and development (R&D) activities in the NASA performance world. This document consists of a collection of cost-related engineering detail and project fulfillment information from early agency days to the present. Accurate historical detail is the first place to start when determining improved methodologies for future cost and schedule estimating. This paper contains a beneficial proposed cost estimating method for arriving at more reliable numbers for future submits. When comparing current cost and schedule methods with earlier cost and schedule approaches, it became apparent that NASA's organizational performance paradigm has morphed. Mission fulfillment speed has slowed and cost calculating factors have increased in 21st Century space exploration.

  18. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  19. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  20. A framework for improving the cost-effectiveness of DSM program evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenblick, R.; Eto, J.

    The prudence of utility demand-side management (DSM) investments hinges on their performance, yet evaluating performance is complicated because the energy saved by DSM programs can never be observed directly but only inferred. This study frames and begins to answer the following questions: (1) how well do current evaluation methods perform in improving confidence in the measurement of energy savings produced by DSM programs; (2) in view of this performance, how can limited evaluation resources be best allocated to maximize the value of the information they provide? The authors review three major classes of methods for estimating annual energy savings: trackingmore » database (sometimes called engineering estimates), end-use metering, and billing analysis and examine them in light of the uncertainties in current estimates of DSM program measure lifetimes. The authors assess the accuracy and precision of each method and construct trade-off curves to examine the costs of increases in accuracy or precision. Several approaches for improving evaluations for the purpose of assessing program cost effectiveness are demonstrated. The methods can be easily generalized to other evaluation objectives, such as shared savings incentive payments.« less

  1. Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BABA,T.; ISHIGURO,K.; ISHIHARA,Y.

    1999-08-30

    Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs weremore » defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.« less

  2. Communication Needs Assessment for Distributed Turbine Engine Control (Postprint)

    DTIC Science & Technology

    2008-07-01

    and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a...must be integrated into the communication network.10 These could include new sensors, actuators, or even complex subsystems for more advanced...No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for

  3. 40 CFR 98.237 - Records that must be retained.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions computer model runs used for engineering estimation of emissions. (e) The records required under § 98.3(g)(2)(i) shall include an explanation of how company records, engineering estimation, or best...

  4. 40 CFR 98.237 - Records that must be retained.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions computer model runs used for engineering estimation of emissions. (e) The records required under § 98.3(g)(2)(i) shall include an explanation of how company records, engineering estimation, or best...

  5. 40 CFR 98.237 - Records that must be retained.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions computer model runs used for engineering estimation of emissions. (e) The records required under § 98.3(g)(2)(i) shall include an explanation of how company records, engineering estimation, or best...

  6. Developing Analogy Cost Estimates for Space Missions

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2004-01-01

    The analogy approach in cost estimation combines actual cost data from similar existing systems, activities, or items with adjustments for a new project's technical, physical or programmatic differences to derive a cost estimate for the new system. This method is normally used early in a project cycle when there is insufficient design/cost data to use as a basis for (or insufficient time to perform) a detailed engineering cost estimate. The major limitation of this method is that it relies on the judgment and experience of the analyst/estimator. The analyst must ensure that the best analogy or analogies have been selected, and that appropriate adjustments have been made. While analogy costing is common, there is a dearth of advice in the literature on the 'adjustment methodology', especially for hardware projects. This paper discusses some potential approaches that can improve rigor and repeatability in the analogy costing process.

  7. Liquid Oxygen/Liquid Methane Ascent Main Engine Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Stephenson, David D.

    2008-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LO2)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon the Exploration Systems Architecture Study (ESAS). The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. The current application considering this technology is the lunar ascent main engine (AME). AME is anticipated to be an expendable, pressure-fed engine to provide ascent from the moon at the completion of a 210 day lunar stay. The engine is expected to produce 5,500 lbf (24,465 N) thrust with variable inlet temperatures due to the cryogenic nature of the fuel and oxidizer. The primary technology risks include establishing reliable and robust ignition in vacuum conditions, maximizing specific impulse, developing rapid start capability for the descent abort, providing the capability for two starts and producing a total engine bum time over 500 seconds. This paper will highlight the efforts of the Marshall Space Flight Center (MSFC) in addressing risk reduction activities for this technology.

  8. Parametric Study of a Mach 2.4 Transport Engine with Supersonic Through-Flow Rotor and Supersonic Counter-Rotating Diffuser (SSTR/SSCRD)

    NASA Technical Reports Server (NTRS)

    Tran, Donald H.

    2004-01-01

    A parametric study is conducted to evaluate a mixed-flow turbofan equipped with a supersonic through-flow rotor and a supersonic counter-rotating diffuser (SSTR/SSCRD) for a Mach 2.4 civil transport. Engine cycle, weight, and mission analyses are performed to obtain a minimum takeoff gross weight aircraft. With the presence of SSTR/SSCRD, the inlet can be shortened to provide better pressure recovery. For the same engine airflow, the inlet, nacelle, and pylon weights are estimated to be 73 percent lighter than those of a conventional inlet. The fan weight is 31 percent heavier, but overall the installed engine pod weight is 11 percent lighter than the current high-speed civil transport baseline conventional mixed-flow turbofan. The installed specific fuel consumption of the supersonic fan engine is 2 percent higher than that of the baseline turbofan at supersonic cruise. Finally, the optimum SSTR/SSCRD airplane meets the FAR36 Stage 3 noise limit and is within 7 percent of the baseline turbofan airplane takeoff gross weight over a 5000-n mi mission.

  9. But I'm an engineer—not a contracts lawyer!

    NASA Astrophysics Data System (ADS)

    Warner, Mark; Bass, Harvey

    2012-09-01

    Industrial partners, commercial vendors, and subsystem contractors play a large role in the design and construction of modern telescopes. Because many telescope projects carry relatively small staffs, engineers are often required to perform the additional functions of technical writing, cost estimating, and contract bidding and negotiating. The skills required to carry out these tasks are not normally taught in traditional engineering programs. As a result, engineers often learn to write Request for Proposals (RFPs), select vendors, and negotiate contracts by trial-and-error and/or by adapting previous project documents to match their own requirements. Typically, this means that at the end of a contract the engineer has a large list of do's, don'ts, and lessons learned for the next RFP he or she must generate. This paper will present one such engineer's experience writing and bidding proposal packages for large telescope components and subsystems. Included are: thoughts on structuring SOWs, Specs, ICDs, and other RFP documents; modern methods for bidding the work; and systematic means for selecting and negotiating with a contractor to arrive at the best value for the project.

  10. Noise-Reduction Benefits Analyzed for Over-the-Wing-Mounted Advanced Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2000-01-01

    As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Also, the large fan diameters of modern engines with increasingly higher bypass ratios pose significant packaging and aircraft installation challenges. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large diameters and high bypass ratio cycles to continue, this approach allows the wing to shield much of the engine noise from people on the ground. The Propulsion Systems Analysis Office at the NASA Glenn Research Center at Lewis Field conducted independent analytical research to estimate the noise reduction potential of mounting advanced turbofan engines above the wing. Certification noise predictions were made for a notional long-haul commercial quadjet transport. A large quad was chosen because, even under current regulations, such aircraft sometimes experience difficulty in complying with certification noise requirements with a substantial margin. Also, because of its long wing chords, a large airplane would receive the greatest advantage of any noise-shielding benefit.

  11. Weapon System Requirements: Detailed Systems Engineering Prior to Product Development Positions Programs for Success

    DTIC Science & Technology

    2016-11-01

    systems engineering had better outcomes. For example, the Small Diameter Bomb Increment I program, which delivered within cost and schedule estimates ...its current portfolio. This portfolio has experienced cost growth of 48 percent since first full estimates and average delays in delivering initial...stable design, building and testing of prototypes, and demonstration of mature production processes. • Realistic cost estimate : Sound cost estimates

  12. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.

    PubMed

    Cai, Zuansi; Wilson, Ryan D; Lerner, David N

    2012-01-01

    Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  13. Teleconsultations reduce greenhouse gas emissions.

    PubMed

    Oliveira, Tiago Cravo; Barlow, James; Gonçalves, Luís; Bayer, Steffen

    2013-10-01

    Health services contribute significantly to greenhouse gas emissions. New models of delivering care closer to patients have the potential to reduce travelling and associated emissions. We aimed to compare the emissions of patients attending a teleconsultation - an outpatient appointment using video-conferencing equipment - with those of patients attending a face-to-face appointment. We estimated the total distances travelled and the direct and indirect greenhouse gas emissions for 20,824 teleconsultations performed between 2004 and 2011 in Alentejo, a Portuguese region. These were compared to the distances and emissions that would have resulted if teleconsultations were not available and patients had to attend face-to-face outpatient appointments. Estimates were calculated using survey data on mode of transport, and national aggregate data for car engine size and fuel. A sensitivity analysis using the lower and upper quartiles for survey distances was performed. Teleconsultations led to reductions in distances and emissions of 95%. 2,313,819 km of travelling and 455 tonnes of greenhouse gas emissions were avoided (22 kg of carbon dioxide equivalent per patient). The incorporation of modes of transport and car engine size and fuel in the analysis led to emission estimates which were 12% smaller than those assuming all patients used an average car. The availability of remote care services can significantly reduce road travel and associated emissions. At a time when many countries are committed to reducing their carbon footprint, it is desirable to explore how these reductions could be incorporated into technology assessments and economic evaluations.

  14. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

  15. Electric propulsion options for 10 kW class earth space missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  16. Analytical evaluation of the impact of broad specification fuels on high bypass turbofan engine combustors

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Szetela, E. J.; Vranos, A.

    1978-01-01

    The impact of the use of broad specification fuels on the design, performance durability, emissions and operational characteristics of combustors for commercial aircraft gas turbine engines was assessed. Single stage, vorbix and lean premixed prevaporized combustors, in the JT9D and an advanced energy efficient engine cycle were evaluated when operating on Jet A and ERBS (Experimental Referee Broad Specification) fuels. Design modifications, based on criteria evolved from a literature survey, were introduced and their effectiveness at offsetting projected deficiencies resulting from the use of ERBS was estimated. The results indicate that the use of a broad specification fuel such as ERBS, will necessitate significant technology improvements and redesign if deteriorated performance, durability and emissions are to be avoided. Higher radiant heat loads are projected to seriously compromise liner life while the reduced thermal stability of ERBS will require revisions to the engine-airframe fuel system to reduce the thermal stress on the fuel. Smoke and emissions output are projected to increase with the use of broad specification fuels. While the basic geometry of the single stage and vorbix combustors are compatible with the use of ERBS, extensive redesign of the front end of the lean premixed prevaporized burner will be required to achieve satisfactory operation and optimum emissions.

  17. NOx Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2016-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.

  18. Some Calculated Research Results of the Working Process Parameters of the Low Thrust Rocket Engine Operating on Gaseous Oxygen-Hydrogen Fuel

    NASA Astrophysics Data System (ADS)

    Ryzhkov, V.; Morozov, I.

    2018-01-01

    The paper presents the calculating results of the combustion products parameters in the tract of the low thrust rocket engine with thrust P ∼ 100 N. The article contains the following data: streamlines, distribution of total temperature parameter in the longitudinal section of the engine chamber, static temperature distribution in the cross section of the engine chamber, velocity distribution of the combustion products in the outlet section of the engine nozzle, static temperature near the inner wall of the engine. The presented parameters allow to estimate the efficiency of the mixture formation processes, flow of combustion products in the engine chamber and to estimate the thermal state of the structure.

  19. Metallic Rotor Sizing and Performance Model for Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Moore, Camille J.; Kraft, Thomas G.

    2012-01-01

    The NASA Glenn Research Center (GRC) is developing flywheel system requirements and designs for terrestrial and spacecraft applications. Several generations of flywheels have been designed and tested at GRC using in-house expertise in motors, magnetic bearings, controls, materials and power electronics. The maturation of a flywheel system from the concept phase to the preliminary design phase is accompanied by maturation of the Integrated Systems Performance model, where estimating relationships are replaced by physics based analytical techniques. The modeling can incorporate results from engineering model testing and emerging detail from the design process.

  20. Investigation of Engine Oil-cooling Problem during Idle Conditions on Pusher Type Turbo Prop Aircraft

    NASA Astrophysics Data System (ADS)

    Premkumar, P. S.; Chakravarthy, S. Bhaskar; Jayagopal, S.; Radhakrishnan, P.; Pillai, S. Nadaraja; Senthil Kumar, C.

    2017-11-01

    Aircraft engines need a cooling system to keep the engine oil well within the temperature limits for continuous operation. The aircraft selected for this study is a typical pusher type Light Transport Aircraft (LTA) having twin turbo prop engines mounted at the aft end of the fuselage. Due to the pusher propeller configuration, effective oil cooling is a critical issue, especially during low-speed ground operations like engine idling and also in taxiing and initial climb. However, the possibility of utilizing the inflow induced by the propeller for oil cooling is the subject matter of investigation in this work. The oil cooler duct was designed to accommodate the required mass flow, estimated using the oil cooler performance graph. A series of experiments were carried out with and without oil cooler duct attached to the nacelle, in order to investigate the mass flow induced by the propeller and its adequacy to cool the engine oil. Experimental results show that the oil cooler positioned at roughly 25 % of the propeller radius from the nacelle center line leads to adequate cooling, without incorporating additional means. Furthermore, it is suggested to install a NACA scoop to minimize spillage drag by increasing pressure recovery.

  1. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  2. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.

    PubMed

    Gonen, Eran; Grossman, Gershon

    2015-09-01

    Conventional reciprocating pistons, normally found in thermoacoustic engines, tend to introduce complex impedance characteristics, including acoustic, mechanical, and electrical portions. System behavior and performance usually rely on proper tuning processes and selection of an optimal point of operation, affected substantially by complementary hardware, typically adjusted for the specific application. The present study proposes an alternative perspective on the alternator behavior, by considering the relative motion between gas and piston during the engine mode of operation. Direct analytical derivation of the velocity distribution inside a tight seal gap and the associated impedance is employed to estimate the electro-acoustic conversion efficiency, thus indicating how to improve the system performance. The influence of acoustic phase, gap dimensions, and working conditions is examined, suggesting the need to develop tighter and longer seal gaps, having increased impedance, to allow optimization for use in upcoming sustainable power generation solutions and smart grids.

  3. Cost estimating Brayton and Stirling engines

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  4. Aero-Propulsive Model Design from a Commercial Aircraft in Climb and Cruise Regime using Performance Data =

    NASA Astrophysics Data System (ADS)

    Tudor, Magdalena

    IATA has estimated, in 2012, at about 2% of global carbon dioxide emissions, the environmental impact of the air transport, as a consequence caused by the rapidly growing of global movement demand of people and goods, and which was effectively taken into account in the development of the aviation industry. The historic achievements of scientific and technical progress in the field of commercial aviation were contributed to this estimate, and even today the research continues to make progress to help to reduce the emissions of greenhouse gases. Advances in commercial aircraft, and its engine design technology had the aim to improve flight performance. These improvements have enhanced the global flight planning of these types of aircrafts. Almost all of these advances rely on generated performance data as reference sources, the most of which are classified as "confidential" by the aircraft manufacturers. There are very few aero-propulsive models conceived for the climb regime in the literature, but none of them was designed without access to an engine database, and/or to performance data in climb and in cruise regimes with direct applicability for flight optimization. In this thesis, aero-propulsive models methodologies are proposed for climb and cruise regimes, using system identification and validation methods, through which airplane performance can be computed and stored in the most compact and easily accessible format for this kind of performance data. The acquiring of performance data in this format makes it possible to optimize flight profiles, used by on-board Flight Management Systems. The aero-propulsive models developed here were investigated on two aircrafts belonging to commercial class, and both of them had offered very good accuracy. One of their advantages is that they can be adapted to any other aircraft of the same class, even if there is no access to their corresponding engine flight data. In addition, these models could save airlines a considerable amount of money, given the fact that the number of flight tests could be drastically reduced. Lastly, academia, thus the laboratory of applied research in active control, avionics and aeroservoelasticity (LARCASE) team is gaining direct access to these aircraft performance data to obtain experience in novel optimization algorithms of flight profiles.

  5. Image scale measurement with correlation filters in a volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  6. Defense Acquisitions: Addressing Incentives is Key to Further Reform Efforts

    DTIC Science & Technology

    2014-04-30

    championed sound management practices, such as realistic cost estimating, prototyping, and systems engineering . While some progress has been made...other reforms have championed sound management practices, such as realistic cost estimating, prototyping, and systems engineering . DOD’s declining...principles from disciplines such as systems engineering , as well as lessons learned and past reforms. The body of work we have done on benchmarking

  7. Enhancement of low-temperature thermometry by strong coupling

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Hernández-Santana, Senaida; Mehboudi, Mohammad; Sanpera, Anna

    2017-12-01

    We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the spectral density of the probe-sample coupling may be engineered to further improve thermometric performance. These observations may find applications in practical nanoscale thermometry at low temperatures—a regime which is particularly relevant to quantum technologies.

  8. 77 FR 42724 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Nonroad Spark-Ignited Engines, New Nonroad Compression-Ignited Engines, and New On-Road Heavy Duty Engines... Compression-ignited Engines, and New On-road Heavy Duty Engines (Renewal). ICR numbers: EPA ICR No. 1852.05... engines, new nonroad compression-ignited engines, and new on- road heavy duty engines. Estimated Number of...

  9. Investigation of the effect of the ejector on the performance of the pulse detonation engine nozzle extension

    NASA Astrophysics Data System (ADS)

    Korobov, A. E.; Golovastov, S. V.

    2015-11-01

    Influence of an ejector nozzle extension on gas flow at a pulse detonation engine was investigated numerically and experimentally. Detonation formation was organized in stoichiometric hydrogen-oxygen mixture in cylindrical detonation tube. Cylindrical ejector was constructed and mounted at the open end of the tube. Thrust, air consumption and parameters of the detonation were measured in single and multiple regimes of operation. Axisymmetric model was used in numerical investigation. Equations of Navies-Stokes were solved using a finite-difference scheme Roe of second order of accuracy. Initial conditions were estimated on a base of experimental data. Numerical results were validated with experiments data.

  10. Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.

    2011-05-01

    The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.

  11. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  12. Reanalysis of Diesel Engine Exhaust and Lung Cancer Mortality in the Diesel Exhaust in Miners Study Cohort Using Alternative Exposure Estimates and Radon Adjustment.

    PubMed

    Chang, Ellen T; Lau, Edmund C; Van Landingham, Cynthia; Crump, Kenny S; McClellan, Roger O; Moolgavkar, Suresh H

    2018-06-01

    The Diesel Exhaust in Miners Study (DEMS) (United States, 1947-1997) reported positive associations between diesel engine exhaust exposure, estimated as respirable elemental carbon (REC), and lung cancer mortality. This reanalysis of the DEMS cohort used an alternative estimate of REC exposure incorporating historical data on diesel equipment, engine horsepower, ventilation rates, and declines in particulate matter emissions per horsepower. Associations with cumulative REC and average REC intensity using the alternative REC estimate and other exposure estimates were generally attenuated compared with original DEMS REC estimates. Most findings were statistically nonsignificant; control for radon exposure substantially weakened associations with the original and alternative REC estimates. No association with original or alternative REC estimates was detected among miners who worked exclusively underground. Positive associations were detected among limestone workers, whereas no association with REC or radon was found among workers in the other 7 mines. The differences in results based on alternative exposure estimates, control for radon, and stratification by worker location or mine type highlight areas of uncertainty in the DEMS data.

  13. Preliminary Studies of a Pulsed Detonation Rocket Engine

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Adelman, H. G.; Menees, G. P.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    In the new era of space exploration, there is a strong need for more efficient, cheaper and more reliable propulsion devices. With dramatic increase in specific impulse, the overall mass of fuel to be lifted into orbit is decreased, and this leads, in turn, to much lower mass requirements at lift-off, higher payload ratios and lower launch costs. The Pulsed Detonation engine (PDE) has received much attention lately due to its unique combination of simplicity, light-weight and efficiency. Current investigations focus principally on its use as a low speed, airbreathing engine, although other applications have also been proposed. Its use as a rocket propulsion device was first proposed in 1988 by the present authors. The superior efficiency of the Pulsed Detonation Rocket Engine (PDRE) is due to the near constant volume combustion process of a detonation wave. Our preliminary estimates suggest that the PDRE is theoretically capable of achieving specific impulses as high as 720 sec, a dramatic improvement over the current 480 sec of conventional rocket engines, making it competitive with nuclear thermal rockets. In addition to this remarkable efficiency, the PDRE may eliminate the need for high pressure cryogenic turbopumps, a principal source of failures. The heat transfer rates are also much lower, eliminating the need for nozzle cooling. Overall, the engine is more reliable and has a much lower weight. This paper will describe in detail the operation of the PDRE and calculate its performance, through numerical simulations. Engineering issues will be addressed and discussed, and the impact on mission profiles will also be presented. Finally, the performance of the PDRE using in-situ resources, such as CO and O2 from the martian atmosphere, will also be computed.

  14. Study of aerodynamic technology for VSTOL fighter/attack aircraft, phase 1

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.

    1978-01-01

    A conceptual design study was performed of a vertical attitude takeoff and landing (VATOL) fighter/attack aircraft. The configuration has a close-coupled canard-delta wing, side two-dimensional ramp inlets, and two augmented turbofan engines with thrust vectoring capability. Performance and sensitivities to objective requirements were calculated. Aerodynamic characteristics were estimated based on contractor and NASA wind tunnel data. Computer simulations of VATOL transitions were performed. Successful transitions can be made, even with series post-stall instabilities, if reaction controls are properly phased. Principal aerodynamic uncertainties identified were post-stall aerodynamics, transonic aerodynamics with thrust vectoring and inlet performance in VATOL transition. A wind tunnel research program was recommended to resolve the aerodynamic uncertainties.

  15. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  16. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  17. Analytical Model For Fluid Dynamics In A Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1995-01-01

    Report presents analytical approximation methodology for providing coupled fluid-flow, heat, and mass-transfer equations in microgravity environment. Experimental engineering estimates accurate to within factor of 2 made quickly and easily, eliminating need for time-consuming and costly numerical modeling. Any proposed experiment reviewed to see how it would perform in microgravity environment. Model applied in commercial setting for preliminary design of low-Grashoff/Rayleigh-number experiments.

  18. Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

    DTIC Science & Technology

    2007-05-30

    with large region of attraction about the true minimum. The physical optics models provide features for high confidence identification of stationary...the detection test are used to estimate 3D object scattering; multiple images can be noncoherently combined to reconstruct a more complete object...Proc. SPIE Algorithms for Synthetic Aper- ture Radar Imagery XIII, The International Society for Optical Engineering, April 2006. [40] K. Varshney, M. C

  19. Software Estimation: Developing an Accurate, Reliable Method

    DTIC Science & Technology

    2011-08-01

    Lake, CA ,93555- 6110 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S...Activity, the systems engineering team is responsible for system and software requirements. 2 . Process Dashboard is a software planning and tracking tool... CA 93555- 6110 760-939-6989 Brad Hodgins is an interim TSP Mentor Coach, SEI-Authorized TSP Coach, SEI-Certified PSP/TSP Instructor, and SEI

  20. Space shuttle propulsion estimation development verification

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The application of extended Kalman filtering to estimating the Space Shuttle Propulsion performance, i.e., specific impulse, from flight data in a post-flight processing computer program is detailed. The flight data used include inertial platform acceleration, SRB head pressure, SSME chamber pressure and flow rates, and ground based radar tracking data. The key feature in this application is the model used for the SRB's, which is a nominal or reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are also included for an integrated system model. Assuming uncertainty within the propulsion system model and attempts to estimate its deviations represent a new application of parameter estimation for rocket powered vehicles. Illustrations from the results of applying this estimation approach to several missions show good quality propulsion estimates.

  1. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  2. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  3. A method to estimate weight and dimensions of aircraft gas turbine engines. Volume 1: Method of analysis

    NASA Technical Reports Server (NTRS)

    Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.

    1977-01-01

    Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.

  4. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  5. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  6. An air-liquid contactor for large-scale capture of CO2 from air.

    PubMed

    Holmes, Geoffrey; Keith, David W

    2012-09-13

    We present a conceptually simple method for optimizing the design of a gas-liquid contactor for capture of carbon dioxide from ambient air, or 'air capture'. We apply the method to a slab geometry contactor that uses components, design and fabrication methods derived from cooling towers. We use mass transfer data appropriate for capture using a strong NaOH solution, combined with engineering and cost data derived from engineering studies performed by Carbon Engineering Ltd, and find that the total costs for air contacting alone-no regeneration-can be of the order of $60 per tonne CO(2). We analyse the reasons why our cost estimate diverges from that of other recent reports and conclude that the divergence arises from fundamental design choices rather than from differences in costing methodology. Finally, we review the technology risks and conclude that they can be readily addressed by prototype testing.

  7. Cost/benefit analysis of advanced materials technology candidates for the 1980's, part 2

    NASA Technical Reports Server (NTRS)

    Dennis, R. E.; Maertins, H. F.

    1980-01-01

    Cost/benefit analyses to evaluate advanced material technologies projects considered for general aviation and turboprop commuter aircraft through estimated life-cycle costs, direct operating costs, and development costs are discussed. Specifically addressed is the selection of technologies to be evaluated; development of property goals; assessment of candidate technologies on typical engines and aircraft; sensitivity analysis of the changes in property goals on performance and economics, cost, and risk analysis for each technology; and ranking of each technology by relative value. The cost/benefit analysis was applied to a domestic, nonrevenue producing, business-type jet aircraft configured with two TFE731-3 turbofan engines, and to a domestic, nonrevenue producing, business type turboprop aircraft configured with two TPE331-10 turboprop engines. In addition, a cost/benefit analysis was applied to a commercial turboprop aircraft configured with a growth version of the TPE331-10.

  8. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  9. Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Maraia, R. J.

    1980-01-01

    A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.

  10. A Collaborative Analysis Tool for Integrated Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy; Alexander, Reginald; Landrum, Brian

    2000-01-01

    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. Then there is a transition to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scramjet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance. To adequately determine the performance of the engine/vehicle, the Hypersonic Flight Inlet Model (HYFIM) module was designed to interface with the RBCC engine model. HYFIM performs the aerodynamic analysis of forebodies and inlet characteristics of RBCC powered SSTO launch vehicles. HYFIM is applicable to the analysis of the ramjet/scramjet engine operations modes (Mach 3-12), and provides estimates of parameters such as air capture area, shock-on-lip Mach number, design Mach number, compression ratio, etc., based on a basic geometry routine for modeling axisymmetric cones, 2-D wedge geometries. HYFIM also estimates the variation of shock layer properties normal to the forebody surface. The thermal protection system (TPS) is directly linked to determination of the vehicle moldline and the shaping of the trajectory. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. The need to analyze vehicle forebody and engine inlet is critical to be able to design the RBCC vehicle. To adequately determine insulation masses for an RBCC vehicle, the hypersonic aerodynamic environment and aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. E-PSURBCC is an "engine performance" model and requires the specification of inlet air static temperature and pressure as well as Mach number (which it pulls from the HYFIM and POST trajectory files), and calculates the corresponding stagnation properties. The engine air flow path geometry includes inlet, a constant area section where the rocket is positioned, a subsonic diffuser, a constant area afterburner, and either a converging nozzle or a converging-diverging nozzle. The current capabilities of E-PSURBCC ejector and ramjet mode treatment indicated that various complex flow phenomena including multiple choking and internal shocks can occur for combinations of geometry/flow conditions. For a given input deck defining geometry/flow conditions, the program first goes through a series of checks to establish whether the input parameters are sound in terms of a solution path. If the vehicle/engine performance fails mission goals, the engineer is able to collaboratively alter the vehicle moldline to change aerodynamics, or trajectory, or some other input to achieve orbit. The problem described is an example of the need for collaborative design and analysis. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, aerodynamic data based on vehicle geometry, heat rate data, TPS masses, and vehicle and engine performance, so that the output from each tool is easily transferred to the model input files that need it.

  11. Root-cause estimation of ultrasonic scattering signatures within a complex textured titanium

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Na, Jeong K.; Freed, Shaun

    2016-02-01

    The nondestructive evaluation of polycrystalline materials has been an active area of research for many decades, and continues to be an area of growth in recent years. Titanium alloys in particular have become a critical material system used in modern turbine engine applications, where an evaluation of the local microstructure properties of engine disk/blade components is desired for performance and remaining life assessments. Current NDE methods are often limited to estimating ensemble material properties or detecting localized voids, inclusions, or damage features within a material. Recent advances in computational NDE and material science characterization methods are providing new and unprecedented access to heterogeneous material properties, which permits microstructure-sensing interactions to be studied in detail. In the present research, Integrated Computational Materials Engineering (ICME) methods and tools are being leveraged to gain a comprehensive understanding of root-cause ultrasonic scattering processes occurring within a textured titanium aerospace material. A combination of destructive, nondestructive, and computational methods are combined within the ICME framework to collect, holistically integrate, and study complex ultrasound scattering using realistic 2-dimensional representations of the microstructure properties. Progress towards validating the computational sensing methods are discussed, along with insight into the key scattering processes occurring within the bulk microstructure, and how they manifest in pulse-echo immersion ultrasound measurements.

  12. 77 FR 51477 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Equation W-7 to allow for reporters to use alternative methods such as engineering estimates based on best... requirement in 40 CFR 98.236 for reporting of ``annual throughput as determined by engineering estimate based...

  13. 48 CFR 836.606-71 - Architect-engineer's proposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Architect-engineer's... AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-71 Architect-engineer's proposal. (a) When the contract price is estimated to be $50,000...

  14. 48 CFR 836.606-71 - Architect-engineer's proposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Architect-engineer's... AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-71 Architect-engineer's proposal. (a) When the contract price is estimated to be $50,000...

  15. 48 CFR 836.606-71 - Architect-engineer's proposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Architect-engineer's... AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-71 Architect-engineer's proposal. (a) When the contract price is estimated to be $50,000...

  16. 48 CFR 836.606-71 - Architect-engineer's proposal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Architect-engineer's... AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-71 Architect-engineer's proposal. (a) When the contract price is estimated to be $50,000...

  17. 48 CFR 836.606-71 - Architect-engineer's proposal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Architect-engineer's... AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-71 Architect-engineer's proposal. (a) When the contract price is estimated to be $50,000...

  18. Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data

    PubMed Central

    Huang, Da-Cang; Wang, Jin-Feng; Huang, Ji-Xia; Sui, Daniel Z.; Zhang, Hong-Yan; Hu, Mao-Gui; Xu, Cheng-Dong

    2016-01-01

    The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary goal of this study is to explore new ways of improving the accuracy of disease prevalence estimations by combining traditional disease data with search engine data. A novel method, Biased Sentinel Hospital-based Area Disease Estimation (B-SHADE), is introduced to reduce search engine data bias from a geographical perspective. To monitor search trends on Hand, Foot and Mouth Disease (HFMD) in Guangdong Province, China, we tested our approach by selecting 11 keywords from the Baidu index platform, a Chinese big data analyst similar to GFT. The correlation between the number of real cases and the composite index was 0.8. After decomposing the composite index at the city level, we found that only 10 cities presented a correlation of close to 0.8 or higher. These cities were found to be more stable with respect to search volume, and they were selected as sample cities in order to estimate the search volume of the entire province. After the estimation, the correlation improved from 0.8 to 0.864. After fitting the revised search volume with historical cases, the mean absolute error was 11.19% lower than it was when the original search volume and historical cases were combined. To our knowledge, this is the first study to reduce search engine data bias levels through the use of rigorous spatial sampling strategies. PMID:27271698

  19. Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data.

    PubMed

    Huang, Da-Cang; Wang, Jin-Feng; Huang, Ji-Xia; Sui, Daniel Z; Zhang, Hong-Yan; Hu, Mao-Gui; Xu, Cheng-Dong

    2016-06-01

    The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary goal of this study is to explore new ways of improving the accuracy of disease prevalence estimations by combining traditional disease data with search engine data. A novel method, Biased Sentinel Hospital-based Area Disease Estimation (B-SHADE), is introduced to reduce search engine data bias from a geographical perspective. To monitor search trends on Hand, Foot and Mouth Disease (HFMD) in Guangdong Province, China, we tested our approach by selecting 11 keywords from the Baidu index platform, a Chinese big data analyst similar to GFT. The correlation between the number of real cases and the composite index was 0.8. After decomposing the composite index at the city level, we found that only 10 cities presented a correlation of close to 0.8 or higher. These cities were found to be more stable with respect to search volume, and they were selected as sample cities in order to estimate the search volume of the entire province. After the estimation, the correlation improved from 0.8 to 0.864. After fitting the revised search volume with historical cases, the mean absolute error was 11.19% lower than it was when the original search volume and historical cases were combined. To our knowledge, this is the first study to reduce search engine data bias levels through the use of rigorous spatial sampling strategies.

  20. Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2005-01-01

    Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous effects in the nozzle flowfield. Additionally, comparisons of the model results to performance data from CalTech, as well as experimental flowfield measurements from Stanford University, are also reported.

  1. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  2. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    USGS Publications Warehouse

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 73 percent of the months. Use of the unmodified USWB method is appealing because it means estimates of average daily reservoir evaporation can be made from air temperature, relative humidity, wind speed, and solar radiation data collected from remote weather stations without the need to develop site-specific coefficients from historical pan data. Site-specific coefficients would need to be developed for the modified version of the Hamon method.

  3. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  4. Inertial sensor-based methods in walking speed estimation: a systematic review.

    PubMed

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  5. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    PubMed Central

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm. PMID:22778632

  6. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  7. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  8. Real-world operation conditions and on-road emissions of Beijing diesel buses measured by using portable emission measurement system and electric low-pressure impactor.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Johnson, Kent C; Shah, Asad Naeem; Tan, Jianwei; Wang, Chu; Yu, Linxiao

    2011-03-15

    On-road measurement is an effective method to investigate real-world emissions generated from vehicles and estimate the difference between engine certification cycles and real-world operating conditions. This study presents the results of on-road measurements collected from urban buses which propelled by diesel engine in Beijing city. Two widely used Euro III emission level buses and two Euro IV emission level buses were chosen to perform on-road emission measurements using portable emission measurement system (PEMS) for gaseous pollutant and Electric Low Pressure Impactor (ELPI) for particulate matter (PM) number emissions. The results indicate that considerable discrepancies of engine operating conditions between real-world driving cycles and engine certification cycles have been observed. Under real-world operating conditions, carbon monoxide (CO) and hydrocarbon (HC) emissions can easily meet their respective regulations limits, while brake specification nitrogen oxide (bsNO(x)) emissions present a significant deviation from its corresponding limit. Compared with standard limits, the real-world bsNO(x) emission of the two Euro III emission level buses approximately increased by 60% and 120% respectively, and bsNO(x) of two Euro IV buses nearly twice standard limits because Selective Catalytic Reduction (SCR) system not active under low exhaust temperature. Particle mass were estimated via particle size distribution with the assumption that particle density and diameter is liner. The results demonstrate that nanometer size particulate matter make significant contribution to total particle number but play a minor role to total particle mass. It is suggested that specific certified cycle should be developed to regulate bus engines emissions on the test bench or use PEMS to control the bus emissions under real-world operating conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  10. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  11. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  12. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  13. Estimating search engine index size variability: a 9-year longitudinal study.

    PubMed

    van den Bosch, Antal; Bogers, Toine; de Kunder, Maurice

    One of the determining factors of the quality of Web search engines is the size of their index. In addition to its influence on search result quality, the size of the indexed Web can also tell us something about which parts of the WWW are directly accessible to the everyday user. We propose a novel method of estimating the size of a Web search engine's index by extrapolating from document frequencies of words observed in a large static corpus of Web pages. In addition, we provide a unique longitudinal perspective on the size of Google and Bing's indices over a nine-year period, from March 2006 until January 2015. We find that index size estimates of these two search engines tend to vary dramatically over time, with Google generally possessing a larger index than Bing. This result raises doubts about the reliability of previous one-off estimates of the size of the indexed Web. We find that much, if not all of this variability can be explained by changes in the indexing and ranking infrastructure of Google and Bing. This casts further doubt on whether Web search engines can be used reliably for cross-sectional webometric studies.

  14. High-alcohol microemulsion fuel performance in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.H.; Compere, A.L.; Griffith, W.L.

    1990-01-01

    Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear,more » stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.« less

  15. An engineering assessment of the burning of the combustible fraction of construction and demolition wastes in a redundant brick kiln.

    PubMed

    Chang, N B; Lin, K S; Sun, Y P; Wang, H P

    2001-12-01

    This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.

  16. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.

  17. A Study on the Requirements for Fast Active Turbine Tip Clearance Control Systems

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.

    2004-01-01

    This paper addresses the requirements of a control system for active turbine tip clearance control in a generic commercial turbofan engine through design and analysis. The control objective is to articulate the shroud in the high pressure turbine section in order to maintain a certain clearance set point given several possible engine transient events. The system must also exhibit reasonable robustness to modeling uncertainties and reasonable noise rejection properties. Two actuators were chosen to fulfill such a requirement, both of which possess different levels of technological readiness: electrohydraulic servovalves and piezoelectric stacks. Identification of design constraints, desired actuator parameters, and actuator limitations are addressed in depth; all of which are intimately tied with the hardware and controller design process. Analytical demonstrations of the performance and robustness characteristics of the two axisymmetric LQG clearance control systems are presented. Takeoff simulation results show that both actuators are capable of maintaining the clearance within acceptable bounds and demonstrate robustness to parameter uncertainty. The present model-based control strategy was employed to demonstrate the tradeoff between performance, control effort, and robustness and to implement optimal state estimation in a noisy engine environment with intent to eliminate ad hoc methods for designing reliable control systems.

  18. Reanalysis of Diesel Engine Exhaust and Lung Cancer Mortality in the Diesel Exhaust in Miners Study Cohort Using Alternative Exposure Estimates and Radon Adjustment

    PubMed Central

    Chang, Ellen T; Lau, Edmund C; Van Landingham, Cynthia; Crump, Kenny S; McClellan, Roger O; Moolgavkar, Suresh H

    2018-01-01

    Abstract The Diesel Exhaust in Miners Study (DEMS) (United States, 1947–1997) reported positive associations between diesel engine exhaust exposure, estimated as respirable elemental carbon (REC), and lung cancer mortality. This reanalysis of the DEMS cohort used an alternative estimate of REC exposure incorporating historical data on diesel equipment, engine horsepower, ventilation rates, and declines in particulate matter emissions per horsepower. Associations with cumulative REC and average REC intensity using the alternative REC estimate and other exposure estimates were generally attenuated compared with original DEMS REC estimates. Most findings were statistically nonsignificant; control for radon exposure substantially weakened associations with the original and alternative REC estimates. No association with original or alternative REC estimates was detected among miners who worked exclusively underground. Positive associations were detected among limestone workers, whereas no association with REC or radon was found among workers in the other 7 mines. The differences in results based on alternative exposure estimates, control for radon, and stratification by worker location or mine type highlight areas of uncertainty in the DEMS data. PMID:29522073

  19. Analytical Study on Flight Performance of a RP Laser Launcher

    NASA Astrophysics Data System (ADS)

    Katsurayama, H.; Ushio, M.; Komurasaki, K.; Arakawa, Y.

    2005-04-01

    An air-breathing RP Laser Launcher has been proposed as the alternative to conventional chemical launch systems. This paper analytically examines the feasibility of SSTO system powered by RP lasers. The trajectory from the ground to the geosynchronous orbit is computed and the launch cost including laser-base development is estimated. The engine performance is evaluated by CFD computations and a cycle analysis. The results show that the beam power of 2.3MW per unit initial vehicle mass is optimum to reach a geo-synchronous transfer orbit, and 3,000 launches are necessary to redeem the cost for laser transmitter.

  20. Performance estimates of a Boeing 747-100 transport mated with an outsize cargo pod

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1980-01-01

    The design mission performance of a Boeing 747-100 aircraft mated with an outsize cargo pod was studied. The basic design requirement was the rapid deployment of a combat loaded mobile bridge launcher from a United States east coast staging base to Europe. Weight was minimized by stripping the aircraft of unneeded, quick removal items and by utilizing graphite-epoxy composite materials for most pod components. The mission analysis was based on wind tunnel data and full scale carrier aircraft and engine data. The results are presented in tabular and graphic form.

  1. Jet noise suppressor nozzle development for augmentor wing jet STOL research aircraft (C-8A Buffalo)

    NASA Technical Reports Server (NTRS)

    Harkonen, D. L.; Marks, C. C.; Okeefe, J. V.

    1974-01-01

    Noise and performance test results are presented for a full-scale advanced design rectangular array lobe jet suppressor nozzle (plain wall and corrugated). Flight design and installation considerations are also discussed. Noise data are presented in terms of peak PNLT (perceived noise level, tone corrected) suppression relative to the existing airplane and one-third octave-band spectra. Nozzle performance is presented in terms of velocity coefficient. Estimates of the hot thrust available during emergency (engine out) with the suppressor nozzle installed are compared with the current thrust levels produced by the round convergent nozzles.

  2. Quantitative Assessment of Cancer Risk from Exposure to Diesel Engine Emissions

    EPA Science Inventory

    Quantitative estimates of lung cancer risk from exposure to diesel engine emissions were developed using data from three chronic bioassays with Fischer 344 rats. uman target organ dose was estimated with the aid of a comprehensive dosimetry model. This model accounted for rat-hum...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.

    The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

  4. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  5. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  6. Free-piston Stirling hydraulic engine and drive system for automobiles

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  7. Cost Benefit Analysis: Cost Benefit Analysis for Human Effectiveness Research: Bioacoustic Protection

    DTIC Science & Technology

    2001-07-21

    APPENDIX A. ACRONYMS ACCES Attenuating Custom Communication Earpiece System ACEIT Automated Cost estimating Integrated Tools AFSC Air Force...documented in the ACEIT cost estimating tool developed by Tecolote, Inc. The factor used was 14 percent of PMP. 1.3 System Engineering/ Program...The data source is the ASC Aeronautical Engineering Products Cost Factor Handbook which is documented in the ACEIT cost estimating tool developed

  8. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  9. Parallel computers - Estimate errors caused by imprecise data

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne

    1991-01-01

    A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.

  10. Sequential state estimation of nonlinear/non-Gaussian systems with stochastic input for turbine degradation estimation

    NASA Astrophysics Data System (ADS)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying

    2016-05-01

    Health state estimation of inaccessible components in complex systems necessitates effective state estimation techniques using the observable variables of the system. The task becomes much complicated when the system is nonlinear/non-Gaussian and it receives stochastic input. In this work, a novel sequential state estimation framework is developed based on particle filtering (PF) scheme for state estimation of general class of nonlinear dynamical systems with stochastic input. Performance of the developed framework is then validated with simulation on a Bivariate Non-stationary Growth Model (BNGM) as a benchmark. In the next step, three-year operating data of an industrial gas turbine engine (GTE) are utilized to verify the effectiveness of the developed framework. A comprehensive thermodynamic model for the GTE is therefore developed to formulate the relation of the observable parameters and the dominant degradation symptoms of the turbine, namely, loss of isentropic efficiency and increase of the mass flow. The results confirm the effectiveness of the developed framework for simultaneous estimation of multiple degradation symptoms in complex systems with noisy measured inputs.

  11. Laser ignition of engines: a realistic option!

    NASA Astrophysics Data System (ADS)

    Weinrotter, M.; Srivastava, D. K.; Iskra, K.; Graf, J.; Kopecek, H.; Klausner, J.; Herdin, G.; Wintner, E.

    2006-01-01

    Due to the demands of the market to increase efficiencies and power densities of gas engines, existing ignition schemes are gradually reaching their limits. These limitations initially triggered the development of laser ignition as an effective alternative, first only for gas engines and now for a much wider range of internal combustion engines revealing a number of immediate advantages like no electrode erosion or flame kernel quenching. Furthermore and most noteworthy, already the very first engine tests about 5 years ago had resulted in a drastic reduction of NO x emissions. Within this broad range investigation, laser plasmas were generated by ns Nd-laser pulses and characterized by emission and Schlieren diagnostic methods. High-pressure chamber experiments with lean hydrogen-methane-air mixtures were successfully performed and allowed the determination of essential parameters like minimum pulse energies at different ignition pressures and temperatures as well as at variable fuel air compositions. Multipoint ignition was studied for different ignition point locations. In this way, relevant parameters were acquired allowing to estimate future laser ignition systems. Finally, a prototype diode-pumped passively Q-switched Nd:YAG laser was tested successfully at a gasoline engine allowing to monitor the essential operation characteristics. It is expected that laser ignition involving such novel solid-state lasers will allow much lower maintenance efforts.

  12. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  13. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  14. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  15. Quiet Clean Short-Haul Experimental Engine (QCSEE) Over-The-Wing (OTW) propulsion system test report. Volume 2: Aerodynamics and performance. [engine performance tests to define propulsion system performance on turbofan engines

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design and testing of the over the wing engine, a high bypass, geared turbofan engine, are discussed. The propulsion system performance is examined for uninstalled performance and installed performance. The fan aerodynamic performance and the D nozzle and reverser thrust performance are evaluated.

  16. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    NASA Astrophysics Data System (ADS)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  17. Conceptual design of an advanced Stirling conversion system for terrestrial power generation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A free piston Stirling engine coupled to an electric generator or alternator with a nominal kWe power output absorbing thermal energy from a nominal 100 square meter parabolic solar collector and supplying electric power to a utility grid was identified. The results of the conceptual design study of an Advanced Stirling Conversion System (ASCS) were documented. The objectives are as follows: define the ASCS configuration; provide a manufacturability and cost evaluation; predict ASCS performance over the range of solar input required to produce power; estimate system and major component weights; define engine and electrical power condidtioning control requirements; and define key technology needs not ready by the late 1980s in meeting efficiency, life, cost, and with goalds for the ASCS.

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 6, June 2007

    DTIC Science & Technology

    2007-06-01

    California. He has co-authored the book Software Cost Estimation With COCOMO II with Barry Boehm and others. Clark helped define the COCOMO II model...Software Engineering at the University of Southern California. She worked with Barry Boehm and Chris Abts to develop and calibrate a cost-estimation...2003/02/ schorsch.html>. 2. See “Software Engineering, A Practitioners Approach” by Roger Pressman for a good description of coupling, cohesion

  19. Suppression of Thermal Emission from Exhaust Components Using an Integrated Approach

    DTIC Science & Technology

    2002-08-01

    design model must, as a minimum, include an accurate estimate of space required for the exhaust , backpressure to the engine , system weight, gas species...hot flovw testing. The virtual design model provides an estimate of space required for: tih exhaust , backiressure to the engine ., svsie:. weigar. gas...either be the engine for the exhaust system or is capable of providing more than the required mass flow rate and enough gas temperature margins so that

  20. Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models.

    PubMed

    Karr, Jonathan R; Williams, Alex H; Zucker, Jeremy D; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A; Bot, Brian M; Hoff, Bruce R; Kellen, Michael R; Covert, Markus W; Stolovitzky, Gustavo A; Meyer, Pablo

    2015-05-01

    Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.

Top