Sample records for engine plant including

  1. 76 FR 22729 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant #1, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ..., Power Train Division, Mack Avenue Engine Plant 1, Including On-Site Leased Workers From Caravan Knight..., applicable to workers of Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plant 1, including on... all workers of Chrysler LLC, Mack Avenue Engine Plants 1 & 2, Power Train Division, Detroit, Michigan...

  2. 75 FR 34170 - Chrysler Group LLC, Formally Known as Chrysler LLC, Kenosha Engine Plant, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... automobile engines. The company reports that workers leased from Caravan Knight Facilities Management, LLC..., Formally Known as Chrysler LLC, Kenosha Engine Plant, Including On-Site Leased Workers From Caravan Knight..., Kenosha Engine Plant, Kenosha, Wisconsin. The notice was published in [[Page 34171

  3. 75 FR 52982 - Chrysler Group LLC, Formally Known as Chrysler LLC, Kenosha Engine Plant, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... automobile engines. The company reports that workers leased from Syncreon were employed on-site at the..., Formally Known as Chrysler LLC, Kenosha Engine Plant, Including On-Site Leased Workers From Caravan Knight... Chrysler, LLC, Kenosha Engine Plant, Kenosha, Wisconsin. The notice was published in the Federal Register...

  4. 76 FR 13667 - Chrysler Group LLC; Formerly Known as Chrysler LLC; Kenosha Engine Plant; Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...; Formerly Known as Chrysler LLC; Kenosha Engine Plant; Including On-Site Leased Workers From Caravan Knight..., K+S Services, Inc., G4S Secure Solutions, Crassociates, Inc., CES, INC., Evans Distribution Systems... of Chrysler Group, LLC, formerly known as Chrysler, LLC, Kenosha Engine Plant, Kenosha, Wisconsin...

  5. 75 FR 76041 - Chrysler Group LLC Formerly Known as Chrysler LLC Kenosha Engine Plant Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Formerly Known as Chrysler LLC Kenosha Engine Plant Including On-Site Leased Workers From Caravan Knight..., K+S Services, Inc., G4S Secure Solutions, Crassociates, Inc., CES, Inc., Evans Distribution Systems..., LLC, formerly known as Chrysler, LLC, Kenosha Engine Plant, Kenosha, Wisconsin (subject firm). The...

  6. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  7. 76 FR 27366 - Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plants #1 And #2, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-75,023] Chrysler Group, LLC, Power Train Division, Mack Avenue Engine Plants 1 And 2, Including On-Site Leased Workers from Caravan... 6, 2011, applicable to workers of Chrysler Group, LLC, Power Train Division, Mack Avenue Engine...

  8. This photocopy of an engineering drawing shows the floor plan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the floor plan of the Liner Lab, including room functions. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex Phase II, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "Liner Laboratory, Floor Plan and Schedules," drawing no. E33/4-2, 26 June 1962. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Liner Laboratory, Edwards Air Force Base, Boron, Kern County, CA

  9. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  10. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  11. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  12. 7 CFR 3430.902 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants... credit toward such a degree; or (B) Offers a 2-year program in engineering, mathematics, or the physical...-professional level in engineering, scientific, or other technological fields requiring the understanding and...

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  14. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  15. Production of polyhydroxybutyrate in switchgrass

    DOEpatents

    Somleva, Mariya N.; Snell, Kristi D.; Beaulieu, Julie; Peoples, Oliver P.; Garrison, Bradley; Patterson, Nii

    2013-07-16

    Transgenic plants, plant material, and plant cells for synthesis of polyhydroxyalkanoates, preferably poly(3-hydroxybutyrate) (also referred to a as PHB) are provided. Preferred plants that can be genetically engineered to produce PHB include plants that do not normally produce storage products such as oils and carbohydrates, and plants that have a C.sub.4 NAD-malic enzyme photosynthetic pathway. Such plants also advantageously produce lignocellulosic biomass that can be converted into biofuels. An exemplary plant that can be genetically engineered to produce PHB and produce lignocellulosic biomass is switchgrass, Panicum virgatum L. A preferred cultivar of switchgrass is Alamo. Other suitable cultivars of switchgrass include but are not limited to Blackwell, Kanlow, Nebraska 28, Pathfinder, Cave-in-Rock, Shelter and Trailblazer.

  16. 75 FR 26791 - Chrysler, LLC, Trenton Engine Plant, Including On-Site Leased Workers from Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-64,550] Chrysler, LLC, Trenton Engine Plant, Including On-Site Leased Workers from Caravan Knight Facilities Management LLC and Devon Facility Management, Trenton, MI, Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade...

  17. Mechanisms, applications, and perspectives of antiviral RNA silencing in plants

    PubMed Central

    Garcia-Ruiz, Hernan; Ruiz, Mayra Teresa Garcia; Peralta, Sergio Manuel Gabriel; Gabriel, Cristina Betzabeth Miravel; El-Mounadi, Kautar

    2017-01-01

    Viral diseases of plants cause important economic losses due to reduction in crop quality and quantity to the point of threatening food security in some countries. Given the reduced availability of natural sources, genetic resistance to viruses has been successfully engineered for some plant-virus combinations. A sound understanding of the basic mechanisms governing plant-virus interactions, including antiviral RNA silencing, is the foundation to design better management strategies and biotechnological approaches to engineer and implement antiviral resistance in plants. In this review, we present current molecular models to explain antiviral RNA silencing and its application in basic plant research, biotechnology and genetic engineering. PMID:28890589

  18. 75 FR 11915 - Chrysler LLC; Trenton Engine Plant, Including On-Site Leased Workers From Caravan Knight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... workers are engaged in the production of automotive engines, a substantial portion of which are shipped to..., Michigan location of Chrysler, LLC, Trenton Engine Plant. The Department has determined that these workers... Facilities Management, LLC, working on-site at the Trenton, Michigan location of Chrysler, LLC, Trenton...

  19. Enabling plant synthetic biology through genome engineering.

    PubMed

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Engineering Plant Immunity: Using CRISPR/Cas9 to Generate Virus Resistance

    PubMed Central

    Zaidi, Syed Shan-e-Ali; Tashkandi, Manal; Mansoor, Shahid; Mahfouz, Magdy M.

    2016-01-01

    Plant viruses infect many economically important crops, including wheat, cotton, maize, cassava, and other vegetables. These viruses pose a serious threat to agriculture worldwide, as decreases in cropland area per capita may cause production to fall short of that required to feed the increasing world population. Under these circumstances, conventional strategies can fail to control rapidly evolving and emerging plant viruses. Genome-engineering strategies have recently emerged as promising tools to introduce desirable traits in many eukaryotic species, including plants. Among these genome engineering technologies, the CRISPR (clustered regularly interspaced palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) system has received special interest because of its simplicity, efficiency, and reproducibility. Recent studies have used CRISPR/Cas9 to engineer virus resistance in plants, either by directly targeting and cleaving the viral genome, or by modifying the host plant genome to introduce viral immunity. Here, we briefly describe the biology of the CRISPR/Cas9 system and plant viruses, and how different genome engineering technologies have been used to target these viruses. We further describe the main findings from recent studies of CRISPR/Cas9-mediated viral interference and discuss how these findings can be applied to improve global agriculture. We conclude by pinpointing the gaps in our knowledge and the outstanding questions regarding CRISPR/Cas9-mediated viral immunity. PMID:27877187

  1. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projectsmore » the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.« less

  2. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    PubMed

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Precision genome engineering and agriculture: opportunities and regulatory challenges.

    PubMed

    Voytas, Daniel F; Gao, Caixia

    2014-06-01

    Plant agriculture is poised at a technological inflection point. Recent advances in genome engineering make it possible to precisely alter DNA sequences in living cells, providing unprecedented control over a plant's genetic material. Potential future crops derived through genome engineering include those that better withstand pests, that have enhanced nutritional value, and that are able to grow on marginal lands. In many instances, crops with such traits will be created by altering only a few nucleotides among the billions that comprise plant genomes. As such, and with the appropriate regulatory structures in place, crops created through genome engineering might prove to be more acceptable to the public than plants that carry foreign DNA in their genomes. Public perception and the performance of the engineered crop varieties will determine the extent to which this powerful technology contributes towards securing the world's food supply.

  4. Genetic engineering of woody plants: current and future targets in a stressful environment.

    PubMed

    Osakabe, Yuriko; Kajita, Shinya; Osakabe, Keishi

    2011-06-01

    Abiotic stress is a major factor in limiting plant growth and productivity. Environmental degradation, such as drought and salinity stresses, will become more severe and widespread in the world. To overcome severe environmental stress, plant biotechnologies, such as genetic engineering in woody plants, need to be implemented. The adaptation of plants to environmental stress is controlled by cascades of molecular networks including cross-talk with other stress signaling mechanisms. The present review focuses on recent studies concerning genetic engineering in woody plants for the improvement of the abiotic stress responses. Furthermore, it highlights the recent advances in the understanding of molecular responses to stress. The review also summarizes the basis of a molecular mechanism for cell wall biosynthesis and the plant hormone responses to regulate tree growth and biomass in woody plants. This would facilitate better understanding of the control programs of biomass production under stressful conditions. Copyright © Physiologia Plantarum 2011.

  5. Towards engineering of hormonal crosstalk in plant immunity.

    PubMed

    Shigenaga, Alexandra M; Berens, Matthias L; Tsuda, Kenichi; Argueso, Cristiana T

    2017-08-01

    Plant hormones regulate physiological responses in plants, including responses to pathogens and beneficial microbes. The last decades have provided a vast amount of evidence about the contribution of different plant hormones to plant immunity, and also of how they cooperate to orchestrate immunity activation, in a process known as hormone crosstalk. In this review we highlight the complexity of hormonal crosstalk in immunity and approaches currently being used to further understand this process, as well as perspectives to engineer hormone crosstalk for enhanced pathogen resistance and overall plant fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metabolic Engineering of Isoflavonoid Biosynthesis in Alfalfa1[w

    PubMed Central

    Deavours, Bettina E.; Dixon, Richard A.

    2005-01-01

    The potential health benefits of dietary isoflavones have generated considerable interest in engineering the synthesis of these phytoestrogens into plants. Genistein glucoside production (up to 50 nmol g−1 fresh weight) was engineered in alfalfa (Medicago sativa) leaves by constitutive expression of isoflavone synthase from Medicago truncatula (MtIFS1). Glucosides of biochanin A (4′-O-methylgenistein) and pratensein (3′-hydroxybiochanin A) also accumulated. Although MtIFS1 was highly expressed in all organs examined, genistein accumulation was limited to leaves. MtIFS1-expressing lines accumulated several additional isoflavones, including formononetin and daidzein, in response to UV-B or Phoma medicaginis, whereas the chalcone and flavanone precursors of these compounds accumulated in control lines. Enhanced accumulation of the phytoalexin medicarpin was observed in P. medicaginis-infected leaves of MtIFS1-expressing plants. Microarray profiling indicated that MtIFS1 expression does not significantly alter global gene expression in the leaves. Our results highlight some of the challenges associated with metabolic engineering of plant natural products, including tissue-specific accumulation, potential for further modification by endogenous enzyme activities (hydroxylation, methylation, and glycosylation), and the differential response of engineered plants to environmental factors. PMID:16006598

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  8. Multi-source and ontology-based retrieval engine for maize mutant phenotypes

    PubMed Central

    Green, Jason M.; Harnsomburana, Jaturon; Schaeffer, Mary L.; Lawrence, Carolyn J.; Shyu, Chi-Ren

    2011-01-01

    Model Organism Databases, including the various plant genome databases, collect and enable access to massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc, as well as textual descriptions of many of these entities. While a variety of basic browsing and search capabilities are available to allow researchers to query and peruse the names and attributes of phenotypic data, next-generation search mechanisms that allow querying and ranking of text descriptions are much less common. In addition, the plant community needs an innovative way to leverage the existing links in these databases to search groups of text descriptions simultaneously. Furthermore, though much time and effort have been afforded to the development of plant-related ontologies, the knowledge embedded in these ontologies remains largely unused in available plant search mechanisms. Addressing these issues, we have developed a unique search engine for mutant phenotypes from MaizeGDB. This advanced search mechanism integrates various text description sources in MaizeGDB to aid a user in retrieving desired mutant phenotype information. Currently, descriptions of mutant phenotypes, loci and gene products are utilized collectively for each search, though expansion of the search mechanism to include other sources is straightforward. The retrieval engine, to our knowledge, is the first engine to exploit the content and structure of available domain ontologies, currently the Plant and Gene Ontologies, to expand and enrich retrieval results in major plant genomic databases. Database URL: http:www.PhenomicsWorld.org/QBTA.php PMID:21558151

  9. Plant nitrogen regulatory P-PII polypeptides

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  10. 47 CFR 32.6535 - Engineering expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Engineering expense. 32.6535 Section 32.6535... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6535 Engineering expense. (a) This account shall include costs incurred in the general engineering of the telecommunications plant...

  11. 47 CFR 32.6535 - Engineering expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Engineering expense. 32.6535 Section 32.6535... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6535 Engineering expense. (a) This account shall include costs incurred in the general engineering of the telecommunications plant...

  12. 47 CFR 32.6535 - Engineering expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Engineering expense. 32.6535 Section 32.6535... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6535 Engineering expense. (a) This account shall include costs incurred in the general engineering of the telecommunications plant...

  13. 47 CFR 32.6535 - Engineering expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Engineering expense. 32.6535 Section 32.6535... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6535 Engineering expense. (a) This account shall include costs incurred in the general engineering of the telecommunications plant...

  14. 47 CFR 32.6535 - Engineering expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Engineering expense. 32.6535 Section 32.6535... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6535 Engineering expense. (a) This account shall include costs incurred in the general engineering of the telecommunications plant...

  15. Plant synthetic biology for molecular engineering of signalling and development.

    PubMed

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  16. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  17. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    PubMed

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  18. Principles of Naval Engineering.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of shipboard machinery, equipment, and engineering plants are presented in this text prepared for engineering officers. A general description is included of the development of naval ships, ship design and construction, stability and buoyancy, and damage and casualty control. Engineering theories are explained on the background of ship…

  19. 33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identification by common and scientific name of the plant or plants concerned, origin of infestation and likely... control operations or engineering works, including control methods, materials, equipment and procedures... operation control, the report should include a brief statement of the special problems in control methods...

  20. 33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identification by common and scientific name of the plant or plants concerned, origin of infestation and likely... control operations or engineering works, including control methods, materials, equipment and procedures... operation control, the report should include a brief statement of the special problems in control methods...

  1. Engineering photosynthesis in plants and synthetic microorganisms.

    PubMed

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  2. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    PubMed Central

    Ali, Muhammad A.; Azeem, Farrukh; Abbas, Amjad; Joyia, Faiz A.; Li, Hongjie; Dababat, Abdelfattah A.

    2017-01-01

    Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants. PMID:28536595

  3. Transgenic Strategies for Enhancement of Nematode Resistance in Plants.

    PubMed

    Ali, Muhammad A; Azeem, Farrukh; Abbas, Amjad; Joyia, Faiz A; Li, Hongjie; Dababat, Abdelfattah A

    2017-01-01

    Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  4. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro.

    PubMed

    Moses, Tessa; Pollier, Jacob; Thevelein, Johan M; Goossens, Alain

    2013-10-01

    Terpenoids constitute a large and diverse class of natural products that serve many functions in nature. Most of the tens of thousands of the discovered terpenoids are synthesized by plants, where they function as primary metabolites involved in growth and development, or as secondary metabolites that optimize the interaction between the plant and its environment. Several plant terpenoids are economically important molecules that serve many applications as pharmaceuticals, pesticides, etc. Major challenges for the commercialization of plant-derived terpenoids include their low production levels in planta and the continuous demand of industry for novel molecules with new or superior biological activities. Here, we highlight several synthetic biology methods to enhance and diversify the production of plant terpenoids, with a foresight towards triterpenoid engineering, the least engineered class of bioactive terpenoids. Increased or cheaper production of valuable triterpenoids may be obtained by 'classic' metabolic engineering of plants or by heterologous production of the compounds in other plants or microbes. Novel triterpenoid structures can be generated through combinatorial biosynthesis or directed enzyme evolution approaches. In its ultimate form, synthetic biology may lead to the production of large amounts of plant triterpenoids in in vitro systems or custom-designed artificial biological systems. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  6. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  7. Small Engine Repair Course Outline.

    ERIC Educational Resources Information Center

    DeClouet, Fred

    Small engines as referred to here are engines used on lawn mowers, chain saws, power plants, outboards, and cycles. It does not include engines used on automobiles. The course outlined is intended to show how small two-cycle and four-cycle gas engines are constructed, how they operate, what goes wrong, and how to service and repair them. It is…

  8. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    USDA-ARS?s Scientific Manuscript database

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  9. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Vast potential for using the piggyBac transposon to engineer transgenic plants

    USDA-ARS?s Scientific Manuscript database

    The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant...

  11. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    EPA Science Inventory

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  12. Novel perspectives for the engineering of abiotic stress tolerance in plants.

    PubMed

    Cabello, Julieta V; Lodeyro, Anabella F; Zurbriggen, Matias D

    2014-04-01

    Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. In vitro plant tissue culture: means for production of biological active compounds.

    PubMed

    Espinosa-Leal, Claudia A; Puente-Garza, César A; García-Lara, Silverio

    2018-05-07

    Plant tissue culture as an important tool for the continuous production of active compounds including secondary metabolites and engineered molecules. Novel methods (gene editing, abiotic stress) can improve the technique. Humans have a long history of reliance on plants for a supply of food, shelter and, most importantly, medicine. Current-day pharmaceuticals are typically based on plant-derived metabolites, with new products being discovered constantly. Nevertheless, the consistent and uniform supply of plant pharmaceuticals has often been compromised. One alternative for the production of important plant active compounds is in vitro plant tissue culture, as it assures independence from geographical conditions by eliminating the need to rely on wild plants. Plant transformation also allows the further use of plants for the production of engineered compounds, such as vaccines and multiple pharmaceuticals. This review summarizes the important bioactive compounds currently produced by plant tissue culture and the fundamental methods and plants employed for their production.

  14. Engineering analysis activities in support of susquehanna unit 1 startup testing and cycle 1 operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G.D.; Kukielka, C.A.; Olson, L.M.

    The engineering analysis group is responsible for all nuclear plant systems analysis and reactor analysis activities, excluding fuel management analysis, at Pennsylvania Power and Light Company. These activities include making pretest and posttest predictions of startup tests; analyzing unplanned or unexpected transient events; providing technical training to plant personnel; assisting in the development of emergency drill scenarios; providing engineering evaluations to support design and technical specification changes, and evaluating, assessing, and resolving a number of license conditions. Many of these activities have required the direct use of RETRAN models. Two RETRAN analyses that were completed to support plant operations -more » a pretest analysis of the turbine trip startup test, and a posttest analysis of the loss of startup transformer event - are investigated. For each case, RETRAN results are compared with available plant data and comparisons are drawn on the acceptability of the performance of the plant systems.« less

  15. 7 CFR 1781.11 - Other considerations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... treatment plants are included in watershed work plans, NRCS will not furnish engineering services for their... contract awards, spot checks of engineering inspection, and final inspection and acceptance. (b..., and financial advisor or fiscal agent. Form RD 442-19, “Agreement for Engineering Services,” may be...

  16. 7 CFR 1781.11 - Other considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... treatment plants are included in watershed work plans, NRCS will not furnish engineering services for their... contract awards, spot checks of engineering inspection, and final inspection and acceptance. (b..., and financial advisor or fiscal agent. Form RD 442-19, “Agreement for Engineering Services,” may be...

  17. Engine-propeller power plant aircraft community noise reduction key methods

    NASA Astrophysics Data System (ADS)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  18. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    PubMed

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  19. Fast nastic motion of plants and bioinspired structures

    PubMed Central

    Guo, Q.; Dai, E.; Han, X.; Xie, S.; Chao, E.; Chen, Z.

    2015-01-01

    The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. PMID:26354828

  20. Fast nastic motion of plants and bioinspired structures.

    PubMed

    Guo, Q; Dai, E; Han, X; Xie, S; Chao, E; Chen, Z

    2015-09-06

    The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. © 2015 The Author(s).

  1. Moon Munchies: Human Exploration Project Engineering Design Challenge--A Standards-Based Elementary School Model Unit Guide--Design, Build, and Evaluate (Lessons 1-6). Engineering By Design: Advancing Technological Literacy--A Standards-Based Program Series. EP-2007-08-92-MSFC

    ERIC Educational Resources Information Center

    Weaver, Kim M.

    2005-01-01

    In this unit, elementary students design and build a lunar plant growth chamber using the Engineering Design Process. The purpose of the unit is to help students understand and apply the design process as it relates to plant growth on the moon. This guide includes six lessons, which meet a number of national standards and benchmarks in…

  2. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci

    USDA-ARS?s Scientific Manuscript database

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several potent psychoactive and bioprotective alkaloids. The family includes grass-symbiotic epichloae (Epichloë and Neotyphodium species), which have highly diverse chemotypes with four distinct classes of anti-in...

  3. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  4. Metabolic engineering of sugars and simple sugar derivatives in plants.

    PubMed

    Patrick, John W; Botha, Frikkie C; Birch, Robert G

    2013-02-01

    Carbon captured through photosynthesis is transported, and sometimes stored in plants, as sugar. All organic compounds in plants trace to carbon from sugars, so sugar metabolism is highly regulated and integrated with development. Sugars stored by plants are important to humans as foods and as renewable feedstocks for industrial conversion to biofuels and biomaterials. For some purposes, sugars have advantages over polymers including starches, cellulose or storage lipids. This review considers progress and prospects in plant metabolic engineering for increased yield of endogenous sugars and for direct production of higher-value sugars and simple sugar derivatives. Opportunities are examined for enhancing export of sugars from leaves. Focus then turns to manipulation of sugar metabolism in sugar-storing sink organs such as fruits, sugarcane culms and sugarbeet tubers. Results from manipulation of suspected 'limiting' enzymes indicate a need for clearer understanding of flux control mechanisms, to achieve enhanced levels of endogenous sugars in crops that are highly selected for this trait. Outcomes from in planta conversion to novel sugars and derivatives range from severe interference with plant development to field demonstration of crops accumulating higher-value sugars at high yields. The differences depend on underlying biological factors including the effects of the novel products on endogenous metabolism, and on biotechnological fine-tuning including developmental expression and compartmentation patterns. Ultimately, osmotic activity may limit the accumulation of sugars to yields below those achievable using polymers; but results indicate the potential for increases above current commercial sugar yields, through metabolic engineering underpinned by improved understanding of plant sugar metabolism. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. 4th International Plant Biomechanics Conference Proceedings (Abstracts)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

    2003-07-20

    The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

  6. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  7. Rotary engine developments at Curtiss-Wright over the past 20 years and review of general aviation engine potential. [with direct chamber injection

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1978-01-01

    The development of the rotary engine as a viable power plant capable of wide application is reviewed. Research results on the stratified charge engine with direct chamber injection are included. Emission control, reduced fuel consumption, and low noise level are among the factors discussed in terms of using the rotary engine in general aviation aircraft.

  8. Reverse breeding: a novel breeding approach based on engineered meiosis.

    PubMed

    Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik

    2009-12-01

    Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome.

  9. Reverse breeding: a novel breeding approach based on engineered meiosis

    PubMed Central

    Dirks, Rob; van Dun, Kees; de Snoo, C Bastiaan; van den Berg, Mark; Lelivelt, Cilia L C; Voermans, William; Woudenberg, Leo; de Wit, Jack P C; Reinink, Kees; Schut, Johan W; van der Zeeuw, Eveline; Vogelaar, Aat; Freymark, Gerald; Gutteling, Evert W; Keppel, Marina N; van Drongelen, Paul; Kieny, Matthieu; Ellul, Philippe; Touraev, Alisher; Ma, Hong; de Jong, Hans; Wijnker, Erik

    2009-01-01

    Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome. PMID:19811618

  10. Genome engineering and plant breeding: impact on trait discovery and development.

    PubMed

    Nogué, Fabien; Mara, Kostlend; Collonnier, Cécile; Casacuberta, Josep M

    2016-07-01

    New tools for the precise modification of crops genes are now available for the engineering of new ideotypes. A future challenge in this emerging field of genome engineering is to develop efficient methods for allele mining. Genome engineering tools are now available in plants, including major crops, to modify in a predictable manner a given gene. These new techniques have a tremendous potential for a spectacular acceleration of the plant breeding process. Here, we discuss how genetic diversity has always been the raw material for breeders and how they have always taken advantage of the best available science to use, and when possible, increase, this genetic diversity. We will present why the advent of these new techniques gives to the breeders extremely powerful tools for crop breeding, but also why this will require the breeders and researchers to characterize the genes underlying this genetic diversity more precisely. Tackling these challenges should permit the engineering of optimized alleles assortments in an unprecedented and controlled way.

  11. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  12. 7 CFR 340.5 - Petition to amend the list of organisms. 10

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... THROUGH GENETIC ENGINEERING WHICH ARE PLANT PESTS OR WHICH THERE IS REASON TO BELIEVE ARE PLANT PESTS... include trade secret or confidential business information. A person should also include representative information known to the petitioner which would be unfavorable to a petition for listing or delisting. (If a...

  13. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DOE PAGES

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.; ...

    2018-01-09

    Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. Here, we have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase andmore » the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. In conclusion, the results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.« less

  14. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.

    Second-generation biofuels produced from biomass can help to decrease dependency on fossil fuels, bringing about many economic and environmental benefits. To make biomass more suitable for biorefinery use, we need a better understanding of plant cell wall biosynthesis. Increasing the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production. Here, we have studied the basic mechanisms of cell wall biosynthesis and identified genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase andmore » the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools. Plants were engineered to have up to fourfold more pectic galactan in stems by overexpressing GALS1, URGT1, and UGE2, a UDP-glucose epimerase. Furthermore, the increased galactan trait was engineered into plants that were already engineered to have low xylan content by restricting xylan biosynthesis to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells. In conclusion, the results show that approaches to increasing C6 sugar content, decreasing xylan, and reducing lignin content can be combined in an additive manner. Thus, the engineered lines obtained by this trait-stacking approach have substantially improved properties from the perspective of biofuel production, and they do not show any obvious negative growth effects. The approach used in this study can be readily transferred to bioenergy crop plants.« less

  15. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    2005-03-08

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  16. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    1999-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  17. Transgenic plants that exhibit enhanced nitrogen assimilation

    DOEpatents

    Coruzzi, Gloria M.; Brears, Timothy

    2000-01-01

    The present invention relates to a method for producing plants with improved agronomic and nutritional traits. Such traits include enhanced nitrogen assimilatory and utilization capacities, faster and more vigorous growth, greater vegetative and reproductive yields, and enriched or altered nitrogen content in vegetative and reproductive parts. More particularly, the invention relates to the engineering of plants modified to have altered expression of key enzymes in the nitrogen assimilation and utilization pathways. In one embodiment of the present invention, the desired altered expression is accomplished by engineering the plant for ectopic overexpression of one of more the native or modified nitrogen assimilatory enzymes. The invention also has a number of other embodiments, all of which are disclosed herein.

  18. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  19. [Transcription activator-like effectors(TALEs)based genome engineering].

    PubMed

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  20. GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology1[C][W][OA

    PubMed Central

    Sarrion-Perdigones, Alejandro; Vazquez-Vilar, Marta; Palací, Jorge; Castelijns, Bas; Forment, Javier; Ziarsolo, Peio; Blanca, José; Granell, Antonio; Orzaez, Diego

    2013-01-01

    Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects. PMID:23669743

  1. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology.

    PubMed

    Sarrion-Perdigones, Alejandro; Vazquez-Vilar, Marta; Palací, Jorge; Castelijns, Bas; Forment, Javier; Ziarsolo, Peio; Blanca, José; Granell, Antonio; Orzaez, Diego

    2013-07-01

    Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an evergrowing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects.

  2. Antiviral Defenses in Plants through Genome Editing

    PubMed Central

    Romay, Gustavo; Bragard, Claude

    2017-01-01

    Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937

  3. Plant engineers solar energy handbook. [Includes glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-21

    This handbook is to provide plant engineers with factual information on solar energy technology and on the various methods for assessing the future potential of this alternative energy source. The following areas are covered: solar components and systems (collectors, storage, service hot-water systems, space heating with liquid and air systems, space cooling, heat pumps and controls); computer programs for system optimization local solar and weather data; a description of buildings and plants in the San Francisco Bay Area applying solar technology; current Federal and California solar legislation; standards, codes, and performance testing information; a listing of manufacturers, distributors, and professionalmore » services that are available in Northern California; and information access. Finally, solar design checklists are provided for those engineers who wish to design their own systems. (MHR)« less

  4. 33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. B Appendix B to... source of reinfestation; extent of infestation including estimated surface area, depth or density; nature...

  5. 33 CFR Appendix B to Part 273 - Information Requirements for Aquatic Plant Control Program Reports

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE AQUATIC PLANT CONTROL Pt. 273, App. B Appendix B to... source of reinfestation; extent of infestation including estimated surface area, depth or density; nature...

  6. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    PubMed

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  7. Chemical modification of lignocellulosics

    Treesearch

    Roger M. Rowell

    1996-01-01

    Agro-based resources, also referrered to as lignocellulosics, are resources that contain cellulose, hemicelluloses, and lignin. Lignocellulosics include wood, agricultural residues, water plants, grasses, and other plant substances. When considering lignocellulosics as possible engineering materials, there are several very basic concepts that must be considered. First...

  8. Opportunities in Biological Sciences; [VGM Career Horizons Series].

    ERIC Educational Resources Information Center

    Winter, Charles A.

    This book provides job descriptions and discusses career opportunities in various fields of the biological sciences. These fields include: (1) biotechnology, genetics, biomedical engineering, microbiology, mycology, systematic biology, marine and aquatic biology, botany, plant physiology, plant pathology, ecology, and wildlife biology; (2) the…

  9. Control and protection system for an installation for the combined production of electrical and thermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agazzone, U.; Ausiello, F.P.

    1981-06-23

    A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less

  10. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  11. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  12. 2. Photographic copy of engineering drawing showing mechanical systems in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photographic copy of engineering drawing showing mechanical systems in plan and sections of Test Stand 'E,' including tunnel entrance. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Bldg. E-60 Mechanical, Solid Propellant Test Stand,' sheet E60/13-4, June 20, 1961. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA

  13. Wind Turbine Optimization with WISDEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Graf, Peter A

    This presentation for the Fourth Wind Energy Systems Engineering Workshop explains the NREL wind energy systems engineering initiative-developed analysis platform and research capability to capture important system interactions to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. Topics include Wind-Plant Integrated System Design and Engineering Model (WISDEM) and multidisciplinary design analysis and optimization.

  14. Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA.

    PubMed

    Ohara, Kazuaki; Matsunaga, Etsuko; Nanto, Kazuya; Yamamoto, Kyoko; Sasaki, Kanako; Ebinuma, Hiroyasu; Yazaki, Kazufumi

    2010-01-01

    Metabolic engineering aimed at monoterpene production has become an intensive research topic in recent years, although most studies have been limited to herbal plants including model plants such as Arabidopsis. The genus Eucalyptus includes commercially important woody plants in terms of essential oil production and the pulp industry. This study attempted to modify the production of monoterpenes, which are major components of Eucalyptus essential oil, by introducing two expression constructs containing Perilla frutescens limonene synthase (PFLS) cDNA, whose gene products were designed to be localized in either the plastid or cytosol, into Eucalyptus camaldulensis. The expression of the plastid-type and cytosol-type PFLS cDNA in transgenic E. camaldulensis was confirmed by real-time polymerase chain reaction (PCR). Gas chromatography with a flame ionization detector analyses of leaf extracts revealed that the plastidic and cytosolic expression of PFLS yielded 2.6- and 4.5-times more limonene than that accumulated in wild-type E. camaldulensis, respectively, while the ectopic expression of PFLS had only a small effect on the emission of limonene from the leaves of E. camaldulensis. Surprisingly, the high level of PFLS in Eucalyptus was accompanied by a synergistic increase in the production of 1,8-cineole and alpha-pinene, two major components of Eucalyptus monoterpenes. This genetic engineering of monoterpenes demonstrated a new potential for molecular breeding in woody plants.

  15. Benefits of full scope simulators during solar thermal power plants design and construction

    NASA Astrophysics Data System (ADS)

    Gallego, José F.; Gil, Elena; Rey, Pablo

    2017-06-01

    In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.

  16. Magnetohydrodynamics MHD Engineering Test Facility ETF 200 MWe power plant. Conceptual Design Engineering Report CDER. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.

  17. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  18. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  19. Magnetohydrodynamics MHD Engineering Test Facility ETF 200 MWe power plant. Conceptual Design Engineering Report CDER. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.

  20. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  1. Five Key Changes for the Management of UK Defence - An Agenda for Research?

    DTIC Science & Technology

    2008-04-23

    Factories have become fully fledged businesses within the private sector; indeed, even the UK’s nuclear weapons plants , whilst still formally owned by the...such as tanks. “B” vehicles cover the soft-skin group such as 4x4 vehicles. The “C” vehicle category includes engineering plant such as bulldozers...needs to take evaluate risks to effective supply, including reliance on single plants that may be destroyed in fires or other accidents. Stocks in

  2. 7 CFR 1710.251 - Construction work plans-distribution borrowers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... generation facilities; (11) Load management equipment, automatic sectionalizing facilities, and centralized... transmission plant, and improvements replacements, and retirements of any generation plant. Construction of new generation capacity need not be included in a CWP but must be specified and supported by specific engineering...

  3. Inertial Fusion Power Plant Concept of Operations and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anklam, T.; Knutson, B.; Dunne, A. M.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oilmore » refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.« less

  4. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  5. Editorial: from plant biotechnology to bio-based products.

    PubMed

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crop Genetics: The Seeds of Revolution.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1983-01-01

    Current research in plant genetics is described. Benefits of this research (which includes genetic engineering applications) will include reduction/elimination of crop diseases, assurance of genetic stability, and the creation of new crop varieties. (JN)

  7. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  8. 15 CFR 918.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...

  9. 15 CFR 918.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...

  10. 15 CFR 918.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...

  11. 15 CFR 918.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...

  12. 15 CFR 918.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... values. Living resources include natural and cultured plant life, fish, shellfish, marine mammals, and..., Great Lakes, and coastal resources means any discipline or field (including marine sciences and the physical, natural, and biological sciences, and engineering, included therein, marine technology, education...

  13. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  14. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less

  15. Engineering Education Problems. The Laboratory Equipment Factor.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    Presented is a pilot study focusing attention on problems of deteriorating physical plants and inadequate/obsolete equipment contributing to the current crisis in engineering education. Data are reported from a survey instrument (included in an appendix) from 26 colleges/universities, representing 168 programs out of a national total of 1212…

  16. Stationary Engineers Apprenticeship. Related Training Modules. 20.1-23.1 Miscellaneous.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with miscellaneous job skills needed by persons working in power plants. Addressed in the individual instructional packages included in the module are the following topics: transformers, circuit protection, construction of foundations…

  17. Engineering disease resistance with pectate lyase-like genes

    DOEpatents

    Vogel, John; Somerville, Shauna

    2005-03-08

    A mutant gene coding for pectate lyase and homologs thereof is provided, which when incorporated in transgenic plants effect an increased level disease resistance in such plants. Also is provided the polypeptide sequence for the pectate lyase of the present invention. Methods of obtaining the mutant gene, producing transgenic plants which include the nucleotide sequence for the mutant gene and producing improved disease resistance in a crop of such transgenic plants are also provided.

  18. My contribution to broadening the base of chemical engineering.

    PubMed

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  19. Advanced subsystems development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1978-01-01

    The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.

  20. Toxicity of Engineered Nanoparticles in the Environment

    PubMed Central

    Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.

    2014-01-01

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995

  1. Toxicity of engineered nanoparticles in the environment.

    PubMed

    Maurer-Jones, Melissa A; Gunsolus, Ian L; Murphy, Catherine J; Haynes, Christy L

    2013-03-19

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.

  2. Experience gained from engineering, construction, and maintenance of nuclear power plants in the Federal Republic of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, G.; Huempfner, P.

    From the very beginning of nuclear power engineering in the Federal Republic of Germany (FRG), the main objective was to achieve a high degree of reliability for all safety systems, the nuclear steam supply systems, and the balance of plant. Major measures of a general nature included the following: (1) provision of the same redundancy for all parts of systems related to safety or availability; (2) introduction of appropriate quality assurance programs for design, development, manufacture, erection, testing, operation, and maintenance; and (3) optimization of design, not with the aim of reducing plant costs but in order to improve operationmore » and safety. A few examples are provided of improvements that Kraftwerk Union AG, as a supplier of turnkey nuclear power plants, has incorporated in its plants over the past years.« less

  3. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    EPA Pesticide Factsheets

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  4. Status of development of the power plants on the base of MCFC in TFNC-VNIIEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novitski, E.Z.; Savkin, G.G.

    1996-04-01

    VNIIF started work on Molten Carbonate Fuel cells and power plants in 1991. Some results of VNIIF work in the direction of Autonomous Power Engineering are presented. Topics include molten carbonate fuel cell components, separator plates, manufacturing and testing, design, and goals.

  5. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci

    USDA-ARS?s Scientific Manuscript database

    The fungal family Clavicipitaceae includes plant symbionts and pathogens that produce neurotropic alkaloids with diverse effects on vertebrate and invertebrate animals. For example, ergot alkaloids are historically linked to mass poisonings (St. Anthony's fire) and sociological effects such as the ...

  6. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry.

    PubMed

    Wu, Yongmei; Li, Runzhi; Hildebrand, David F

    2012-10-01

    Palmitoleate (cis-Δ9-16:1) shows numerous health benefits such as increased cell membrane fluidity, reduced inflammation, protection of the cardiovascular system, and inhibition of oncogenesis. Plant oils containing this unusual fatty acid can also be sustainable feedstocks for producing industrially important and high-demand 1-octene. Vegetable oils rich in palmitoleate are the ideal candidates for biodiesel production. Several wild plants are known that can synthesize high levels of palmitoleate in seeds. However, low yields and poor agronomic characteristics of these plants limit their commercialization. Metabolic engineering has been developed to create oilseed crops that accumulate high levels of palmitoleate or other unusual fatty acids, and significant advances have been made recently in this field, particularly using the model plant Arabidopsis as the host. The engineered targets for enhancing palmitoleate synthesis include overexpression of Δ9 desaturase from mammals, yeast, fungi, and plants, down-regulating KASII, coexpression of an ACP-Δ9 desaturase in plastids and CoA-Δ9 desaturase in endoplasmic reticulum (ER), and optimizing the metabolic flux into triacylglycerols (TAGs). This review will mainly describe the recent progress towards producing palmitoleate in transgenic plants by metabolic engineering along with our current understanding of palmitoleate biosynthesis and its regulation, as well as highlighting the bottlenecks that require additional investigation by combining lipidomics, transgenics and other "-omics" tools. A brief review of reported health benefits and non-food uses of palmitoleate will also be covered. Copyright © 2012. Published by Elsevier Ltd.

  7. Ecosystem engineering affects ecosystem functioning in high-Andean landscapes.

    PubMed

    Badano, Ernesto I; Marquet, Pablo A

    2008-04-01

    Ecosystem engineers are organisms that change the distribution of materials and energy in the abiotic environment, usually creating and maintaining new habitat patches in the landscape. Such changes in habitat conditions have been widely documented to affect the distributions and performances of other species but up to now no studies have addressed how such effects can impact the biotically driven physicochemical processes associated with these landscapes, or ecosystem functions. Based on the widely accepted positive relationship between species diversity and ecosystem functions, we propose that the effects of ecosystem engineers on other species could have an impact on ecosystem functions via two mutually inclusive mechanisms: (1) by adding new species into landscapes, hence increasing species diversity; and (2) by improving the performances of species already present in the landscape. To test these hypotheses, we focused on the effects of a high-Andean ecosystem engineer, the cushion plant Azorella monantha, by comparing the accumulation of plant biomass and nitrogen fixed in plant tissues as species richness increases in landscapes with and without the engineer species. Our results show that both ecosystem functions increased with species richness in both landscape types, but landscapes including A. monantha cushions reached higher outcomes of plant biomass and nitrogen fixed in plant tissues than landscapes without cushions. Moreover, our results indicate that such positive effects on ecosystem functions could be mediated by the two mechanisms proposed above. Then, given the conspicuousness of ecosystem engineering in nature and its strong influence on species diversity, and given the well-known relationship between species diversity and ecosystem function, we suggest that the application of the conceptual framework proposed herein to other ecosystems would help to advance our understanding of the forces driving ecosystem functioning.

  8. Role of transgenic plants in agriculture and biopharming.

    PubMed

    Ahmad, Parvaiz; Ashraf, Muhammad; Younis, Muhammad; Hu, Xiangyang; Kumar, Ashwani; Akram, Nudrat Aisha; Al-Qurainy, F

    2012-01-01

    At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The Shock and Vibration Digest, Volume 12, Number 9,

    DTIC Science & Technology

    1980-09-01

    include diesel engine noise, process plant noise, and environ- dynamic mechanical properties of viscoelastic mate- mental noise and planning. rials...new numerical methods are presented in- plant noise control, design of facilities for noise in the twelve articles of the mathematics section. control...International Symposium for Innovative the seminar: 31 16 = ,,-,==. ’d-m w .’ " Dynamic Testing of Nuclear Power Plant Struc- ENVIRONMENTAL STRESS

  10. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  11. Installation Restoration Program Records Search for Bergstrom Air Force Base, Texas.

    DTIC Science & Technology

    1983-07-01

    August 1981. "Pilot Plant Study of Copper , Zinc, and Trivalent Chromium Removal by Adsorbing Colloid Foam Flotation ." M.S. Thesis, Vanderbilt...graduate school and one of his activities included researching the removal of heavy metals, including copper , zinc and trivalent chromium, using a large...scale adsorbing colloid foam flotation pilot plant. Professional Registration Engineer-In-Training, Florida % -7. GREGORY T. MCINTYRE Membership in

  12. CRISPR-Cpf1: A New Tool for Plant Genome Editing.

    PubMed

    Zaidi, Syed Shan-E-Ali; Mahfouz, Magdy M; Mansoor, Shahid

    2017-07-01

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Towards the Integration of APECS with VE-Suite to Create a Comprehensive Virtual Engineering Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorkle, D.; Yang, C.; Jordan, T.

    2007-06-01

    Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less

  14. Gene Editing and Crop Improvement Using CRISPR-Cas9 System

    PubMed Central

    Arora, Leena; Narula, Alka

    2017-01-01

    Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system. PMID:29167680

  15. Gene Editing and Crop Improvement Using CRISPR-Cas9 System.

    PubMed

    Arora, Leena; Narula, Alka

    2017-01-01

    Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingson, W.A.

    This broad-base materials engineering program, begun in October 1974, includes studies on both ceramic (refractory) and metallic materials presently being used or intended for use in coal-conversion systems. Appropriate laboratory and field experiments are integrated such that the results have immediate impact on the present pilot-plant and proposed demonstration-plant designs. The report presents the technical accomplishments.

  17. 7 CFR 340.5 - Petition to amend the list of organisms. 10

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... THROUGH GENETIC ENGINEERING WHICH ARE PLANT PESTS OR WHICH THERE IS REASON TO BELIEVE ARE PLANT PESTS... is relying upon, copies of unpublished studies, or data from tests performed. The petition should not... includes representative data and information known to the petitioner which are unfavorable to the petition...

  18. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  19. Energy engineering analysis study report, Milan Army Ammunition Plant, Milan, Tennessee: Executive summary. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1982-09-01

    This report is a summary of the Energy Engineering Analysis for the Milan Army Ammunition Plant (MAAP) in Milan, Tennessee. It includes the recommendations for the development of a Basewide Energy Plan consisting of energy conservation projects and other recommendations for reduction of the installation`s 1985 source energy consumption. Milan Army Ammunition Plant, containing 22,541 acres, is situated in both Gibson and Carroll Counties, Tennessee, and is approximately equally divided longitudinally into the two counties. The Milan area experiences typically short mild winters and long warm summers. With the exception of a few modernized facilities, the overwhelming majority of buildingsmore » at MAAP were constructed for World War II ammunition production.« less

  20. Engineering a Catabolic Pathway in Plants for the Degradation of 1,2-Dichloroethane1[OA

    PubMed Central

    Mena-Benitez, Gilda L.; Gandia-Herrero, Fernando; Graham, Stuart; Larson, Tony R.; McQueen-Mason, Simon J.; French, Christopher E.; Rylott, Elizabeth L.; Bruce, Neil C.

    2008-01-01

    Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum ‘Xanthi’) plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater. PMID:18467461

  1. NASA Research on General Aviation Power Plants

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Weber, R. J.; Willis, E. A.; Sievers, G. K.

    1978-01-01

    Propulsion systems are key factors in the design and performance of general aviation airplanes. NASA research programs that are intended to support improvements in these engines are described. Reciprocating engines are by far the most numerous powerplants in the aviation fleet; near-term efforts are being made to lower their fuel consumption and emissions. Longer-term work includes advanced alternatives, such as rotary and lightweight diesel engines. Work is underway on improved turbofans and turboprops.

  2. The "Biased Rhizosphere" Concept: Bacterial Competitiveness and Persistence in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    de Bruijn, Frans J.

    2013-04-01

    The association of plant surfaces with microorganisms has been the subject of intense investigations. Numerous processes have been shown to be important in plant-associative bacteria including attachment, motility, chemotaxis, nutrition, and production of signaling molecules and secondary metabolites. One strategy to favor the competitiveness and persistence of bacteria in the plant environment relies upon manipulation of nutritional compounds secreted into the phytosphere, which comprises the rhizosphere (root surface/zone influenced by secretions) and the phyllosphere (leaf surface/zone influenced by secretions). The pattern of plant host exudate can be bred or engineered to establish "biased phytospheres" with bacteria that can naturally, or by engineering, use metabolic resources produced by the host plant. Over the last two decades, natural biases, generated by opine-like molecules of Agrobacterium-plant interactions and by rhizopine-like molecules of the Rhizobium-legume interactions, have provided tactics based on unique metabolites produced by plants to favor the competitiveness and persistence of bacteria that can catabolize the host-produced novel nutrients. An overview of this field or research will be presented.

  3. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    PubMed

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  4. Engineering Molecular Immunity Against Plant Viruses.

    PubMed

    Zaidi, Syed Shan-E-Ali; Tashkandi, Manal; Mahfouz, Magdy M

    2017-01-01

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections. © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms

    USDA-ARS?s Scientific Manuscript database

    Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered ...

  6. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    PubMed

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Graf, P.; Scott, G.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems tomore » achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.« less

  8. [Research progress of genetic engineering on medicinal plants].

    PubMed

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  9. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals

    PubMed Central

    Polturak, Guy; Grossman, Noam; Vela-Corcia, David; Dong, Yonghui; Nudel, Adi; Pliner, Margarita; Levy, Maggie; Rogachev, Ilana; Aharoni, Asaph

    2017-01-01

    Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors. Furthermore, betalain-producing tobacco plants exhibited significantly increased resistance toward gray mold (Botrytis cinerea), a pathogen responsible for major losses in agricultural produce. Heterologous production of betalains is thus anticipated to enable biofortification of essential foods, development of new ornamental varieties, and innovative sources for commercial betalain production, as well as utilization of these pigments in crop protection. PMID:28760998

  10. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  11. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    PubMed

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  12. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  13. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

    PubMed

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

  14. Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes

    PubMed Central

    Vargas-Tah, Alejandra; Gosset, Guillermo

    2015-01-01

    The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement. PMID:26347861

  15. Volatile science? Metabolic engineering of terpenoids in plants.

    PubMed

    Aharoni, Asaph; Jongsma, Maarten A; Bouwmeester, Harro J

    2005-12-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has demonstrated that terpenoid precursors in subcellular compartments are not as strictly separated as previously thought and that multistep pathway engineering is feasible, even across cell compartments. These engineered plants show that insect behavior is influenced by terpenoids. In the future, we expect rapid progress in the engineering of terpenoid production in plants. In addition to commercial applications, such transgenic plants should increase our understanding of the biological relevance of these volatile secondary metabolites.

  16. Quality assurance procedures for environmental control and monitoring in plant growth facilities. Report of the North Central Regional 101 Committee on Growth Chamber Use

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W. (Principal Investigator)

    1986-01-01

    This report includes procedures for ensuring the quality of the environment provided for plant growth in controlled environment facilities. Biologists and engineers may use these procedures for ensuring quality control during experiments or for ensuring quality control in the design of plant growth facilities. Environmental monitoring prior to and during experiments is included in these procedures. Specific recommendations cover control, acquisition, and calibration for sensor types for the separate parameters of radiation (light), temperature, humidity, carbon dioxide, and air movement.

  17. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOEpatents

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  18. Tracing the evolutionary path to nitrogen-fixing crops.

    PubMed

    Delaux, Pierre-Marc; Radhakrishnan, Guru; Oldroyd, Giles

    2015-08-01

    Nitrogen-fixing symbioses between plants and bacteria are restricted to a few plant lineages. The plant partner benefits from these associations by gaining access to the pool of atmospheric nitrogen. By contrast, other plant species, including all cereals, rely only on the scarce nitrogen present in the soil and what they can glean from associative bacteria. Global cereal yields from conventional agriculture are dependent on the application of massive levels of chemical fertilisers. Engineering nitrogen-fixing symbioses into cereal crops could in part mitigate the economic and ecological impacts caused by the overuse of fertilisers and provide better global parity in crop yields. Comparative phylogenetics and phylogenomics are powerful tools to identify genetic and genomic innovations behind key plant traits. In this review we highlight recent discoveries made using such approaches and we discuss how these approaches could be used to help direct the engineering of nitrogen-fixing symbioses into cereals. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The 10 MWe solar thermal central receiver pilot plant solar facilities design integration, RADL item 1-10

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Accomplishments are reported in the areas of: program management, system integration, the beam characterization system, receiver unit, thermal storage subsystems, master control system, plant support subsystem and engineering services. A solar facilities design integration program action items update is included. Work plan changes and cost underruns are discussed briefly. (LEW)

  20. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  1. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  2. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  3. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  4. DECOMPOSTION OF GENETICALLY ENGINEERED TOBACCO UNDER FIELD CONDITIONS: PERSISTENCE OF THE PROTEINASE INHIBITOR I PRODUCT AND EFFECTS OF SOIL MICROBIAL RESPIRATION AND PROTOZOA, NEMATODE AND MICROARTHR

    EPA Science Inventory

    1. To evaluate the potential effects of genetically engineered (transgenic) plants on soil ecosystems, litterbags containing leaves of non-engineered (parental) and transgenic tobacco plants were buried in field plots. The transgenic tobacco plants were genetically engineered to ...

  5. [Metabolic engineering of edible plant oils].

    PubMed

    Yue, Ai-Qin; Sun, Xi-Ping; Li, Run-Zhi

    2007-12-01

    Plant seed oil is the major source of many fatty acids for human nutrition, and also one of industrial feedstocks. Recent advances in understanding of the basic biochemistry of seed oil biosynthesis, coupled with cloning of the genes encoding the enzymes involved in fatty acid modification and oil accumulation, have set the stage for the metabolic engineering of oilseed crops that produce "designer" plant seed oils with the improved nutritional values for human being. In this review we provide an overview of seed oil biosynthesis/regulation and highlight the key enzymatic steps that are targets for gene manipulation. The strategies of metabolic engineering of fatty acids in oilseeds, including overexpression or suppression of genes encoding single or multi-step biosynthetic pathways and assembling the complete pathway for the synthesis of long-chain polyunsaturated fatty acids (e.g. arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid) are described in detail. The current "bottlenecks" in using common oilseeds as "bioreactors" for commercial production of high-value fatty acids are analyzed. It is also discussed that the future research focuses of oilseed metabolic engineering and the prospects in creating renewable sources and promoting the sustainable development of human society and economy.

  6. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.

    PubMed

    Zuverza-Mena, Nubia; Martínez-Fernández, Domingo; Du, Wenchao; Hernandez-Viezcas, Jose A; Bonilla-Bird, Nestor; López-Moreno, Martha L; Komárek, Michael; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-01-01

    Recent investigations show that carbon-based and metal-based engineered nanomaterials (ENMs), components of consumer goods and agricultural products, have the potential to build up in sediments and biosolid-amended agricultural soils. In addition, reports indicate that both carbon-based and metal-based ENMs affect plants differently at the physiological, biochemical, nutritional, and genetic levels. The toxicity threshold is species-dependent and responses to ENMs are driven by a series of factors including the nanomaterial characteristics and environmental conditions. Effects on the growth, physiological and biochemical traits, production and food quality, among others, have been reported. However, a complete understanding of the dynamics of interactions between plants and ENMs is not clear enough yet. This review presents recent publications on the physiological and biochemical effects that commercial carbon-based and metal-based ENMs have in terrestrial plants. This document focuses on crop plants because of their relevance in human nutrition and health. We have summarized the mechanisms of interaction between plants and ENMs as well as identified gaps in knowledge for future investigations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana

    PubMed Central

    Shi, Ming-Zhu; Xie, De-Yu

    2014-01-01

    Arabidopsis thaliana is the first model plant, the genome of which has been sequenced. In general, intensive studies on this model plant over the past nearly 30 years have led to many new revolutionary understandings in every single aspect of plant biology. Here, we review the current understanding of anthocyanin biosynthesis in this model plant. Although the investigation of anthocyanin structures in this model plant was not performed until 2002, numerous studies over the past three decades have been conducted to understand the biosynthesis of anthocyanins. To date, it appears that all pathway genes of anthocyanins have been molecularly, genetically and biochemically characterized in this plant. These fundamental accomplishments have made Arabidopsis an ideal model to understand the regulatory mechanisms of anthocyanin pathway. Several studies have revealed that the biosynthesis of anthocyanins is controlled by WD40-bHLH-MYB (WBM) transcription factor complexes under lighting conditions. However, how different regulatory complexes coordinately and specifically regulate the pathway genes of anthocyanins remains unclear. In this review, we discuss current progresses and findings including structural diversity, regulatory properties and metabolic engineering of anthocyanins in Arabidopsis thaliana. PMID:24354533

  8. Shuttle Engine Designs Revolutionize Solar Power

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

  9. Systems Engineering News | Wind | NREL

    Science.gov Websites

    News Systems Engineering News The Wind Plant Optimization and Systems Engineering newsletter covers range from multi-disciplinary design analysis and optimization of wind turbine sub-components to wind plant optimization and uncertainty analysis to concurrent engineering and financial engineering

  10. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and construct OSC and USC head power plants, joint efforts of the government, experts in power industry and metallurgy, scientific institutions, and equipment manufacturers are required.

  11. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  13. Systems Engineering Models and Tools | Wind | NREL

    Science.gov Websites

    (tm)) that provides wind turbine and plant engineering and cost models for holistic system analysis turbine/component models and wind plant analysis models that the systems engineering team produces. If you integrated modeling of wind turbines and plants. It provides guidance for overall wind turbine and plant

  14. Motor vehicle technology:Mobility for prosperity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on internal combustion engines for vehicles. Topics considered at the conference included combustion chambers, the lubrication of turbocharged engines, oil filters, fuel consumption, traffic control, crashworthiness, brakes, acceleration, unleaded gasoline, methanol fuels, pressure drop, safety regulations, tire vibration, detergents, fuel economy, ceramics in engines, steels, catalytic converters, fuel additives, heat exchangers, pump systems, emissions control, fuel injection systems, noise pollution control, natural gas fuels, assembly plant productivity, aerodynamics, torsion, electronics, and automatic transmissions.

  15. Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding.

    PubMed

    Kroll, Samuel; Agler, Matthew T; Kemen, Eric

    2017-04-01

    Agriculture faces many emerging challenges to sustainability, including limited nutrient resources, losses from diseases caused by current and emerging pathogens and environmental degradation. Microorganisms have great importance for plant growth and performance, including the potential to increase yields, nutrient uptake and pathogen resistance. An urgent need is therefore to understand and engineer plants and their associated microbial communities. Recent massive genomic sequencing of host plants and associated microbes offers resources to identify novel mechanisms of communal assembly mediated by the host. For example, host-microbe and microbe-microbe interactions are involved in niche formation, thereby contributing to colonization. By leveraging genomic resources, genetic traits underlying those mechanisms will become important resources to design plants selecting and hosting beneficial microbial communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Engineered nanomaterials for plant growth and development: A perspective analysis.

    PubMed

    Verma, Sandeep Kumar; Das, Ashok Kumar; Patel, Manoj Kumar; Shah, Ashish; Kumar, Vinay; Gantait, Saikat

    2018-07-15

    With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post-transcriptional modifications, especially, aberrant miRNA expressions. In addition, underlying mechanisms of various ENM-plant cell interactions have been discussed. Copyright © 2018. Published by Elsevier B.V.

  17. A Chemical Plant Safety and Hazard Analysis Course.

    ERIC Educational Resources Information Center

    Gupta, J. P.

    1989-01-01

    Describes a course for teaching chemical engineering students about safety and hazards. Summarizes the course content including topics for term papers and disciplines related to this course. Lists 18 references. (YP)

  18. Coolidge solar powered irrigation pumping project

    NASA Technical Reports Server (NTRS)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  20. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  1. Math Carnival Nights (Planting the Seeds for Engineers in Elementary School),

    DTIC Science & Technology

    1991-06-01

    A D -A 240 772 Project 10704-0188), Washington DC 205033RERTYPANDTSCORD 4 TITLE AND SUBLE 5FUDIG iLLcR MATH CARNIVAL NIGHTS (PLANTING THLE SEEDS FOR...Planting Seeds For Engineers In Elementary School T herese D o ugherty...M -6 6 0 MATH CARNIVAL NIGHTSI (Planting the Seeds for Engineers in Elementary School) Therese Dougherty i Abstract Ii A good grounding

  2. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  3. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    PubMed

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  4. Genetic Engineering of Alfalfa (Medicago sativa L.).

    PubMed

    Wang, Dan; Khurshid, Muhammad; Sun, Zhan Min; Tang, Yi Xiong; Zhou, Mei Liang; Wu, Yan Min

    2016-01-01

    Alfalfa is excellent perennial legume forage for its extensive ecological adaptability, high nutrition value, palatability and biological nitrogen fixation. It plays a very important role in the agriculture, animal husbandry and ecological construction. It is cultivated in all continents. With the development of modern plant breeding and genetic engineering techniques, a large amount of work has been carried out on alfalfa. Here we summarize the recent research advances in genetic engineering of alfalfa breeding, including transformation, quality improvement, stress resistance and as a bioreactor. The review article can enables us to understand the research method, direction and achievements of genetic engineering technology of Alfalfa.

  5. Engineering Triterpene and Methylated Triterpene Production in Plants Provides Biochemical and Physiological Insights into Terpene Metabolism1[OPEN

    PubMed Central

    Jiang, Zuodong; Kempinski, Chase; Bush, Caroline J.; Nybo, S. Eric; Chappell, Joe

    2016-01-01

    Linear, branch-chained triterpenes, including squalene (C30), botryococcene (C30), and their methylated derivatives (C31–C37), generated by the green alga Botryococcus braunii race B have received significant attention because of their utility as chemical and biofuel feedstocks. However, the slow growth habit of B. braunii makes it impractical as a production system. In this study, we evaluated the potential of generating high levels of botryococcene in tobacco (Nicotiana tabacum) plants by diverting carbon flux from the cytosolic mevalonate pathway or the plastidic methylerythritol phosphate pathway by the targeted overexpression of an avian farnesyl diphosphate synthase along with two versions of botryococcene synthases. Up to 544 µg g−1 fresh weight of botryococcene was achieved when this metabolism was directed to the chloroplasts, which is approximately 90 times greater than that accumulating in plants engineered for cytosolic production. To test if methylated triterpenes could be produced in tobacco, we also engineered triterpene methyltransferases (TMTs) from B. braunii into wild-type plants and transgenic lines selected for high-level triterpene accumulation. Up to 91% of the total triterpene contents could be converted to methylated forms (C31 and C32) by cotargeting the TMTs and triterpene biosynthesis to the chloroplasts, whereas only 4% to 14% of total triterpenes were methylated when this metabolism was directed to the cytoplasm. When the TMTs were overexpressed in the cytoplasm of wild-type plants, up to 72% of the total squalene was methylated, and total triterpene (C30+C31+C32) content was elevated 7-fold. Altogether, these results point to innate mechanisms controlling metabolite fluxes, including a homeostatic role for squalene. PMID:26603654

  6. Striving Toward Energy Sustainability: How Plants Will Play a Role in Our Future (453rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrieri, Richard A.

    2009-10-28

    Edible biomass includes sugars from sugar cane or sugar beets, starches from corn kernels or other grains, and vegetable oils. The fibrous, woody and generally inedible portions of plants contain cellulose, hemicellulose and lignin, three key cell-wall components that make up roughly 70 percent of total plant biomass. At present, starch can readily be degraded from corn grain into glucose sugar, which is then fermented into ethanol, and an acre of corn can yield roughly 400 gallons of ethanol. In tapping into the food supply to solve the energy crisis, however, corn and other crops have become more expensive asmore » food. One solution lies in breaking down other structural tissues of plants, including the stalks and leaves of corn, grasses and trees. However, the complex carbohydrates in cellulose-containing biomass are more difficult to break down and convert to ethanol. So researchers are trying to engineer plants having optimal sugars for maximizing fuel yield. This is a challenge because only a handful of enzymes associated with the more than 1,000 genes responsible for cell-wall synthesis have had their roles in controlling plant metabolism defined. As Richard Ferrieri, Ph.D., a leader of a biofuel research initiative within the Medical Department, will discuss during the 453rd Brookhaven Lecture, he and his colleagues use short-lived radioisotopes, positron emission tomography and biomarkers that they have developed to perform non-invasive, real time imaging of whole plants. He will explain how the resulting metabolic flux analysis gives insight into engineering plant metabolism further.« less

  7. ONR Far East Scientific Bulletin. Volume 7. Number 1, January-March 1982.

    DTIC Science & Technology

    1982-03-01

    Engineering - Professor K. Tamaru Associate Professor H. Matsunami - Electronic Circuit Engineering - Professor F. Ikegami Associate Professor S...circuit breakers, ozonizers and production of ozone in silent discharges, and superconducting equipment. In addition, a very brief report is given of a...treatment plants (Mitsubishi Electric ozonizer work is discussed later in this paper), - electric fans including ventilating systems for long highway

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.; McCorkle, D.; Yang, C.

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less

  9. Some studies on the use of NASTRAN for nuclear power plant structural analysis and design

    NASA Technical Reports Server (NTRS)

    Setlur, A. V.; Valathur, M.

    1973-01-01

    Studies made on the use of NASTRAN for nuclear power plant analysis and design are presented. These studies indicate that NASTRAN could be effectively used for static, dynamic and special purpose problems encountered in the design of such plants. Normal mode capability of NASTRAN is extended through a post-processor program to handle seismic analysis. Static and dynamic substructuring is discussed. Extension of NASTRAN to include the needs in the civil engineering industry is discussed.

  10. 4. This photographic copy of an engineering drawing shows the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. This photographic copy of an engineering drawing shows the plan and details for Test Stand "G" and the placement of the vibrator. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: "Vibration Test Facility-Bldg E-72, Floor & Roof Plans, Sections, Details & Door Schedule," drawing no. E72/2-5, 21 May 1964. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA

  11. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux.

    PubMed

    Cahoon, Edgar B; Shockey, Jay M; Dietrich, Charles R; Gidda, Satinder K; Mullen, Robert T; Dyer, John M

    2007-06-01

    Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts.

  12. Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C.

    2012-07-01

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, themore » organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)« less

  13. Possible health impacts of Bt toxins and residues from spraying with complementary herbicides in genetically engineered soybeans and risk assessment as performed by the European Food Safety Authority EFSA.

    PubMed

    Then, Christoph; Bauer-Panskus, Andreas

    2017-01-01

    MON89788 was the first genetically engineered soybean worldwide to express a Bt toxin. Under the brand name Intacta, Monsanto subsequently engineered a stacked trait soybean using MON89788 and MON87701-this stacked soybean expresses an insecticidal toxin and is, in addition, tolerant to glyphosate. After undergoing risk assessment by the European Food Safety Authority (EFSA), the stacked event was authorised for import into the EU in June 2012, including for use in food and feed. This review discusses the health risks associated with Bt toxins present in these genetically engineered plants and the residues left from spraying with the complementary herbicide. We have compared the opinion published by EFSA [1] with findings from other publications in the scientific literature. It is evident that there are several issues that EFSA did not consider in detail and which will need further assessment: (1) There are potential combinatorial effects between plant components and other impact factors that might enhance toxicity. (2) It is known that Bt toxins have immunogenic properties; since soybeans naturally contain many allergens, these immunogenic properties raise specific questions. (3) Fully evaluated and reliable protocols for measuring the Bt concentration in the plants are needed, in addition to a comprehensive set of data on gene expression under varying environmental conditions. (4) Specific attention should be paid to the herbicide residues and their interaction with Bt toxins. The case of the Intacta soybeans highlights several regulatory problems with Bt soybean plants in the EU. Moreover, many of the issues raised also concern other genetically engineered plants that express insecticidal proteins, or are engineered to be resistant to herbicides, or have those two types of traits combined in stacked events. It remains a matter of debate whether the standards currently applied by the risk assessor, EFSA, and the risk manager, the EU Commission, meet the standards for risk analysis defined in EU regulations such as 1829/2003 and Directive 2001/18. While this publication cannot provide a final conclusion, it allows the development of some robust hypotheses that should be investigated further before such plants can be considered to be safe for health and the environment. In general, the concept of comparative risk assessment needs some major revision. Priority should be given to developing more targeted approaches. As shown in the case of Intacta, these approaches should include: (i) systematic investigation of interactions between the plant genome and environmental stressors as well as their impact on gene expression and plant composition; (ii) detailed investigations of the toxicity of Bt toxins; (iii) assessment of combinatorial effects taking into account long-term effects and the residues from spraying with complementary herbicides; (iv) investigation into the impact on the immune and hormonal systems and (v) investigation of the impact on the intestinal microbiome after consumption. Further and in general, stacked events displaying a high degree of complexity due to possible interactions should not undergo a lower level of risk assessment than the parental plants.

  14. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    PubMed

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  15. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants

    PubMed Central

    Yu, Xiaofen; Luo, Qingchen; Huang, Kaixun; Yang, Guangxiao; He, Guangyuan

    2018-01-01

    Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper. PMID:29599791

  16. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  17. High efficiency motor selection handbook

    NASA Astrophysics Data System (ADS)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  18. Removal Action Decision Document Alabama Army Ammunition Plant. Area A

    DTIC Science & Technology

    1988-01-01

    Feasibility Study. Environmental Science and Engineering (ESE), 1986. 0 Alabama Army Ammunition Plant Remedial Investigation. Environmental Science and...had already been cleaned up and released for industrial use and was not included in the Feasibility Study conducted by Environmental Science and...criteria. The I contaminated soil was excavated and stored in the temporary storage structures in Area B. REFERENCES 1. Environmental Science and

  19. Plant-Wide Assessment Report for Shaw Industries, Plant #78; Aiken, SC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Brown PE, CEM; Matt Soderlund; Bill Meffert PE

    A plant-wide energy assessment sponsored by the U.S. Department of Energy was conducted at Shaw Industries Group, plant #78 in Aiken, SC. The assessment team consisted of Georgia Tech faculty from the Energy & Environmental Management Center and Shaw personnel from plant #78 and the corporate energy group. The purpose of this assessment was to uncover as many opportunities for saving energy usage and costs using techniques that have been established as best practices in the energy engineering field. In addition, these findings are to be shared with similar plants in Shaw Industries Group to multiply the lessons learned. Themore » findings from this assessment are included in this report.« less

  20. Investigation of Propeller-power-plant Autoprecession Boundaries for a Dynamic-aeroelastic Model of a Four-engine Turboprop Transport Airplane

    NASA Technical Reports Server (NTRS)

    Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.

    1963-01-01

    A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.

  1. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  2. Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.

    PubMed

    Gutensohn, M; Dudareva, N

    2016-01-01

    Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits. © 2016 Elsevier Inc. All rights reserved.

  3. The 10 MWe Solar Thermal Central Receiver Pilot Plant: Solar facilities design integration. Pilot-plant station manual (RADL Item 2-1). Volume 1: System description

    NASA Astrophysics Data System (ADS)

    1982-09-01

    The complete Barstow Solar Pilot Plant is described. The plant requirements and general description are presented, the mechanical, electric power, and control and instrumentation systems as well as civil engineering and structural aspects and the station buildings are described. Included in the mechanical systems are the heliostats, receiver, thermal storage system, beam characterization system, steam, water, nitrogen, and compressed air systems, chemical feed system, fire protection system, drains, sumps and the waste disposal systems, and heating, ventilating, and air conditioning systems.

  4. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements.

    PubMed

    Satake, Honoo; Ono, Eiichiro; Murata, Jun

    2013-12-04

    Plant physiological, epidemiological, and food science studies have shed light on lignans as healthy diets for the reduction of the risk of lifestyle-related noncommunicable diseases and, thus, the demand for lignans has been rapidly increasing. However, the low efficiency and instability of lignan production via extraction from plant resources remain to be resolved, indicating the requirement for the development of new procedures for lignan production. The metabolic engineering of lignan-biosynthesizing plants is expected to be most promising for efficient, sustainable, and stable lignan production. This is supported by the recent verification of biosynthetic pathways of major dietary lignans and the exploration of lignan production via metabolic engineering using transiently gene-transfected or transgenic plants. The aim of this review is to present an overview of the biosynthetic pathways, biological activities, and metabolic engineering of lignans and also perspectives in metabolic engineering-based lignan production using transgenic plants for practical application.

  5. Hanford Works monthly report, October 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1952-11-20

    this document presents a summary of work and progress at the Hanford Engineer works for October 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  6. Hanford Works monthly report, December 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1953-01-23

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  7. Hanford Works monthly report, February 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1953-03-18

    This document presents a summary of work and progress at the Hanford Engineer Works for February 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  8. Hanford Works monthly report, August 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1952-09-24

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department` section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical,Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estatemore » and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  9. Hanford Works monthly report, September 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1952-10-20

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1952. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  10. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.

    PubMed

    Silva, Marilia Santos; Arraes, Fabrício Barbosa Monteiro; Campos, Magnólia de Araújo; Grossi-de-Sa, Maira; Fernandez, Diana; Cândido, Elizabete de Souza; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima

    2018-05-01

    This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The Potential of Genetic Engineering in Agriculture to Affect Global Stability

    DTIC Science & Technology

    2013-04-17

    manipulation in agriculture is thousands of years old, dating back to man’s first efforts of plant domestication. Over the last 200 years, and especially the...engineering.” In agriculture, genetic engineering describes the science of manipulating the genetic material (DNA) of plants by adding or taking...nature run its course. This paper does not delve into the science or even the raging safety debate over the use of genetic engineering in plants that

  12. Operationalizing Special Operations Aviation in Indonesia

    DTIC Science & Technology

    2006-12-15

    special operations forces Builder: Lockheed Power Plant: Four Allison T56 -A-15 turboprop engines Thrust: 4,910 shaft horsepower each engine...Builder: Lockheed Power Plant: Four Allison T56 -A-15 turboprop engines Thrust: 4,910 shaft horsepower each engine Length: 98 feet, 9 inches (30.09

  13. An approach to built-in test for shipboard machinery systems

    NASA Astrophysics Data System (ADS)

    Hegner, H. R.

    This paper presents an approach for incorporating built-in test (BIT) into shipboard machinery systems. BIT, as used herein, denotes both built-in test and on-line monitoring. Since sensors are a key element to a successful machinery monitoring system, an assessment of shipboard sensors is included in the paper. Specific design examples are also presented for a marine diesel engine, gas turbine engine, and air conditioning plant.

  14. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions.

    PubMed

    Beld, Joris; Blatti, Jillian L; Behnke, Craig; Mendez, Michael; Burkart, Michael D

    2014-08-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.

  15. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    PubMed Central

    Beld, Joris; Blatti, Jillian L.; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2014-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes. PMID:25110394

  16. 77 FR 27490 - Plant-Specific Adoption, Revision 4 of the Improved Standard Technical Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ...,'' NUREG-1432, ``Standard Technical Specifications, Combustion Engineering Plants,'' NUREG-1433, ``Standard..., ``Standard Technical Specifications, Combustion Engineering Plants'' Revision 4, ADAMS Accession No..., Westinghouse Plants''.. NUREG-1432, ``Standard Technical ML12102A165 ML12102A169 Specifications, Combustion...

  17. Analysis of axial-induction-based wind plant control using an engineering and a high-order wind plant model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter M. O.; Scholbrock, Andrew K.

    2015-08-14

    Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial-induction-based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high-order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial-induction-based control shown in the high-order model.

  18. Energy Engineering Analysis Program, energy survey of Army Industrial Facilities, Western Area Demilitarization Facility, Hawthorne Army Ammunition Plant, Hawthorne, Nevada; Volume 1 - energy report. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-17

    This report summarizes all work for the Energy Survey of Army Industrial Facilities, Energy Engineering Analysis Program (EEAP) at the Western Area Demilitarization Facility (WADF) of the Hawthorne Army Ammunition Plant (HWAAP), Hawthorne, Nevada, authorized under Contract No. DACA05-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this energy survey is to develop a set of projects and actions that will reduce energy consumption and operating costs of selected facilities at the WADF. A preliminary inspection of facilities at WADF by Keller Gannon that identified potential retrofit opportunities was submitted as the EEAP Study andmore » Criteria Review in December 1993. This document formed the basis of the Detailed Scope of Work for this study. Facilities included in the survey and study, together with operational status.« less

  19. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  20. Rosa hybrida orcinol O-methyl transferase-mediated production of pterostilbene in metabolically engineered grapevine cell cultures.

    PubMed

    Martínez-Márquez, Ascensión; Morante-Carriel, Jaime A; Palazon, Javier; Bru-Martínez, Roque

    2018-05-25

    Stilbenes are naturally scarce high-added-value plant compounds with chemopreventive, pharmacological and cosmetic properties. Bioproduction strategies include engineering the metabolisms of bacterial, fungal and plant cell systems. Strikingly, one of the most effective strategies consists in the elicitation of wild grapevine cell cultures, which leads to vast stilbene resveratrol accumulation in the extracellular medium. The combination of both cell culture elicitation and metabolic engineering strategies to produce resveratrol analogs proved more efficient for the hydroxylated derivative piceatannol than for the dimethylated derivative pterostilbene, for which human hydroxylase HsCYP1B1- and grapevine O-methyltransferase VvROMT-transformed cell cultures were respectively used. Rose orcinol O-methyltransferase (OOMT) displays enzymatic properties, which makes it an appealing candidate to substitute VvROMT in the combined strategy to enhance the pterostilbene production level by engineered grapevine cells upon elicitation. Here we cloned a Rosa hybrida OOMT gene, and created a genetic construction suitable for Agrobacterium-mediated plant transformation. OOMT's ability to catalyze the conversion of resveratrol into pterostilbene was first assessed in vitro using protein extracts of agroinfiltrated N. benthamiana leaves and transformed grapevine callus. The grapevine cell cultures transformed with RhOOMT produced about 16 mg/L culture of pterostilbene and reached an extracellular distribution of up to 34% of total production at the best, which is by far the highest production reported to date in a plant system. A bonus large resveratrol production of ca. 1500-3000 mg/L was simultaneously obtained. Our results demonstrate a viable successful metabolic engineering strategy to produce pterostilbene, a resveratrol analog with enhanced pharmacological properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Applied technology section. Monthly report, December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-01-28

    This monthly report contains abstracts of the progress made in various projects from the applied technology section at the Savannah River Plant. Research areas include engineering modeling and simulation, applied physics, experimental thermal hydraulics, and packaging and transportation.

  2. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    PubMed

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  3. Standards for plant synthetic biology: a common syntax for exchange of DNA parts.

    PubMed

    Patron, Nicola J; Orzaez, Diego; Marillonnet, Sylvestre; Warzecha, Heribert; Matthewman, Colette; Youles, Mark; Raitskin, Oleg; Leveau, Aymeric; Farré, Gemma; Rogers, Christian; Smith, Alison; Hibberd, Julian; Webb, Alex A R; Locke, James; Schornack, Sebastian; Ajioka, Jim; Baulcombe, David C; Zipfel, Cyril; Kamoun, Sophien; Jones, Jonathan D G; Kuhn, Hannah; Robatzek, Silke; Van Esse, H Peter; Sanders, Dale; Oldroyd, Giles; Martin, Cathie; Field, Rob; O'Connor, Sarah; Fox, Samantha; Wulff, Brande; Miller, Ben; Breakspear, Andy; Radhakrishnan, Guru; Delaux, Pierre-Marc; Loqué, Dominique; Granell, Antonio; Tissier, Alain; Shih, Patrick; Brutnell, Thomas P; Quick, W Paul; Rischer, Heiko; Fraser, Paul D; Aharoni, Asaph; Raines, Christine; South, Paul F; Ané, Jean-Michel; Hamberger, Björn R; Langdale, Jane; Stougaard, Jens; Bouwmeester, Harro; Udvardi, Michael; Murray, James A H; Ntoukakis, Vardis; Schäfer, Patrick; Denby, Katherine; Edwards, Keith J; Osbourn, Anne; Haseloff, Jim

    2015-10-01

    Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid.

    PubMed

    Xue, Yong; Zhang, Yan; Cheng, Dan; Daddy, Soumana; He, Qingfang

    2014-07-01

    p-Coumaric acid is the precursor of phenylpropanoids, which are plant secondary metabolites that are beneficial to human health. Tyrosine ammonia lyase catalyzes the production of p-coumaric acid from tyrosine. Because of their photosynthetic ability and biosynthetic versatility, cyanobacteria are promising candidates for the production of certain plant metabolites, including phenylpropanoids. Here, we produced p-coumaric acid in a strain of transgenic cyanobacterium Synechocystis sp. Pasteur Culture Collection 6803 (hereafter Synechocystis 6803). Whereas a strain of Synechocystis 6803 genetically engineered to express sam8, a tyrosine ammonia lyase gene from the actinomycete Saccharothrix espanaensis, accumulated little or no p-coumaric acid, a strain that both expressed sam8 and lacked slr1573, a native hypothetical gene shown here to encode a laccase that oxidizes polyphenols, produced ∼82.6 mg/L p-coumaric acid, which was readily purified from the growth medium.

  5. Genetically engineering Synechocystis sp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid

    PubMed Central

    Xue, Yong; Zhang, Yan; Cheng, Dan; Daddy, Soumana; He, Qingfang

    2014-01-01

    p-Coumaric acid is the precursor of phenylpropanoids, which are plant secondary metabolites that are beneficial to human health. Tyrosine ammonia lyase catalyzes the production of p-coumaric acid from tyrosine. Because of their photosynthetic ability and biosynthetic versatility, cyanobacteria are promising candidates for the production of certain plant metabolites, including phenylpropanoids. Here, we produced p-coumaric acid in a strain of transgenic cyanobacterium Synechocystis sp. Pasteur Culture Collection 6803 (hereafter Synechocystis 6803). Whereas a strain of Synechocystis 6803 genetically engineered to express sam8, a tyrosine ammonia lyase gene from the actinomycete Saccharothrix espanaensis, accumulated little or no p-coumaric acid, a strain that both expressed sam8 and lacked slr1573, a native hypothetical gene shown here to encode a laccase that oxidizes polyphenols, produced ∼82.6 mg/L p-coumaric acid, which was readily purified from the growth medium. PMID:24927550

  6. 15. Photocopy of engineering drawing F790 in files of Utilities ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of engineering drawing F-790 in files of Utilities Engineering files in Cleveland of the Allis-Chambers steam engine. This side elevation of the engine in the Division Avenue plant is the last remaining drawing of them in existence. The engine was dismantled. Date of drawing is 1914. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  7. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods formore » genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic engineering techniques will leave many engineered plants without any pre-market regulatory review. Second, the number and diversity of engineered microbes for commercial use will increase in the near future, challenging EPA’s resources, expertise, and perhaps authority to regulate them. For each of these challenges, the report sets out a series of options, including an analysis of the advantages and disadvantages of each option from a variety of perspectives, for policy makers to consider. Policy responses will depend on the trade-offs chosen among competing considerations. This report, funded by the Department of Energy with additional funds from the Alfred P. Sloan Foundation, is the result of a two-year process that included interviews, commissioned background papers, discussions, and two workshops that sought input from a wide range of experts, including U.S. federal agency regulators, legal and science policy experts, representatives from the biotechnology indus¬try, and non-governmental organiza¬tions. This cross-section of views informed this report, but the conclusions are solely those of the authors. An Executive Summary, full Report, and background papers are available at: http://www.jcvi.org/cms/research/projects/synthetic-biology-and-the-us-biotechnology-regulatory-system/overview/« less

  8. Grid Integration Research | Wind | NREL

    Science.gov Websites

    -generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant

  9. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  10. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  11. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    PubMed Central

    Zhu, Yong-Guan; Rosen, Barry P

    2015-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization. PMID:19303764

  14. A Bosque Riparian Community Index Model for the Middle Rio Grande, Albuquerque, New Mexico: Model Documentation

    DTIC Science & Technology

    2012-09-01

    ecological processes involve the invasion of non-native (exotic) species (USEPA 1999). Through direct biotic interactions (predation and competition) and...indirect interactions ( ecological engineering and habitat modification), invasive species can disrupt the natural population dynamics of native...species (USEPA 1999). Invasives can include noxious plants (i.e., plants that are listed by a state because of their unfavorable economic or ecological

  15. Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants

    PubMed Central

    Hill, Camilla Beate; Czauderna, Tobias; Klapperstück, Matthias; Roessner, Ute; Schreiber, Falk

    2015-01-01

    Life on earth depends on dynamic chemical transformations that enable cellular functions, including electron transfer reactions, as well as synthesis and degradation of biomolecules. Biochemical reactions are coordinated in metabolic pathways that interact in a complex way to allow adequate regulation. Biotechnology, food, biofuel, agricultural, and pharmaceutical industries are highly interested in metabolic engineering as an enabling technology of synthetic biology to exploit cells for the controlled production of metabolites of interest. These approaches have only recently been extended to plants due to their greater metabolic complexity (such as primary and secondary metabolism) and highly compartmentalized cellular structures and functions (including plant-specific organelles) compared with bacteria and other microorganisms. Technological advances in analytical instrumentation in combination with advances in data analysis and modeling have opened up new approaches to engineer plant metabolic pathways and allow the impact of modifications to be predicted more accurately. In this article, we review challenges in the integration and analysis of large-scale metabolic data, present an overview of current bioinformatics methods for the modeling and visualization of metabolic networks, and discuss approaches for interfacing bioinformatics approaches with metabolic models of cellular processes and flux distributions in order to predict phenotypes derived from specific genetic modifications or subjected to different environmental conditions. PMID:26557642

  16. Acetic acid and aromatics units planned in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    1993-01-27

    The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acidmore » unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.« less

  17. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.

  18. 47 CFR 24.243 - The cost-sharing formula.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...

  19. 47 CFR 24.243 - The cost-sharing formula.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...

  20. 47 CFR 24.243 - The cost-sharing formula.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...

  1. 47 CFR 24.243 - The cost-sharing formula.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; monitoring or control equipment; engineering costs (design/path survey); installation; systems testing; FCC... control; power plant upgrade (if required); electrical grounding systems; Heating Ventilation and Air Conditioning (HVAC) (if required); alternate transport equipment; and leased facilities. C also includes...

  2. Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure1[w

    PubMed Central

    Paul, Anna-Lisa; Schuerger, Andrew C.; Popp, Michael P.; Richards, Jeffrey T.; Manak, Michael S.; Ferl, Robert J.

    2004-01-01

    As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations. PMID:14701916

  3. Concentrating Solar Power Projects - Dahan Power Plant | Concentrating

    Science.gov Websites

    Plant Country: China Location: Beijing Owner(s): Institute of Electrical Engineering of Chinese Academy Electricity Generation: 1,950 MWh/yr Contact(s): Fengli Du Company: Institute of Electrical Engineering of Electrical Engineering of Chinese Academy of Sciences Owner(s) (%): Institute of Electrical Engineering of

  4. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    PubMed

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  5. Redmedial Action, Decision Document, Leaseback Area, Alabama Army Ammunition Plant

    DTIC Science & Technology

    1988-02-01

    Draft Report, Environmental Science and Engineering, Inc. (ESE), 1980. o Final Report for the Alabama Army Ammunition Plant, Leaseback Area...Requirements for the GSA and Leaseback Areas at the AAAP, Draft Report. Environmental Science and Engineering, Inc.(ESE), 1980. o Alabama Army...Ammunition Plant, Feasibility Study, Draft Report, Environmental Science and Engineering, Inc. (ESE), 1986. o Environmental Survey of Alabama Army Ammunition

  6. Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Su, Yanzhao; Hu, Minghui; Su, Ling; Qin, Datong; Zhang, Tong; Fu, Chunyun

    2018-07-01

    The fuel economy of the hybrid electric vehicles (HEVs) can be effectively improved by the mode transition (MT). However, for a power-split powertrain whose power-split transmission is directly connected to the engine, the engine ripple torque (ERT), inconsistent dynamic characteristics (IDC) of engine and motors, model estimation inaccuracies (MEI), system parameter uncertainties (SPU) can cause jerk and vibration of transmission system during the MT process, which will reduce the driving comfort and the life of the drive parts. To tackle these problems, a dynamic coordinated control strategy (DCCS), including a staged engine torque feedforward and feedback estimation (ETFBC) and an active damping feedback compensation (ADBC) based on drive shaft torque estimation (DSTE), is proposed. And the effectiveness of this strategy is verified using a plant model. Firstly, the powertrain plant model is established, and the MT process and problems are analyzed. Secondly, considering the characteristics of the engine torque estimation (ETE) model before and after engine ignition, a motor torque compensation control based on the staged ERT estimation is developed. Then, considering the MEI, SPU and the load change, an ADBC based on a real-time nonlinear reduced-order robust observer of the DSTE is designed. Finally, the simulation results show that the proposed DCCS can effectively improve the driving comfort.

  7. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  8. 33. Photocopy of photograph. STEEL PLANT, 1800HORSEPOWER CORLISS STEAM ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of photograph. STEEL PLANT, 1800-HORSEPOWER CORLISS STEAM ENGINE AND FLYWEEL FOR 22-INCH MILL, 1910. (From the Bethlehem Steel Corporation collection, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  9. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  10. Hanford Atomic Products Operation monthly report, January 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-02-21

    This document presents a summary of work and progress at the Hanford Engineer Works for January 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical Design, and Project Sections. Costs for the various departments are presented in the Financial department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  11. Hanford Atomic Products Operation monthly report for April 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-05-23

    This document presents a summary of work and progress at the Hanford Engineer Works for April 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  12. Monthly report Hanford Atomic Products Operation, July 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-08-20

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services Departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  13. Hanford Atomic Products Operation monthly report, August 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-09-28

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  14. Hanford Atomic Products Operation monthly report for May 1956

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-06-21

    This document presents a summary of work and progress at the Hanford Engineer Works for May, 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  15. Hanford Atomic Products Operation monthly report, March 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-04-23

    This document presents a summary of work and progress at the Hanford Engineer Works for March 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  16. Hanford Atomic Products Operation monthly report, September 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-10-27

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  17. Hanford Atomic Products Operation monthly report, June 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-07-26

    This document presents a summary of work and progress at the Hanford Engineer Works for June 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  18. Hanford Atomic Products Operation monthly report, March 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-04-20

    This document presents a summary of work and progress at the Hanford Engineer Works for March 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  19. Hanford Atomic Products Operation monthly report, November 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-12-30

    This document presents a summary of work and progress at the Hanford Engineer Works for November 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  20. Hanford Atomic Products Operation monthly report, August 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-09-27

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  1. Hanford Atomic Products Operation monthly report, May 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-06-22

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Science, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  2. Hanford Atomic Products Operation monthly report for December 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1956-01-30

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  3. Hanford Atomic Products Operation monthly report, October 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-11-30

    This document presents a summary of work and progress at the Hanford Engineer works for October, 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  4. Hanford Atomic Products for Operation monthly report, February 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-03-18

    This document presents a summary of work and progress at the Hanford Engineer Works for February 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  5. Hanford Atomic Products Operation monthly report, May 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-06-23

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  6. Hanford Atomic Products Operation monthly report, July 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-08-26

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  7. Hanford Atomic Products Operation monthly report, October 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1953-11-20

    This document presents a summary of work and progress at the Hanford Engineer Works for October 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services. Employee and Public Relations, and Community Realmore » Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  8. Hanford Atomic Products Operation monthly report, May 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  9. Hanford Atomic Products Operation monthly report, October 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-11-24

    This document presents a summary of work and progress at the Hanford Engineer Works for October 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  10. Hanford Atomic Products Operation monthly report, December 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1955-01-25

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  11. Hanford Atomic Products Operation monthly report, July 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1953-08-20

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  12. Hanford Atomic Products Operation monthly report, August 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-09-17

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department report plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities, and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  13. Hanford Atomic Products Operation monthly report for September 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-10-25

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  14. Hanford Atomic Products Operation monthly report, June 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1953-07-22

    This document presents a summary of work and progress at the Hanford Engineer Works for June 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estatemore » and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  15. Hanford Atomic Products Operation monthly report, December 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1954-01-22

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  16. Hanford Atomic Products Operation monthly report, August 1953

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1953-09-18

    This document presents a summary of work and progress at the Hanford Engineer Works for August, 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Realmore » Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.« less

  17. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  18. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    PubMed

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  19. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials

    PubMed Central

    Takeyama, Natsumi; Kiyono, Hiroshi; Yuki, Yoshikazu

    2015-01-01

    It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials. PMID:26668752

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (insteadmore » of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO 2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit applications. Additional performance and reliability enhancements will also be evaluated in Phase 2 to try to improve overall project economics.« less

  1. Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants

    DTIC Science & Technology

    2016-04-01

    FINAL REPORT Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants SERDP Project ER-1498 APRIL 2016...specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its...by Phyoremediation with Engineered Plants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER ER-1498 Neil C

  2. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering

    PubMed Central

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-01-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. PMID:25344492

  3. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemicalmore » Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.« less

  4. Plant genetics, sustainable agriculture and global food security.

    PubMed

    Ronald, Pamela

    2011-05-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

  5. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability.

    PubMed

    Saini, Ramesh Kumar; Nile, Shivraj Hariram; Keum, Young-Soo

    2016-11-01

    Folates (Vitamin B 9 ) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Emerging Roles of Strigolactones in Plant Responses to Stress and Development

    PubMed Central

    Pandey, Amita; Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    Our environment constantly undergoes changes either natural or manmade affecting growth and development of all the organisms including plants. Plants are sessile in nature and therefore to counter environmental changes such as light, temperature, nutrient and water availability, pathogen, and many others; plants have evolved intricate signaling mechanisms, composed of multiple components including several plant hormones. Research conducted in the last decade has placed Strigolactones (SLs) in the growing list of plant hormones involved in coping with environmental changes. SLs are carotenoid derivatives functioning as both endogenous and exogenous signaling molecules in response to various environmental cues. Initially, SLs were discovered as compounds that are harmful to plants due to their role as stimulants in seed germination of parasitic plants, a more beneficial role in plant growth and development was uncovered much later. SLs are required for maintaining plant architecture by regulating shoot and root growth in response to various external stimuli including arbuscular mycorrhizal fungi, light, nutrients, and temperature. Moreover, a role for SLs has also been recognized during various abiotic and biotic stress conditions making them suitable target for generating genetically engineered crop plants with improved yield. This review discusses the biosynthesis of SLs and their regulatory and physiological roles in various stress conditions. Understanding of detailed signaling mechanisms of SLs will be an important factor for designing genetically modified crops for overcoming the problem of crop loss under stressful conditions. PMID:27092155

  7. Aeronautical System Center's environmental compliance assessment and management program's cost-saving initiatives support the Air Force's acquisition reform initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meanor, T.

    1999-07-01

    The Environmental Management directorate of ASC (ASC/EM) has the responsibility of providing government oversight for the Government Owned Contractor Operated Aircraft and Missile plants (GOCOs). This oversight is manifested as a landlord role where Air Force provides the funding required to maintain the plant facilities including buildings and utilities as well as environmental systems. By agreement the companies operating the plants are required to operate them in accordance with environmental law. Presently the GOCOs include Air Force Plant (AFP) 6 in Marietta Ga., AFP 4 in Fort Worth, Tx., AFP 44 in Tucson, Az., AFP 42 in Palmdale, Ca., andmore » AFP PJKS in Denver, Co. Lockheed Martin corporation operates AFPs 4,6, PJKS and a portion of AFP 42 while AFP 44 is operated by Raytheon Missile Systems Company. Other GOCOs at AFP 42 are Northrup-Grumman, Boeing, and Cabaco, the facilities engineer. Since 1992 the Environmental Management division has conducted its Environmental Compliance Assessment and Management Program assessments (ECAMP) annually at each of the plants. Using DOD's ECAMP Team Guide and teams comprised of both Air Force and consultant engineering personnel, each plant is assessed for its environmental compliance well being. In the face of rising operational costs and diminishing budgets ASC/EM performed a comprehensive review of its ECAMP. As a result, the basic ECAMP program was improved to reduce costs without compromising on quality of the effort. The program retained its emphasis in providing a snap-shot evaluation of each Air Force plant's environmental compliance health supported by complete but tailored protocol assessments.« less

  8. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses.

    PubMed

    Lisko, Katherine A; Torres, Raquel; Harris, Rodney S; Belisle, Melinda; Vaughan, Martha M; Jullian, Berangère; Chevone, Boris I; Mendes, Pedro; Nessler, Craig L; Lorence, Argelia

    2013-12-01

    l-Ascorbic acid (vitamin C) is an abundant metabolite in plant cells and tissues. Ascorbate functions as an antioxidant, as an enzyme cofactor, and plays essential roles in multiple physiological processes including photosynthesis, photoprotection, control of cell cycle and cell elongation, and modulation of flowering time, gene regulation, and senescence. The importance of this key molecule in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis , potato, tobacco, tomato, and rice. However, the consequences of elevating ascorbate content in plant growth and development are poorly understood. Here we demonstrate that Arabidopsis lines over-expressing a myo -inositol oxygenase or an l-gulono-1,4-lactone oxidase, containing elevated ascorbate, display enhanced growth and biomass accumulation of both aerial and root tissues. To our knowledge this is the first study demonstrating such a marked positive effect in plant growth in lines engineered to contain elevated vitamin C content. In addition, we present evidence showing that these lines are tolerant to a wide range of abiotic stresses including salt, cold, and heat. Total ascorbate content of the transgenic lines remained higher than those of controls under the abiotic stresses tested. Interestingly, exposure to pyrene, a polycyclic aromatic hydrocarbon and known inducer of oxidative stress in plants, leads to stunted growth of the aerial tissue, reduction in the number of root hairs, and inhibition of leaf expansion in wild type plants, while these symptoms are less severe in the over-expressers. Our results indicate the potential of this metabolic engineering strategy to develop crops with enhanced biomass, abiotic stress tolerance, and phytoremediation capabilities.

  9. Next-Generation Sequencing and Genome Editing in Plant Virology

    PubMed Central

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less

  11. Engineering central metabolism - a grand challenge for plant biologists.

    PubMed

    Sweetlove, Lee J; Nielsen, Jens; Fernie, Alisdair R

    2017-05-01

    The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Genetic engineering of syringyl-enriched lignin in plants

    DOEpatents

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  13. Physiological and biochemical response of plants to engineered NMs: Implications on future design.

    PubMed

    de la Rosa, Guadalupe; García-Castañeda, Concepción; Vázquez-Núñez, Edgar; Alonso-Castro, Ángel Josabad; Basurto-Islas, Gustavo; Mendoza, Ángeles; Cruz-Jiménez, Gustavo; Molina, Carlos

    2017-01-01

    Engineered nanomaterials (ENMs) form the basis of a great number of commodities that are used in several areas including energy, coatings, electronics, medicine, chemicals and catalysts, among others. In addition, these materials are being explored for agricultural purposes. For this reason, the amount of ENMs present as nanowaste has significantly increased in the last few years, and it is expected that ENMs levels in the environment will increase even more in the future. Because plants form the basis of the food chain, they may also function as a point-of-entry of ENMs for other living systems. Understanding the interactions of ENMs with the plant system and their role in their potential accumulation in the food chain will provide knowledge that may serve as a decision-making framework for the future design of ENMs. The purpose of this paper was to provide an overview of the current knowledge on the transport and uptake of selected ENMs, including Carbon Based Nanomaterials (CBNMs) in plants, and the implication on plant exposure in terms of the effects at the macro, micro, and molecular level. We also discuss the interaction of ENMs with soil microorganisms. With this information, we suggest some directions on future design and areas where research needs to be strengthened. We also discuss the need for finding models that can predict the behavior of ENMs based on their chemical and thermodynamic nature, in that few efforts have been made within this context. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.

    PubMed

    Nagata, Takeshi; Morita, Hirofumi; Akizawa, Toshifumi; Pan-Hou, Hidemitsu

    2010-06-01

    To develop the potential of plant for phytoremediation of methylmercury pollution, a genetically engineered tobacco plant that coexpresses organomercurial lyase (MerB) with the ppk-specified polyphosphate (polyP) and merT-encoding mercury transporter was constructed by integrating a bacterial merB gene into ppk/merT-transgenic tobacco. A large number of independent transgenic tobaccos was obtained, in some of which the merB gene was stably integrated in the plant genome and substantially translated to the expected MerB enzyme in the transgenic tobacco. The ppk/merT/merB-transgenic tobacco callus showed more resistance to methylmercury (CH3Hg+) and accumulated more mercury from CH3Hg+-containing medium than the ppk/merT-transgenic and wild-type progenitors. These results suggest that the MerB enzyme encoded by merB degraded the incorporated CH3Hg+ to Hg2+, which then accumulated as a less toxic Hg-polyP complex in the tobacco cells. Phytoremediation of CH3Hg+ and Hg2+ in the environment with this engineered ppk/merT/merB-transgenic plant, which prevents the release mercury vapor (Hg0) into the atmosphere in addition to generating potentially recyclable mercury-rich plant residues, is believed to be more acceptable to the public than other competing technologies, including phytovolatilization.

  15. 40 CFR 86.603-88 - Test orders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Selective Enforcement..., adjustments, or repairs. (d) A manufacturer may indicate preferred assembly plants for the various engine... accomplished by submitting a list of engine families and the corresponding assembly plants from which the...

  16. 40 CFR 86.603-88 - Test orders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Selective Enforcement..., adjustments, or repairs. (d) A manufacturer may indicate preferred assembly plants for the various engine... accomplished by submitting a list of engine families and the corresponding assembly plants from which the...

  17. 40 CFR 86.603-88 - Test orders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Selective Enforcement..., adjustments, or repairs. (d) A manufacturer may indicate preferred assembly plants for the various engine... accomplished by submitting a list of engine families and the corresponding assembly plants from which the...

  18. Molecular response of canola to salt stress: insights on tolerance mechanisms.

    PubMed

    Shokri-Gharelo, Reza; Noparvar, Pouya Motie

    2018-01-01

    Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.

  19. 48 CFR 15.408 - Solicitation provisions and contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inventory, provide a separate cost breakdown, if priced based on cost. For interorganizational transfers..., travel, computer and consultant services, preservation, packaging and packing, spoilage and rework, and... records as of the cutoff date. These include such costs as preproduction engineering, special plant...

  20. Cost analysis of a coal-fired power plant using the NPV method

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-12-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  1. A FIELD STUDY WITH GENETICALLY ENGINEERED ALFALFA INOCULATED WITH RECOMBINANT SINORHIZOBIUM MELILOTI: EFFECTS ON THE SOIL ECOSYSTEM

    EPA Science Inventory

    The agricultural use of genetically engineered plants and microorganisms has become increasingly common. Because genetically engineered plants and microorganisms can produce compounds foreign to their environment, there is concern that they may become established outside of thei...

  2. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  3. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  4. News in engineering education in Spain effective from 2010 in presence of external changes and mixed crisis, looking mostly to agro and civil engineers

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Sanchez, M. E.; Grau, J. B.; Andina, D.

    2012-04-01

    The engineering careers models were diverse in Europe, and are adopting now in Spain the Bolonia process for European Universities. Separated from older Universities, that are in part technically active, Civil Engineering (Caminos, Canales y Puertos) started at end of 18th century in Spain adopting the French models of Upper Schools for state civil servants with exam at entry. After 1800 intense wars, to conserve forest regions Ingenieros de Montes appeared as Upper School, and in 1855 also the Ingenieros Agrónomos to push up related techniques and practices. Other Engineers appeared as Upper Schools but more towards private factories. These ES got all adapted Lower Schools of Ingeniero Tecnico. Recently both grew much in number and evolved, linked also to recognized Professions. Spanish society, into European Community, evolved across year 2000, in part highly well, but with severe discordances, that caused severe youth unemployment with 2008-2011 crisis. With Bolonia process high formal changes step in from 2010-11, accepted with intense adaptation. The Lower Schools are changing towards the Upper Schools, and both that have shifted since 2010-11 various 4-years careers (Grado), some included into the precedent Professions, and diverse Masters. Acceptation of them to get students has started relatively well, and will evolve, and acceptation of new grades for employment in Spain, Europe or outside will be essential. Each Grado has now quite rigid curricula and programs, MOODLE was introduced to connect pupils, some specific uses of Personal Computers are taught in each subject. Escuela de Agronomos centre, reorganized with its old name in its precedent buildings at entrance of Campus Moncloa, offers Grados of Agronomic Engineering and Science for various public and private activities for agriculture, Alimentary Engineering for alimentary activities and control, Agro-Environmental Engineering more related to environment activities, and in part Biotechnology also in laboratories in Campus Monte-Gancedo for Biotechnology of Plants and Computational Biotechnology. Curricula include Basics, Engineering, Practices, Visits, English, "project of end of career", Stays. Some masters will conduce to specific professional diploma, list includes now Agro-Engineering, Agro-Forestal Biotechnology, Agro and Natural Resources Economy, Complex Physical Systems, Gardening and Landscaping, Rural Genie, Phytogenetic Resources, Plant Genetic Resources, Environmental Technology for Sustainable Agriculture, Technology for Human Development and Cooperation.

  5. Performance evaluation of water treatment plants based on microfilter technology for rural water supply.

    PubMed

    Reddy, R C; Ravindra Rao, R; Kelkar, P S; Rao, I R; Ramarao, K G; Elyas, S I

    2002-01-01

    Panchayat Raj Engineering Department (PRED), Government of Andhra Pradesh installed package water treatment plants on a trial basis, in some villages in Krishna district of Andhra Pradesh. These plants with a design capacity of 6000-12000 lph were supplied and erected by a firm in Hyderabad. These plants consist of three stage treatment comprising of pulverized quartz filter bed, activated carbon bed and micro filter unit followed by disinfection. At the request of PRED, comprehensive studies were carried on individual plants which includes a detailed appraisal of the performance of the individual components of the plant, infrastructure at the village level for routine O&M of the plants as also views of the community regarding their acceptability of the system. This paper presents the findings and conclusions of the performance evaluation study.

  6. 7. Photograph of a line drawing. 'PART III, SECTION 1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a line drawing. 'PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDING NO. 10, PRODUCER GAS & EXHAUSTER BLDG., PLANT A.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant A, Parts I, II, III. (Nashville, TN: Office of District Engineer, 1944). - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN

  7. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  8. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Wastemore » Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.« less

  9. Morphogenesis in Plants: Modeling the Shoot Apical Meristem, and Possible Applications

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric; Gor, Victoria; Meyerowitz, Elliot; Mann, Tobias

    1998-01-01

    A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem. We also discuss a space-engineering motivation for studying and controlling the morphogenesis of plants using such computational models.

  10. Energy Engineering Analysis Program, energy survey of Army Industrial Facilities, Western Area Demilitarization Facility Hawthorne Ermy Ammunition Plant Hawthorne, Nevada. Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-17

    This report summarizes all work for the Energy Survey of Army Industrial Facilities, Energy Engineering Analysis Program (EEAP) at the Western Area Demilitarization Facility (WADF) of the Hawthorne Army Ammunition Plant (HWAAP), Hawthorne, Nevada, authorized under Contract No. DACA03-92-C-0155 with the U.S. Army Corps of Engineers, Sacramento District, California. The purpose of this energy survey is to develop a set of projects and actions that will reduce energy consumption and operating costs of selected facilities at the WADF. A preliminary inspection of facilities at WADF by Keller Gannon that identified potential retrofit opportunities was submitted as the EEAP Study andmore » Criteria Review in December 1993. This document formed the basis of the Detailed Scope of Work for this study. Facilities included in the survey and study, together with operational status, are listed in Table 1 - 1. The complete scope of work appears in Appendix.« less

  11. Demonstration of a 1 MWe biomass power plant at USMC Base Camp Lejeune. Report for July 1994-May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, J.; Purvis, C.R.

    1998-06-01

    The paper discusses a biomass energy conversion project being sponsored by EPA to demonstrate an enviromentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple economical operation for units < 10 MW, and (3) the option of a clean cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving-bed gasifier utilizing hogged waste wood from the Marine Corps Base atmore » Camp Lejeune, NC. A moving-bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are described briefly, relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined.« less

  12. 78 FR 66892 - BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Resistance AGENCY: Animal... genetically engineered for resistance to herbicides in the imidazolinone family. We are soliciting comments on... genetically engineered for resistance to herbicides in the imidazolinone family. The petition states that this...

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  14. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  15. A Design Tool for Matching UAV Propeller and Power Plant Performance

    NASA Astrophysics Data System (ADS)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  16. Induction of abiotic stress tolerance in plants by endophytic microbes.

    PubMed

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  17. Evolution of Hormone Signaling Networks in Plant Defense.

    PubMed

    Berens, Matthias L; Berry, Hannah M; Mine, Akira; Argueso, Cristiana T; Tsuda, Kenichi

    2017-08-04

    Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.

  18. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    PubMed Central

    Treutter, Dieter

    2010-01-01

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations. PMID:20479987

  19. Land Desertification and it’s Control in Gonghe Basin of Qinghai Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Gao, S.; Lu, R.

    2009-12-01

    Land desertification is an important environmental and social-economic problems that threatening people’s living conditions and impacting social sustainable development. The Gonghe basin in Qinghai Plateau is a fragile cold alpine area which is one of the places seriously threatened by desertification in China. This paper selected Gonghe basin as a study area to study land sandy desertification and its controlling measures. The engineering measures for sandy desertification control include setting clay sand barrier, Salix cheilophila sand barrier, Tamarix sand barrier, Artemisia sand barrier and straw-checker sand-barriers to fix dunes; the biological measures include closure for natural vegetation recovery, direct seeding forestation, transplanting seedlings, and so on. The combination of engineering and biologic measures can fix dunes 2~3 years earlier than the common single measure; and the costs were basically identical. A synthesized evaluation system established based on experimental results and experience in recent years indicated that the effectiveness of the four kinds of sand barrier for prevention and control of sand in study area were: Tamarix sand barrier > Artemisia sand barrier > clay sand barrier > straw-checker sand-barriers. In addition, different optimized management model can be selected according to local material and geographical place. New plants such as Salix cheilophila and Tamarix, which are available in study area, can change from dead sand barrier to live one set in proper seasons, changing engineering measure to biological one directly speeds the progress of forestation and dunes fixation. In addition, we developed new technique of deep planting Salix cheilophila and Tamarix with their long stem, which can effectively resist drought. We found that it had lower cost and higher live rate, and has a better sand prevention effect than deep planting of Poplar. Finally we choose the optimize management model as follows: Artemisia direct seeding > Caragana direct seeding, Tamarix cutting and seedling > Salix cheilophila deep planting, Sea-buckthorn seedling > Tamarix deep planting > Tamarix seedling > Poplar deep planting > Salix cheilophila seedling > Poplar seedling. It has resolved the key problem of control sand flow speed and low efficiency, sand burying and wind erosion and low conservation rate for forestation in the sandy area.

  20. Strategies to introduce resistance to viroids (Book Chapter)

    USDA-ARS?s Scientific Manuscript database

    Little or no naturally occurring durable resistance to viroids has been found in most viroid host species; therefore efforts to engineer viroid resistance in these plant hosts have been made. These efforts include strategies that incorporate viroid-specific antisense RNAs, sense and antisense viroid...

  1. SUSTAINABLE YEAR-ROUND FOOD PRODUCTION IN COLD CLIMATES

    EPA Science Inventory

    The output of the Phase II investigation will include the operating pilot plant system to prove the CEHRF concept; an investor ready prospectus that can be presented to future investors; a detailed engineering design consisting of: layout view, rack design, and structural ana...

  2. Limited Irrigation Water Management Research in Colorado, USA

    USDA-ARS?s Scientific Manuscript database

    The Limited Irrigation Research Farm (LIRF) is located in north-central Colorado (USA) near the city of Greeley. The research focus is to explore management objectives focused on maintaining high crop yields with limited water supplies. Researchers, which include agricultural engineers and plant phy...

  3. Propulsion opportunities for future commuter aircraft

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1982-01-01

    Circa 1990 propulsion improvement concepts are discussed for 1000 to 5000 SHP conventional turboprop powerplants including engines, gearboxes, and propellers. Cycle selection, power plant configurations and advanced technology elements are defined and evaluated using average stage length DOC for commuter aircraft as the primary merit criterion.

  4. 78 FR 45169 - GENECTIVE SA; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Engineered for Herbicide Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... herbicide glyphosate. We are also making available for public review our plant pest risk assessment... VCO-01981-5, which has been genetically engineered for resistance to the herbicide glyphosate. The...

  5. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Moorhead, Greg B

    2013-09-01

    The major plant serine/threonine protein phosphatases belong to the phosphoprotein phosphatase (PPP) family. Over the past few years the complement of Arabidopsis thaliana PPP family of catalytic subunits has been cataloged and many regulatory subunits identified. Specific roles for PPPs have been characterized, including roles in auxin and brassinosteroid signaling, in phototropism, in regulating the target of rapamycin pathway, and in cell stress responses. In this review, we provide a framework for understanding the PPP family by exploring the fundamental role of the phosphatase regulatory subunits that drive catalytic engine specificity. Although there are fewer plant protein phosphatases compared with their protein kinase partners, their function is now recognized to be as dynamic and as regulated as that of protein kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Advanced Fusion Reactors for Space Propulsion and Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, John J.

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less

  7. AP1000{sup R} severe accident features and post-Fukushima considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G.

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, themore » AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)« less

  8. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  9. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  10. Airfield construction (3rd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Goretskii, Leonid I.; Boguslavskii, Adol'f. M.; Serebrenikov, Vadim A.; Barzdo, V. I.; Leshchitskaia, T. P.; Polosin-Nikitin, S. M.

    The principal engineering aspects of airfield construction are discussed. In particular, attention is given to the fundamental principles and organizational aspects of airfield construction; excavation work and airfield layout; construction of drainage systems; foundations and pavements; and quality control and safety engineering. The discussion also covers the operation of various support plants, including concrete production and mixing, production of asphalt-concrete mixtures and organic binders, production of structural steel and reinforced concrete components, and operation of stone quarries and gravel pits.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  12. Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions.

    PubMed

    Rucker, Joanna; Paul, Julie; Pfeifer, Blaine A; Lee, Kyongbum

    2013-03-01

    Triglycerides, traditionally sourced from plant oils, are heavily used in both industrial and healthcare applications. Commercially significant products produced from triglycerides include biodiesel, lubricants, moisturizers, and oils for cooking and dietary supplements. The need to rely upon plant-based production, however, raises concerns of increasing demand and sustainability. The reliance on crop yields and a strong demand for triglycerides provides motivation to engineer production from a robust microbial platform. In this study, Escherichia coli was engineered to synthesize and accumulate triglycerides. Triglycerides were produced from cell wall phospholipid precursors through engineered expression of two enzymes, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). A liquid chromatography-mass spectrometry (LC-MS) method was developed to analyze the production of triglycerides by the engineered E. coli strains. This proof-of-concept study demonstrated a yield of 1.1 mg/L triglycerides (2 g/L dry cell weight) in lysogeny broth medium containing 5 g/L glucose at 8 h following induction of PAP and DGAT expression. LC-MS results also demonstrated that the intracellular triglyceride composition of E. coli was highly conserved. Triglycerides containing the fatty acid distributions 16:0/16:0/16:1, 16:0/16:0/18:1, and 18:1/16:0/16:1 were found in highest concentrations and represent ∼70 % of triglycerides observed.

  13. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.

    PubMed

    Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar

    2016-04-01

    Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.

  14. An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense.

    PubMed

    Nakata, Paul A

    2015-01-01

    The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.

  15. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  16. Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of 'Ca. Liberibacter asiaticus'-infected citrus plants.

    PubMed

    Nwugo, Chika C; Doud, Melissa S; Duan, Yong-Ping; Lin, Hong

    2016-11-14

    Citrus Huanglongbing (HLB), which is linked to the bacterial pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days. An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase. The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.

  17. Strategies for microbial synthesis of high-value phytochemicals

    NASA Astrophysics Data System (ADS)

    Li, Sijin; Li, Yanran; Smolke, Christina D.

    2018-03-01

    Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.

  18. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    PubMed

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  19. 4. Credit PEM. Interior of Martinsburg Plant; on right showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit PEM. Interior of Martinsburg Plant; on right showing Taylor 150 hp steam engine belt-connected to a Warren 150 KW, 2200 Volt a.c. generator. On left, a Fisher 400 hp steam engine belt-connected to a Warren 200 KW, 2200 Volt a.c. generator. In center, also belt-connected to Fisher 400 hp engine is a Bail 120 light, arc-light generator. Photo c. 1905. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  20. Metabolic engineering with plants for a sustainable biobased economy.

    PubMed

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.

  1. Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.

    1977-01-01

    A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.

  2. Multi-source and ontology-based retrieval engine for maize mutant phenotypes

    USDA-ARS?s Scientific Manuscript database

    In the midst of this genomics era, major plant genome databases are collecting massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc., as well as textual descriptions of many of these entities. While basic browsing and sear...

  3. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen) sensor feedback are unable to maintain engine AFR within the required range owing to drift in sensor output over time. In this thesis, the emissions compliance performance of an AFR controller is evaluated over a 6-month period on an engine driving a gas compressor in an active natural gas production field. This AFR controller differentiates itself from other commercially available products by employing a lambda sensor that has been engineered against sensor drift, making it better suited for natural gas engine applications. Also included in this study are the controller's responses to transient loads, diurnal performance, adaptability to seasonal variations in ambient temperature, fuel quality variations (in wellhead gas), engine health considerations for proper AFR control, and controller calibration sensitivity when replacing lambda sensors. During the first three months of operation and subsequent diurnal tests, the controller's performance as a multi-point AFR control system was consistent, demonstrating appropriate AFR adjustments to variation in engine operation, over a wide range of ambient conditions, despite high consumption rate of engine lubrication oil. For the remainder the test, the high levels of lubrication oil consumption, compromised the ability to verify controller performance.

  4. [Metabolomics research of medicinal plants].

    PubMed

    Duan, Li-Xin; Dai, Yun-Tao; Sun, Chao; Chen, Shi-Lin

    2016-11-01

    Metabolomics is the comprehensively study of chemical processes involving small molecule metabolites. It is an important part of systems biology, and is widely applied in complex traditional Chinese medicine(TCM)system. Metabolites biosynthesized by medicinal plants are the effective basis for TCM. Metabolomics studies of medicinal plants will usher in a new period of vigorous development with the implementation of Herb Genome Program and the development of TCM synthetic biology. This manuscript introduces the recent research progresses of metabolomics technology and the main research contents of metabolomics studies for medicinal plants, including identification and quality evaluation for medicinal plants, cultivars breeding, stress resistance, metabolic pathways, metabolic network, metabolic engineering and synthetic biology researches. The integration of genomics, transcriptomics and metabolomics approaches will finally lay foundation for breeding of medicinal plants, R&D, quality and safety evaluation of innovative drug. Copyright© by the Chinese Pharmaceutical Association.

  5. 6. INTERIOR OF NORTH END OF STEAM PLANT, GROUND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR OF NORTH END OF STEAM PLANT, GROUND FLOOR, SHOWING FORMER LOCATION OF DIESEL ENGINES. THIS WAS THE FIRST PART OF THE BUILDING TO BE CONSTRUCTED, WHEN IT HOUSED ONLY THE DIESEL ENGINES. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  6. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  7. Environmental Assessment for Facilities Expansion at Naval Nuclear Power Training Unit -Charleston (NPTU Charleston), Joint Base Charleston, South Carolina

    DTIC Science & Technology

    2012-09-01

    pier and are exposed to salt water, wind , and adverse weather conditions. Utilities include electricity, potable water, and communication. Other...the NPTU Charleston piers (NOAA 2010). Daylight-only ship traffic extends upstream as far as the Nucor Steel Plant, accessing a slip for ocean-going...produced by the reactor plant is transmitted through the ship’s main engine turbine to a water break which simulates the action of a propeller without

  8. Engineering Transgenic Plants for the Sustained Containment and In Situ Treatment of Energetic Materials

    DTIC Science & Technology

    2009-06-01

    yielding nitrite, formaldehyde and 4-nitro- 2,4-diazabutanal (Figure 2) [37, 38]. So far, xplA and xplB, a reductase encoded adjacently to xplA have been...increase transformation frequencies of recalcitrant plants, including rice and maize . This plasmid carries kanamycin resistance for selection in...5 and 12 kb was extracted from all samples, as confirmed by gel electrophoresis (Figure 24). Typical yields were 4 ± 1 μg/g soil. Denaturing

  9. Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines

    PubMed Central

    McKeague, Maureen; Wang, Yen-Hsiang; Cravens, Aaron; Win, Maung Nyan; Smolke, Christina D.

    2016-01-01

    Engineered microbial biosynthesis of plant natural products can support manufacturing of complex bioactive molecules and enable discovery of non-naturally occurring derivatives. Purine alkaloids, including caffeine (coffee), theophylline (antiasthma drug), theobromine (chocolate), and other methylxanthines, play a significant role in pharmacology and food chemistry. Here, we engineered the eukaryotic microbial host Saccharomyces cerevisiae for the de novo biosynthesis of methylxanthines. We constructed a xanthine-to-xanthosine conversion pathway in native yeast central metabolism to increase endogenous purine flux for the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis. Yeast strains were further engineered to produce caffeine through expression of several enzymes from the coffee plant. By expressing combinations of different N-methyltransferases, we were able to demonstrate re-direction of flux to an alternate pathway and develop strains that support the production of diverse methylxanthines. We achieved production of 270 μg/L, 61 μg/L, and 3700 μg/L of caffeine, theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fermentations. The constructed strains provide an early platform for de novo production of methylxanthines and with further development will advance the discovery and synthesis of xanthine derivatives. PMID:27519552

  10. Collegiality and commerce: The culture of consideration amongst engineers

    NASA Astrophysics Data System (ADS)

    Nugent, Paul David

    This study is a participant observation ethnography of engineering relationships at a defense contracting plant that specializes in the design and manufacture of launch control systems for nuclear submarines. "Consideration" is presented as a unique mode of interaction enabling resource exchange and pivotal in developing and strengthening work relationships. Consideration differs from other modes of exchange such as markets, gift-giving, and charity primarily in that the bestowal of the resource involves little sacrifice. The manner in which consideration is enacted by the engineers, the structural and cultural conditions supporting consideration, and the social and economic consequences of consideration are presented. From these findings it is concluded that consideration is a unique form of economic exchange embedded in concrete relationships that forces us to rethink and extend current conceptualizations of trust, networks, social capital, and friendship in the workplace. The data for the analysis were drawn from twenty interviews and fieldnotes collected and transcribed over a twelve month period. Quotations from the interviews and exerpts from the fieldnotes are included to illustrate claims being made in the analysis as well as to familiarize the reader with the culture developed by engineers and managers in a defense contracting plant.

  11. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    PubMed Central

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  12. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  13. Source Hierarchy List. Volume 1. A through D

    DTIC Science & Technology

    1994-07-01

    TECHNOLOGY DIV 04 LAKE CITY ARMY AMMUNITION PLANT INDEPENDENCE MO INDUSTRIAL ENGINEERING DIV 03 LONE STAR ARMY AMMUNITION PLANT TEXARKANA TX 03...INDEPENDENCE MO INDUSTRIAL ENGINEERING DIV 03 LONE STAR ARMY AMMUNITION PLANT TEXARKANA TX 03 LONGHORN ARMY AMMUNITION PLANT MARSHALL TX 03 LOUISIANA...STORAGE ACTIVITY SAN ANTONIO TX* 02 COATING AND CHEMICAL LAB ABERDEEN PROVING GROUND MD 02 DARCOM INTERN TRAINING CENTER TEXARKANA TX 03 ARMY MATERIEL

  14. Applicability of a septic tank/engineered wetland coupled system in the treatment and recycling of wastewater from a small community.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es Salaam, Tanzania was monitored to assess its performance. The engineered wetland system (EWS) had two parallel units each with two serial beds packed with different sizes of media and vegetated differently. The larger-sized medium bed was upstream and was planted with Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with Typha (cattails). The ST/EWS coupled system was able to remove ammonia by an average of 60%, nitrate by 71%, sulfate by 55%, chemical oxygen demand by 91%, and fecal coliform as well as total coliform by almost 100%. The effluent from the ST/EWS coupled system is used for irrigation. Notably, users of the recycled irrigation water do not harbor any negative feelings about it. This study demonstrates that it is possible to treat and recycle domestic wastewater using ST/ EWS coupled systems. The study also brings attention to the fact that an ST/EWS coupled system has operation and maintenance (O&M) needs that must be fulfilled for its effectiveness and acceptability. These include removal of unwanted weeds, harvesting of wetland plants when the EWS becomes unappealingly bushy, and routine repair.

  15. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  16. PosMed-plus: an intelligent search engine that inferentially integrates cross-species information resources for molecular breeding of plants.

    PubMed

    Makita, Yuko; Kobayashi, Norio; Mochizuki, Yoshiki; Yoshida, Yuko; Asano, Satomi; Heida, Naohiko; Deshpande, Mrinalini; Bhatia, Rinki; Matsushima, Akihiro; Ishii, Manabu; Kawaguchi, Shuji; Iida, Kei; Hanada, Kosuke; Kuromori, Takashi; Seki, Motoaki; Shinozaki, Kazuo; Toyoda, Tetsuro

    2009-07-01

    Molecular breeding of crops is an efficient way to upgrade plant functions useful to mankind. A key step is forward genetics or positional cloning to identify the genes that confer useful functions. In order to accelerate the whole research process, we have developed an integrated database system powered by an intelligent data-retrieval engine termed PosMed-plus (Positional Medline for plant upgrading science), allowing us to prioritize highly promising candidate genes in a given chromosomal interval(s) of Arabidopsis thaliana and rice, Oryza sativa. By inferentially integrating cross-species information resources including genomes, transcriptomes, proteomes, localizomes, phenomes and literature, the system compares a user's query, such as phenotypic or functional keywords, with the literature associated with the relevant genes located within the interval. By utilizing orthologous and paralogous correspondences, PosMed-plus efficiently integrates cross-species information to facilitate the ranking of rice candidate genes based on evidence from other model species such as Arabidopsis. PosMed-plus is a plant science version of the PosMed system widely used by mammalian researchers, and provides both a powerful integrative search function and a rich integrative display of the integrated databases. PosMed-plus is the first cross-species integrated database that inferentially prioritizes candidate genes for forward genetics approaches in plant science, and will be expanded for wider use in plant upgrading in many species.

  17. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    PubMed

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  18. 7. This photographic copy of an engineering drawing displays the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. This photographic copy of an engineering drawing displays the building's floor plan in its 1995 arrangement, with rooms designated. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office, "Addition to Weigh & Control Bldg. E-35, Demolition, Floor and Roof Plans," drawing no. E35/3-0, October 5, 1983. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  19. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    PubMed

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  20. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli.

    PubMed

    Watts, Kevin T; Lee, Pyung C; Schmidt-Dannert, Claudia

    2006-03-21

    Phenylpropanoids are the precursors to a range of important plant metabolites such as the cell wall constituent lignin and the secondary metabolites belonging to the flavonoid/stilbene class of compounds. The latter class of plant natural products has been shown to function in a wide range of biological activities. During the last few years an increasing number of health benefits have been associated with these compounds. In particular, they demonstrate potent antioxidant activity and the ability to selectively inhibit certain tyrosine kinases. Biosynthesis of many medicinally important plant secondary metabolites, including stilbenes, is frequently not very well understood and under tight spatial and temporal control, limiting their availability from plant sources. As an alternative, we sought to develop an approach for the biosynthesis of diverse stilbenes by engineered recombinant microbial cells. A pathway for stilbene biosynthesis was constructed in Escherichia coli with 4-coumaroyl CoA ligase 1 4CL1) from Arabidopsis thaliana and stilbene synthase (STS) cloned from Arachis hypogaea. E. coli cultures expressing these enzymes together converted the phenylpropionic acid precursor 4-coumaric acid, added to the growth medium, to the stilbene resveratrol (>100 mg/L). Caffeic acid, added in the same way, resulted in the production of the expected dihydroxylated stilbene, piceatannol (>10 mg/L). Ferulic acid, however, was not converted to the expected stilbene product, isorhapontigenin. Substitution of 4CL1 with a homologous enzyme, 4CL4, with a preference for ferulic acid over 4-coumaric acid, had no effect on the conversion of ferulic acid. Accumulation of tri- and tetraketide lactones from ferulic acid, regardless of the CoA-ligase expressed in E. coli, suggests that STS cannot properly accommodate and fold the tetraketide intermediate to the corresponding stilbene structure. Phenylpropionic acids, such as 4-coumaric acid and caffeic acid, can be efficiently converted to stilbene compounds by recombinant E. coli cells expressing plant biosynthetic genes. Optimization of precursor conversion and cyclization of the bulky ferulic acid precursor by host metabolic engineering and protein engineering may afford the synthesis of even more structurally diverse stilbene compounds.

  1. FY 2009 SERDP Annual Report

    DTIC Science & Technology

    2010-02-01

    Focus Areas: Environmental Restoration - Phytoremediation for the Containment and Treatment of Energetic and Propellant Material Releases on Testing...and Training Ranges, and a second project, Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants; Munitions...and Engineering Laboratory  Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants (ER-1498), University of York

  2. Math Carnival Nights (Planting the Seeds for Engineers in Elementary School)

    DTIC Science & Technology

    1992-06-01

    ONLY (Leave b:jnk) 2 .. OW’ CdATE I"bruarv 1993 I ’. . 4 TITLE AND SUSTITJI-. MATH CARNIVAL NIGFhS (Pl.ANTIN(; THE SEEDS FOR t:NGINI-2.ILS IN...CARNIVAL NIGHTS (PLANTING THE SEEDS FOR ENGINEERS IN ELEMENTARY SCHOOLft-. ... Fly Ui THERESE DOUGHERTY -,;,b.tI.. Systems Engineer Naval Command

  3. Hydraulic integration and shrub growth form linked across continental aridity gradients

    Treesearch

    H. Jochen Schenk; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2008-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering...

  4. 78 FR 13303 - Stine Seed Farm, Inc.; Availability of Plant Pest Risk Assessment, Environmental Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... reason to believe are plant pests. Such genetically engineered organisms (GE) and products are considered... genetically engineered organisms. Paragraph (e) of Sec. 340.6 provides that APHIS will publish a notice in the... Preliminary Decision for an Extension of a Determination of Nonregulated Status of Corn Genetically Engineered...

  5. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    PubMed

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Oleksandr; Serbin, Serhiy

    2018-03-01

    One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.

  7. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 46 CFR 110.25-1 - Plans and information required for new construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....25-1 Section 110.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Plan Submittal § 110.25-1 Plans and information required for new construction... available at the point of application. (b) Electrical plant load analysis including connected loads and...

  9. 46 CFR 110.25-1 - Plans and information required for new construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....25-1 Section 110.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Plan Submittal § 110.25-1 Plans and information required for new construction... available at the point of application. (b) Electrical plant load analysis including connected loads and...

  10. 77 FR 74166 - Report of Acreage, Noninsured Crop Disaster Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ..., Office of Management and Budget, Washington, DC 20503. FOR FURTHER INFORMATION CONTACT: Jantrice Williams... waterbeds); ornamental nursery (including the size and origin, that is container or field grown, of plants... benefits and services through the re-engineering of farm program business processes and the adoption of...

  11. Computer visualizations in engineering applications

    NASA Astrophysics Data System (ADS)

    Bills, K. C.

    The use of computerized simulations of various robotic tasks via IGRIP software is reported. The projects include underwater activities demonstrating clean up of a quarry; time study of methods to store waste drums inside a facility; design walk-through of a new facility; plant layout flyover; and conceptual development and layout of new mechanisms.

  12. Creep of Hi-Nicalon S Ceramic Fiber Tows at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2012-03-22

    temperature and environmental effects is a critical factor in development of composites with load carrying capacity and environmental durability...applications, including aircraft jet engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is

  13. Non-specific activities of the major herbicide-resistance gene BAR.

    PubMed

    Christ, Bastien; Hochstrasser, Ramon; Guyer, Luzia; Francisco, Rita; Aubry, Sylvain; Hörtensteiner, Stefan; Weng, Jing-Ke

    2017-12-01

    Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.

  14. Wetland eco-engineering: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-09-01

    Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  15. Impact of Site Elevation on Mg Smelter Design

    NASA Astrophysics Data System (ADS)

    Baker, Phillip W.

    Site elevation has many surprising and significant impacts on the engineering design of metallurgical plant of all types. Electrolytic magnesium smelters maybe built at high elevation for a variety of reasons including availability of raw material, energy or electric power. Because of the unit processes they typically involve, Mg smelters can be extensively impacted by site elevation. In this paper, generic examples of the design changes required to adapt a smelter originally designed for sea level to operate at 2700 m are presented. While the examples are drawn from a magnesium plant design case, these changes are generically applicable to all industrial plants utilizing similar unit processes irrespective of product.

  16. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  17. An Archeological Overview and Management Plan for the Tarheel Army Missile Plant Alamance County, North Carolina.

    DTIC Science & Technology

    1984-05-21

    factory planning engineer, noted that bedrock lies about 22 feet be- low the surface in the eastern portion of the main plant area, but had not...Carolina Press. Lee, James B. 1983. Personal communication. Factory Planning Engineer, Western Electric Company, Tarheel Army Missile Plant. Lefl1cr, Hugh

  18. Amistad Power Plant.

    DTIC Science & Technology

    1983-10-01

    Worh District AMISTAD POWEI PLANT DEL RIO, TEXAS DTICS LECTE DEC 2 11983 OCTOBER 1063 88 11 281 DISTRIBUTION STATEMENT A Approved fca public relea...A I I I 1 1 ... CORPS OF ENGINEERS FORT WORTH DISTRICT, TEXAS FINAL FOUNDATION REPORT AMISTAD POWER PLANT NTIS G- xi DTI’. T" Jus! if - Distr ’. Avai...Wayne E. McIntosh. Colonel Donald Palladino and Colonel Theodore Stroup served as District Engineers during construction of the Amistad Power Plant

  19. [Genetic engineering of forest woody plants].

    PubMed

    Mashkina, O S; Butorina, A K

    2003-03-01

    The present state of genetic engineering (GE) of forest woody plants is considered with special reference to the materials of the International Conference "Wood, Breeding, Biotechnology and Industrial Expectations" held in France in June, 2001. Main tree species subjected to GE are listed, aims of constructing transgenic plants discussed, and methods described. Major achievements in the field are considered along with the problems associated with the employment of GE in the breeding of forest woody plants.

  20. Production of heavy water in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fareeduddin, S.

    From symposium on nuclear science and engineering; Bombay, India (13 Mar 1973). To meet the requirements of heavy water for the power reactors now under construction and those being planned, a program for providing adequate production capacity has been started. Various processes have been surveyed and the factors which have been considered in the choice of the processes adopted in India are presented. The H/sub 2/S--H/sub 2/0 exchange process adopted for the plant being set up at Kota and the ammoria--hydrogen exchange process adopted for the Baroda plant are briefly described. The status of the various plants under construction hasmore » been presented. The operating experience of the Nangal plant during the last ten years is included. (auth)« less

  1. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  2. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  3. Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections

    NASA Technical Reports Server (NTRS)

    Bullock, Robert O.; Keetch, Robert C.; Moses, Jason J.

    1945-01-01

    A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.

  4. Report of visit of Dr. L.C. Matsch, March 11 and 12, including discussion at meeting at the C Reactor conference room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, J.P.

    1994-03-13

    Dr. Matsch was born in Hungary and studied at Vienna Technical Institute, receiving degrees in physics and engineering. At the end of World War II, he was operating a krypton gas separation plant in Hungary, but left his home and personal effects and fled to Munich, Bavaria with his wife and infant son as the Russians entered the country. After the war he worked for a time with the German Linde Company and eventually came to the United States when an immigration quota was available for displaced Hungarian citizens. He went to work for the Linde Division of Union Carbidemore » in an engineering capacity upon his arrival in the US, and he and his wife are now US citizens. He is currently Manager of the Engineering Development Division of the Linde Co., employing about 600 people including 200 engineers. His responsibilities include the design and construction of gas separation equipment and devices, improvement of their processes and economic analyses of the results. It was his group which developed the new improved distillation columns which have permitted extraordinary increases in through-put and efficiency in air separation plants, and which he would use in any purification system that he would design for Hanford. The important point to be emphasized in relation to the previous proposal for gas purification is that this break-through in distillation technology will now permit the almost complete removal of the last 500 parts per million of Argon to a new low level of less than 20 parts per million.« less

  5. 78 FR 3921 - Proposed Models for Plant-Specific Adoption of Technical Specifications Task Force Traveler TSTF...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Specifications Combustion Engineering Plants.'' Specifically, the proposed change revises various TSs to add a... Technical Details TSTF-426, Revision 5, is applicable to all Combustion Engineering- designed nuclear power...

  6. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  7. Regulation of galactan synthase expression to modify galactan content in plants

    DOEpatents

    None

    2017-08-22

    The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.

  8. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops

    PubMed Central

    Mawphlang, Ophilia I. L.; Kharshiing, Eros V.

    2017-01-01

    Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors. PMID:28744290

  9. This photocopy of an engineering drawing shows the BakerPerkins 150gallon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photocopy of an engineering drawing shows the Baker-Perkins 150-gallon mixer installation in the building. Austin, Field & Fry, Architects Engineers, 22311 West Third Street, Los Angeles 57, California: Edwards Test Station Complex, Jet Propulsion Laboratory, California Institute of Technology, Edwards Air Force Base, Edwards, California: "150 Gallon Mixer System Bldg. E-34, Plans, Sections & Details," drawing no. E34/6-0, 10 July 1963. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Mixer, Edwards Air Force Base, Boron, Kern County, CA

  10. This photographic copy of an engineering drawing shows floor plans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    This photographic copy of an engineering drawing shows floor plans, sections and elevations of Building E-86, with details typical of the steel frame and "Transite" building construction at JPL Edwards Facility. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office: "Casting & Curing, Building E-86, Floor Plan, Elevations & Section," drawing no. E86/6, 25 February 1977. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering: engineering drawings of structures at JPL Edwards Facility. Drawings on file at JPL Plant Engineering, Pasadena, California - Jet Propulsion Laboratory Edwards Facility, Casting & Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  11. Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant

    PubMed Central

    Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.

    2018-01-01

    This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954

  12. [Comprehensive evaluation and selection of urban eco-engineering virescent trees in Shenyang City].

    PubMed

    Lu, Min; Jiang, Fengqi; Li, Yingjie

    2004-07-01

    Urban virescence eco-engineering is the core of urban eco-environmental construction, which can promote urban sustainable development. In urban virescence eco-engineering, the comprehensive evaluation of ecological adapt-ability and ecological effect of urban plants is the scientific basis of rational application and selection of urban garden plants. The ecological effect and integrative functions of urban virescence eco-engineering depend upon the selection and layout of garden plants. Using the methods of garden expert consultation and evaluation, this paper established systematically integrative evaluation and application indices of virescence plants in Shenyang City, from the aspects of ecological adaptability, ecological effect, beautification effect, resistance to plant diseases and insect pests, anti-pollution and economic results. According to garden experts evaluation and location of Shenyang, 200 sorts of virescence trees were evaluated and classified on the basis of the comprehensive evaluation system of virescence trees, and using cold resistance, drought resistance, barren resistance, plant diseases and insect pests resistance, anti-pollution, ornamental quality and ecological effects as the indexes. The results showed that the number of first rank trees was 58, the second was 93, methods of third was 38, and the fourth was 11, ranked by integrative performance.

  13. H∞ control of combustion in diesel engines using a discrete dynamics model

    NASA Astrophysics Data System (ADS)

    Hirata, Mitsuo; Ishizuki, Sota; Suzuki, Masayasu

    2016-09-01

    This paper proposes a control method for combustion in diesel engines using a discrete dynamics model. The proposed two-degree-of-freedom control scheme achieves not only good feedback properties such as disturbance suppression and robust stability but also a good transient response. The method includes a feedforward controller constructed from the inverse model of the plant, and a feedback controller designed by an Hcontrol method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated via numerical simulations.

  14. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  15. Lubricating oil burn-off in Coast Guard power plants

    DOT National Transportation Integrated Search

    1975-02-01

    The results of a feasibility study for the burn-off of waste oils in Coast Guard power plants are presented. Among the factors considered in this evaluation were: simplicity, cost, engine manufacturers recommendations, mixing ratios, engine emissions...

  16. Engineering problems in ensuring the strength and reliability of the new generation of aircraft engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boguslaev, V.A.

    1995-11-01

    The {open_quotes}Motor Sich{close_quotes} plant - formerly the Zaporozh`e Engine Plant - has been a major contributor to the genesis and development of the domestic aviation industry. More than 20,000 engines made at the plant are currently operating in 18 domestic models of airplanes and helicopters, while roughly 4000 of the factory`s engines are in use abroad. Also, 998 mobile gas-turbine power plants of the PAES-2500 type are presently in service in and outside the CIS. Successes such as these are the result of the tremendous effort put forth by plant personnel and close collaboration with aircraft designers and buyers andmore » scientific-research institutes on engine manufacture, operation, and servicing. Their contributions have made it possible to improve the strength and reliability of engines AI-20, AI-241 AI-25, AI-25TL, and TVZ-117. These models are renowned most of all for their durability, surpassing comparable foreign makes with respect to length of service. Engines AI-20, AI-24, and AI-25 have an average service life of 200,000 h, versus the 50,000 h life of foreign counterparts {open_quotes}Tyne,{close_quotes} {open_quotes}Dart,{close_quotes} and TE.731. At present, engine model D-18T is still not the equal of comparable foreign-made engines in terms of reliability and service life. This can be attributed to both to the problems associated with designing high-thrust engines and to the lack of adequate diagnostic systems. After several problems are resolved, new-generation engines D-36, D-136, and D-18 will provide new levels of reliability and durability. The durability of the D-36 is presently limited by the life of the casing of the combustor (6053 cycles) and the disks of the low- and high-pressure compressors (6500-7000 cycles). The life of the D-18T is restricted mainly by the life of the rotor blades in the high-pressure turbine, defects in the disks of the high-pressure compressor, and other problems.« less

  17. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less

  18. Versatility of hydrocarbon production in cyanobacteria.

    PubMed

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  19. Engineering Values into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility

    PubMed Central

    Cho, Mildred K.

    2016-01-01

    Recent experiments have been used to “edit” genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a “gene drive” that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments. PMID:26632356

  20. Engineering Values Into Genetic Engineering: A Proposed Analytic Framework for Scientific Social Responsibility.

    PubMed

    Sankar, Pamela L; Cho, Mildred K

    2015-01-01

    Recent experiments have been used to "edit" genomes of various plant, animal and other species, including humans, with unprecedented precision. Furthermore, editing the Cas9 endonuclease gene with a gene encoding the desired guide RNA into an organism, adjacent to an altered gene, could create a "gene drive" that could spread a trait through an entire population of organisms. These experiments represent advances along a spectrum of technological abilities that genetic engineers have been working on since the advent of recombinant DNA techniques. The scientific and bioethics communities have built substantial literatures about the ethical and policy implications of genetic engineering, especially in the age of bioterrorism. However, recent CRISPr/Cas experiments have triggered a rehashing of previous policy discussions, suggesting that the scientific community requires guidance on how to think about social responsibility. We propose a framework to enable analysis of social responsibility, using two examples of genetic engineering experiments.

  1. Current biotechnological developments in Belgium.

    PubMed

    Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D

    1989-01-01

    In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.

  2. KSC-2014-2463

    NASA Image and Video Library

    2014-05-09

    CAPE CANAVERAL, Fla. – Researchers prepare to activate the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are George Guerra, quality control engineer, and Chuck Spern, lead project engineer, both with QinetiQ North America on the Engineering Services Contract. The growth chamber will be used as a control unit and procedures will be followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth will be monitored for 28 days. At the end of the cycle, the plants will be carefully harvested, frozen and stored for return to Earth. Photo credit: NASA/Dimitri Gerondidakis

  3. Engineering of new-to-nature halogenated indigo precursors in plants.

    PubMed

    Fräbel, Sabine; Wagner, Bastian; Krischke, Markus; Schmidts, Volker; Thiele, Christina M; Staniek, Agata; Warzecha, Heribert

    2018-03-01

    Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Engineering calcium oxalate crystal formation in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  5. Engineered Plants Make Potential Precursor to Raw Material for Plastics

    ScienceCinema

    Shanklin, John

    2018-06-12

    In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.

  6. Engineered Photorespiratory Bypass Pathways Improve Photosynthetic Efficiency and Growth as Temperature Increases

    NASA Astrophysics Data System (ADS)

    Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.

    2017-12-01

    In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.

  7. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.

    PubMed

    Schuler, Mara L; Mantegazza, Otho; Weber, Andreas P M

    2016-07-01

    C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. Quantitative simulation of extraterrestrial engineering devices

    NASA Technical Reports Server (NTRS)

    Arabyan, A.; Nikravesh, P. E.; Vincent, T. L.

    1991-01-01

    This is a multicomponent, multidisciplinary project whose overall objective is to build an integrated database, simulation, visualization, and optimization system for the proposed oxygen manufacturing plant on Mars. Specifically, the system allows users to enter physical description, engineering, and connectivity data through a uniform, user-friendly interface and stores the data in formats compatible with other software also developed as part of this project. These latter components include: (1) programs to simulate the behavior of various parts of the plant in Martian conditions; (2) an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; (3) a control program to investigate the stability and response of the system under different disturbance conditions; and (4) an optimization program to maximize or minimize various criteria as the system evolves into its final design. All components of the system are interconnected so that changes entered through one component are reflected in the others.

  9. 75 FR 11914 - Chrysler, LLC, Mack Avenue Engine Plants 1 & 2, Power Train Division, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... Facilities Management LLC; Detroit, MI; Amended Certification Regarding Eligibility To Apply for Worker... shows that workers leased from Caravan Knight Facilities Management LLC were employed on-site at the... workers leased from Caravan Knight Facilities Management LLC working on-site at the Detroit, Michigan...

  10. Mass Media and the Debate about Nuclear Power.

    ERIC Educational Resources Information Center

    Sawyer, Thomas M.

    Many factors contribute to the difficulties the media have in dealing with science, engineering, and technology. These difficulties were pointed up in the media coverage of the March 1979 accident at the Three Mile Island nuclear plant, which reflected confusion and lack of understanding and which combined with other factors (including the movie…

  11. Genetic Engineering Strategies for Enhanced Biodiesel Production.

    PubMed

    Hegde, Krishnamoorthy; Chandra, Niharika; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Veeranki, Venkata Dasu

    2015-07-01

    The focus on biodiesel research has shown a tremendous growth over the last few years. Several microbial and plant sources are being explored for the sustainable biodiesel production to replace the petroleum diesel. Conventional methods of biodiesel production have several limitations related to yield and quality, which led to development of new engineering strategies to improve the biodiesel production in plants, and microorganisms. Substantial progress in utilizing algae, yeast, and Escherichia coli for the renewable production of biodiesel feedstock via genetic engineering of fatty acid metabolic pathways has been reported in the past few years. However, in most of the cases, the successful commercialization of such engineering strategies for sustainable biodiesel production is yet to be seen. This paper systematically presents the drawbacks in the conventional methods for biodiesel production and an exhaustive review on the present status of research in genetic engineering strategies for production of biodiesel in plants, and microorganisms. Further, we summarize the technical challenges need to be tackled to make genetic engineering technology economically sustainable. Finally, the need and prospects of genetic engineering technology for the sustainable biodiesel production and the recommendations for the future research are discussed.

  12. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms.

    PubMed

    Dziggel, Clarissa; Schäfer, Holger; Wink, Michael

    2017-01-01

    Plant secondary metabolites exhibit a variety of biological activities and therefore serve as valuable therapeutics or flavoring compounds. However, the small amounts isolated from plants often cannot meet market demands. This led to the exploration of other, more profitable methods for their production, including plant cell culture systems, chemical synthesis and biotechnological production in microbial hosts. The biotechnological production can be pursued by reconstructing metabolic pathways in selected microbial systems. But due to their complexity, most of these pathways are not completely understood and require the expression of a multitude of genes in a foreign organism. Recently, next generation sequencing data and advances in gene silencing in plants allowed the elucidation of some biosynthetic pathways in more detail. Thus, the de novo production of some natural products, including morphine, strictosidine, artemisinin, taxol ® and resveratrol, in extensively engineered microbial hosts has become feasible. This review highlights the reconstruction of these pathways, missing pieces and novel techniques employed. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Developments in biotechnological research in Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicek, C.P.

    1996-12-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. 234 refs.

  14. Use of digital photography for power plant retrofits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamba, J.J.

    1995-09-01

    One of the latest advancements in electronic tools for reducing engineering and drafting effort is the use of digital photography (DP) for retrofit and betterment projects at fossil and nuclear power plants. Sargent and Lundy (S and L) has effectively used digital photography for condition assessments, minor backfit repairs, thermo-lag fire wrap assessments and repairs, and other applications. Digital photography offers several benefits on these types of projects including eliminating the need for official repair drawings and providing station maintenance with a true 3-D visualization of the repair.

  15. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    PubMed

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  16. The trigeneration cycle as a way to create multipurpose stationary power plants based on conversion of aeroderivative turbofan engines

    NASA Astrophysics Data System (ADS)

    Varaksin, A. Yu.; Arbekov, A. N.; Inozemtsev, A. A.

    2014-10-01

    A schematic cycle is considered, and thermodynamic analysis is performed to substantiate the possibility of creating multipurpose industrial power plants, operating on a trigeneration cycle, based on production-type turbofan engines.

  17. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants.

    PubMed

    Pyott, Douglas E; Sheehan, Emma; Molnar, Attila

    2016-10-01

    Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence-specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field-grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene-free T2 generation in self-pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild-type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes. © 2016 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  18. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    PubMed

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  19. ISS Fiber Optic Failure Investigation Root Cause Report

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Plante, Jeannette

    2000-01-01

    In August of 1999, Boeing Corporation (Boeing) engineers began investigating failures of optical fiber being used on International Space Station flight hardware. Catastrophic failures of the fiber were linked to a defect in the glass fiber. Following several meetings of Boeing and NASA engineers and managers, Boeing created and led an investigation team, which examined the reliability of the cable installed in the U.S. Lab. NASA Goddard Space Flight Center's Components Technologies and Radiation Effects Branch (GSFC) led a team investigating the root cause of the failures. Information was gathered from: regular telecons and other communications with the investigation team, investigative trips to the cable distributor's plant, the cable manufacturing plant and the fiber manufacturing plant (including a review of build records), destructive and non-destructive testing, and expertise supplied by scientists from Dupont, and Lucent-Bell Laboratories. Several theories were established early on which were not able to completely address the destructive physical analysis and experiential evidence. Lucent suggested hydrofluoric acid (HF) etching of the glass and successfully duplicated the "rocket engine" defect. Strength testing coupled with examination of the low strength break sites linked features in the polyimide coating with latent defect sites. The information provided below explains what was learned about the susceptibility of the pre-cabled fiber to failure when cabled as it was for Space Station and the nature of the latent defects.

  20. HPAC info-dex 1 -- Locating a manufacturer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    Information in the index includes manufacturer name, address, and telephone and FAX numbers. In this section are more than 200 pages of detailed product information from manufacturers of a wide variety of mechanical systems products. The information details ranges of capacities, sizes, and other data that will assist in the selection and application of these products for mechanical systems in large plants and buildings. Throughout the year, use this section for assistance on current engineering projects. The information details ranges of capacities, sizes, and other data that will assist in the selection and application of these products for mechanical systemsmore » in large plants and buildings. Throughout the year, use this section for assistance on current engineering projects. The manufacturers appearing in HPAC Info-dex 6 are boldface listed in HPAC Info-dex 1, HPAC Info-dex 2, and HPAC Info-dex 3.« less

  1. The Hatch-Smolensk exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sproles, A.

    1993-03-01

    During summer 1992, the World Association of Nuclear Operators (WANO) sponsored an exchange visit between Georgia Power Company's Edwin I. Hatch nuclear plant, a two-unit boiling water reactor site, and the Smolensk atomic energy station, a three-unit RBMK (graphite-moderated and light-water-cooled) plant located 350 km west of Moscow, in Desnogorsk, Russia. The Plant Hatch team included Glenn Goode, manager of engineering support; Curtis Coggin, manager of training and emergency preparedness; Wayne Kirkley, manager of health physics and chemistry; John Lewis, manager of operations; Ray Baker, coordinator of nuclear fuels and contracts; and Bruce McLeod, manager of nuclear maintenance support. Alsomore » traveling with the team was Jerald Towgood, of WANO's Atlanta Centre. The Hatch team visited the Smolensk plant during the week of July 27, 1992.« less

  2. GENETIC ENGINEERING TO ENHANCE MERCURY PHYTOREMEDIATION

    PubMed Central

    Ruiz, Oscar N.; Daniell, Henry

    2009-01-01

    Summary Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (~400 μM PMA) or inorganic mercury (~500 μM HgCl2), accumulating Hg in roots surpassing the concentration in soil (~2000 μg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities. PMID:19328673

  3. Genetic engineering to enhance mercury phytoremediation.

    PubMed

    Ruiz, Oscar N; Daniell, Henry

    2009-04-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (approximately 400 microM PMA) or inorganic mercury (approximately 500 microM HgCl(2)), accumulating Hg in roots surpassing the concentration in soil (approximately 2000 microg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities.

  4. Digital control for the condensate system in a combined cycle power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Parra, M.; Fuentes Gutierrez, J.E.; Castelo Cuevas, L.

    1994-12-31

    This paper presents the highlights by means of which development, installation and start up of the digital control system (DCS)for the condenser and hotwell (condensate system) were performed. This system belongs to the distributed control system installed by the Instituto de Investigaciones Electricas (IIE) at the Combined Cycle Power Plant in Gomez Palacio (GP), Durango, Mexico, during the February-March period, in 1993. The main steps for development of the condenser and hotwell control system include: process modeling, definition of control strategies, algorithms, design and software development, PC simulation tests, laboratory tests with an equipment similar to the one installed atmore » the GP Power Plant, installation, and finally, start up, which was a joint effort with the GP Power Plant engineering staff.« less

  5. Introduction to Session 1B

    NASA Astrophysics Data System (ADS)

    Sticklen, Mariam B.

    Topics presented in the "Plant Biotechnology and Genomics" session focused on technologies that highlight the important role of plant biotechnology and genomics in the development of future energy crops. Several excellent presentations demonstrated the latest advances in energy crop development through the use of plant cell wall regulation and by engineering new energy crops such as brown midrib sweet sorghum. Approaches included the control of cellulose production by increased expression of cellulase synthase genes and the selection of high-yield varieties of shrub willows. The potential of producing hydrolytic enzymes using transgenic plants as a cost-effective means for the large-scale production of these enzymes was also explored in the session, as was the role of posttranslational modifications on the activities of heterologous expressed cellulases in hosts such as Pichia pastoris.

  6. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    PubMed

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. KSC-2014-2905

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – The plant pillows containing the outredgeous red lettuce leaves have been removed from the Veggie plant growth system inside a control chamber at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left, are Trent Smith, NASA project manager in the ISS Ground Processing and Research Project Office, Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract, George Guerra, quality control engineer with QinetiQ North America, Jim Smodell, a technician with SGT, Gioia Massa, NASA payload scientist for Veggie, and Nicole Dufour, NASA Engineering and Technology. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  8. Engineering starch accumulation by manipulation of phosphate metabolism of starch.

    PubMed

    Weise, Sean E; Aung, Kimberly; Jarou, Zach J; Mehrshahi, Payam; Li, Ziru; Hardy, Anna C; Carr, David J; Sharkey, Thomas D

    2012-06-01

    A new understanding of leaf starch degradation has emerged in the last 10 years. It has been shown that starch phosphorylation and dephosphorylation are critical components of this process. Glucan, water dikinase (GWD) (and phosphoglucan, water dikinase) adds phosphate to starch, and phosphoglucan phosphatase (SEX4) removes these phosphates. To explore the use of this metabolism to manipulate starch accumulation, Arabidopsis (Arabidopsis thaliana) plants were engineered by introducing RNAi constructs designed to reduce expression of AtGWD and AtSEX4. The timing of starch build-up was altered with ethanol-inducible and senescence-induced gene promoters. Ethanol induction of RNAi lines reduced transcript for AtGWD and AtSEX4 by 50%. The transgenic lines had seven times more starch than wild type at the end of the dark period but similar growth rates and total biomass. Elevated leaf starch content in maize leaves was engineered by making an RNAi construct against a gene in maize that appeared to be homologous to AtGWD. The RNAi construct was expressed using the constitutive ubiquitin promoter. Leaf starch content at the end of a night period in engineered maize plants was 20-fold higher than in untransformed plants with no impact on total plant biomass. We conclude that plants can be engineered to accumulate starch in the leaves with little impact on vegetative biomass. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    PubMed

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  10. Genetic engineering and sustainable production of ornamentals: current status and future directions.

    PubMed

    Lütken, Henrik; Clarke, Jihong Liu; Müller, Renate

    2012-07-01

    Through the last decades, environmentally and health-friendly production methods and conscientious use of resources have become crucial for reaching the goal of a more sustainable plant production. Protection of the environment requires careful consumption of limited resources and reduction of chemicals applied during production of ornamental plants. Numerous chemicals used in modern plant production have negative impacts on human health and are hazardous to the environment. In Europe, several compounds have lost their approval and further legal restrictions can be expected. This review presents the more recent progress of genetic engineering in ornamental breeding, delivers an overview of the biological background of the used technologies and critically evaluates the usefulness of the strategies to obtain improved ornamental plants. First, genetic engineering is addressed as alternative to growth retardants, comprising recombinant DNA approaches targeting relevant hormone pathways, e.g. the gibberellic acid (GA) pathway. A reduced content of active GAs causes compact growth and can be facilitated by either decreased anabolism, increased catabolism or altered perception. Moreover, compactness can be accomplished by using a natural transformation approach without recombinant DNA technology. Secondly, metabolic engineering approaches targeting elements of the ethylene signal transduction pathway are summarized as a possible alternative to avoid the use of chemical ethylene inhibitors. In conclusion, molecular breeding approaches are dealt with in a way allowing a critical biological assessment and enabling the scientific community and public to put genetic engineering of ornamental plants into a perspective regarding their usefulness in plant breeding.

  11. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, themore » goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and validation activities. The DMS includes general system functions, including task lists, electronic signature, non-conformance reports and message systems, that cut vertically across the remaining subsystems. Oracle's security features were utilized to ensure that only authorized users were allowed to log in, and to restrict access to system functionality according to user role.« less

  12. Training Civil Engineering Enlisted Personnel Past, Present and Future

    DTIC Science & Technology

    1989-09-01

    engines, 90; diesel fuel injector systems, 60; exciters and alternators, 60; power plant installation, 60; power plant maintenance, 30; power centers, 30...ENGINEERING COURSES AND STUDENTS GRADUATED, MAY-JUNE 1946. Course Titles Weeks’ No. of Length Grads. Diesel Mechanic 8 58 Auto Equipment Mechanic 8 116...134 Power Shovel 105 Crawler Tractor 315 Miscellaneous and Well Driller 87 *Construction Technician 235 Crane Operator 66 * Diesel Mechanic 252

  13. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems.

    PubMed

    Mao, Yanfei; Botella, Jose Ramon; Zhu, Jian-Kang

    2017-03-01

    The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.

  14. An introduction to plant cell culture: the future ahead.

    PubMed

    Loyola-Vargas, Víctor M; Ochoa-Alejo, Neftalí

    2012-01-01

    Plant cell, tissue, and organ culture (PTC) techniques were developed and established as an experimental necessity for solving important fundamental questions in plant biology, but they currently represent very useful biotechnological tools for a series of important applications such as commercial micropropagation of different plant species, generation of disease-free plant materials, production of haploid and doublehaploid plants, induction of epigenetic or genetic variation for the isolation of variant plants, obtention of novel hybrid plants through the rescue of hybrid embryos or somatic cell fusion from intra- or intergeneric sources, conservation of valuable plant germplasm, and is the keystone for genetic engineering of plants to produce disease and pest resistant varieties, to engineer metabolic pathways with the aim of producing specific secondary metabolites or as an alternative for biopharming. Some other miscellaneous applications involve the utilization of in vitro cultures to test toxic compounds and the possibilities of removing them (bioremediation), interaction of root cultures with nematodes or mycorrhiza, or the use of shoot cultures to maintain plant viruses. With the increased worldwide demand for biofuels, it seems that PTC will certainly be fundamental for engineering different plants species in order to increase the diversity of biofuel options, lower the price marketing, and enhance the production efficiency. Several aspects and applications of PTC such as those mentioned above are the focus of this edition.

  15. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    EPA Science Inventory

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  16. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    EPA Science Inventory

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  17. 43. Photograph of a line drawing. 'PART III, SECTION 1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Photograph of a line drawing. 'PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS H-1 TO H-10 INCL., GRINDING, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  18. Methods for high yield production of terpenes

    DOEpatents

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  19. Approaches to achieve high-level heterologous protein production in plants.

    PubMed

    Streatfield, Stephen J

    2007-01-01

    Plants offer an alternative to microbial fermentation and animal cell cultures for the production of recombinant proteins. For protein pharmaceuticals, plant systems are inherently safer than native and even recombinant animal sources. In addition, post-translational modifications, such as glycosylation, which cannot be achieved with bacterial fermentation, can be accomplished using plants. The main advantage foreseen for plant systems is reduced production costs. Plants should have a particular advantage for proteins produced in bulk, such as industrial enzymes, for which product pricing is low. In addition, edible plant tissues are well suited to the expression of vaccine antigens and pharmaceuticals for oral delivery. Three approaches have been followed to express recombinant proteins in plants: expression from the plant nuclear genome; expression from the plastid genome; and expression from plant tissues carrying recombinant plant viral sequences. The most important factor in moving plant-produced heterologous proteins from developmental research to commercial products is to ensure competitive production costs, and the best way to achieve this is to boost expression. Thus, considerable research effort has been made to increase the amount of recombinant protein produced in plants. This research includes molecular technologies to increase replication, to boost transcription, to direct transcription in tissues suited for protein accumulation, to stabilize transcripts, to optimize translation, to target proteins to subcellular locations optimal for their accumulation, and to engineer proteins to stabilize them. Other methods include plant breeding to increase transgene copy number and to utilize germplasm suited to protein accumulation. Large-scale commercialization of plant-produced recombinant proteins will require a combination of these technologies.

  20. Analysis of Loss-of-Offsite-Power Events 1997-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Nancy Ellen; Schroeder, John Alton

    2016-07-01

    Loss of offsite power (LOOP) can have a major negative impact on a power plant’s ability to achieve and maintain safe shutdown conditions. LOOP event frequencies and times required for subsequent restoration of offsite power are important inputs to plant probabilistic risk assessments. This report presents a statistical and engineering analysis of LOOP frequencies and durations at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience during calendar years 1997 through 2015. LOOP events during critical operation that do not result in a reactor trip, are not included. Frequencies and durations weremore » determined for four event categories: plant-centered, switchyard-centered, grid-related, and weather-related. Emergency diesel generator reliability is also considered (failure to start, failure to load and run, and failure to run more than 1 hour). There is an adverse trend in LOOP durations. The previously reported adverse trend in LOOP frequency was not statistically significant for 2006-2015. Grid-related LOOPs happen predominantly in the summer. Switchyard-centered LOOPs happen predominantly in winter and spring. Plant-centered and weather-related LOOPs do not show statistically significant seasonality. The engineering analysis of LOOP data shows that human errors have been much less frequent since 1997 than in the 1986 -1996 time period.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattison, M.B.; Schroeder, J.A.; Russell, K.D.

    The Idaho National Engineering Laboratory (INEL) over the past year has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both NRR and AEOD. This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with amore » unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattison, M.B.; Schroeder, J.A.; Russell, K.D.

    The Idaho National Engineering Laboratory (INEL) over the past year has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of conditional core damage probability (CCDP) evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both NRR and AEOD. This paper presents an overview of the models and software. Key characteristics include: (1) classification of the plant models according tomore » plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events.« less

  3. Understanding and manipulating plant lipid composition: Metabolic engineering leads the way

    PubMed Central

    Napier, Johnathan A; Haslam, Richard P; Beaudoin, Frederic; Cahoon, Edgar B

    2014-01-01

    The manipulation of plant seed oil composition so as to deliver enhanced fatty acid compositions suitable for feed or fuel has long been a goal of metabolic engineers. Recent advances in our understanding of the flux of acyl-changes through different key metabolic pools such as phosphatidylcholine and diacylglycerol have allowed for more targeted interventions. When combined in iterative fashion with further lipidomic analyses, significant breakthroughs in our capacity to generate plants with novel oils have been achieved. Collectively these studies, working at the interface between metabolic engineering and synthetic biology, demonstrate the positive fundamental and applied outcomes derived from such research. PMID:24809765

  4. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  5. Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department of Agriculture, Forest Service, Region 5. L. Glenn Hall, landscape engineer. 11-5-35. - Pine Hills Station, Barracks, West Side of Boulder Creek Road at Engineers Road, Julian, San Diego County, CA

  6. General Methodology Combining Engineering Optimization of Primary HVAC and R Plants with Decision Analysis Methods--Part II: Uncertainty and Decision Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Reddy, T. A.; Gurian, Patrick

    2007-01-31

    A companion paper to Jiang and Reddy that presents a general and computationally efficient methodology for dyanmic scheduling and optimal control of complex primary HVAC&R plants using a deterministic engineering optimization approach.

  7. Genetically Modified Food: Knowledge and Attitude of Teachers and Students

    NASA Astrophysics Data System (ADS)

    Mohapatra, Animesh K.; Priyadarshini, Deepika; Biswas, Antara

    2010-10-01

    The concepts behind the technology of genetic modification of organisms and its applications are complex. A diverse range of opinions, public concern and considerable media interest accompanies the subject. This study explores the knowledge and attitudes of science teachers and senior secondary biology students about the application of a rapidly expanding technology, genetic engineering, to food production. The results indicated significant difference in understanding of concepts related with genetically engineered food stuffs between teachers and students. The most common ideas about genetically modified food were that cross bred plants and genetically modified plants are not same, GM organisms are produced by inserting a foreign gene into a plant or animal and are high yielding. More teachers thought that genetically engineered food stuffs were unsafe for the environment. Both teachers and students showed number of misconceptions, for example, the pesticidal proteins produced by GM organisms have indirect effects through bioaccumulation, induces production of allergic proteins, genetic engineering is production of new genes, GM plants are leaky sieves and that transgenes are more likely to introgress into wild species than mutated species. In general, more students saw benefits while teachers were cautious about the advantages of genetically engineered food stuffs.

  8. Aquatic Plant Control Research Program. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. Report 5. Synthesis Report.

    DTIC Science & Technology

    1984-06-01

    RD-Rl45 988 AQUATIC PLANT CONTROL RESEARCH PROGRAM LARGE-SCALE 1/2 OPERATIONS MANAGEMENT ..(U) ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS...REPORT A-78-2 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR -, CONTROL OF PROBLEM AQUATIC PLANTS Report 5 SYNTHESIS REPORT bv Andrew...Corps of Engineers Washington, DC 20314 84 0,_1 oil.. LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL OF PROBLEM AQUATIC

  9. Advanced Plant Habitat

    NASA Image and Video Library

    2016-11-17

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The APH is the largest plant chamber built for the agency. Oscar Monje, a scientist on the Engineering Services Contract, prepares the base of the APH for engineering development tests to see how the science will integrate with the various systems of the plant habitat. The APH will have about 180 sensors and fourt times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.

  10. USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 33.

    DTIC Science & Technology

    1977-07-06

    the condensation mode. Analysis is presented of the expediency of creating nuclear power plants for heat supply. Initial data are presented for this...boilers by two-pipe system, from nuclear electric power plant single-pipe system. Table 1; references 3. 69 USSR UDC 621.311.22:621.039.001.5 ANALYSIS ...engineering materials and equipment. 17. Key Words and Document Analysis . 17a. Descriptors USSR Eastern Europe Aeronautics Industrial Engineering Marine

  11. AN INVESTIGATION OF THE TRAINING AND SKILL REQUIREMENTS OF INDUSTRIAL MACHINERY MAINTENANCE WORKERS. VOLUME II. FINAL REPORT.

    ERIC Educational Resources Information Center

    LYNN, FRANK

    THE APPENDIXES FOR "AN INVESTIGATION OF THE TRAINING AND SKILL REQUIREMENTS OF INDUSTRIAL MACHINERY MAINTENANCE WORKERS, FINAL REPORT, VOLUME I" (VT 004 006) INCLUDE (1) TWO LETTERS FROM PLANT ENGINEERS STRESSING THE IMPORTANCE OF TRAINING MACHINERY MAINTENANCE WORKERS, (2) A DESCRIPTION OF THE MAINTENANCE TRAINING SURVEY, A SAMPLE QUESTIONNAIRE,…

  12. Biowatch South Africa and the Challenges in Enforcing its Constitutional Right to Access to Information

    ERIC Educational Resources Information Center

    Peekhaus, Wilhelm

    2011-01-01

    This paper examines the difficulties encountered by Biowatch, a South African civil society environmental organization, in its attempts to obtain access to government information in respect of genetically engineered plants. After establishing the context of South Africa's access to information regime, including a brief discussion of several of its…

  13. A method of measuring increase in soil depth and water-storage capacity due to forest management

    Treesearch

    George R., Jr. Trimble

    1952-01-01

    Conservationists, engineers, and others who deal with water problems have become more and more concerned in recent years with increasing the storage of water in the ground. Their concern has centered around problems of flood control and storage of water for later use by plants or animals, including man.

  14. 37. Photograph of a line drawing. 'PART I, SECTION 8, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Photograph of a line drawing. 'PART I, SECTION 8, BUILDINGS NO. G-1 TO G-10 INCL., PURIFICATION, MANUFACTURING AREA, PLANT B AS OF 4-24-44.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  15. 3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit PEM. Interior of Martinsburg plant showing two MacIntousch Seymore steam engines and one Taylor steam engine belt driving (from let to right) a sperry 30 light, 220 Volt generator, a Westinghouse 900 light, 2200 Volt generator, a Ball 80 light are generator, and two Edison, 900 light, 220 Volt generators. Note switchboard to left. Photo c. 1896. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  16. 52. Photograph of a line drawing. 'PART I, SECTION 8, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photograph of a line drawing. 'PART I, SECTION 8, BUILDINGS NO. 0-1, 0-3, 0-5, 0-7, 0-9, TESTING LABORATORY, MANUFACTURING AREA, PLANT B.' From the U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  17. 44. Photograph of a line drawing. 'PLAN LAYOUT OF PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Photograph of a line drawing. 'PLAN LAYOUT OF PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS H-1 TO H-10 INCL., GRINDING, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant 8, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  18. 31. Photograph of a line drawing. 'PLAN LAYOUT OF PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photograph of a line drawing. 'PLAN LAYOUT OF PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS D-1 TO U-10 INCL., NITRATION, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  19. 30. Photograph of a line drawing. 'CROSS SECTION OF PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photograph of a line drawing. 'CROSS SECTION OF PART III, SECTION 1, EQUIPMENT LAYOUT, BUILDINGS D-1 TO D-10 INCL., NITRATION, MANUFACTURING AREA, PLANT 'B'.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant B, Parts II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  20. Human Factors Principles in Information Dashboard Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques V.; St. Germain, Shawn

    When planning for control room upgrades, nuclear power plants have to deal with a multitude of engineering and operational impacts. This will inevitably include several human factors considerations, including physical ergonomics of workstations, viewing angles, lighting, seating, new communication requirements, and new concepts of operation. In helping nuclear power utilities to deal with these challenges, the Idaho National Laboratory (INL) has developed effective methods to manage the various phases of the upgrade life cycle. These methods focus on integrating human factors engineering processes with the plant’s systems engineering process, a large part of which is the development of end-state conceptsmore » for control room modernization. Such an end-state concept is a description of a set of required conditions that define the achievement of the plant’s objectives for the upgrade. Typically, the end-state concept describes the transition of a conventional control room, over time, to a facility that employs advanced digital automation technologies in a way that significantly improves system reliability, reduces human and control room-related hazards, reduces system and component obsolescence, and significantly improves operator performance. To make the various upgrade phases as concrete and as visible as possible, an end-state concept would include a set of visual representations of the control room before and after various upgrade phases to provide the context and a framework within which to consider the various options in the upgrade. This includes the various control systems, human-system interfaces to be replaced, and possible changes to operator workstations. This paper describes how this framework helps to ensure an integrated and cohesive outcome that is consistent with human factors engineering principles and also provide substantial improvement in operator performance. The paper further describes the application of this integrated approach in the strategic modernization program at a nuclear power plant where legacy systems are upgraded to advanced digital technologies through a systematic process that links human factors principles to the systems engineering process. This approach will help to create an integrated control room architecture beyond what is possible for individual subsystem upgrades alone. In addition, several human factors design and evaluation methods were used to develop the end-state concept, including interactive sessions with operators in INL’s Human System Simulation Laboratory, three-dimensional modeling to visualize control board changes.« less

  1. 2. Photocopied from Photo 11456, Wheelon Station Special Folder, Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopied from Photo 11456, Wheelon Station Special Folder, Engineering Dept., Utah Power & Light Co., Salt Lake City, Utah. 'WHEELON HYDRO-ELECTRIC PLANT (7125 KW). INTERIOR OF MAIN BUILDING SHOWING FOUR 1000 KW UNITS. NOV 1914.' - Utah Sugar Company, Wheelon Hydoelectric Plant, Bear River, Fielding, Box Elder County, UT

  2. 77 FR 41358 - Bayer CropScience LP; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... for Determination of Nonregulated Status of Soybean Genetically Engineered for Herbicide Tolerance... genetically engineered for resistance to the herbicides glyphosate and isoxaflutole. The petition has been... herbicides glyphosate and isoxaflutole. The petition states that this soybean is unlikely to pose a plant...

  3. Silencing of meiosis-critical genes for engineering male sterility in plants

    USDA-ARS?s Scientific Manuscript database

    Engineering sterile traits in plants through the tissue-specific expression of a cytotoxic gene provides an effective way for containing transgene flow; however, the microbial origin of cytotoxic genes has raised concerns. In an attempt to develop a safe alternative, we have chosen the meiosis-crit...

  4. 16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. THE PANEL CONTROLS AIR-HANDLING EQUIPMENT AND AIR PRESSURE WITHIN THE BUILDING. (10/6/69) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant.« less

  6. Brazilian medicinal plants with corroborated anti-inflammatory activities: a review.

    PubMed

    Ribeiro, Victor Pena; Arruda, Caroline; Abd El-Salam, Mohamed; Bastos, Jairo Kenupp

    2018-12-01

    Inflammatory disorders are common in modern life, and medicinal plants provide an interesting source for new compounds bearing anti-inflammatory properties. In this regard, Brazilian medicinal plants are considered to be a promising supply of such compounds due to their great biodiversity. To undertake a review on Brazilian medicinal plants with corroborated anti-inflammatory activities by selecting data from the literature reporting the efficacy of plants used in folk medicine as anti-inflammatory, including the mechanisms of action of their extracts and isolated compounds. A search in the literature was undertaken by using the following Web tools: Web of Science, SciFinder, Pub-Med and Science Direct. The terms 'anti-inflammatory' and 'Brazilian medicinal plants' were used as keywords in search engine. Tropicos and Reflora websites were used to verify the origin of the plants, and only the native plants of Brazil were included in this review. The publications reporting the use of well-accepted scientific protocols to corroborate the anti-inflammatory activities of Brazilian medicinal plants with anti-inflammatory potential were considered. We selected 70 Brazilian medicinal plants with anti-inflammatory activity. The plants were grouped according to their anti-inflammatory mechanisms of action. The main mechanisms involved inflammatory mediators, such as interleukins (ILs), nuclear factor kappa B (NF-κB), prostaglandin E2 (PGE2), cyclooxygenase (COX) and reactive oxygen species (ROS). The collected data on Brazilian medicinal plants, in the form of crude extract and/or isolated compounds, showed significant anti-inflammatory activities involving different mechanisms of action, indicating Brazilian plants as an important source of anti-inflammatory compounds.

  7. KSC-2014-2909

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – At far right, Jim Smodell, a technician with SGT, shows a plant pillow from the Veggie plant growth system to Gioia Massa, NASA payload scientist for Veggie. Partially hidden behind Smodell is Chuck Spern, lead project engineer with QinetiQ North America on the Engineering Services Contract. At left is Trent Smith, NASA project manager in the ISS Ground Processing and Research Project Office, and Nicole Dufour, NASA Engineering and Technology Directorate. They are in the Payload Development Laboratory at the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center in Florida. The plant pillows were removed from the Veggie plant growth system inside a control chamber at the SSPF. The growth chamber was used as a control unit for Veggie and procedures were followed identical to those being performed on Veggie and the Veg-01 experiment on the International Space Station. The chamber mimicked the temperature, relative humidity and carbon dioxide concentration of those in the Veggie unit on the space station. Veggie and Veg-01 were delivered to the space station aboard the SpaceX-3 mission. Veggie is the first fresh food production system delivered to the station. Six plant pillows, each containing outredgeous red romaine lettuce seeds and a root mat were inserted into Veggie. The plant chamber's red, blue and green LED lights were activated. The plant growth was monitored for 33 days. On June 10, at the end of the cycle, the plants were carefully harvested, frozen and stored for return to Earth by Expedition 39 flight engineer and NASA astronaut Steve Swanson. Photo credit: NASA/Frankie Martin

  8. The Development of Plant Biotechnology.

    ERIC Educational Resources Information Center

    Torrey, John G.

    1985-01-01

    Examines major lines of thought leading to what is meant by plant biotechnology, namely, the application of existing techniques of plant organ, tissue, and cell culture, plant molecular biology, and genetic engineering to the improvement of plants and of plant productivity for the benefit of man. (JN)

  9. The next green movement: Plant biology for the environment and sustainability.

    PubMed

    Jez, Joseph M; Lee, Soon Goo; Sherp, Ashley M

    2016-09-16

    From domestication and breeding to the genetic engineering of crops, plants provide food, fuel, fibers, and feedstocks for our civilization. New research and discoveries aim to reduce the inputs needed to grow crops and to develop plants for environmental and sustainability applications. Faced with population growth and changing climate, the next wave of innovation in plant biology integrates technologies and approaches that span from molecular to ecosystem scales. Recent efforts to engineer plants for better nitrogen and phosphorus use, enhanced carbon fixation, and environmental remediation and to understand plant-microbiome interactions showcase exciting future directions for translational plant biology. These advances promise new strategies for the reduction of inputs to limit environmental impacts and improve agricultural sustainability. Copyright © 2016, American Association for the Advancement of Science.

  10. Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants.

    PubMed

    Li, Yuanyuan; Heckmann, David; Lercher, Martin J; Maurino, Veronica G

    2017-01-01

    To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C 4 type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C 3 -C 4 evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C 4 plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C 4 photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C 4 anatomy and biochemistry. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  12. Coal gasification systems engineering and analysis. Appendix C: Alternate product facility designs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The study of the production of methane, methanol, gasoline, and hydrogen by an add-on facility to a Koppers-Totzek based MBG plant is presented. Applications to a Texaco facility are inferred by evaluation of delta effects from the K-T cases. The production of methane from an add-on facility to a Lurgi based MBG plant and the co-production of methane and methanol from a Lurgi based system is studied. Studies are included of the production of methane from up to 50 percent of the MBG produced in an integrated K-T based plant and the production of methane from up to 50 percent of the MBG produced from an integrated plant in which module 1 is based on K-T technology and modules 2, 3, and 4 are based on Texaco technology.

  13. Plants as Factories for Human Pharmaceuticals: Applications and Challenges

    PubMed Central

    Yao, Jian; Weng, Yunqi; Dickey, Alexia; Wang, Kevin Yueju

    2015-01-01

    Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements. PMID:26633378

  14. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.

    PubMed

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo; Liu, Yule

    2016-07-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Thermal design of a natural gas - diesel dual fuel turbocharged V18 engine for ship propulsion and power plant applications

    NASA Astrophysics Data System (ADS)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    A detailed method is presented on the thermal design of a natural gas - diesel dual fuel internal combustion engine. An 18 cylinder four stroke turbocharged engine is considered to operate at a maximum speed of 500 rpm for marine and power plant applications. Thermodynamic, heat transfer and fluid flow phenomena are mathematically analyzed to provide a real cycle analysis together with a complete set of calculated operation conditions, power characteristics and engine efficiencies. The method is found to provide results in close agreement to published data for the actual performance of similar engines such as V18 MAN 51/60DF.

  16. Flow-accelerated corrosion in power plants. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chexal, B.; Horowitz, J.; Dooley, B.

    1998-07-01

    Flow-Accelerated Corrosion (FAC) is a phenomenon that results in metal loss from piping, vessels, and equipment made of carbon steel. FAC occurs only under certain conditions of flow, chemistry, geometry, and material. Unfortunately, those conditions are common in much of the high-energy piping in nuclear and fossil-fueled power plants. Undetected, FAC will cause leaks and ruptures. Consequently, FAC has become a major issue, particularly for nuclear plants. Although major failures are rare, the consequences can be severe. In 1986, four men in the area of an FAC-induced pipe rupture were killed. Fossil plants too, are subject to FAC. In 1995,more » a failure at a fossil-fired plant caused two fatalities. In addition to concerns about personnel safety, FAC failures can pose challenges to plant safety. Regulatory agencies have therefore required nuclear utilities to institute formal programs to address FAC. Finally, a major FAC failure (like the one that happened in 1997 at a US nuclear power plant) can force a plant to shutdown and purchase replacement power at a price approaching a million dollars per day depending upon the MWe rating of the plant. A great deal of time and money has been spent to develop the technology to predict, detect, and mitigate FAC in order to prevent catastrophic failures. Over time, substantial progress has been made towards understanding and preventing FAC. The results of these efforts include dozens of papers, reports, calculations, and manuals, as well as computer programs and other tools. This book is written to provide a detailed treatment of the entire subject in a single document. Any complex issue requires balancing know-how, the risk of decision making, and a pragmatic engineering solution. This book addresses these by carrying out the necessary R and D and engineering along with plant knowledge to cover all quadrants of Chexal`s four quadrant known-unknown diagram, as seen in Figure i.« less

  17. Engineering study of the module/array interface for large terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.

  18. Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deltete, D.; Fisher, S.; Kelly, J.J.

    1994-05-01

    EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less

  19. Implications of Transitioning from De Facto to Engineered Water Reuse for Power Plant Cooling.

    PubMed

    Barker, Zachary A; Stillwell, Ashlynn S

    2016-05-17

    Thermoelectric power plants demand large quantities of cooling water, and can use alternative sources like treated wastewater (reclaimed water); however, such alternatives generate many uncertainties. De facto water reuse, or the incidental presence of wastewater effluent in a water source, is common at power plants, representing baseline conditions. In many cases, power plants would retrofit open-loop systems to cooling towers to use reclaimed water. To evaluate the feasibility of reclaimed water use, we compared hydrologic and economic conditions at power plants under three scenarios: quantified de facto reuse, de facto reuse with cooling tower retrofits, and modeled engineered reuse conditions. We created a genetic algorithm to estimate costs and model optimal conditions. To assess power plant performance, we evaluated reliability metrics for thermal variances and generation capacity loss as a function of water temperature. Applying our analysis to the greater Chicago area, we observed high de facto reuse for some power plants and substantial costs for retrofitting to use reclaimed water. Conversely, the gains in reliability and performance through engineered reuse with cooling towers outweighed the energy investment in reclaimed water pumping. Our analysis yields quantitative results of reclaimed water feasibility and can inform sustainable management of water and energy.

  20. Biomechanics of cellular solids.

    PubMed

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  1. Fuels from renewable resources

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Schnell, C.; Gieseler, G.

    Consideration is given to fuel substitution based on regenerative plants. Methanol can be produced from regenerative plants by gasification followed by the catalytic hydration of carbon oxides. Ethanol can be used as a replacement fuel in gasoline and diesel engines and its high-knock rating allows it to be mixed with lead-free gasoline. Due to the depletion of oil and gas reserves, fermentation alcohol is being considered. The raw materials for the fermentation process can potentially include: (1) sugar (such as yeasts, beet or cane sugar); (2) starch (from potatoes or grain) and (3) cellulose which can be hydrolized into glucose for fermentation.

  2. Lectin engineering, a molecular evolutionary approach to expanding the lectin utilities.

    PubMed

    Hu, Dan; Tateno, Hiroaki; Hirabayashi, Jun

    2015-04-27

    In the post genomic era, glycomics--the systematic study of all glycan structures of a given cell or organism--has emerged as an indispensable technology in various fields of biology and medicine. Lectins are regarded as "decipherers of glycans", being useful reagents for their structural analysis, and have been widely used in glycomic studies. However, the inconsistent activity and availability associated with the plant-derived lectins that comprise most of the commercially available lectins, and the limit in the range of glycan structures covered, have necessitated the development of innovative tools via engineering of lectins on existing scaffolds. This review will summarize the current state of the art of lectin engineering and highlight recent technological advances in this field. The key issues associated with the strategy of lectin engineering including selection of template lectin, construction of a mutagenesis library, and high-throughput screening methods are discussed.

  3. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.

    PubMed

    Blatti, Jillian L; Michaud, Jennifer; Burkart, Michael D

    2013-06-01

    Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity

    PubMed Central

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P.; Zhao, Fang-Jie

    2016-01-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  5. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  6. Human Resource Development and New Technology in the Automobile Industry: A Case Study of Ford Motor Company's Dearborn Engine Plant. The Development and Utilization of Human Resources in the Context of Technological Change and Industrial Restructuring.

    ERIC Educational Resources Information Center

    Chen, Kan; And Others

    This report centers around a plant-level study of the development and utilization of human resources in the context of technological change and industrial restructuring in the crankshaft production area of Ford Motor Company's Dearborn Engine Plant (DEP). The introductory chapter describes how the study was conducted, provides an introduction to…

  7. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  8. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  9. Bioregenerative system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.

  10. Surrogate species selection for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    PubMed

    Carstens, Keri; Cayabyab, Bonifacio; De Schrijver, Adinda; Gadaleta, Patricia G; Hellmich, Richard L; Romeis, Jörg; Storer, Nicholas; Valicente, Fernando H; Wach, Michael

    2014-01-01

    Most regulatory authorities require that developers of genetically engineered insect-resistant (GEIR) crops evaluate the potential for these crops to have adverse impacts on valued non-target organisms (NTOs), i.e., organisms not intended to be controlled by the trait. In many cases, impacts to NTOs are assessed using surrogate species, and it is critical that the data derived from surrogates accurately predict any adverse impacts likely to be observed from the use of the crop in the agricultural context. The key is to select surrogate species that best represent the valued NTOs in the location where the crop is going to be introduced, but this selection process poses numerous challenges for the developers of GE crops who will perform the tests, as well as for the ecologists and regulators who will interpret the test results. These issues were the subject of a conference "Surrogate Species Selection for Assessing Potential Adverse Environmental Impacts of Genetically Engineered Plants on Non-Target Organisms" convened by the Center for Environmental Risk Assessment, ILSI Research Foundation. This report summarizes the proceedings of the conference, including the presentations, discussions and the points of consensus agreed to by the participants.

  11. Non-photosynthetic plastids as hosts for metabolic engineering.

    PubMed

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. [Soft-ridged bench terrace design in hilly loess region].

    PubMed

    Cao, Shixiong; Chen, Li; Gao, Wangsheng

    2005-08-01

    Reconfiguration of hillside field into terrace is regarded as one of the key techniques for water and soil conservation in mountainous regions. On slopes exceeding 30 degrees, the traditional techniques of terracing are difficult to apply as risers (i.e., backslopes), and if not reinforced, are so abrupt and easy to collapse under gravity alone, thus damaging the terrace. To improve the reconfiguration of hillside field into terrace, holistic techniques of soft-ridged bench terrace engineering, including revegetation, with trees and planting grasses on riser slopes, were tested between 1997 and 2001 in Xiabiangou watershed of Yan' an, Shaanxi Province. A "working with Nature" engineering approach, riser slopes of 45 degrees, similar to the pre-existing slope of 35 degrees, was employed to radically reduce gravity-erosion. Based on the concepts of biodiversity and the principles of landscape ecology, terrace benches, bunds, and risers were planted with trees, shrubs, forage grasses, and crops, serving to generate a diverse array of plants, a semi-forested area, and to stabilize terrace bunds. Soft-ridged bench terrace made it possible to significantly reduce hazards arising from gravity erosion, and reduce the costs of individual bench construction and maintenance by 24.9% and 55.5% of the costs under traditional techniques, respectively. Such a construction allowed an enrichment and concentration of nutrients in the soils of terrace bunds, providing an ideal environment for a range of plants to grow and develop. The terrace riser could be planted with drought-resistant plants ranging from forage grasses to trees, and this riser vegetation would turn the exposed bunds and risers existing under traditional techniques into plant-covered belts, great green ribbons decorating farmland and contributing to the enhancement of the landscape biology.

  13. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpmmore » flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.« less

  14. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  15. Kinematic amplification strategies in plants and engineering

    NASA Astrophysics Data System (ADS)

    Charpentier, Victor; Hannequart, Philippe; Adriaenssens, Sigrid; Baverel, Olivier; Viglino, Emmanuel; Eisenman, Sasha

    2017-06-01

    While plants are primarily sessile at the organismal level, they do exhibit a vast array of movements at the organ or sub-organ level. These movements can occur for reasons as diverse as seed dispersal, nutrition, protection or pollination. Their advanced mechanisms generate a myriad of movement typologies, many of which are not fully understood. In recent years, there has been a renewal of interest in understanding the mechanical behavior of plants from an engineering perspective, with an interest in developing novel applications by up-sizing these mechanisms from the micro- to the macro-scale. This literature review identifies the main strategies used by plants to create and amplify movements and anatomize the most recent mechanical understanding of compliant engineering mechanics. The paper ultimately demonstrates that plant movements, rooted in compliance and multi-functionality, can effectively inspire better kinematic/adaptive structures and materials. In plants, the actuators and the deployment structures are fused into a single system. The understanding of those natural movements therefore starts with an exploration of mechanisms at the origins of movements. Plant movements, whether slow or fast, active or passive, reversible or irreversible, are presented and detailed for their mechanical significance. With a focus on displacement amplification, the most recent promising strategies for actuation and adaptive systems are examined with respect to the mechanical principles of shape morphing plant tissues.

  16. 7. Photocopied from Dwg. 69, Nunns Station Folder, Engineering Department, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopied from Dwg. 69, Nunns Station Folder, Engineering Department, Utah Power & Light Co., Salt Lake City, Utah. FLOOR PLANT. (POWER HOUSE IN PROVO CANYON, PROVO, UTAH?) c. 1900. - Telluride Power Company, Nunn Hydroelectric Plant, Southeast side of Provo River, 300 feet West of US Route 189, Orem, Utah County, UT

  17. 1. Photocopied from photo 25797, Engineering Dept., Utah Power and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopied from photo 25797, Engineering Dept., Utah Power and Light Co., Salt Lake City, Utah. 'WHEELON HYDRO-ELECTRIC PLANT (1725 KW) STATION, WEST PENSTOCK, 130 KV TRANSFORMERS AND SWITCHYARD AND EAST AND WEST CANALS. NOV 1914.' - Utah Sugar Company, Wheelon Hydoelectric Plant, Bear River, Fielding, Box Elder County, UT

  18. 77 FR 41363 - BASF Plant Science, LP; Availability of Petition for Determination of Nonregulated Status of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Genetically Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA... herbicides in the imidazolinone family. The petition has been submitted in accordance with our regulations... event BPS-CV127-9, which has been genetically engineered for tolerance to herbicides in the...

  19. 46 CFR 11.323 - STCW engineer officer endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... turbine-propelled vessels as appropriate. (2) STCW engineer officer endorsements issued in accordance with §§ 11.325, 11.327, 11.329, 11.331, 11.333, and 11.335 of this subpart for motor or gas turbine-propelled..., distilling plants, oily water separators, or sewage treatment plants. An applicant may qualify for removal of...

  20. Good Engineering + Poor Communication = Three Mile Island.

    ERIC Educational Resources Information Center

    Mathes, J. C.

    The accident at the Three Mile Island nuclear power plant resulted from a communication failure. Following an incident at an Ohio plant a year and a half earlier, B. M. Dunn, manager of Emergency Core Cooling Systems Analysis at Babcock and Wilcox (engineers), wrote a memorandum making specific recommendations on written instructions for nuclear…

Top