NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1978-01-01
The effect of turbofan engine overall pressure ratio, fan pressure ratio, and ductburner temperature rise on the engine weight and cruise fuel consumption for a mach 2.4 supersonic transport was investigated. Design point engines, optimized purely for the supersonic cruising portion of the flight where the bulk of the fuel is consumed, are considered. Based on constant thrust requirements at cruise, fuel consumption considerations would favor medium by pass ratio engines (1.5 to 1.8) of overall pressure ratio of about 16. Engine weight considerations favor low bypass ratio (0.6 or less) and low wverall pressure ratio (8). Combination of both effects results in bypass ratios of 0.6 to 0.8 and overall pressure ratio of 12 being the overall optimum.
NASA Astrophysics Data System (ADS)
Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning
2013-03-01
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.
NASA Technical Reports Server (NTRS)
Gensenheyner, Robert M.; Berdysz, Joseph J.
1947-01-01
An investigation to determine the performance and operational characteristics of the TG-1OOA gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet rm-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and.correcte& horsepower. For the range of corrected engine speeds investigated, over-all total-pressure-loss ratio, cycle efficiency, ana the frac%ional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. The scatter of combustion- efficiency data tended to obscure any effect of altitude or ram-pressure ratio. For the range of corrected horse-powers investigated, the total-pressure-loss ratio an& the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horse-powers investigated at all corrected engine speeds.
NASA Technical Reports Server (NTRS)
Geisenheyner, Robert M.; Berdysz, Joseph J.
1947-01-01
An altitude-wind-tunnel investigation of a TG-100A gas turbine-propeller engine was performed. Pressure and temperature data were obtained at altitudes from 5000 to 35000 feet, compressor inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 800 to 13000 rpm. The effect of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.
NASA Technical Reports Server (NTRS)
Geisenheyner, Robert M.; Berdysz, Joseph J.
1948-01-01
An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.
The Effect of Increased Carburetor Pressure on Engine Performance at Several Compression Ratios
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Rollin, Vern G
1933-01-01
The object of this investigation was to determine the effect of increasing the carburetor pressures from 30 to 40 inches of mercury, at compression ratios from 3.5 to 7.5, on the power, on the maximum cylinder pressures, on the fuel consumption, and on the other performance characteristics of an engine. A roots-type aircraft-engine supercharger was used to maintain the desired carburetor pressure.
NASA Technical Reports Server (NTRS)
Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.
1947-01-01
An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.
Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows
NASA Technical Reports Server (NTRS)
Williams, J. G.; Steenken, W. G.; Yuhas, A. J.
1996-01-01
The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.
Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4
NASA Technical Reports Server (NTRS)
Rice, Tharen
2002-01-01
Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.
NASA Technical Reports Server (NTRS)
Sivo, Joseph N.; Peters, Daniel J.
1959-01-01
A rocket engine with an exhaust-nozzle area ratio of 25 was operated at a constant chamber pressure of 600 pounds per square inch absolute over a range of oxidant-fuel ratios at an altitude pressure corresponding to approximately 47,000 feet. At this condition, the nozzle flow is slightly underexpanded as it leaves the nozzle. The altitude simulation was obtained first through the use of an exhaust diffuser coupled with the rocket engine and secondly, in an altitude test chamber where separate exhauster equipment provided the altitude pressure. A comparison of performance data from these two tests has established that a diffuser used with a rocket engine operating at near-design nozzle pressure ratio can be a valid means of obtaining altitude performance data for rocket engines.
A Performance Map for Ideal Air Breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2001-01-01
The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
NASA Technical Reports Server (NTRS)
Filippi, Richard E; Dugan, James F , Jr
1956-01-01
The engines, each with a compressor overall total-pressure ratio of 12 and a design inner-turbine-inlet temperature of 2500 degrees R, were investigated at static sea-level conditions to determine the effect on transient performance of varying the desitn pressure ratio divisions 2-6, 3-4, and 4-3 between the outer and inner compressors. The transient considered was an acceleration from 40 to 100 percent design thrust. When the outer compressor of each engine reached design speed, the inner compressors were overspeeding, the maximum being only 1.7 over design mechanical speed. Acceleration times for the three engines were equal.
NASA Technical Reports Server (NTRS)
Walker, Neil (Inventor); Day, Stanley G. (Inventor); Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)
1988-01-01
An integrated control system for coaxial counterrotating aircraft propulsors driven by a common gas turbine engine. The system establishes an engine pressure ratio by control of fuel flow and uses the established pressure ratio to set propulsor speed. Propulsor speed is set by adjustment of blade pitch.
The Effect of Back Pressure on the Operation of a Diesel Engine
2011-02-01
increased back pressure on a turbocharged diesel engine. Steady state and varying back pressure are considered. The results show that high back...a turbocharged diesel engine using the Ricardo Wave engine modelling software, to gain understanding of the problem and provide a good base for...higher pressure. The pressure ratios across the turbocharger compressor and turbine decrease, reducing the mass flow of air through these components
The Effect of Back Pressure on the Operation of a Disel Engine
2011-02-01
increased back pressure on a turbocharged diesel engine. Steady state and varying back pressure are considered. The results show that high back...a turbocharged diesel engine using the Ricardo Wave engine modelling software, to gain understanding of the problem and provide a good base for...higher pressure. The pressure ratios across the turbocharger compressor and turbine decrease, reducing the mass flow of air through these components
Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.
Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines
NASA Technical Reports Server (NTRS)
Rothbrock, A M; Biermann, Arnold E
1938-01-01
Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.
JT8D-100 turbofan engine, phase 1. [noise reduction
NASA Technical Reports Server (NTRS)
1974-01-01
The JT8D turbofan engine, widely used in short and medium range transport aircraft, contributes substantially to airport community noise. The jet noise is predominant in the JT8D engine and may be reduced in a modified engine, without loss of thrust, by increasing the airflow to reduce jet velocity. A configuration study evaluated the effects of fan airflow, fan pressure ratio, and bypass ratio on noise, thrust, and fuel comsumption. The cycle selected for the modified engine was based upon an increased diameter, single-stage fan and two additional core engine compressor stages, which replace the existing two-stage fan. Modifications were also made to the low pressure turbine to provide the increased torque required by the larger diameter fan. The resultant JT8D-100 engine models have the following characteristics at take-off thrust, compared to the current JT8D engine: Airflow and bypass ratio are increased, and fan pressure ratio and engine speed are reduced. The resultant engine is also longer, larger in diameter, and heavier than the JT8D base model, but these latter changes are compensated by the increased thrust and decreased fuel comsumption of the modified engine, thus providing the capability for maintaining the performance of the current JT8D-powered aircraft.
Active Control of Fan Noise-Feasibility Study. Volume 1; Flyover System Noise Studies
NASA Technical Reports Server (NTRS)
Kraft, Robert E.; Janardan, B. A.; Kontos, G. C.; Gliebe, P. R.
1994-01-01
A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment.
A Parametric Cycle Analysis of a Separate-Flow Turbofan with Interstage Turbine Burner
NASA Technical Reports Server (NTRS)
Marek, C. J. (Technical Monitor); Liew, K. H.; Urip, E.; Yang, S. L.
2005-01-01
Today's modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. This study focuses on a parametric cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The JTB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, linear relation between high- and low-pressure turbines, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB.
Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish
2018-05-01
Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.
Friction of Compression-ignition Engines
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H , Jr
1936-01-01
The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.
Variable mixer propulsion cycle
NASA Technical Reports Server (NTRS)
Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)
1978-01-01
A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.
Flight evaluation of an engine static pressure noseprobe in an F-15 airplane
NASA Technical Reports Server (NTRS)
Foote, C. H.; Jaekel, R. F.
1981-01-01
The flight testing of an inlet static pressure probe and instrumented inlet case produced results consistent with sea-level and altitude stand testing. The F-15 flight test verified the basic relationship of total to static pressure ratio versus corrected airflow and automatic distortion downmatch with the engine pressure ratio control mode. Additionally, the backup control inlet case statics demonstrated sufficient accuracy for backup control fuel flow scheduling, and the station 6 manifolded production probe was in agreement with the flight test station 6 tota pressure probes.
NASA Technical Reports Server (NTRS)
Civinskas, K. C.; Kraft, G. A.
1976-01-01
The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.
Orbit Transfer Vehicle (OTV) engine phase A study
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1978-01-01
Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.
Hydrocarbon Constituents of T-56 Combustor Exhaust
1975-04-01
May 1973 to determine feasibility of exhaust cryotrapping and to establish analytical methodology for identifying individual hydrocarbon compounds (3...midtemperature setting was at about 166°C, and 33 psig, corresponding to the conditions of many moderate-pressure ratio engines (1). Finally the high -temperature...condition of 2040C and 50 psig simulates many newer high -pressure-ratio engines, like the F-101 and F-100. Table 2 lists typical military engines and
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
NASA Technical Reports Server (NTRS)
Flechner, S. G.; Patterson, J. C., Jr.
1972-01-01
An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.
NASA Technical Reports Server (NTRS)
Ketchum, James R.; Blivas, Darnold; Pack, George J.
1950-01-01
The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.
Controlling Gas-Flow Mass Ratios
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1990-01-01
Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.
Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification
NASA Astrophysics Data System (ADS)
Wolk, Benjamin Matthew
Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.
NASA Astrophysics Data System (ADS)
Patel, Harinkumar Rajendrabhai
One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.
General Performance Calculations for Gas Turbine Engines
1946-08-01
by - D. H. Mailing on. B.So. June, 1946. In this monograph an attempt in made to summarise the theoretical work carried out during the past few...Engines 1.0 nBBPDPCTION ir’-> During the war years the gas turbine may be said to have come into its own, both as an engine already accepted and...The closer this second pressure ratio is to 1 the lower is the mnxlnwm output and also the pressure ratio r.t which that maximum occurs. Tho
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2014-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (phi) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui Joe; Chang, Clarence T.; Follen, Caitlin E.
2015-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions.This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio(theta) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2015-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector
NASA Technical Reports Server (NTRS)
He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.
2014-01-01
Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66 percent reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50 percent of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.
Dual fuel diesel engine operation using LPG
NASA Astrophysics Data System (ADS)
Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.
2016-08-01
Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.
NASA Technical Reports Server (NTRS)
Hunczak, Henry R
1952-01-01
An investigation was conducted to determine the effectiveness of a free-jet diffuser in reducing the over-all pressure ratios required to operate a free jet with a large air-breathing engine as a test vehicle. Efficient operation of the free jet was determined with and without the considerations required for producing suitable engine-inlet flow conditions. A minimum operating pressure ration of 5.5 was attained with a ratio of nozzle-exit to engine-inlet area of 1.85. Operation of the free jet with unstable engine-inlet flow (buzz) is also included.
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
2002-01-01
Advanced, large commercial turbofan engines using low-fan-pressure-ratio, very high bypass ratio thermodynamic cycles can offer significant fuel savings over engines currently in operation. Several technological challenges must be addressed, however, before these engines can be designed. To name a few, the high-diameter fans associated with these engines pose a significant packaging and aircraft installation challenge, and a large, heavy gearbox is often necessary to address the differences in ideal operating speeds between the fan and the low-pressure turbine. Also, the large nacelles contribute aerodynamic drag penalties and require long, heavy landing gear when mounted on conventional, low wing aircraft. Nevertheless, the reduced fuel consumption rates of these engines are a compelling economic incentive, and fans designed with low pressure ratios and low tip speeds offer attractive noise-reduction benefits. Another complication associated with low-pressure-ratio fans is their need for variable flow-path geometry. As the design fan pressure ratio is reduced below about 1.4, an operational disparity is set up in the fan between high and low flight speeds. In other words, between takeoff and cruise there is too large a swing in several key fan parameters-- such as speed, flow, and pressure--for a fan to accommodate. One solution to this problem is to make use of a variable-area fan nozzle (VAFN). However, conventional, hydraulically actuated variable nozzles have weight, cost, maintenance, and reliability issues that discourage their use with low-fan-pressure-ratio engine cycles. United Technologies Research, in cooperation with NASA, is developing a revolutionary, lightweight, and reliable shape memory alloy actuator system that can change the on-demand nozzle exit area by up to 20 percent. This "smart material" actuation technology, being studied under NASA's Ultra-Efficient Engine Technology (UEET) Program and Revolutionary Concepts in Aeronautics (RevCon) Program, has the potential to enable the next generation of efficient, quiet, very high bypass ratio turbofans. NASA Glenn Research Center's Propulsion Systems Analysis Office, along with NASA Langley Research Center's Systems Analysis Branch, conducted an independent analytical assessment of this new technology to provide strategic guidance to UEET and RevCon. A 2010-technology-level high-spool engine core was designed for this evaluation. Two families of low-spool components, one with and one without VAFN's, were designed to operate with the core. This "constant core" approach was used to hold most design parameters constant so that any performance differences between the VAFN and fixed nozzle cycles could be attributed to the VAFN technology alone. In this manner, the cycle design regimes that offer a performance payoff when VAFN's are used could be identified. The NASA analytical model of a performance-optimized VAFN turbofan with a fan pressure ratio of 1.28 is shown. Mission analyses of the engines were conducted using the notional, long-haul, advanced commercial twinjet shown. A high wing design was used to accommodate the large high-bypassratio engines. The mission fuel reduction benefit of very high bypass shape-memory-alloy VAFN aircraft was calculated to be 8.3 percent lower than a moderate bypass cycle using a conventional fixed nozzle. Shape-memory-alloy VAFN technology is currently under development in NASA's UEET and RevCon Programs.
Variable mixture ratio performance through nitrogen augmentation
NASA Technical Reports Server (NTRS)
Beichel, R.; Obrien, C. J.; Bair, E. K.
1988-01-01
High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.
Space shuttle orbit maneuvering engine reusable thrust chamber
NASA Technical Reports Server (NTRS)
1972-01-01
A data dump is presented containing space shuttle orbiter maneuvering engine performance, weight, envelope, and interface pressure requirements for candidate propellant combinations (NTO/MMH, NTO50-50, LOX/MMH, LOX/50-50, LOX/N2H4, LOX/C3H8, and LOX/RP-1) and cooling concepts (regenerative and dump/film). These data are presented parametrically for the thrust, chamber pressure, nozzle expansion ratio, and engine mixture ratio ranges of interest. Also included is information describing sensitivity to system changes; reliability, maintainability and safety; development programs and associated critical technology areas; engine cost comparisons during development and operation; and ecological effects.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
NASA Astrophysics Data System (ADS)
Michishita, Kazutaka; Nomura, Hiroshi; Ujiie, Yasushige; Okai, Keiichi
A lab-scale combustion wind tunnel was developed for investigation of low-pressure ignition and flame holding in a sub-scale pre-cooled turbojet engine with hydrogen fuel in order to make engine start at high altitudes sure. The combustion wind tunnel is a blow-down type. A fuel injector of the sub-scale pre-cooled turbojet engine was installed into the combustion wind tunnel. Conditions in which a flame can be stabilized at the fuel injector were examined. The combustor pressure and equivalence ratio were varied from 10 to 40 kPa and from 0.4 to 0.8, respectively. The mean inlet air velocity was varied from 2 to 48 m/s. Flames stabilized at 20 kPa in pressure and 0.6 in equivalence ratio were observed. It was found that the decrease in the combustor pressure narrows the mean inlet air velocity range for successful flame holdings. Flame holding at lower combustor pressures is realized at the equivalence ratio of 0.4 in the low mean inlet air velocity range, and at the equivalence ratio of 0.6 in the high mean inlet air velocity range. Flame luminosity is the largest near the fuel injector. The flame luminosity distribution becomes flatter as the increase in the mean inlet air velocity.
NASA Technical Reports Server (NTRS)
Hersch, Martin
1961-01-01
The effect of contraction ratio and chamber pressure on the combustion performance of a gaseous-hydrogen-liquid-oxygen combustor was investigated analytically and experimentally. The experiment was conducted with a "two-dimensional" gaseous-hydrogen-liquid-oxygen engine of about 150-pound thrust. The contraction ratio was varied from 1.5 to 6 by changing the nozzle throat area. This variation resulted in a chamber pressure variation of about 25 to 120 pounds per square inch. The experimental results were corrected for heat transfer to the engine walls and momentum pressure losses. The experimental performance, as evaluated in terms of characteristic exhaust velocity, was 98 percent of theoretical at contraction ratios greater than 3 but decreased very rapidly at smaller contraction ratios. The heat-transfer rate increased with increasing contraction ratio and chamber pressure; it was about 1 Btu per square inch per second at a contraction ratio of 1.5 and increased to about 3 at a contraction ratio of 6. The combined effects of contraction-ratio and chamber-pressure changes on performance were investigated analytically with a mixing model and a vaporization model. The mixing model predicted very poor mixing at contraction ratios below 3 and almost perfect mixing at higher contraction ratios. The performance predicted by the vaporization model was very close to 100 percent for all contraction ratios. From these results, it was concluded that the performance was limited by poor mixing at low contraction ratios and chamber pressures.
Data Oscillation Resolution of Propellant Flowmeter Used in FASTRAC Engine Testing
NASA Technical Reports Server (NTRS)
Heflin, J.; Koelbl, M.; Martin, M. A.; Nesman, T.; Hicks, G. D.; Kennedy, Jim W. (Technical Monitor)
2000-01-01
The Stennis Space Centers' horizontal test facility, Marshall Space Flight Centers' propulsion test article and the X-34 flight vehicle are designed with V-cone flowmeters for measurement of both RP-1 and LOX flow-rates for Fastrac engine testing. Delta pressure transducer data from these flowmeters are used to calibrate the RP-1 and LOX mixture ratio in the Fastrac engine. Data from the V-Cone flowmeter delta pressure transducers have excessive oscillation. The delta pressure oscillations have caused flowrate data fluctuations that interfered with making the accurate readings necessary to calibrate the RP-1 and LOX mixture ratio required for Fastrac engine operation. The objective of this report is to document the flowmeter data oscillation problem and the method used to obtain more reliable flowmeter data.
Advanced space engine preliminary design
NASA Technical Reports Server (NTRS)
Cuffe, J. P. B.; Bradie, R. E.
1973-01-01
A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor); Bugaj, Shari L. (Inventor)
2018-01-01
A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
Active Control of Fan Noise: Feasibility Study. Volume 4; Flyover System Noise Studies
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Janardan, B. A.; Gliebe, P. R.; Kontos, G. C.
1996-01-01
An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure ratios of 1.75 and 1.60. At the two lower fan pressure ratios, the effectivness of treatment is much greater than that of ANC, and (5) No significant difference in ANC suppression behavior was found from the QCSEE engine database analysis compared to that of the E3 engine database, for the FPR = 1.3 engine cycle. The effects of ANC on EPNL noise reduction are difficult to generalize. It was found that the reduction obtained in any particular case depended upon the frequency of the tones and their shift with rpm, the amount of ANC suppression received by each tone (which depended on its protrusion from the background), and the NOY-value of the tone relative to the NOY-value of other tones and the peak broadband levels, because PNL is determined from the sum of the NOY-values.
Pollution reduction technology program for class T4(JT8D) engines
NASA Technical Reports Server (NTRS)
Roberts, R.; Fiorentino, A. J.; Diehl, L. A.
1977-01-01
The technology required to develop commercial gas turbine engines with reduced exhaust emissions was demonstrated. Can-annular combustor systems for the JT8D engine family (EPA class T4) were investigated. The JT8D turbofan engine is an axial-flow, dual-spool, moderate-bypass-ratio design. It has a two-stage fan, a four-stage low-pressure compressor driven by a three-stage low-pressure turbine, and a seven-stage high-pressure compressor driven by a single-stage high-pressure turbine. A cross section of the JT8D-17 showing the mechanical configuration is given. Key specifications for this engine are listed.
Investigation of Noise Field and Velocity Profiles of an Afterburning Engine
NASA Technical Reports Server (NTRS)
North, Warren J.; Callaghan, E. E.; Lanzo, C. D.
1954-01-01
Sound pressure levels, frequency spectrum, and jet velocity profiles are presented for an engine-afterburner combination at various values of afterburner fuel - air ratio. At the high fuel-air ratios, severe low-frequency resonance was encountered which represented more than half the total energy in the sound spectrum. At similar thrust conditions, lower sound pressure levels were obtained from a current fighter air craft with a different afterburner configuration. The lower sound pressure levels are attributed to resonance-free afterburner operation and thereby indicate the importance of acoustic considerations in afterburner design.
Power control system for a hot gas engine
Berntell, John O.
1986-01-01
A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.
Advanced Single-Aisle Transport Propulsion Design Options Revisited
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Tong, Michael T.; Haller, William J.
2013-01-01
Future propulsion options for advanced single-aisle transports have been investigated in a number of previous studies by the authors. These studies have examined the system level characteristics of aircraft incorporating ultra-high bypass ratio (UHB) turbofans (direct drive and geared) and open rotor engines. During the course of these prior studies, a number of potential refinements and enhancements to the analysis methodology and assumptions were identified. This paper revisits a previously conducted UHB turbofan fan pressure ratio trade study using updated analysis methodology and assumptions. The changes incorporated have decreased the optimum fan pressure ratio for minimum fuel consumption and reduced the engine design trade-offs between minimizing noise and minimizing fuel consumption. Nacelle drag and engine weight are found to be key drivers in determining the optimum fan pressure ratio from a fuel efficiency perspective. The revised noise analysis results in the study aircraft being 2 to 4 EPNdB (cumulative) quieter due to a variety of reasons explained in the paper. With equal core technology assumed, the geared engine architecture is found to be as good as or better than the direct drive architecture for most parameters investigated. However, the engine ultimately selected for a future advanced single-aisle aircraft will depend on factors beyond those considered here.
Flight evaluation of an extended engine life mode on an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Conners, Timothy R.
1992-01-01
An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J. C.; Wilsted, H. D.; Mulcahy, B. A.
1943-01-01
A thermocouple was installed in the crown of a sodium-cooled exhaust valve. The valve was then tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 F was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 rpm. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
Comparison of reactivity in a flow reactor and a single cylinder engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natelson, Robert H.; Johnson, Rodney O.; Kurman, Matthew S.
2010-10-15
The relative reactivity of 2:1:1 and 1:1:1 mixtures of n-decane:n-butylcyclohexane:n-butylbenzene and an average sample of JP-8 were evaluated in a single cylinder engine and compared to results obtained in a pressurized flow reactor. At compression ratios of 14:1, 15:1, and 16:1, inlet temperature of 500 K, inlet pressure of 0.1 MPa, equivalence ratio of 0.23, and engine speed of 800 RPM, the autoignition delay times were, from shortest to longest, the 2:1:1, followed by the 1:1:1, and then the JP-8. This order corresponded with recent results in a pressurized flow reactor, where the preignition oxidation chemistry was monitored at temperaturesmore » of 600-800 K, 0.8 MPa pressure, and an equivalence ratio of 0.30, and where the preignition reactivity from highest to lowest was the 2:1:1, followed by the 1:1:1, and the JP-8. This shows that the relative reactivity at low temperatures in the flow reactor tracks the autoignition tendencies in the engine for these particular fuels. (author) the computed experimental error. (author)« less
Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft
NASA Technical Reports Server (NTRS)
Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.
1972-01-01
The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.
NASA Technical Reports Server (NTRS)
Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.
1974-01-01
An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.
Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine
NASA Technical Reports Server (NTRS)
Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.
1983-01-01
Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.
NASA Technical Reports Server (NTRS)
Foote, C. H.
1980-01-01
Results from the altitude testing of a P sub T/P sub S noseboom probe on the F100 engine are discused. The results are consistent with sea level test results. The F100 engine altitude test verified automatic downmatch with the engine pressure ratio control, and backup control inlet case static pressure demonstrated sufficient accuracy for backup control fuel flow scheduling. The production P6 probe measured Station 6 pressures accurately for both undistorted and distorted inlet airflows.
An Investigation into Performance Modelling of a Small Gas Turbine Engine
2012-10-01
b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a
Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes
2012-09-01
TURBINE VANES DISSERTATION Presented to the Faculty Department of Aeronautical and Astronautical... Engineering and Management iv AFIT/DS/ENY/12-05 Abstract Past efforts to reduce the airfoil count in low pressure turbines have produced high lift...LOSSES OF HIGH LIFT LOW PRESSURE TURBINE VANES 1. Introduction The low pressure turbine (LPT) in modern high bypass ratio aero- engines is
Thrust performance of a variable-geometry, divergent exhaust nozzle on a turbojet engine at altitude
NASA Technical Reports Server (NTRS)
Straight, D. M.; Collom, R. R.
1983-01-01
A variable geometry, low aspect ratio, nonaxisymmetric, two dimensional, convergent-divergent exhaust nozzle was tested at simulated altitude on a turbojet engine to obtain baseline axial, dry thrust performance over wide ranges of operating nozzle pressure ratios, throat areas, and internal expansion area ratios. The thrust data showed good agreement with theory and scale model test results after the data were corrected for seal leakage and coolant losses. Wall static pressure profile data were also obtained and compared with one dimensional theory and scale model data. The pressure data indicate greater three dimensional flow effects in the full scale tests than with models. The leakage and coolant penalties were substantial, and the method to determine them is included.
Advanced and Adaptable Military Propulsion
2008-01-22
turbine. The accelerating flow in the turbine environment would mitigate this somewhat (i.e. (favorable) axial pressure gradient vs radial pressure...For instance in a low bypass ratio (0.8) turbofan engine operating at flight Mach numbers ranging from 0.85 to 2.5, the specific fuel consumption...ratio, T8/PT2 - Fan inlet axial Mach No, M2, capability - Compressor exit axial Mach No, M3 - Compressor pressure ratio, PT3/PT2 - Turbine nozzle area
Operating Temperatures of a Sodium-Cooled Exhaust Valve as Measured by a Thermocouple
NASA Technical Reports Server (NTRS)
Sanders, J C; Wilsted, H D; Mulcahy, B A
1943-01-01
Report presents the results of a thermocouple installed in the crown of a sodium-cooled exhaust valve. The valve was tested in an air-cooled engine cylinder and valve temperatures under various engine operating conditions were determined. A temperature of 1337 degrees F. was observed at a fuel-air ratio of 0.064, a brake mean effective pressure of 179 pounds per square inch, and an engine speed of 2000 r.p.m. Fuel-air ratio was found to have a large influence on valve temperature, but cooling-air pressure and variation in spark advance had little effect. An increase in engine power by change of speed or mean effective pressure increased the valve temperature. It was found that the temperature of the rear-spark-plug bushing was not a satisfactory indication of the temperature of the exhaust valve.
NASA Technical Reports Server (NTRS)
Creagh, John W.R.; Sandercrock, Donald M.
1950-01-01
An investigation is being conducted to determine the performance of the 12-stage axial-flow compressor of the XT-46 turbine-propeller engine. This compressor was designed to produce a pressure ratio of 9 at an adiabatic efficiency of 0.86. The design pressure ratios per stage were considerably greater than any employed in current aircraft gas-turbine engines using this type of compressor. The compressor performance was evaluated at two stations. The station near the entrance section of the combustors indicated a peak pressure ratio of 6.3 at an adiabatic efficiency of 0.63 for a corrected weight flow of 23.1 pounds per second. The other, located one blade-chord downstream of the last stator row, indicated a peak pressure ratio of 6.97 at an adiabatic efficiency of 0.81 for a corrected weight flow of 30.4 pounds per second. The difference in performance obtained at the two stations is attributed to shock waves in the vicinity of the last stator row. These shock waves and the accompanying flow choking, together with interstage circulatory flows, shift the compressor operating curves into the region where surge would normally occur. The inability of the compressor to meet design pressure ratio is probably due to boundary-layer buildup in the last stages, which cause axial velocities greater than design values that, in turn, adversely affect the angles of attack and turning angles in these blade rows.
Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine
NASA Technical Reports Server (NTRS)
Childs, J. Howard; McCafferty, Richard J.
1948-01-01
A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
NASA Technical Reports Server (NTRS)
Geisenheyner, Robert M.; Berdysz, Joseph J.
1948-01-01
Performance properties and operational characteristics of an axial-flow gas turbine-propeller engine were determined. Data are presented for a range of simulated altitudes from 5,000 to 35,0000 feet, compressor inlet- ram pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm.
NASA Astrophysics Data System (ADS)
Novikova, Y.; Zubanov, V.
2018-01-01
The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.
NASA Technical Reports Server (NTRS)
Nelson, D. P.; Morris, P. M.
1980-01-01
Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.
NASA Technical Reports Server (NTRS)
Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.
2010-01-01
The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.
Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines
NASA Astrophysics Data System (ADS)
Korakianitis, T.; Beier, K. J.
1994-04-01
Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.
Design of a miniature hydrogen fueled gas turbine engine
NASA Technical Reports Server (NTRS)
Burnett, M.; Lopiccolo, R. C.; Simonson, M. R.; Serovy, G. K.; Okiishi, T. H.; Miller, M. J.; Sisto, F.
1973-01-01
The design, development, and delivery of a miniature hydrogen-fueled gas turbine engine are discussed. The engine was to be sized to approximate a scaled-down lift engine such as the teledyne CAE model 376. As a result, the engine design emerged as a 445N(100 lb.)-thrust engine flowing 0.86 kg (1.9 lbs.) air/sec. A 4-stage compressor was designed at a 4.0 to 1 pressure ratio for the above conditions. The compressor tip diameter was 9.14 cm (3.60 in.). To improve overall engine performance, another compressor with a 4.75 to 1 pressure ratio at the same tip diameter was designed. A matching turbine for each compressor was also designed. The turbine tip diameter was 10.16 cm (4.0 in.). A combustion chamber was designed, built, and tested for this engine. A preliminary design of the mechanical rotating parts also was completed and is discussed. Three exhaust nozzle designs are presented.
Evaluation of Proposed Rocket Engines for Earth-to-Orbit Vehicles
NASA Technical Reports Server (NTRS)
Martin, James A.; Kramer, Richard D.
1990-01-01
The objective is to evaluate recently analyzed rocket engines for advanced Earth-to-orbit vehicles. The engines evaluated are full-flow staged combustion engines and split expander engines, both at mixture ratios at 6 and above with oxygen and hydrogen propellants. The vehicles considered are single-stage and two-stage fully reusable vehicles and the Space Shuttle with liquid rocket boosters. The results indicate that the split expander engine at a mixture ratio of about 7 is competitive with the full-flow staged combustion engine for all three vehicle concepts. A key factor in this result is the capability to increase the chamber pressure for the split expander as the mixture ratio is increased from 6 to 7.
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
Wave Engine Topping Cycle Assessment
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.
Performance of J33 turbojet engine with shaft-power extraction III : turbine performance
NASA Technical Reports Server (NTRS)
Huppert, M C; Nettles, J C
1949-01-01
The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.
Design and experimental investigations on a small scale traveling wave thermoacoustic engine
NASA Astrophysics Data System (ADS)
Chen, M.; Ju, Y. L.
2013-02-01
A small scale traveling wave or Stirling thermoacoustic engine with a resonator of only 1 m length was designed, constructed and tested by using nitrogen as working gas. The small heat engine achieved a steady working frequency of 45 Hz. The pressure ratio reached 1.189, with an average charge pressure of 0.53 MPa and a heating power of 1.14 kW. The temperature and the pressure characteristics during the onset and damping processes were also observed and discussed. The experimental results demonstrated that the small engine possessed the potential to drive a Stirling-type pulse tube cryocooler.
Flame Movement and Pressure Development in an Engine Cylinder
NASA Technical Reports Server (NTRS)
Marvin, Charles F , Jr; Best, Robert D
1932-01-01
This investigation describes a visual method for making stroboscopic observations, through a large number of small windows, of the spread of flame throughout the combustion chamber of a gasoline engine. Data, secured by this method on a small engine burning gaseous fuels, are given to show the effects of mixture ratio, spark advance, engine speed, charge density, degree of dilution, compression ratio, and fuel composition on flame movement in the cylinder. Partial indicator diagrams showing pressure development during the combustion period are included. Although present knowledge is not sufficient to permit qualitative evaluation of the separate effects on flame movement of chemical reaction velocity, thermal expansion of burned gases, resonance, turbulence, and piston movement, the qualitative influence of certain of these factors on some of the diagrams is indicated.
Simplified Analysis of Pulse Detonation Rocket Engine Blowdown Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
Morris, C. I.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modellng task. A simplified model for an idealized, straight-tube, single-shot PDRE blowdown process and thrust determination is described and implemented. In order to form an assessment of the accuracy of the model, the flowfield time history is compared to experimental data from Stanford University. Parametric Studies of the effect of mixture stoichiometry, initial fill temperature, and blowdown pressure ratio on the performance of a PDRE are performed using the model. PDRE performance is also compared with a conventional steady-state rocket engine over a range of pressure ratios using similar gasdynamic assumptions.
Acoustic design of the QCSEE propulsion systems
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Smith, E. B.; Sowers, H. D.
1976-01-01
Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.
NASA Astrophysics Data System (ADS)
Baklanov, V. S.
2016-07-01
The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.
Allison PD 370-41 derivative turboprop engine. Final report, October 1978-February 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolp, P.
1979-02-01
This study developed data on Detroit Diesel Allison (DDA) common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential DDA turboprop/turboshaft engines and the preparations of technical and planning information on three of the most promising engine candidates plus an all new engine. Screening of DDA derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: a derivative of the unity sizemore » T701-AD-700 shaft power engine with rematched turbine (PD 370-37), and an advanced T701 turboprop derivative with 25:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-40), an advanced T701 turboprop derivative with 17.7:1 overall pressure ratio and a scaled ATEGG demonstrated compressor.« less
Experimental quiet engine program aerodynamic performance of fan A
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Parker, D. E.; Dunbar, L. W.
1971-01-01
The aerodynamic component test results are presented of fan A, one of two high-bypass-ratio, 1160 feet per second single-stage fans, which was designed and tested as part of the NASA Experimental Quiet Engine Program. This fan was designed to deliver a bypass pressure ratio of 1.50 with an adiabatic efficiency of 86.5% at a total fan flow of 950 lb/sec. It was tested with and without inlet flow distortion. A bypass total-pressure ratio of 1.52 and an adiabatic efficiency of 88.3% at a total fan flow of 962 lb/sec were actually achieved. An operating margin of 12.4% was demonstrated at design speed.
OH PLIF measurement in a spark ignition engine with a tumble flow
NASA Astrophysics Data System (ADS)
Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team
2017-11-01
Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Biermann, Arnold E
1932-01-01
This investigation was conducted to determine the comparative effects of valve timing on the performance of an unsupercharged engine at sea level and a supercharged engine at altitude. The tests were conducted on the NACA universal test engine. The timing of the four valve events was varied over a wide range; the engine speeds were varied between 1,050 and 1,500 r.p.m.; the compression ratios were varied between 4.35:1 and 7.35:1. The conditions of exhaust pressure and carburetor pressure of a supercharged engine were simulated for altitudes between 0 and 18,000 feet. The results show that optimum valve timing for a supercharged engine at an altitude of 18,000 feet differs slightly from that for an unsupercharged engine at sea level. A small increase in power is obtained by using the optimum timing for 18,000 feet for altitudes above 5,000 feet. The timing of the intake opening and exhaust closing becomes more critical as the compression ratio is increased.
NASA Technical Reports Server (NTRS)
Wallner, L. E.; Lubick, R. J.; Chelko, L. J.
1955-01-01
During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.
Performance of a Splittered Transonic Rotor with Several Tip Clearances
2015-06-15
θ Ratio of inlet to reference pressure and γ [-] ρ Density [kg/m3] ω Humidity ratio [-] Subscripts 1 Inlet 3 Outlet a Air gas l Water liquid ...has a large influence on the performance and efficiency of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to...of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to blade height or span usually increases in the direction of
NASA Technical Reports Server (NTRS)
Tower, Leonard K
1945-01-01
The knock-limited performance of blends of 0,50; and 100 percent by volume of 2,2,3-trimethylpentane in 28-R fuel determined with a modified F-4 engine at three sets of conditions varying from severe to mild at each of three compression ratios (6.0, 8.0, and 10.0). A comparison of the knock-limited performance of 2,2,3-trimethylpentane with that of triptane (2,2,3-trimethylbutane) is included. The knock-Limited performance of 2,2,3-trimethylpontane was usually more sensitive to either compression ratio or inlet-air temperature than 28-R fuel, but the ratio of the knock-limited indicated mean effective pressure of a given blend containing 2,2,3-trimethypentane and 28-R to the indicated mean effective pressure of 28-R alone was not greatly affected by compression ratio if the engine operating conditions were mild. Although 2,2,3-trimethylpentane in general had a lower knock-limited performance than triptane, the characteristics of the two fuels were somewhat similar.
Apparatus for controlling air/fuel ratio for internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, K.; Mizuno, T.
1986-07-08
This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less
Improved automobile gas turbine engine
NASA Technical Reports Server (NTRS)
Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.
1976-01-01
Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.
Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine
Low-pressure loop exhaust gas recirculation (LPL- EGR) combined with a higher compression ratio is a technology package that has been the focus of significant research to increase engine thermal efficiency of downsized, turbocharged GDI engines. Research shows that the addition ...
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.
2005-01-01
Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design-point engine will be exported to an engine reference data file that is required in off-design calculation.
Energy efficient engine: High pressure turbine uncooled rig technology report
NASA Technical Reports Server (NTRS)
Gardner, W. B.
1979-01-01
Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.
2016-05-01
To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine efficiency. However negative angle of attack decreases when inlet swirl is anti-clockwise and efficiency of low pressure turbine can be increased by 3% compared to inlet condition of clockwise swirl. Consequently flow simulation and analysis are able to aid in figuring out interaction mechanism of turbine system and optimizing turbine system design.
Energy efficient engine: Fan test hardware detailed design report
NASA Technical Reports Server (NTRS)
Sullivan, T. J.
1980-01-01
A single stage fan and quarter stage booster were designed for the energy efficient engine. The fan has an inlet radius ratio of 0.342 and a specific flow rate of 208.9 Kg/S sq m (42.8 lbm/sec sq ft). The fan rotor has 32 medium aspect ratio (2.597) titanium blades with a partspan shroud at 55% blade height. The design corrected fan tip speed is 411.5 M/S (1350 ft/sec). The quarter stage island splits the total fan flow with approximately 22% of the flow being supercharged by the quarter stage rotor. The fan bypass ratio is 6.8. The core flow total pressure ratio is 1.67 and the fan bypass pressure ratio is 1.65. The design details of the fan and booster blading, and the fan frame and static structure for the fan configuration are presented.
Performance of Hoods for Aircraft Exhaust-Gas Turbines
1946-11-01
vanes and hood-entrance fairing band at a blade -to- Jet speed ratio of 0.4 and a pressure ratio’ of 2.0. Aircraft Engine Research Laboratory... engine , the gases leave the turbine with an axial velocity of about 700 feet per second. At an airspeed of 375 miles_ per hour, a jet power...importance of providing efficient exhaust hoods for turbine - compressor jet -propulsion engines is even more obvious as all the power of these units is
Ignition and combustion: Low compression ratio, high output diesel
NASA Technical Reports Server (NTRS)
1981-01-01
The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
Experimental Results of Performance Tests on a Four-Port Wave Rotor
NASA Technical Reports Server (NTRS)
Wilson, John; Welch, Gerard E.; Paxson, Daniel E.
2007-01-01
A series of tests has been performed on a four-port wave rotor suitable for use as a topping stage on a gas turbine engine, to measure the overall pressure ratio obtainable as a function of temperature ratio, inlet mass flow, loop flow ratio, and rotor speed. The wave rotor employed an open high pressure loop that is the high pressure inlet flow was not the air exhausted from the high pressure outlet, but was obtained from a separate heated source, although the mass flow rates of the two flows were balanced. This permitted the choice of a range of loop-flow ratios (i.e., ratio of high pressure flow to low pressure flow), as well as the possibility of examining the effect of mass flow imbalance. Imbalance could occur as a result of leakage or deliberate bleeding for cooling air. Measurements of the pressure drop in the high pressure loop were also obtained. A pressure ratio of 1.17 was obtained at a temperature ratio of 2.0, with an inlet mass flow of 0.6 lb/s. Earlier tests had given a pressure ratio of less than 1.12. The improvement was due to improved sealing between the high pressure and low pressure loops, and a modification to the movable end-wall which is provided to allow for rotor expansion.
Experimental quiet engine program aerodynamic performance of Fan B
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Parker, D. E.; Dunbar, L. W.
1972-01-01
This report presents the aerodynamic component test results of Fan B, one of two high-bypass-ratio, 1160 feet per second (353.6 m/sec) single-stage fans, which was designed and tested as part of the NASA Experimental Quiet Engine Program. The fan was designed to deliver a bypass pressure ratio of 1.50 with an adiabatic efficiency of 87.0% at a total fan flow of 950 lb/sec (430.9 kg/sec). It was tested with and without inlet distortion. A bypass total pressure ratio of 1.52 and an adiabatic efficiency of 86.9% at a total fan flow of 966 lb/sec (438.2 kg/sec) were actually achieved. An operating margin of 19.5% was demonstrated at design speed.
NASA Technical Reports Server (NTRS)
Cullom, R. R.; Johnson, R. L.
1977-01-01
The specific fuel consumption of a low-bypass-ratio, confluent-flow, turbofan engine was measured with and without a mixer installed. Tests were conducted for flight Mach numbers from 0.3 to 1.4 and altitudes from 10,670 to 14,630 meters (35,000 to 48,000 ft) for core-stream-to-fan-stream temperature ratios of 2.0 and 2.5 and mixing-length-to-diameter ratios of 0.95 and 1.74. For these test conditions, the reduction in specific fuel consumption varied from 2.5 percent to 4.0 percent. Pressure loss measurements as well as temperature and pressure surveys at the mixer inlet, the mixer exit, and the nozzle inlet were made.
Gas turbine engine with supersonic compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, II, William Byron; Lawlor, Shawn P.
A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more,more » when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less
Turbopump options for nuclear thermal rockets
NASA Astrophysics Data System (ADS)
Bissell, W. R.; Gunn, S. V.
1992-07-01
Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range.
Ignition characterization of the GOX/ethanol propellant combination
NASA Technical Reports Server (NTRS)
Lawver, B. R.; Rousar, D. C.; Boyd, W. C.
1984-01-01
This paper describes the results of a study to define the ignition characteristics and thruster pulse mode capabilities of the GOX/ethanol propellant combination. Ignition limits were defined in terms of mixture ratio and cold flow pressure using a spark initiated torch igniter. Igniter tests were run over a wide range of cold flow pressure, propellant temperature and mixture ratio. The product of cold flow pressure and igniter chamber diameter was used to correlate mixture ratio regimes of ignition and nonignition. Engine ignition reliability and pulse mode capability were demonstrated using a 620 lbF thruster with an integrated torch igniter. The nominal chamber pressure and mixture ratio were 150 psia and 1.8, respectively, thruster tests were run over a wide range of chamber pressures and mixture ratios. The feasibility of thruster pulse mode operation with the non-hypergolic GOX/ethanol propellant combination was demonstrated.
NASA Technical Reports Server (NTRS)
Roelke, R. J.; Mclallin, K. L.
1978-01-01
The aerodynamic performance of the compressor-drive turbine of the DOE baseline gas-turbine engine was determined over a range of pressure ratios and speeds. In addition, static pressures were measured in the diffusing transition duct located immediately downstream of the turbine. Results are presented in terms of mass flow, torque, specific work, and efficiency for the turbine and in terms of pressure recovery and effectiveness for the transition duct.
Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor
NASA Astrophysics Data System (ADS)
Regitz, S.; Collings, N.
2008-07-01
A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50-100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ~20 ms and enables cyclic AFR measurements for engine speeds of up to ~4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented.
Preliminary Assessment of a Rotary Detonation Engine Concept.
1983-09-01
As advances were made in compressors (both axial and centrifugal), it was possible to develop gas turbine engines based on the Brayton cycle rather...induced cycle pressure ratio. In the case of the axial flow compressor, as stages are added to increase the pressure, the blades become progressively...DESIGN OF THE TORQUE TUBE --------- 96 APPENDIX E. EQUIPMENT LISTING- - --------- -- 104 APPENDIX F. DESIGN DRAWINGS FOR ROTARY DETONATION TURBINE
Unsteady pressure loads in a generic high speed engine model
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.
1992-01-01
Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.
On discharge from poppet valves: effects of pressure and system dynamics
NASA Astrophysics Data System (ADS)
Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.
2018-02-01
Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.
Numerical Prediction of the Influence of Thrust Reverser on Aeroengine's Aerodynamic Stability
NASA Astrophysics Data System (ADS)
Zhiqiang, Wang; Xigang, Shen; Jun, Hu; Xiang, Gao; Liping, Liu
2017-11-01
A numerical method was developed to predict the aerodynamic stability of a high bypass ratio turbofan engine, at the landing stage of a large transport aircraft, when the thrust reverser was deployed. 3D CFD simulation and 2D aeroengine aerodynamic stability analysis code were performed in this work, the former is to achieve distortion coefficient for the analysis of engine stability. The 3D CFD simulation was divided into two steps, the single engine calculation and the integrated aircraft and engine calculation. Results of the CFD simulation show that with the decreasing of relative wind Mach number, the engine inlet will suffer more severe flow distortion. The total pressure and total temperature distortion coefficients at the inlet of the engines were obtained from the results of the numerical simulation. Then an aeroengine aerodynamic stability analysis program was used to quantitatively analyze the aerodynamic stability of the high bypass ratio turbofan engine. The results of the stability analysis show that the engine can work stably, when the reverser flow is re-ingested. But the anti-distortion ability of the booster is weaker than that of the fan and high pressure compressor. It is a weak link of engine stability.
Influence of several factors on ignition lag in a compression-ignition engine
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Voss, Fred
1932-01-01
This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2001-01-01
Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.
NASA Technical Reports Server (NTRS)
Henderson, William P.; Burley, James R., II
1987-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were done at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0. and angles of attack from -3 to 9 deg (at jet off conditions), depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. Extensive measurements were made of static pressure on the nozzle/afterbody in the vicinity of the tail surfaces.
NASA Technical Reports Server (NTRS)
Barson, Zelmar; Wilsted, H. D.
1948-01-01
An investigation is being conducted to determine the altitude performance characteristics of the British Nene II engine and its components. The present paper presents the preliminary results obtained using a standard jet nozzle. The test results presented are for conditions simulating altitudes from sea level to 60,000 feet and ram pressure ratios from 1.0 to 2.3. These ram pressure ratios correspond to flight Mach numbers between zero and 1.16 assuming a 100 percent ram recovery.
NASA Technical Reports Server (NTRS)
Niiya, Karen E.; Walker, Richard E.; Pieper, Jerry L.; Nguyen, Thong V.
1993-01-01
This final report includes a discussion of the work accomplished during the period from Dec. 1988 through Nov. 1991. The objective of the program was to assemble existing performance and combustion stability models into a usable design methodology capable of designing and analyzing high-performance and stable LOX/hydrocarbon booster engines. The methodology was then used to design a validation engine. The capabilities and validity of the methodology were demonstrated using this engine in an extensive hot fire test program. The engine used LOX/RP-1 propellants and was tested over a range of mixture ratios, chamber pressures, and acoustic damping device configurations. This volume contains time domain and frequency domain stability plots which indicate the pressure perturbation amplitudes and frequencies from approximately 30 tests of a 50K thrust rocket engine using LOX/RP-1 propellants over a range of chamber pressures from 240 to 1750 psia with mixture ratios of from 1.2 to 7.5. The data is from test configurations which used both bitune and monotune acoustic cavities and from tests with no acoustic cavities. The engine had a length of 14 inches and a contraction ratio of 2.0 using a 7.68 inch diameter injector. The data was taken from both stable and unstable tests. All combustion instabilities were spontaneous in the first tangential mode. Although stability bombs were used and generated overpressures of approximately 20 percent, no tests were driven unstable by the bombs. The stability instrumentation included six high-frequency Kistler transducers in the combustion chamber, a high-frequency Kistler transducer in each propellant manifold, and tri-axial accelerometers. Performance data is presented, both characteristic velocity efficiencies and energy release efficiencies, for those tests of sufficient duration to record steady state values.
The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders
NASA Technical Reports Server (NTRS)
Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W
1943-01-01
Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.
Small Engine Component Technology (SECT) studies
NASA Technical Reports Server (NTRS)
Meyer, P. K.; Harbour, L.
1986-01-01
A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.
Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System
NASA Technical Reports Server (NTRS)
Tischler, Adelbert O.; Bellman, Donald R.
1951-01-01
Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.
NASA Technical Reports Server (NTRS)
Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.
1959-01-01
The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.
An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John
2002-01-01
A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.
Method and apparatus for reconstructing in-cylinder pressure and correcting for signal decay
Huang, Jian
2013-03-12
A method comprises steps for reconstructing in-cylinder pressure data from a vibration signal collected from a vibration sensor mounted on an engine component where it can generate a signal with a high signal-to-noise ratio, and correcting the vibration signal for errors introduced by vibration signal charge decay and sensor sensitivity. The correction factors are determined as a function of estimated motoring pressure and the measured vibration signal itself with each of these being associated with the same engine cycle. Accordingly, the method corrects for charge decay and changes in sensor sensitivity responsive to different engine conditions to allow greater accuracy in the reconstructed in-cylinder pressure data. An apparatus is also disclosed for practicing the disclosed method, comprising a vibration sensor, a data acquisition unit for receiving the vibration signal, a computer processing unit for processing the acquired signal and a controller for controlling the engine operation based on the reconstructed in-cylinder pressure.
NASA Astrophysics Data System (ADS)
Yan, Li; Huang, Wei; Zhang, Tian-tian; Li, Hao; Yan, Xiao-ting
2014-12-01
The mixing and combustion process has an important impact on the engineering realization of the scramjet engine. The nonreacting and reacting flow fields in a transverse injection channel have been investigated numerically, and the predicted results have been compared with the available experimental data in the open literature, the wall pressure distributions, the separation length, as well as the penetration height. Further, the influences of the molecular weight of the fuel and the jet-to-crossflow pressure ratio on the wall pressure distribution have been studied. The obtained results show that the predicted results show reasonable agreement with the experimental data, and the variable trends of the penetration height and the separation distance are almost the same as those obtained in the experiment. The vapor pressure model is suitable to fit the relationship between the penetration height, the separation distance and the jet-to-crossflow pressure ratio. The combustion process mainly occurs upstream of the injection port, and it makes a great difference to the wall pressure distribution upstream of the injection port, especially when the jet-to-crossflow pressure ratio is large enough, namely 17.72 and 25.15 in the range considered in the current study. For hydrogen, the combustion downstream of the injection port occurs more intensively, and this may be induced by its smaller molecular weight.
Characteristics of Five Ejector Configurations at Free-Stream Mach Numbers from 0 to 2.0
NASA Technical Reports Server (NTRS)
Klann, John L.; Huff, Ronald G.
1959-01-01
Thrust, air-handling, and base-pressure characteristics of five ejector configurations were investigated in the Lewis 8-by 6-foot wind tunnel at free-stream Mach numbers from 0 to 2.0 over ranges of primary-jet pressure ratio up to 24 and corrected secondary weight-flow ratio up to 13 percent. The ejector-shroud geometries varied from convergent to divergent. Base pressure ratio and ejector performance were interrelated by means of an exit-momentum parameter. Correlations, to at least a first approximation, with base pressure ratio, of both internal-ejector-flow separation and external-flow separation over the model boattail were shown. Furthermore, it was shown that magnitudes and exact trends in base pressure ratio depended largely, and in a complicated fashion, on ejector geometry and amount of secondary flow. External-stream effects on ejector jet thrust were determined for a typical schedule of jet-engine pressure ratios. With the exception of the ejector having the largest (1.81) shroud-exit-to primary-diameter ratio, there were no stream effects at Mach numbers from 1.5 to 2.0 and variations from quiescent-air thrust data were less than 2.5 percent at the subsonic speed investigated.
NASA Astrophysics Data System (ADS)
Ruggles, Adam; Pickett, Lyle; Frank, Jonathan
2014-11-01
Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.
Core noise measurements on a YF-102 turbofan engine
NASA Technical Reports Server (NTRS)
Reshotko, M.; Karchmer, A. M.; Penko, P. F.; Mcardle, J. G.
1977-01-01
Core noise from a YF-102 high bypass ratio turbofan engine was investigated through the use of simultaneous measurements of internal fluctuating pressures and far field noise. Acoustic waveguide probes, located in the engine at the compressor exit, in the combustor, at the turbine exit, and in the core nozzle, were employed to measure internal fluctuating pressures. Spectra showed that the internal signals were free of tones, except at high frequency where machinery noise was present. Data obtained over a wide range of engine conditions suggest that below 60% of maximum fan speed the low frequency core noise contributes significantly to the far field noise.
VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle
NASA Technical Reports Server (NTRS)
Knott, P. R.; Brausch, J. F.; Bhutiani, P. K.; Majjigi, R. K.; Doyle, V. L.
1980-01-01
Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed.
Research and Development of the Aeroturbine Engine,
1981-04-15
whether the selection of a turbojet or turbofan carries increased power. Afterwards, the engine cycle parameters (such as the pressurized ratio of the gns...into production. Conclusion The emergence of a new model aviation turbine engine is the achievement of the collective labors of a multitude of people...under unified organiza- tional leadership. Each organization and individual engaged in aviation turbine engine research and development resemble each
Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu
2016-01-01
As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.
Thrust and pumping characteristics of cylindrical ejectors using afterburning turbojet gas generator
NASA Technical Reports Server (NTRS)
Samanich, N. E.; Huntley, S. C.
1969-01-01
Static tests of cylindrical ejectors having ejector to primary diameter ratios from 1.1 to 1.6 and ejector length to primary nozzle diameter ratios from 0.9 to 2.1 are reported. Power setting of the J85-13 turbojet engine was varied from part power to maximum afterburning. Corrected secondary weight flow ratio was varied from 0.02 to 0.08 over a range of exhaust nozzle pressure ratios from 2.0 to 9.0. Secondary flow temperature rise and pressure drop characteristics through the nacelle secondary flow passage were also obtained.
A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine
NASA Astrophysics Data System (ADS)
Guo, T. H.; Musgrave, J.
1992-11-01
In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.
A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Guo, T. H.; Musgrave, J.
1992-01-01
In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using simulation data.
Potential improvements in turbofan engine fuel economy
NASA Technical Reports Server (NTRS)
Hines, R. W.; Gaffin, W. O.
1976-01-01
The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-14
... 700 Engines AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION... crew of a Trent 700 powered A330 aircraft reported a temporary Engine Pressure Ratio (EPR) shortfall on engine 2 during the take-off phase of the flight.* * * Data analysis confirmed a temporary fuel flow...
NASA Technical Reports Server (NTRS)
Saari, Martin J.; Wallner, Lewis E.
1948-01-01
A preliminary investigation of an axial-flow gas turbine-propeller engine was conduxted. Performance data were obtained for engine speeds from 8000 to 13,000 rpm and altitudes from 5000 to 35,000 feet and compressor inlet ram pressure ratios from 1.00 to 1.17.
Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.
2011-01-01
A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.
Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine
NASA Astrophysics Data System (ADS)
Moura, A. F.; Wheatley, V.; Jahn, I.
2018-07-01
The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.
Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine
NASA Astrophysics Data System (ADS)
Moura, A. F.; Wheatley, V.; Jahn, I.
2017-12-01
The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.
Lean, Premixed-Prevaporized (LPP) combustor conceptual design study
NASA Technical Reports Server (NTRS)
Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.
1979-01-01
Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.
RL10A-3-3B high mixture ratio qualification program
NASA Technical Reports Server (NTRS)
Vogel, T.; Varella, D.; Smith, C.
1987-01-01
The results of the high mixture ratio qualification testing of the RL10 engine for the Shuttle/Centaur program are presented. The objective of the engine qualification test was to demonstrate the suitability of the RL10A-3-3B engine for space vehicle flight by subjecting it to the testing specified in RL10A-3-3B Model Specification Number 2295 dated February 1986. The applicable section of the specification is presented. Due to payload volume advantages which can be achieved by increasing the operating mixture ratio of the RL10, a decision was made to qualify the engine to run at a higher mixture ratio. A program was created to qualify the RL10 engine for operation at 15,000 pounds thrust and a nominal 6.0 to 1 mixture ratio. This model of the engine was designated the RL10A-3-3B. The qualification program included three test series as follows: (1) hardware durability and limits test in which the engine completed 23 firings and 4605.7 seconds with 1588.7 seconds at less than 6.6 mixture ratio; (2) preliminary qualification test in which the engine completed 26 firings and 5750 seconds; and (3) qualification test in which the engine completed 26 hot firings and 5693.4 seconds with 905.9 seconds at 6.7 mixture ratio. Several changes in engine hardware were required for operation of the RL10A-3-3B engine in the Space Shuttle which include a duel pressure switch ignition, an oxidizer flow control, and helium plumbing changes.
Performance Investigations of a Large Centrifugal Compressor from an Experimental Turbojet Engine
NASA Technical Reports Server (NTRS)
Ginsburg, Ambrose; Creagh, John W. R.; Ritter, William K.
1948-01-01
An investigation was conducted on a large centrifugal compressor from an experimental turbojet engine to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the compressor indicated that the compressor would not meet the desired engine-design air-flow requirements (78 lb/sec) because of an air-flow restriction in the vaned collector (diffuser). Revision of the vaned collector resulted in an increased air-flow capacity over the speed range and showed improved matching of the impeller and diffuser components. At maximum flow, the original compressor utilized approximately 90 percent of the available geometric throat area at the vaned-collector inlet and the revised compressor utilized approximately 94 percent, regardless of impeller speed. The ratio of the maximum weight flows of the revised and original compressors were less than the ratio of effective critical throat areas of the two compressors because of the large pressure losses in the impeller near the impeller inelt and the difference increased with an increase in impeller speed. In order to further increase the pressure ratio and maximum weight flow of the compressor, the impeller must be modified to eliminate the pressure losses therein.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1948-01-01
As part of an investigation of the performance and operational characteristics of the axial-flow gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100 R. The highest compressor pressure ratio obtained was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475 R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Saari, Martin J.
1947-01-01
As part of an investigation of the performance and operational characteristics of the TG-100A gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100R. The highest compressor pressure ratio was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
Combustion Limits and Efficiency of Turbojet Engines
NASA Technical Reports Server (NTRS)
Barnett, H. C.; Jonash, E. R.
1956-01-01
Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.
Design and evaluation of combustors for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Jones, R. E.; Grobman, J.
1973-01-01
Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.
Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine
NASA Technical Reports Server (NTRS)
Watson, T. L.
1982-01-01
A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.
Autoignition Chemistry of Surrogate Fuel Components in an Engine Environment
2015-08-21
compression ratio (CR) on the auto - ignition of decane. Crank angle resolved cylinder pressure data was acquired and analyzed using an engine heat...schematic shown in Fig. 1, consists of a modified CFR (Cooperative Fuel Research) engine coupled to a dynamometer. In practical compression 2 ignition ...engines, auto - ignition occurs in the premixed spray envelope that forms during the fuel injection process. To focus on this regime without the
Design and development of an advanced two-stage centrifugal compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, D.L.; Waterman, W.F.
1995-04-01
Small turboshaft engines require high-pressure-ratio, high-efficiency compressors to provide low engine fuel consumption. This paper describes the aeromechanical design and development of a 3.3 kg/s (7.3 lb/sec), 14:1 pressure ratio two-stage centrifugal compressor, which is used in the T800-LHT-800 helicopter engine. The design employs highly nonradial, splitter bladed impellers with swept leading edges and compact vaned diffusers to achieve high performance in a small and robust configuration. The development effort quantified the effects of impeller diffusion and passive inducer shroud bleed on surge margin as well as the effects of impeller loading on tip clearance sensitivity and the impact ofmore » sand erosion and shroud roughness on performance. The developed compressor exceeded its performance objectives with a minimum of 23% surge margin without variable geometry. The compressor provides a high-performance, rugged, low-cost configuration ideally suited for helicopter applications.« less
NASA Technical Reports Server (NTRS)
Hartmann, Melvin J.; Tysl, Edward R.
1949-01-01
An investigation was conducted to determine the performance characteristics of the rotor and inlet guide vanes used in the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. Outlet stators used in the engine were omitted to facilitate study of the supersonic rotor. The extent of the deviation from design performance indicates that the design-shock configuration was not obtained. A maximum pressure ratio of 2.26 was obtained at an equivalent tip speed of 1614 feet per second and an adiabatic efficiency of 0.61. The maximum efficiency obtained was 0.79 at an equivalent tip speed of 801 feet per second and a pressure ratio of 1.29. The performance obtained was considerably below design performance. The effective aerodynamic forces encountered appeared to be large enough to cause considerable damage to the thin aluminum leading edges of the rotor blades.
Possibility of reducing CO2 emissions from internal combustion engines
NASA Astrophysics Data System (ADS)
Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof
2017-10-01
Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.
Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Guynn, Mark D.
2012-01-01
Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.
Quasi-One-Dimensional Modeling of Pulse Detonation Rocket Engines
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2002-01-01
Pulsed detonation rocket engines (PDREs) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred a great deal of interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the difficulties in comparing the available experimental measurements with numerical models. In a previous paper by the author, parametric studies of the performance of a single, straight-tube PDRE were reported. A 1-D, unsteady method of characteristics code, employing a constant-gamma assumption behind the detonation front, was developed for that study. Models of this type are computationally inexpensive, and are particularly useful for parametric performance comparisons. For example, a plot showing the specific impulse of various PDRE and steady-state rocket engine (SSRE) configurations as a function of blowdown pressure ratio. The performance curves clearly indicate that a straight-tube PDRE is superior in specific impulse to a SSRE with a sonic nozzle over the entire range of pressure ratios. Note, however, that a straight-tube PDRE in general does not compare favorably to a SSRE fitted with an optimized de Laval supersonic nozzle, particularly at the high pressure ratios typical for boost or in-space rocket applications. However, the calculations also show that if a dynamically optimized, supersonic de Laval nozzle could be could be fitted to a PDRE, then the specific impulse of the device would exceed that of a comparable SSRE. While such a nozzle is a considerable idealization, it is clear that nozzle design and optimization will play a critical role in whether the performance potential of PDREs can be effectively realized in practice. In order to study PDRE nozzle issues with greater accuracy, a quasi-one-dimensional, finite-rate chemistry CFD code has been developed by the author. Comparisons of the code with both the previous MOC model and experimental data from Stanford University are reported. The effect of constant-gamma and finite-rate chemistry assumptions on the flowfield and performance is examined. Parametric studies of the effect of nozzle throat size and expansion ratio, at various blowdown pressure ratios, are reported.
NASA Astrophysics Data System (ADS)
Katragkou, E.; Wilhelm, S.; Arnold, F.; Wilson, C.
2004-01-01
Gaseous S(VI) (SO3 + H2SO4) has been measured by chemical ionization mass spectrometry (CIMS) in the simulated internal flow of an aircraft gas turbine in a test rig at ground level during the PartEmis 2002 campaign. Building on S(VI) and calculated total sulfur ST the abundance ratio ɛ = S(VI)/ST was determined. The measurements to be reported here were made at two sampling points, for two engine test conditions representative of old and modern aircraft cruise and for a fuel sulfur content FSC = 1270 ppm. For both cruise conditions the measured ɛ increased with increasing exhaust age from the high pressure to the low pressure stage. For each pressure stage ɛ was higher in the modern cruise condition. The maximum ɛ (2.3 +/- 1.2%) was obtained for modern cruise and the low pressure stage. Our present data suggest that modern engines have a somewhat higher conversion efficiencies than old engines.
NASA Technical Reports Server (NTRS)
Rebeske, John J , Jr; Rohlik, Harold E
1953-01-01
An analytical investigation was made to determine from component performance characteristics the effect of air bleed at the compressor outlet on the acceleration characteristics of a typical high-pressure-ratio single-spool turbojet engine. Consideration of several operating lines on the compressor performance map with two turbine-inlet temperatures showed that for a minimum acceleration time the turbine-inlet temperature should be the maximum allowable, and the operating line on the compressor map should be as close to the surge region as possible throughout the speed range. Operation along such a line would require a continuously varying bleed area. A relatively simple two-step area bleed gives only a small increase in acceleration time over a corresponding variable-area bleed. For the modes of operation considered, over 84 percent of the total acceleration time was required to accelerate through the low-speed range ; therefore, better low-speed compressor performance (higher pressure ratios and efficiencies) would give a significant reduction in acceleration time.
NASA Technical Reports Server (NTRS)
Cook, Harvey A; Heinicke, Orville H; Haynie, William H
1947-01-01
An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.
Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report
NASA Technical Reports Server (NTRS)
Burger, G. D.; Lee, D.; Snow, D. W.
1979-01-01
A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.
Study of blade aspect ratio on a compressor front stage
NASA Technical Reports Server (NTRS)
Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.
1980-01-01
A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.
14 CFR 33.49 - Endurance test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... higher gear ratio under sea level conditions. The condition for operation for the alternate 5 minutes in... suppress detonation. (d) Helicopter engines. To be eligible for use on a helicopter each engine must either... sea level carburetor entrance pressure, if 105 percent of the rated maximum continuous power is not...
14 CFR 33.49 - Endurance test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... higher gear ratio under sea level conditions. The condition for operation for the alternate 5 minutes in... suppress detonation. (d) Helicopter engines. To be eligible for use on a helicopter each engine must either... sea level carburetor entrance pressure, if 105 percent of the rated maximum continuous power is not...
Combustor technology for future small gas turbine aircraft
NASA Technical Reports Server (NTRS)
Lyons, Valerie J.; Niedzwiecki, Richard W.
1993-01-01
Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.
Design and Checkout of a High Speed Research Nozzle Evaluation Rig
NASA Technical Reports Server (NTRS)
Castner, Raymond S.; Wolter, John D.
1997-01-01
The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.
Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine
NASA Astrophysics Data System (ADS)
Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan
2012-06-01
A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.
Heat transfer and pressure measurements for the SSME fuel turbine
NASA Technical Reports Server (NTRS)
Dunn, Michael G.; Kim, Jungho
1991-01-01
A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.
Allison PD 370-42 advanced turboprop engine. Final report, October 1978-February 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolp, P.
1979-02-01
This study developed data on Detroit Diesel Allison (DDA) common core derivative engines for use in Maritime Patrol Aircraft (MPA) concept formulation studies. The study included the screening of potential DDA turboprop/turboshaft engines and the preparation of technical and planning information on three of the most promising engine candidates plus an all new engine. Screening of DDA Derivative candidates was performed utilizing an analytical MPA model using synthesized mission profiles to rank the candidates in terms of fuel consumption, weight, cost and complexity. The three turboprop engines selected for further study were as follows: a derivative of the unity sizemore » T701-AD-700 shaft power engine with rematched turbine (PD 370-37), an advanced T701 turboprop derivative with 25:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-40), an advanced T701 turboprop derivative with 17.7:1 overall pressure ratio and a scaled ATEGG demonstrated compressor (PD 370-4D al and experimental results attests to the accuracy of the assembled mechanism in its description of the homogenrt documents program highlights and research results for CY 1979 along with plans for the completion of program investigations. Postirradiation test data are presented for plateen chemical s.« less
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
Ablative material testing for low-pressure, low-cost rocket engines
NASA Technical Reports Server (NTRS)
Richter, G. Paul; Smith, Timothy D.
1995-01-01
The results of an experimental evaluation of ablative materials suitable for the production of light weight, low cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compositions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal chamber pressure of 1138 kPa (165 psi) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approximately 2456 K (4420 R). Two high-density composition materials exhibited high erosion resistance, while two low-density compositions exhibited approximately 6-75 times lower average erosion resistance. The results compare favorably with previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket engines.
NASA Technical Reports Server (NTRS)
Stabe, R. G.
1971-01-01
A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.
Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu
The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.
1975-01-01
Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.
NASA Technical Reports Server (NTRS)
Meyer, Carl L; Johnson, Lavern A
1952-01-01
The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.
NASA Technical Reports Server (NTRS)
Somsel, James P.
1998-01-01
The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Astrophysics Data System (ADS)
Manski, Detlef; Martin, James A.
1988-07-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Manski, Detlef; Martin, James A.
1988-01-01
Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.
Effect of inlet ingestion of a wing tip vortex on compressor face flow and turbojet stall margin
NASA Technical Reports Server (NTRS)
Mitchell, G. A.
1975-01-01
A two-dimensional inlet was alternately mated to a coldpipe plug assembly and a J85-GE-13 turbojet engine, and placed in a Mach 0.4 stream so as to ingest the tip vortex of a forward mounted wing. Vortex properties were measured just forward of the inlet and at the compressor face. Results show that ingestion of a wing tip vortex by a turbojet engine can cause a large reduction in engine stall margin. The loss in stall compressor pressure ratio was primarily dependent on vortex location and rotational direction and not on total-pressure distortion.
Water Injection Feasibility for Boeing 747 Aircraft
NASA Technical Reports Server (NTRS)
Daggett, David L.
2005-01-01
Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.
NASA Technical Reports Server (NTRS)
Nosek, S. M.; Straight, D. M.
1976-01-01
Plug nozzle film cooling data were obtained downstream of a slot located at 42 percent of the total plug length on a J-85 engine. Film cooling reduced the aft end wall temperature as much as 150 K, reduced total pressure loss in the upstream convection cooling passages by 50 percent, and reduced estimated compressor bleed flow requirement by 14 percent compared to an all convectively cooled nozzle. Shock waves along the plug surface strongly influenced temperature distributions on both convection and film cooled portions. The effect was most severe at nozzle pressure ratios below 10 where adverse pressure gradients were most severe.
NASA Technical Reports Server (NTRS)
Kraft, G. A.
1975-01-01
The fuel savings potential of regenerative turbofans was calculated and compared with that of a reference turbofan. At the design altitude of 10.67 km and Mach 0.80, the turbine-inlet-temperature of the regenerative turbofan was fixed at 1700 K while the overall pressure ratio was varied from 10 to 20. The fan pressure ratio was fixed at 1.6 and the bypass ratio varied from 8 to 10. The heat exchanger design parameters such as pressure drop and effectiveness varied from 4 to 8 percent and from 0.80 to 0.90, respectively. Results indicate a fuel savings due to regeneration of 4.1 percent and no change in takeoff gross weight.
NASA Astrophysics Data System (ADS)
Yadav, Siddhita; Pandey, K. M.
2018-04-01
In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.
Hydrogen-fueled diesel engine without timed ignition
NASA Technical Reports Server (NTRS)
Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.
1979-01-01
Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
Dual-throat thruster thermal model
NASA Technical Reports Server (NTRS)
Ewen, R. L.; Obrien, C. J.; Matthews, L. W.
1986-01-01
The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.
Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model
NASA Astrophysics Data System (ADS)
Kim, Sangjo; Kim, Kuisoon; Son, Changmin
2018-04-01
An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.
Dual throat engine design for a SSTO launch vehicle
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Salmon, J. W.
1980-01-01
A propulsion system analysis of a dual fuel, dual throat engine for launch vehicle application was conducted. Basic dual throat engine characterization data are presented to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined. Dual throat engine performance, envelope, and weight parametric data were generated over the parametric range of thrust from 890 to 8896 KN (200K to 2M lb-force), chamber pressure from 6.89 million to 34.5 million N/sq m (1000 to 5000 psia) thrust ratio from 1.2 to 5, and a range of mixture ratios for the two tripropellant combinations: LO2/RP-1 + LH2 and LO2/LCH4 + LH2. The results of the study indicate that the dual fuel dual throat engine is a viable single stage to orbit candidate.
Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core
NASA Technical Reports Server (NTRS)
Rauch, D.
1972-01-01
Design studies were conducted for an integral lift fan engine utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analyses include fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.
NASA Astrophysics Data System (ADS)
Saldivar Olague, Jose
A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.
Plug cluster engine concept for in-space missions
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Aukerman, C. A.
1979-01-01
The development of a suitable orbital transfer vehicle (OTV) engine is discussed. The OTV's dimensions are limited by those of the Space Shuttle payload bay on which it will be carried. An approach to utilize the available diameter to achieve high area ratio and thus high engine performance, is presented. Unconventional nozzles, such as clusters of small thrusters around a large diameter contoured plug, are investigated to arrive at engine designs which feature lower chamber pressures, with attendant lower heat flux, lower wall temperature, longer fatigue life, and less critical turbomachinery. Attention is also given to plug nozzle technology, high area ratio module- and scarfed bell- Plug Cluster Engine (PCE) concepts, as well as PCE performance, weight, and assessment. A conceptual design of a PCE formed from a cluster of high area ratio, scarfed, bell nozzles proved to be competitive with bell and spike nozzle engines. PCE advantages cited include increased payload length due to shorter engine length, ability to increase or decrease the number of modules and thereby the thrust, and low cost due to utilization of off-the-shelf technology.
Performance and operational improvements made to the Waukesha AT27-GL engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbold, E.O.
1996-12-31
This paper presents the results of combustion and engine performance studies performed on the AT27GL lean burn engine. One study was to evaluate the effect of the pre-combustion chamber cup geometry on engine performance under several operating conditions including: Air-Fuel Ratio (AFR), ignition timing, and engine load. The study examined several combustion parameters; including IMEP, coefficient of variation of IMEP, heat release rates, and maximum combustion pressures. The study also examined engine thermal efficiency, and brake specific emissions of Oxides of Nitrogen, Carbon Monoxide, and Total Hydrocarbons (gaseous). Studies were also performed on different spark plug designs, comparing firing voltages,more » and electrode temperatures while operating under conditions of varying AFR, and ignition timing. In addition an Air-Fuel-Ratio controller was recently tested and released on the engine. The controller was tested under conditions of varying fuel quality, along with a detonation control system.« less
Compound cycle engine for helicopter application
NASA Technical Reports Server (NTRS)
Castor, Jere; Martin, John; Bradley, Curtiss
1987-01-01
The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.
Compound cycle engine for helicopter application
NASA Technical Reports Server (NTRS)
Castor, Jere G.
1986-01-01
The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded, ultra-high power density, light-weight diesel engine. The turbomachinery is similar to a moderate pressure ratio, free power turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military light helicopter applications. This executive summary presents cycle thermodynamic (SFC) and engine weight analyses performed to establish general engine operating parameters and configuration. An extensive performance and weight analysis based on a typical two hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a T-800 class gas turbine engine. The CCE had a 31% lower-fuel consumption and resulted in a 16% reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb-HP-HR and installed wet weight is 0.43 lbs/HP. The major technology development areas required for the CCE are identified and briefly discussed.
Air/fuel ratio visualization in a diesel spray
NASA Astrophysics Data System (ADS)
Carabell, Kevin David
1993-01-01
To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a small pilot. This arrangement provided the best combination of short ignition delay and diffusion burn for the majority of cases.
Joint measurements of black carbon and particle mass for ...
The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate total BC emissions from historical PM data; however, theseratios have not been measured using portable emission measurement systems(PEMS) in order to obtain real-world measurements over a wide range ofdriving conditions. In this study, we developed a PEMS platform byintegrating two Aethalometers and an electric low pressure impactor torealize the joint measurement of real-world BC and PM emissions for tenHDDVs in China. Test results showed that the average BC/PM ratio for fiveHDDVs equipped with mechanical fuel injection (MI) engines was 0.43±0.06,significantly lower (P<0.05) than another five HDDVs equipped withelectronically-controlled fuel injection (EI) engines (0.56±0.12).Traffic conditions also affected the BC/PM ratios with higher BC/PMratios on freeway routes than on local roads. Further, higher ratios wereobserved for HDDVs equipped with EI engines than for the MI engines forthe highway and local road routes. With an operating mode binningapproach, we observed that the instantaneous BC/PM ratios of EI enginevehicles were above those of the MI engine vehicles in all operatingmodes except for the braking mode (i.e., Bin 0). Therefore, the compleximpacts from engine technology and
The effect of preignition on cylinder temperatures, pressures, power output, and piston failures
NASA Technical Reports Server (NTRS)
Corrington, Lester C; Fisher, William F
1947-01-01
An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.
An Extended Combustion Model for the Aircraft Turbojet Engine
NASA Astrophysics Data System (ADS)
Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel
2014-08-01
The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.
Unconventional nozzle tradeoff study. [space tug propulsion
NASA Technical Reports Server (NTRS)
Obrien, C. J.
1979-01-01
Plug cluster engine design, performance, weight, envelope, operational characteristics, development cost, and payload capability, were evaluated and comparisons were made with other space tug engine candidates using oxygen/hydrogen propellants. Parametric performance data were generated for existing developed or high technology thrust chambers clustered around a plug nozzle of very large diameter. The uncertainties in the performance prediction of plug cluster engines with large gaps between the modules (thrust chambers) were evaluated. The major uncertainty involves, the aerodynamics of the flow from discrete nozzles, and the lack of this flow to achieve the pressure ratio corresponding to the defined area ratio for a plug cluster. This uncertainty was reduced through a cluster design that consists of a plug contour that is formed from the cluster of high area ratio bell nozzles that have been scarfed. Light-weight, high area ratio, bell nozzles were achieved through the use of AGCarb (carbon-carbon cloth) nozzle extensions.
Performance and combustion characteristics of direct-injection stratified-charge rotary engines
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee
1987-01-01
Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.
NASA Astrophysics Data System (ADS)
Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Baldauf, Richard W.; Zhang, K. Max; Hu, Jingnan; Li, Zhenhua; Fu, Lixin; Hao, Jiming
2016-09-01
The black carbon (BC) emitted from heavy-duty diesel vehicles (HDDVs) is an important source of urban atmospheric pollution and creates strong climate-forcing impacts. The emission ratio of BC to total particle mass (PM) (i.e., BC/PM ratio) is an essential variable used to estimate total BC emissions from historical PM data; however, these ratios have not been measured using portable emission measurement systems (PEMS) in order to obtain real-world measurements over a wide range of driving conditions. In this study, we developed a PEMS platform by integrating two Aethalometers and an electric low pressure impactor to realize the joint measurement of real-world BC and PM emissions for ten HDDVs in China. Test results showed that the average BC/PM ratio for five HDDVs equipped with mechanical fuel injection (MI) engines was 0.43 ± 0.06, significantly lower (P < 0.05) than another five HDDVs equipped with electronically-controlled fuel injection (EI) engines (0.56 ± 0.12). Traffic conditions also affected the BC/PM ratios with higher ratios on freeway routes than on local roads. Furthermore, higher ratios were observed for HDDVs equipped with EI engines than for the MI engines for the highway and local road routes. With an operating mode binning approach, we observed that the instantaneous BC/PM ratios of EI engine vehicles were above those of the MI engine vehicles in all operating modes except for the braking mode (i.e., Bin 0). Therefore, the complex impacts from engine technology and traffic conditions on BC/PM ratios should be carefully considered when estimating real-world BC emissions from HDDVs based on overall PM emissions data.
Clean catalytic combustor program
NASA Technical Reports Server (NTRS)
Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.
1983-01-01
A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.
Process and apparatus for afterburning of combustible pollutants from an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, P.A.
1978-07-04
In a process for the afterburning of the combustible pollutants from an internal combustion engine, in order to automatically reduce the secondary induction rate when power increases without using a controlling valve actuatd by the carburetor venturi depression, there is provided a volumetric efficiency of the secondary air pump linked to and activated by the engine and a volumetric efficiency which decreases when the ratio between its back pressure and suction pressure increases, this reduction being achieved through the proper selection of the pump volumetric compression ratio r: between 0.6 c and 1.3 c when a steeply decreasing trend ismore » required, and above 1.3 c if a slower and slower decreasing trend is required. To perform this process an afterburner apparatus has a nitrogen oxide reducing catalyst placed inside the afterburner reactor on the gas stream immediately at the outlet of a torus, in which the gases are homogenized and their reaction with preinjection air is terminated.« less
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
Affect of Brush Seals on Wave Rotor Performance Assessed
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Lewis Research Center's experimental and theoretical research shows that wave rotor topping can significantly enhance gas turbine engine performance levels. Engine-specific fuel consumption and specific power are potentially enhanced by 15 and 20 percent, respectively, in small (e.g., 400 to 700 hp) and intermediate (e.g., 3000 to 5000 hp) turboshaft engines. Furthermore, there is potential for a 3- to 6-percent specific fuel consumption enhancement in large (e.g., 80,000 to 100,000 lbf) turbofan engines. This wave-rotor-enhanced engine performance is accomplished within current material-limited temperature constraints. The completed first phase of experimental testing involved a three-port wave rotor cycle in which medium total pressure inlet air was divided into two outlet streams, one of higher total pressure and one of lower total pressure. The experiment successfully provided the data needed to characterize viscous, partial admission, and leakage loss mechanisms. Statistical analysis indicated that wave rotor product efficiency decreases linearly with the rotor to end-wall gap, the square of the friction factor, and the square of the passage of nondimensional opening time. Brush seals were installed to further minimize rotor passage-to-cavity leakage. The graph shows the effect of brush seals on wave rotor product efficiency. For the second-phase experiment, which involves a four-port wave rotor cycle in which heat is added to the Brayton cycle in an external burner, a one-dimensional design/analysis code is used in conjunction with a wave rotor performance optimization scheme and a two-dimensional Navier-Stokes code. The purpose of the four-port experiment is to demonstrate and validate the numerically predicted four-port pressure ratio versus temperature ratio at pressures and temperatures lower than those that would be encountered in a future wave rotor/demonstrator engine test. Lewis and the Allison Engine Company are collaborating to investigate wave rotor integration in an existing turboshaft engine. Recent theoretical efforts include simulating wave rotor dynamics (e.g., startup and load-change transient analysis), modifying the one-dimensional wave rotor code to simulate combustion internal to the wave rotor, and developing an analytical wave rotor design/analysis tool based on macroscopic balances for parametric wave rotor/engine analysis.
CFD transient simulation of an isolator shock train in a scramjet engine
NASA Astrophysics Data System (ADS)
Hoeger, Troy Christopher
For hypersonic flight, the scramjet engine uses an isolator to contain the pre-combustion shock train formed by the pressure difference between the inlet and the combustion chamber. If this shock train were to reach the inlet, it would cause an engine unstart, disrupting the flow through the engine and leading to a loss of thrust and potential loss of the vehicle. Prior to this work, a Computational Fluid Dynamics (CFD) simulation of the isolator was needed for simulating and characterizing the isolator flow and for finding the relationship between back pressure and changes in the location of the leading edge of the shock train. In this work, the VULCAN code was employed with back pressure as an input to obtain the time history of the shock train leading location. Results were obtained for both transient and steady-state conditions. The simulation showed a relationship between back-to-inlet pressure ratios and final locations of the shock train. For the 2-D runs, locations were within one isolator duct height of experimental results while for 3-D runs, the results were within two isolator duct heights.
Development of HIDEC adaptive engine control systems
NASA Technical Reports Server (NTRS)
Landy, R. J.; Yonke, W. A.; Stewart, J. F.
1986-01-01
The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.
Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage
NASA Technical Reports Server (NTRS)
Merchant, Ali; Kerrebrock, Jack L.; Adamczyk, John J.; Braunscheidel, Edward
2004-01-01
The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 ft/sec is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the three-dimensional viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5 percent of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The sensitivity of the stage performance and operability to reduced aspiration flow rates at design and off design conditions are also discussed.
Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Paxson, Daniel E.; Wilson, Jack; Synder, Philip H.
1999-01-01
The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine. The self-cooled wave rotor is predicted to increase the engine overall pressure ratio and peak temperature by 300% and 25 to 30%. respectively, providing substantial improvements in engine efficiency and specific power. Such performance improvements would significantly reduce engine emissions and the fuel logistics trails of armed forces. Progress towards a planned demonstration of a wave-rotor-topped Rolls-Royce Allison model 250 engine has included completion of the preliminary design and layout of the engine, the aerodynamic design of the wave rotor component and prediction of its aerodynamic performance characteristics in on- and off-design operation and during transients, and the aerodynamic design of transition ducts between the wave rotor and the high pressure turbine. The topping cycle increases the burner entry temperature and poses a design challenge to be met in the development of the demonstrator engine.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Materials to Engineer the Immune System
2010-04-01
presentation of danger signals to regulate the ratio of distinct DC subtypes was next examined by immobilizing TLR-activating, polyethylenimine (PEI...compression molded. The resulting disc was allowed to equilibrate within a high-pressure CO2 environment, and a rapid reduction in pressure causes the...pressure CO2 process to foam macroporous PLG matrices incorporating tumor lysates. To incorporate CpG-ODNs into PLG scaffolds, we first con- densed CpG-ODN
Launch Vehicle Propulsion Design with Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.
2005-01-01
The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.
40 CFR 87.2 - Acronyms and abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.2 Acronyms and... pressure ratio sec.Seconds SPShaft power SNSmoke number TTemperature, degrees Kelvin TIMTime in mode WWatt...
Preliminary compressor design study for an advanced multistage axial flow compressor
NASA Technical Reports Server (NTRS)
Marman, H. V.; Marchant, R. D.
1976-01-01
An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15.
Low-speed wind tunnel tests of a 50.8-centimeter (20-in.) 1.15-pressure-ratio fan engine model
NASA Technical Reports Server (NTRS)
Wesoky, H. L.; Abbott, J. M.; Albers, J. A.; Dietrich, D. A.
1974-01-01
At a typical STOL aircraft takeoff and landing velocity, wind tunnel aerodynamic and acoustic measurements demonstrated that an inlet lip-area contraction ratio of 1.35 was superior to a ratio of 1.26 at high incidence angles. A 17 percent reduction in net thrust and an increase of 9 decibels in sound pressure level at the blade passing frequency resulted from inlet flow separation at an incidence angle of 50 deg with the 1.26-contraction-ratio inlet. Reverse-thrust forces obtained with blade rotation through the feathered angle were 1.8 times larger than with blade rotation through the flat angle. Reverse-thrust force was reduced from 30 to 50 percent and sound pressure level increased from 3 to 7 decibels at the blade passing frequency between the wind-tunnel-off condition and a typical STOL aircraft landing velocity.
Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Thurman, Douglas R.
2010-01-01
This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.
Idle efficiency and pollution results for two-row swirl-can combustors having 72 modules
NASA Technical Reports Server (NTRS)
Biaglow, J. A.; Trout, A. M.
1975-01-01
Two 72-swirl-can-module combustors were investigated in a full annular combustor test facility at engine idle conditions typical of a 30:1 pressure-ratio engine. The effects of radial and circumferential fuel scheduling on combustion efficiency and gaseous pollutants levels were determined. Test conditions were inlet-air temperature, 452 K; inlet total pressure, 34.45 newtons per square centimeter; and reference velocity, 19.5 meters per second. A maximum combustion efficiency of 98.1 percent was achieved by radial scheduling of fuel to the inner row of swirl-can modules. Emission index values were 6.9 for unburned hydrocarbons and 50.6 for carbon monoxide at a fuel-air ratio of 0.0119. Circumferential fuel scheduling of two 90 degree sectors of the swirl-can arrays produced a maximum combustion efficiency of 97.3 percent. The emission index values were 12.0 for unburned hydrocarbons and 69.2 for carbon monoxide at a fuel-air ratio of 0.0130.
The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance
2014-03-27
27 25 NPSS Mixed Flow Turbofan Model - Element and Link Names . . . . . . . . . 30 26 VCE with Variable Components Labeled...the power generation, Vogeler proposed the Sequential Combustion Cycle (SCC) for use in aircraft engines [13]. For a conventional turbofan with a...single combustor, thrust is a function of bypass ratio and maximum pressure and temperature in the cycle. Considering a twin spool turbofan engine as
The Quiescent-Chamber Type Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Foster, H H
1937-01-01
Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.
Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)
2013-05-01
combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh
Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun
2017-01-01
The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9.5 microns to achieve the target melt ratio. For data points that did not experience a CRB which had static wet bulb temperatures in the EGV region below 492 degrees Rankine, a non-zero melt ratio could not be achieved even with a 1 micron ice particle size. The highest value of static wet bulb temperature for data points that experienced engine CRB was 498 degrees Rankine with a particle size of 9.5 microns. Based on this study of the LF11 engine test data, the range of static wet bulb temperature at the EGV exit for engine CRB was in the narrow range of 492 degrees Rankine - 498 degrees Rankine , while the minimum value of IWAR was 0.002. The rate of blockage growth due to ice accretion and boundary layer growth was estimated by scaling from a known blockage growth rate that was determined in a previous study. These results obtained from the LF11 engine analysis formed the basis of a unique “icing wedge.”
An Investigation of the Coefficient of Discharge of Liquids Through Small Round Orifices
NASA Technical Reports Server (NTRS)
Joachim, W F
1926-01-01
The work covered by this report was undertaken in connection with a general investigation of fuel injection engine principles as applied to engines for aircraft propulsion, the specific purpose being to obtain information on the coefficient of discharge of small round orifices suitable for use as fuel injection nozzles. Values for the coefficient were determined for the more important conditions of engine service such as discharge under pressures up to 8,000 pounds per square inch, at temperatures between 80 degrees and 180 degrees F. And into air compressed to pressures up to 1,000 pounds per square inch. The results show that the coefficient ranges between 0.62 and 0.88 for the different test conditions between 1,000 and 8,000 pounds per square inch hydraulic pressure. At lower pressures the coefficient increases materially. It is concluded that within the range of these tests and for hydraulic pressures above 1,000 pound per square inch the coefficient does not change materially with pressure or temperature; that it depends considerably upon the liquid, decreases with increase in orifice size, and increases in the case of discharge into compressed air until the compressed-air pressure equals approximately three-tenths of the hydraulic pressure, beyond which pressure ratio it remains practically constant.
NASA Astrophysics Data System (ADS)
Servati, Hamid Beyragh
A liquid fuel film formation on the walls of an intake manifold adversely affects the engine performance and alters the overall air/fuel ratio from that scheduled by a fuel injector or carburetor and leads to adverse effects in vehicle driveability, exhaust emissions, and fuel economy. In this dissertation, the intake manifold is simulated by a horizontal circular duct. A model is provided to predict the rate of deposition and evaporation of the droplets in the intake manifold. The liquid fuel flow rate into the cylinders, mean film velocity and film thickness are determined as functions of engine parameters for both steady and transient operating conditions of the engine. A mathematical engine model is presented to simulate the dynamic interactions of the various engine components such as the air/fuel inlet element, intake manifold, combustion, dynamics and exhaust emissions. Inputs of the engine model are the intake manifold pressure and temperature, throttle angle, and air/fuel ratio. The observed parameters are the histories of fuel film thickness and velocity, fuel consumption, engine speed, engine speed hesitation time, and histories of CO, CO(,2), NO(,x), CH(,n), and O(,2). The effects of different air/fuel ratio control strategies on engine performance and observed parameters are also shown.
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Unal, Resit; Joyner, C. R.
1992-01-01
The application of advanced technologies to future launch vehicle designs would allow the introduction of a rocket-powered, single-stage-to-orbit (SSTO) launch system early in the next century. For a selected SSTO concept, a dual mixture ratio, staged combustion cycle engine that employs a number of innovative technologies was selected as the baseline propulsion system. A series of parametric trade studies are presented to optimize both a dual mixture ratio engine and a single mixture ratio engine of similar design and technology level. The effect of varying lift-off thrust-to-weight ratio, engine mode transition Mach number, mixture ratios, area ratios, and chamber pressure values on overall vehicle weight is examined. The sensitivity of the advanced SSTO vehicle to variations in each of these parameters is presented, taking into account the interaction of each of the parameters with each other. This parametric optimization and sensitivity study employs a Taguchi design method. The Taguchi method is an efficient approach for determining near-optimum design parameters using orthogonal matrices from design of experiments (DOE) theory. Using orthogonal matrices significantly reduces the number of experimental configurations to be studied. The effectiveness and limitations of the Taguchi method for propulsion/vehicle optimization studies as compared to traditional single-variable parametric trade studies is also discussed.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
NASA Technical Reports Server (NTRS)
Dixon, G. V.; Barringer, S. R.; Gray, C. E.; Leatherman, A. D.
1975-01-01
Computer programs and resulting tabulations are presented of pipeline length-to-diameter ratios as a function of Mach number and pressure ratios for compressible flow. The tabulations are applicable to air, nitrogen, oxygen, and hydrogen for compressible isothermal flow with friction and compressible adiabatic flow with friction. Also included are equations for the determination of weight flow. The tabulations presented cover a wider range of Mach numbers for choked, adiabatic flow than available from commonly used engineering literature. Additional information presented, but which is not available from this literature, is unchoked, adiabatic flow over a wide range of Mach numbers, and choked and unchoked, isothermal flow for a wide range of Mach numbers.
Parametric analysis of a down-scaled turbo jet engine suitable for drone and UAV propulsion
NASA Astrophysics Data System (ADS)
Wessley, G. Jims John; Chauhan, Swati
2018-04-01
This paper presents a detailed study on the need for downscaling gas turbine engines for UAV and drone propulsion. Also, the procedure for downscaling and the parametric analysis of a downscaled engine using Gas Turbine Simulation Program software GSP 11 is presented. The need for identifying a micro gas turbine engine in the thrust range of 0.13 to 4.45 kN to power UAVs and drones weighing in the range of 4.5 to 25 kg is considered and in order to meet the requirement a parametric analysis on the scaled down Allison J33-A-35 Turbojet engine is performed. It is evident from the analysis that the thrust developed by the scaled engine and the Thrust Specific Fuel Consumption TSFC depends on pressure ratio, mass flow rate of air and Mach number. A scaling factor of 0.195 corresponding to air mass flow rate of 7.69 kg/s produces a thrust in the range of 4.57 to 5.6 kN while operating at a Mach number of 0.3 within the altitude of 5000 to 9000 m. The thermal and overall efficiency of the scaled engine is found to be 67% and 75% respectively for a pressure ratio of 2. The outcomes of this analysis form a strong base for further analysis, design and fabrication of micro gas turbine engines to propel future UAVs and drones.
X-33 XRS-2200 Linear Aerospike Engine Sea Level Plume Radiation
NASA Technical Reports Server (NTRS)
DAgostino, Mark G.; Lee, Young C.; Wang, Ten-See; Turner, Jim (Technical Monitor)
2001-01-01
Wide band plume radiation data were collected during ten sea level tests of a single XRS-2200 engine at the NASA Stennis Space Center in 1999 and 2000. The XRS-2200 is a liquid hydrogen/liquid oxygen fueled, gas generator cycle linear aerospike engine which develops 204,420 lbf thrust at sea level. Instrumentation consisted of six hemispherical radiometers and one narrow view radiometer. Test conditions varied from 100% to 57% power level (PL) and 6.0 to 4.5 oxidizer to fuel (O/F) ratio. Measured radiation rates generally increased with engine chamber pressure and mixture ratio. One hundred percent power level radiation data were compared to predictions made with the FDNS and GASRAD codes. Predicted levels ranged from 42% over to 7% under average test values.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
Flight testing the digital electronic engine control in the F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.
Development of a novel passive top-down uniflow scavenged two-stroke GDI engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarelli, G.; Reynolds, Steve; Oliver, Phillip
2010-02-15
The design and performance characteristics of a novel top-down uniflow scavenged gasoline direct-injection two-stroke engine are presented. The novelty of the engine lies in the cylinder head that contains multiple check valves that control scavenging airflow into the cylinder from a supercharged air plenum. When the cylinder pressure drops below the intake plenum pressure during the expansion stroke, air flows into the cylinder through the check valves. During compression the cylinder pressure increases to a level above the intake plenum pressure and the check valves close preventing back-flow into the intake plenum. The engine head design provides asymmetrical intake valvemore » timing without the use of poppet valves and the associated valve-train. In combination with an external Roots-type supercharger that supplies the plenum and exhaust ports at the bottom of the cylinder wall, the novel head provides top-down uniflow air scavenging. Motoring tests indicated that the check valves seal and the peak pressure is governed by the compression ratio. The only drawback observed is that valve closing is delayed as the engine speed increases. In order to investigate the valve dynamics, additional tests were performed in an optically-accessible cold flow test rig that enabled the direct measurement of valve opening and closing time under various conditions. (author)« less
The effect of changes in compression ratio upon engine performance
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)
NASA Technical Reports Server (NTRS)
1976-01-01
The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.
Ejector-Enhanced, Pulsed, Pressure-Gain Combustor
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Dougherty, Kevin T.
2009-01-01
An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.
High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender
2014-01-01
Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.
Revised Point of Departure Design Options for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Fittje, James E.; Schnitzler, Bruce G.; Borowoski, Stanley
2015-01-01
Four Revised Point of Departure NTR Engines were Designed and Analyzed using MCNP and NESS. All Four Engines Have Thermodynamically Closed Cycles at Nominal Chamber Pressures. 111 kilonewton (25 kip-force) Cermet Design Required Dedicated Heater Elements to Close the Cycle. Cermet Based Designs had Slightly Higher TW Ratios, but Required Substantially More U-235. NERVA Derived Criticality Limited Engine Could Operate at Lower Power and Thrust Levels Compared to the Criticality Limited Cermet Design.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1932-01-01
This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.
NASA Technical Reports Server (NTRS)
Tower, Leonard K; Gammon, Benson E
1953-01-01
The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.
Prediction of in-depth gap heating ratios from wing glove model test data. [space shuttle orbiter
NASA Technical Reports Server (NTRS)
1977-01-01
In-depth gap heating ratios were predicted down RSI tile sidewalls based on temperature measurements obtained from the JSC arc-jet Wing Glove model tests in order to develop gap heating ratios which resulted in the best possible fit of test data and to produce a set of engineering verification heating ratios similar in shape to one another which could be used at various body points on the Orbiter during reentry. The Rockwell TPS Multidimensional heat conduction program was used to perform 3-D thermal analyses using a 3.0 in. thick section of a curved RSI tile with 283 nodal points. Correlation with test data shows that the predicted heating ratios were significantly higher down in the gap than the zero pressure values for T/C stacks 39 and 38 on the Wing Glove model. For stack 37 (in a low pressure region), the baseline heating ratio overpredicted the temperature data. This analysis, which showed that the heating ratios were a strong function of the product of pressure and pressure gradient, will be used to compare with recent Gap/Step and Ames Double Wedge test/analysis results in the effort to identify the Orbiter gap response to high delta P flight environment.
Detonation duct gas generator demonstration program
NASA Technical Reports Server (NTRS)
Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.
1991-01-01
The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.
High-Fidelity Three-Dimensional Simulation of the GE90
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Norris, Andrew; Veres, Josphe P.
2004-01-01
A full-engine simulation of the three-dimensional flow in the GE90 94B high-bypass ratio turbofan engine has been achieved. It would take less than 11 hr of wall clock time if starting from scratch through the exploitation of parallel processing. The simulation of the compressor components, the cooled high-pressure turbine, and the low-pressure turbine was performed using the APNASA turbomachinery flow code. The combustor flow and chemistry were simulated using the National Combustor Code (NCC). The engine simulation matches the engine thermodynamic cycle for a sea-level takeoff condition. The simulation is started at the inlet of the fan and progresses downstream. Comparisons with the cycle point are presented. A detailed look at the blockage in the turbomachinery is presented as one measure to assess and view the solution and the multistage interaction effects.
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
NASA Technical Reports Server (NTRS)
Emami, Saied; Trexler, Carl A.; Auslender, Aaron H.; Weidner, John P.
1995-01-01
This report details experimentally derived operational characteristics of numerous two-dimensional planar inlet-combustor isolator configurations at a Mach number of 4. Variations in geometry included (1) inlet cowl length; (2) inlet cowl rotation angle; (3) isolator length; and (4) utilization of a rearward-facing isolator step. To obtain inlet-isolator maximum pressure-rise data relevant to ramjet-engine combustion operation, configurations were mechanically back pressured. Results demonstrated that the combined inlet-isolator maximum back-pressure capability increases as a function of isolator length and contraction ratio, and that the initiation of unstart is nearly independent of inlet cowl length, inlet cowl contraction ratio, and mass capture. Additionally, data are presented quantifying the initiation of inlet unstarts and the corresponding unstart pressure levels.
Spontaneous Raman Scattering (SRS) System for Calibrating High-Pressure Flames Became Operational
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2003-01-01
A high-performance spontaneous Raman scattering (SRS) system for measuring quantitative species concentration and temperature in high-pressure flames is now operational. The system is located in Glenn s Engine Research Building. Raman scattering is perhaps the only optical diagnostic technique that permits the simultaneous (single-shot) measurement of all major species (N2, O2, CO2, H2O, CO, H2, and CH4) as well as temperature in combustion systems. The preliminary data acquired with this new system in a 20-atm hydrogen-air (H2-air) flame show excellent spectral coverage, good resolution, and a signal-to-noise ratio high enough for the data to serve as a calibration standard. This new SRS diagnostic system is used in conjunction with the newly developed High- Pressure Gaseous Burner facility (ref. 1). The main purpose of this diagnostic system and the High-Pressure Gaseous Burner facility is to acquire and establish a comprehensive Raman-scattering spectral database calibration standard for the combustion diagnostic community. A secondary purpose of the system is to provide actual measurements in standardized flames to validate computational combustion models. The High-Pressure Gaseous Burner facility and its associated SRS system will provide researchers throughout the world with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines.
Alternate Propulsion Subsystem Concepts Tripropellant Comparison Study
NASA Technical Reports Server (NTRS)
Levack, Daniel
1995-01-01
A study was conducted under MSFC contract NAS8-39210 to compare tripropellant and bipropellant engine configurations for the SSTO mission. The objective was to produce an 'apples-to-apples' comparison to isolate the effects of design implementation, designing company, year of design, or technologies included from the basic tripropellant/bipropellant comparison. Consequently, identical technologies were included (e.g., jet pumps) and the same design groundrules and practices were used. Engine power cycles were examined as were turbomachinery/preburner arrangements for each cycle. The bipropellant approach and two tripropellant approaches were separately optimized in terms of operating parameters: exit pressures, mixture ratios, thrust splits, etc. This briefing presents the results of the study including engine weights for both tripropellant and bipropellant engines; dry vehicle weight performance for a range of engine chamber pressures; discusses the basis for the results; examines vehicle performance due to engine cycles and the margin characteristics of various cycles; and identifies technologies with significant payoffs for this application.
High variable mixture ratio oxygen/hydrogen engine
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Tu, W. H.; Weiss, A. H.
1988-01-01
The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.
NASA Technical Reports Server (NTRS)
Lundin, Bruce T; Povolny, John H; Chelko, Louis J
1949-01-01
Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.
Aerothermal modeling. Executive summary
NASA Technical Reports Server (NTRS)
Kenworthy, M. K.; Correa, S. M.; Burrus, D. L.
1983-01-01
One of the significant ways in which the performance level of aircraft turbine engines has been improved is by the use of advanced materials and cooling concepts that allow a significant increase in turbine inlet temperature level, with attendant thermodynamic cycle benefits. Further cycle improvements have been achieved with higher pressure ratio compressors. The higher turbine inlet temperatures and compressor pressure ratios with corresponding higher temperature cooling air has created a very hostile environment for the hot section components. To provide the technology needed to reduce the hot section maintenance costs, NASA has initiated the Hot Section Technology (HOST) program. One key element of this overall program is the Aerothermal Modeling Program. The overall objective of his program is to evolve and validate improved analysis methods for use in the design of aircraft turbine engine combustors. The use of such combustor analysis capabilities can be expected to provide significant improvement in the life and durability characteristics of both combustor and turbine components.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1993-01-01
The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.
NASA Technical Reports Server (NTRS)
Bangert, Linda S.; Leavitt, Laurence D.; Reubush, David E.
1987-01-01
The effects of empennage arrangement and afterbody boattail design of nonaxisymmetric nozzles on the aeropropulsive characteristics of a twin-engine fighter-type model have been determined in an investigation conducted in the Langley 16-Foot Transonic Tunnel. Three nonaxisymmetric and one twin axisymmetric convergent-divergent nozzle configurations were tested with three different tail arrangements: a two-tail V-shaped arrangement; a staggered, conventional three-tail arrangement; and a four-tail arrangement similar to that on the F-18. Two of the nonaxisymmetric nozzles were also vectorable. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from -3 deg to 9 deg. Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number. Results indicate that at design nozzle pressure ratio, the medium aspect ratio nozzle (with equal boattail angles on the nozzle sidewalls and upper and lower flaps) had the lowest zero angle of attack drag of the nonaxisymmetric nozzles for all tail configurations at subsonic Mach numbers. The drag levels of the twin axisymmetric nozzles were competitive with those of the medium-aspect-ratio nozzle at subsonic Mach number.
Optimal design and installation of ultra high bypass ratio turbofan nacelle
NASA Astrophysics Data System (ADS)
Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey
2016-10-01
The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.
Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R
2015-11-01
Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.
Quiet Clean Short-haul Experimental Engine (QCSEE) UTW fan preliminary design
NASA Technical Reports Server (NTRS)
1975-01-01
High bypass geared turbofan engines and propulsion systems designed for short-haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is emphasized. The aerodynamic and mechanical preliminary design of the QCSEE under the wing 1.34 pressure ratio fan with variable blade pitch is presented. Design information is given for two pitch change actuation systems which will provide reverse thrust.
Performance of a Model Rich Burn-quick Mix-lean Burn Combustor at Elevated Temperature and Pressure
NASA Technical Reports Server (NTRS)
Peterson, Christopher O.; Sowa, William A.; Samuelsen, G. S.
2002-01-01
As interest in pollutant emission from stationary and aero-engine gas turbines increases, combustor engineers must consider various configurations. One configuration of increasing interest is the staged, rich burn - quick mix - lean burn (RQL) combustor. This report summarizes an investigation conducted in a recently developed high pressure gas turbine combustor facility. The model RQL combustor was plenum fed and modular in design. The fuel used for this study is Jet-A which was injected from a simplex atomizer. Emission (CO2, CO, O2, UHC, NOx) measurements were obtained using a stationary exit plane water-cooled probe and a traversing water-cooled probe which sampled from the rich zone exit and the lean zone entrance. The RQL combustor was operated at inlet temperatures ranging from 367 to 700 K, pressures ranging from 200 to 1000 kPa, and combustor reference velocities ranging from 10 to 20 m/s. Variations were also made in the rich zone and lean zone equivalence ratios. Several significant trends were observed. NOx production increased with reaction temperature, lean zone equivalence ratio and residence time and decreased with increased rich zone equivalence ratio. NOx production in the model RQL combustor increased to the 0.4 power with increased pressure. This correlation, compared to those obtained for non-staged combustors (0.5 to 0.7), suggests a reduced dependence on NOx on pressure for staged combustors. Emissions profiles suggest that rich zone mixing is not uniform and that the rich zone contributes on the order of 16 percent to the total NOx produced.
Regeneratively cooled rocket engine for space storable propellants
NASA Technical Reports Server (NTRS)
Wagner, W. R.; Waldman, B. J.
1973-01-01
Analyses and experimental studies were performed with the OF2 (F2/O2)/B2H6 propellant combination over a range in operating conditions to determine suitability for a space storable pressure fed engine configuration for an extended flight space vehicle configuration. The regenerative cooling mode selected for the thrust chamber was explored in detail with the use of both the fuel and oxidizer as coolants in an advanced milled channel construction thrust chamber design operating at 100 psia chamber pressure and a nominal mixture ratio of 3.0 with a 60:1 area ratio nozzle. Benefits of the simultaneous cooling as related to gaseous injection of both fuel and oxidizer propellants were defined. Heat transfer rates, performance and combustor stability were developed for impinging element triplet injectors in uncooled copper calorimeter hardware with flow, pressure and temperature instrumentation. Evaluation of the capabilities of the B2H6 and OF2 during analytical studies and numerous tests with flow through electrically heated blocks provided design criteria for subsequent regenerative chamber design and fabrication.
Design and cold-air test of single-stage uncooled turbine with high work output
NASA Technical Reports Server (NTRS)
Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.
1980-01-01
A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.
NASA Astrophysics Data System (ADS)
Lin, Yung-Hsu
The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.
Turbine airfoil with ambient cooling system
Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.
2016-06-07
A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
NASA Technical Reports Server (NTRS)
Bair, E. K.
1986-01-01
The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.
Ramgen Power Systems for Military Engine Applications
2007-05-01
from 82 to 85 percent. Centrifugal designs can be applied up to pressure ratios of 4.0 per stage in 17 - 4PH stainless steel with adiabatic... 17 16 Compressor speed lines...18 17 Rotor efficiency versus airflow............................................................................................19 18
NASA Technical Reports Server (NTRS)
Golladay, Richard L.; Gendler, Stanley L.
1947-01-01
An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.
Thrust augmentation nozzle (TAN) concept for rocket engine booster applications
NASA Astrophysics Data System (ADS)
Forde, Scott; Bulman, Mel; Neill, Todd
2006-07-01
Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.
NASA Technical Reports Server (NTRS)
Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.
1987-01-01
The joint Army. Navy, NASA. Air Force (JANNAF) rocket engine peformnace prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure incorporated into the December l984 version of the TDK program for the high-area-ratio rocket engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis Research Center. A detailed description of the experimental test conditions and TDK input parameters is given. The results show that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values. An experimental value for inviscid thrust was obtained for the nozzle extension between area ratios of 427.5 and 1030 by using an integration of the measured wall static pressures. Subtracting the measured thrust gain produced by the nozzle between area ratios of 427.5 and 1030 from the inviscid thrust gain yielded experimental drag decrements of 10.85 and 27.00 N (2.44 and 6.07 lb) for mixture ratios of 3.04 and 4.29, respectively. These values correspond to 0.45 and 1.11 percent of the total vacuum thrust. At a mixture ratio of 4.29, the TDK predicted drag decrement was 16.59 N (3.73 lb), or 0.71 percent of the predicted total vacuum thrust.
Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation
NASA Technical Reports Server (NTRS)
Taylor, E S; Leary, W A; Diver, J R
1940-01-01
An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.
Catalytic combustion for the automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Anderson, D. N.; Tacina, R. R.; Mroz, T. S.
1977-01-01
Fuel injectors to provide a premixed prevaporized fuel-air mixture are studied. An evaluation of commercial catalysts was performed as part of a program leading to the demonstration of a low emissions combustor for an automotive gas turbine engine. At an inlet temperature of 800 K, a pressure of 500,000 Pa and a velocity of 20 m/s a multiple-jet injector produced less than + or - 10 percent variation in Jet-A fuel-air ratio and 100 percent varporization with less than 0.5 percent pressure drop. Fifteen catalytic reactors were tested with propane fuel at an inlet temperature of 800 K, a pressure of 300,000 Pa and inlet velocities of 10 to 25 m/s. Seven of the reactors had less than 2 percent pressure drop while meeting emissions goals of 13.6 gCO/kg fuel and 1.64 gHC/kg fuel at the velocities and exit temperatures required for operation in an automotive gas turbine engine. NO sub x emissions at all conditions were less than 0.5 ppm. All tests were performed with steady state conditions.
Scramjet Tests in a Shock Tunnel at Flight Mach 7, 10, and 15 Conditions
NASA Technical Reports Server (NTRS)
Rogers, R. C.; Shih, A. T.; Tsai, C.-Y.; Foelsche, R. O.
2001-01-01
Tests of the Hyper-X scramjet engine flowpath have been conducted in the HYPULSE shock tunnel at conditions duplicating the stagnation enthalpy at flight Mach 7, 10, and 15. For the tests at Mach 7 and 10 HYPULSE was operated as a reflected-shock tunnel; at the Mach 15 condition, HYPULSE was operated as a shock-expansion tunnel. The test conditions matched the stagnation enthalpy of a scramjet engine on an aerospace vehicle accelerating through the atmosphere along a 1000 psf dynamic pressure trajectory. Test parameter variation included fuel equivalence ratios from lean (0.8) to rich (1.5+); fuel composition from pure hydrogen to mixtures of 2% and 5% silane in hydrogen by volume; and inflow pressure and Mach number made by changing the scramjet model mounting angle in the HYPULSE test chamber. Data sources were wall pressures and heat flux distributions and schlieren and fuel plume imaging in the combustor/nozzle sections. Data are presented for calibration of the facility nozzles and the scramjet engine model. Comparisons of pressure distributions and flowpath streamtube performance estimates are made for the three Mach numbers tested.
Venugopal, Paramaguru; Kasimani, Ramesh; Chinnasamy, Suresh
2018-06-21
The transportation demand in India is increasing tremendously, which arouses the energy consumption by 4.1 to 6.1% increases each year from 2010 to 2050. In addition, the private vehicle ownership keeps on increasing almost 10% per year during the last decade and reaches 213 million tons of oil consumption in 2016. Thus, this makes India the third largest importer of crude oil in the world. Because of this problem, there is a need of promoting the alternative fuels (biodiesel) which are from different feedstocks for the transportation. This alternative fuel has better emission characteristics compared to neat diesel, hence the biodiesel can be used as direct alternative for diesel and it can also be blended with diesel to get better performance. However, the effect of compression ratio, injection timing, injection pressure, composition-blend ratio and air-fuel ratio, and the shape of the cylinder may affect the performance and emission characteristics of the diesel engine. This article deals with the effect of compression ratio in the performance of the engine while using Honne oil diesel blend and also to find out the optimum compression ratio. So the experimentations are conducted using Honne oil diesel blend-fueled CI engine at variable load conditions and at constant speed operations. In order to find out the optimum compression ratio, experiments are carried out on a single-cylinder, four-stroke variable compression ratio diesel engine, and it is found that 18:1 compression ratio gives better performance than the lower compression ratios. Engine performance tests were carried out at different compression ratio values. Using experimental data, regression model was developed and the values were predicted using response surface methodology. Then the predicted values were validated with the experimental results and a maximum error percentage of 6.057 with an average percentage of error as 3.57 were obtained. The optimum numeric factors for different responses were also selected using RSM.
NASA Technical Reports Server (NTRS)
Moore, C. S.; Collins, J. H. Jr
1932-01-01
The clearance distribution in a precombustion chamber cylinder head was varied so that for a constant compression ratio of 13.5 the spherical auxiliary chambers contained 20, 35, 50, and 70 per cent of the total clearance volume. Each chamber was connected to the cylinder by a single circular passage, flared at both ends, and of a cross-sectional area proportional to the chamber volume, thereby giving the same calculated air-flow velocity through each passage. Results of engine-performance tests are presented with variations of power, fuel consumption, explosion pressure, rate of pressure rise, ignition lag, heat loss to the cooling water, and motoring characteristics. For good performance the minimum auxiliary chamber volume, with the cylinder head design used, was 35 per cent of the total clearance volume; for larger volumes the performance improves but slightly. With the auxiliary chamber that contained 35 percent of the clearance volume there were obtained the lowest explosion pressures, medium rates of pressure rise, and slightly less than the maximum power. For all clearance distributions an increase in engine speed decreased the ignition lag in seconds and increased the rate of pressure rise.
Investigation of installation effects of single-engine convergent-divergent nozzles
NASA Technical Reports Server (NTRS)
Burley, J. R., II; Berrier, B. L.
1982-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed.
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1974-01-01
A circular-arc - conic boattail nozzle, typical of those used on a twin engine fighter, was tested on an underwing nacelle mounted on an F-106B aircraft. The boattail had a radius ratio r/r sub c of 0.41 and a terminal boattail angle of approximately 19 deg. The gas generator was a J85-GE-13 turbojet engine. The effects of Reynolds number and angle of attack on boattail pressure drag and boattail pressure profiles were investigated. Increasing Reynolds number resulted in reduced boattail drag at both Mach numbers of 0.6 and 0.9.
Investigation of methyl decanoate combustion in an optical direct-injection diesel engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.
In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less
Study of advanced radial outflow turbine for solar steam Rankine engines
NASA Technical Reports Server (NTRS)
Martin, C.; Kolenc, T.
1979-01-01
The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.
Investigation of methyl decanoate combustion in an optical direct-injection diesel engine
Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.
2014-11-24
In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less
Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems
NASA Technical Reports Server (NTRS)
Arend, David J.; Tillman, Gregory; O'Brien, Walter F.
2012-01-01
The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.
He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing
2015-09-01
Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Braithwaite, W. M.
1973-01-01
The effects of circumferential distortion of the total temperature entering 25, 50, and 75 percent of the inlet circumferential annulus of a turbofan engine were determined. Complete compressor stall resulted from distortions of from 14 to 20 percent of the face averaged temperature. Increasing the temperature level in one sector resulted in that sector moving toward stall by decreasing the equivalent rotor speeds while the pressure ratio remained approximately constant. Stall originated as a rotating zone in the low-pressure compressor which resulted as a terminal stall in the high-pressure compressor. Decreasing the Reynolds number index to 0.25 from 0.5 reduced the required distortion for stall by 50 percent for the conditions investigated.
NASA Technical Reports Server (NTRS)
Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.
1993-01-01
A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.
Pulse Detonation Rocket Engine Research at NASA Marshall
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2003-01-01
Pulse detonation rocket engines (PDREs) offer potential performance improvements over conventional designs, but represent a challenging modeling task. A quasi 1-D, finite-rate chemistry CFD model for a PDRE is described and implemented. A parametric study of the effect of blowdown pressure ratio on the performance of an optimized, fixed PDRE nozzle configuration is reported. The results are compared to a steady-state rocket system using similar modeling assumptions.
Performance Enhancement of One and Two-Shaft Industrial Turboshaft Engines Topped With Wave Rotors
NASA Astrophysics Data System (ADS)
Fatsis, Antonios
2018-05-01
Wave rotors are rotating equipment designed to exchange energy between high and low enthalpy fluids by means of unsteady pressure waves. In turbomachinery, they can be used as topping devices to gas turbines aiming to improve performance. The integration of a wave rotor into a ground power unit is far more attractive than into an aeronautical application, since it is not accompanied by any inconvenience concerning the over-weight and extra dimensioning. Two are the most common types of ground industrial gas turbines: The one-shaft and the two-shaft engines. Cycle analysis for both types of gas turbine engines topped with a four-port wave rotor is calculated and their performance is compared to the performance of the baseline engine accordingly. It is concluded that important benefits are obtained in terms of specific work and specific fuel consumption, especially compared to baseline engines with low compressor pressure ratio and low turbine inlet temperature.
A linear acoustic model for intake wave dynamics in IC engines
NASA Astrophysics Data System (ADS)
Harrison, M. F.; Stanev, P. T.
2004-01-01
In this paper, a linear acoustic model is described that has proven useful in obtaining a better understanding of the nature of acoustic wave dynamics in the intake system of an internal combustion (IC) engine. The model described has been developed alongside a set of measurements made on a Ricardo E6 single cylinder research engine. The simplified linear acoustic model reported here produces a calculation of the pressure time-history in the port of an IC engine that agrees fairly well with measured data obtained on the engine fitted with a simple intake system. The model has proved useful in identifying the role of pipe resonance in the intake process and has led to the development of a simple hypothesis to explain the structure of the intake pressure time history: the early stages of the intake process are governed by the instantaneous values of the piston velocity and the open area under the valve. Thereafter, resonant wave action dominates the process. The depth of the early depression caused by the moving piston governs the intensity of the wave action that follows. A pressure ratio across the valve that is favourable to inflow is maintained and maximized when the open period of the valve is such to allow at least, but no more than, one complete oscillation of the pressure at its resonant frequency to occur while the valve is open.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Abbreviations. 87.2 Section 87.2... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.2 Abbreviations. The abbreviations used... pressure ratio SNsmoke number [77 FR 36381, June 18, 2012] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Abbreviations. 87.2 Section 87.2... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.2 Abbreviations. The abbreviations used... pressure ratio SNsmoke number [77 FR 36381, June 18, 2012] ...
Use of cooling air heat exchangers as replacements for hot section strategic materials
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1983-01-01
Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines.
Performance and heat transfer characteristics of a carbon monoxide/oxygen rocket engine
NASA Technical Reports Server (NTRS)
Linne, Diane L.
1993-01-01
The combustion and heat transfer characteristics of a carbon monoxide and oxygen rocket engine were evaluated. The test hardware consisted of a calorimeter combustion chamber with a heat sink nozzle and an eighteen element concentric tube injector. Experimental results are given at chamber pressures of 1070 and 3070 kPa, and over a mixture ratio range of 0.3 to 1.0. Experimental C efficiency was between 95 and 96.5 percent. Heat transfer results are discussed both as a function of mixture ratio and axial distance in the chamber. They are also compared to a Nusselt number correlation for fully developed turbulent flow.
NASA Technical Reports Server (NTRS)
Stabe, Roy G.; Schwab, John R.
1991-01-01
A 0.767-scale model of a turbine stator designed for the core of a high-bypass-ratio aircraft engine was tested with uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The principal measurements were radial and circumferential surveys of stator-exit total temperature, total pressure, and flow angle. The stator-exit flow field was also computed by using a three-dimensional Navier-Stokes solver. Other than temperature, there were no apparent differences in performance due to the inlet conditions. The computed results compared quite well with the experimental results.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Alexander; Splitter, Derek A
It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less
Test and evaluation of the HIDEC engine uptrim algorithm
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
Combustion response to acoustic perturbation in liquid rocket engines
NASA Astrophysics Data System (ADS)
Ghafourian, Akbar
An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.
The Prediction of Unsteady Aerodynamic Loading in High Aspect Ratio Wall Bounded Jets
NASA Astrophysics Data System (ADS)
Lurie, Michael B.
Stealth aircraft are becoming more and more prevalent in the aircraft industry. One of the features of many stealth aircraft is an integrated engine that is mounted above the aircraft fuselage. The engine nozzle is often rectangular with a high aspect ratio, and exhausts onto a jet deck formed by the aircraft fuselage. This configuration allows the aircraft fuselage to shield the noise and other detectable features caused by the engine from the ground. The Northrop Grumman B2 Bomber is perhaps the most well-known example of this configuration. Additionally, stealth technology combined with unmanned aerial vehicles (UAV's) has led to the Joint Unmanned Combat System project, or J-UCAS. Both of the aircraft in development in this project use a wall-bounded high aspect ratio nozzle for stealth purposes. While these engine configurations provide a low radar profile and reduce the noise levels on the ground, they do introduce additional considerations. Since the engine is mounted above the aircraft, the nozzle jet is wall bounded by the fuselage of the aircraft. This is known as the flight deck. The jet stream exiting the nozzle can travel at supersonic speeds and potentially generates shock or expansion waves that impinge on the surface of the deck. The oscillations of these shockwaves on the deck produce localized unsteady forces acting on the aircraft. In addition, the interaction between the high speed jet stream and the slower ambient air causes a shear layer to form from the trailing edge of the nozzle. Turbulent eddies form and increase in size as they move downstream. The interactions of the shear layer with the flight deck produce additional unsteady forces on the aircraft. This thesis presents a study to predict the forces on a flight deck caused by a high aspect ratio wall bounded nozzle using both experimental methods and numerical simulations. The experiments performed were conducted on two different nozzles with aspect ratios of 4-1 and 8-1. Several different run conditions, including subsonic, overexpanded, on-design, and under-expanded, are included to study the effects of Mach number on the unsteady pressure. An aluminum flat plate is used to represent the aft deck. The plate is instrumented with Endevco pressure transducers to capture the fluctuating pressure on the aft deck. A spectral analysis performed on the individual sensors shows that the primary sources of fluctuating pressure are the shear layer along with shock-boundary layer interaction. Additional scaling with the nozzle heights is also presented. The numerical simulations were performed using a fully viscous, hybrid RANS/ LES model. They matched the nozzle characteristics and run conditions performed in the experiment. A detailed comparison between the unsteady pressures predicted by the computational simulations and those measured by the experiment is presented. Several discrepancies between the experimental and numerical results are the result of numerical error caused by the time marching scheme used in the simulations. A proper orthogonal decomposition (POD) method is introduced to further analyze the computational simulations and provide a filtering method to obtain more accurate results.
Behavior of nonplastic silty soils under cyclic loading.
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.
Behavior of Nonplastic Silty Soils under Cyclic Loading
Ural, Nazile; Gunduz, Zeki
2014-01-01
The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results. PMID:24672343
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
NASA Astrophysics Data System (ADS)
Varvill, R.; Bond, A.
This paper discusses the relevant selection criteria for a single stage to orbit (SSTO) propulsion system and then reviews the characteristics of the typical engine types proposed for this role against these criteria. The engine types considered include Hydrogen/Oxygen (H2/O2) rockets, Scramjets, Turbojets, Turborockets and Liquid Air Cycle Engines. In the authors opinion none of the above engines are able to meet all the necessary criteria for an SSTO propulsion system simultaneously. However by selecting appropriate features from each it is possible to synthesise a new class of engines which are specifically optimised for the SSTO role. The resulting engines employ precooling of the airstream and a high internal pressure ratio to enable a relatively conventional high pressure rocket combustion chamber to be utilised in both airbreathing and rocket modes. This results in a significant mass saving with installation advantages which by careful design of the cycle thermodynamics enables the full potential of airbreathing to be realised. The SABRE engine which powers the SKYLON launch vehicle is an example of one of these so called `Precooled hybrid airbreathing rocket engines' and the concep- tual reasoning which leads to its main design parameters are described in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
This bibliography contains citations of selected patents concerning fuel control devices, and methods used to regulate speed and load in internal combustion engines. Techniques utilized to control air-fuel ratios by sensing pressure, temperature, and exhaust composition, and the employment of electronic and feedback devices are discussed. Methods used for engine protection and optimum fuel conservation are considered. (This updated bibliography contains 327 citations, 160 of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D; Mallory, R; Todesco, M
This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixturemore » enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.« less
NASA Technical Reports Server (NTRS)
Giffin, R. G.; Mcfalls, R. A.; Beacher, B. F.
1977-01-01
The fan aerodynamic and aeromechanical performance tests of the quiet clean short haul experimental engine under the wing fan and inlet with a simulated core flow are described. Overall forward mode fan performance is presented at each rotor pitch angle setting with conventional flow pressure ratio efficiency fan maps, distinguishing the performance characteristics of the fan bypass and fan core regions. Effects of off design bypass ratio, hybrid inlet geometry, and tip radial inlet distortion on fan performance are determined. The nonaxisymmetric bypass OGV and pylon configuration is assessed relative to both total pressure loss and induced circumferential flow distortion. Reverse mode performance, obtained by resetting the rotor blades through both the stall pitch and flat pitch directions, is discussed in terms of the conventional flow pressure ratio relationship and its implications upon achievable reverse thrust. Core performance in reverse mode operation is presented in terms of overall recovery levels and radial profiles existing at the simulated core inlet plane. Observations of the starting phenomena associated with the initiation of stable rotor flow during acceleration in the reverse mode are briefly discussed. Aeromechanical response characteristics of the fan blades are presented as a separate appendix, along with a description of the vehicle instrumentation and method of data reduction.
Experimental Study of High-Pressure Rotating Detonation Combustion in Rocket Environments
NASA Astrophysics Data System (ADS)
Stechmann, David Paul
Rotating Detonation Engines (RDEs) represent a promising pressure-gain combustion technology for improving the performance of existing rocket engines. While ample theoretical evidence exists for these benefits in ideal scenarios, additional research is needed to characterize the operational behavior of these devices at high pressure and validate the expected performance gains in practice. To this end, Purdue University developed a high-pressure experimental staged-combustion RDE with a supersonic plug expansion nozzle and conducted four test campaigns using this engine. The first two campaigns employed gaseous hydrogen fuel in conjunction with a liquid oxygen pre-burner. The final two campaigns employed methane and natural gas fuels. Propellant mass flows ranged from 0.47 lbm/s (0.21 Kg/s) to 8.41 lbm/s (3.8 kg/s) while mean chamber pressures ranged from 61 psia (4.1 atm) to 381 psia (25.9 atm). Results from tests conducted with hydrogen were mixed. Detonation briefly appeared at shutdown in some configurations, but the combustor behavior was generally dominated by flame holding instead of detonation. Injector erosion and instrumentation damage were also persistent challenges. Results from tests conducted with natural gas and methane were much more successful. Overall, several different types of detonation wave behavior were observed depending on test configuration and operating conditions. In all configurations, the engine thrust, chamber pressure, wave speed, and wave behavior were characterized for differences in injector orifice area, injection location, chamber width, pre-burner operating temperature, equivalence ratio, mass flow, and throat configuration. General aspects of the plume structure, startup behavior, and dynamic oxidizer manifold response were also characterized. Two configurations were also tested with a transparent combustor to characterize wave height and profile. These observations and measurements provided insight into the effects that high-pressures and rocket propellants have on RDE operating behavior. One of the more intriguing results from the experimental campaigns described above was the simple fact that natural gas and methane behaved so differently from hydrogen despite similar operating pressures, flow rates, and injector geometry. Simplified analysis and modeling of the injector dynamic response, mixing processes, and chemical kinetics provided insight into these differences and the scalability of these processes with pressure. In particular, the chemical kinetic analysis suggests that heat release during the injection and mixing phase can dominate the chamber behavior and prevent stable limit cycle detonation from occurring with certain propellant combinations above certain pressures. These results support the observed differences in engine operating behavior, and they provide insight into potential operability limits of gas-phase RDEs. In addition to the contrast between natural gas and hydrogen, several other important observations were made during the experimental RDE evaluation process. In particular, the installation of a convergent throat appeared to suppress detonation behavior. The number of waves was also invariant with respect to the mass flow and chamber pressure, and a natural transition into limit-cycle detonation modes (i.e. self-excited instabilities) appeared despite using a torch igniter with no initial detonation. Significant manifold interaction and an overall destabilizing effect in the limit-cycle detonation cycle tended to occur at low injector pressure ratios. The relationship between pressure, wave speed, and thrust did not follow the expected correlation and instead displayed a more complex configuration-dependent relationship. While the delivered thrust did not exceed theoretical values for a constant pressure cycle, thrust performance greater than 90% was achieved in configurations with simple injector geometries, simple expansion nozzle geometries and a chamber L* of only 2.75 inches. This suggests that further improvements are possible when heat loss into the wall is considered and improved injector designs are implemented. While heat flux was not measured during any experimental test cases, post-test analysis of the chamber environment using available data suggests that heat flux may be moderately higher in RDEs than in constant pressure combustors operating at the same mean flow conditions. Nevertheless, the computed heat flux was based on limited data and may have been affected by localized conditions near the injector face, so uncertainty remains in this area. Since appreciable uncertainty exists in the theoretical performance benefits relative to the measured experimental values, a detonation engine performance model was developed using modifications to existing zero-dimensional rocket performance relations. This approach made it possible to rapidly characterize the effects of different engine operating parameters on expected performance gains including propellant choice, equivalence ratio, initial propellant temperature, chamber pressure, nozzle configuration, nozzle expansion area, and ambient pressure. While the model was relatively simple, it captured the expected "DC shift" in mean chamber pressure between constant pressure combustors and combustors with steep-fronted non-linear instabilities. (Abstract shortened by ProQuest.).
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Monzon, Byron R. (Inventor); Gallagher, Edward J. (Inventor)
2018-01-01
A gas turbine engine includes a bypass flow passage that has an inlet and defines a bypass ratio in a range of approximately 8.5 to 13.5. A fan is arranged within the bypass flow passage. A first turbine is a 5-stage turbine and is coupled with a first shaft, which is coupled with the fan. A first compressor is coupled with the first shaft and is a 3-stage compressor. A second turbine is coupled with a second shaft and is a 2-stage turbine. The fan includes a row of fan blades that extend from a hub. The row includes a number (N) of the fan blades, a solidity value (R) at tips of the fab blades, and a ratio of N/R that is from 14 to 16.
Visualization and Analyses of Jet Structures from a Cluster-Type Linear Aerospike Nozzle
NASA Astrophysics Data System (ADS)
Niimi, Tomohide; Mori, Hideo; Okabe, Kazuki; Masai, Yusuke; Taniguchi, Mashio
Aerospike nozzles have been expected as a candidate for an engine of reusable space shuttles to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structure in any cross sections around the linear-type aerospike nozzle are visualized and analyzed, using laser induced fluorescence (LIF) of NO seeded in the carrier gas N2. Since the flow field structure is affected mainly by the pressure ratio (P/P), the linear-type aerospike nozzle is set inside the vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 250. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly(TMSP) is also applied successfully to measurement of the complicated pressure distribution on the spike surface.
Lewis Pressurized, Fluidized-Bed Combustion Program. Data and Calculated Results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.
1982-01-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Lewis pressurized, fluidized-bed combustion program. Data and calculated results
NASA Astrophysics Data System (ADS)
Rollbuhler, R. J.
1982-03-01
A 200 kilowatt (thermal), pressurized, fluidized bed (PFB) reactor and research test facility were designed, constructed, and operated. The facility was established to assess and evaluate the effect of PFB hot gas effluent on aircraft turbine engine materials that may have applications in stationary powerplant turbogenerators. The facility was intended for research and development work and was designed to operate over a wide range of conditions. These conditions included the type and rate of consumption of fuel (e.g., coal) and sulfur reacting sorbent material: the ratio of feed fuel to sorbent material; the ratio of feed fuel to combustion airflow; the depth of the fluidized reaction bed; the temperature and pressure in the reaction bed; and the type of test unit that was exposed to the combustion exhaust gases.
Optimization design and performance analysis of a miniature stirling engine
NASA Astrophysics Data System (ADS)
You, Zhanping; Yang, Bo; Pan, Lisheng; Hao, Changsheng
2017-10-01
Under given operation conditions, a stirling engine of 2 kW is designed which takes hydrogen as working medium. Through establishment of adiabatic model, the ways are achieved about performance improving. The ways are raising the temperature of hot terminal, lowering the temperature of cold end, increasing the average cycle pressure, speeding up the speed, phase angle being 90°, stroke volume ratio approximating to 1 and increasing the performance of regenerator.
Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya
2003-01-01
The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.
NASA Astrophysics Data System (ADS)
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.
2012-05-01
Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.
Luo, E C; Ling, H; Dai, W; Yu, G Y
2006-12-22
In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.
Internal performance predictions for Langley scramjet engine module
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1978-01-01
A one dimensional theoretical method for the prediction of the internal performance of a scramjet engine is presented. The effects of changes in vehicle forebody flow parameters and characteristics on predicted thrust for the scramjet engine were evaluated using this method, and results are presented. A theoretical evaluation of the effects of changes in the scramjet engine's internal parameters is also presented. Theoretical internal performance predictions, in terms thrust coefficient and specific impulse, are provided for the scramjet engine for free stream Mach numbers of 5, 6, and 7 free stream dynamic pressure of 23,940 N/sq m forebody surface angles of 4.6 deg to 14.6 deg, and fuel equivalence ratio of 1.0.
HIDEC adaptive engine control system flight evaluation results
NASA Technical Reports Server (NTRS)
Yonke, W. A.; Landy, R. J.; Stewart, J. F.
1987-01-01
An integrated flight propulsion control mode, the Adaptive Engine Control System (ADECS), has been developed and flight tested on an F-15 aircraft as part of the NASA Highly Integrated Digital Electronic Control program. The ADECS system realizes additional engine thrust by increasing the engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated using a predictor scheme for angle-of-attack and sideslip angle. Substantial improvement in aircraft and engine performance was demonstrated, with a 16 percent rate of climb increase, a 14 percent reduction in time to climb, and a 15 percent reduction in time to accelerate. Significant EPR uptrim capability was found with angles-of-attack up to 20 degrees.
The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Melcher, Kevin J.
2004-01-01
The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.
NASA Technical Reports Server (NTRS)
Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.
1987-01-01
The Joint Army, Navy, NASA, Air Force (JANNAF) rocket-engine performance-prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure that has been incorporated into the December 1984 version of the TDK program for the high-area-ratio rocket-engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis. A detailed description of the test conditions and TDK input parameters is given. The reuslts indicate that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values.
NASA Astrophysics Data System (ADS)
Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.
2016-09-01
There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.
Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade
NASA Technical Reports Server (NTRS)
Poinsatte, Philip E.; Heidmann, James D.; Thurman, Douglas R.
2008-01-01
Experimental heat transfer and pressure measurements were obtained on a large scale film cooled turbine vane cascade. The objective was to investigate heat transfer on a commercial high pressure first stage turbine vane at near engine Mach and Reynolds number conditions. Additionally blowing ratios and coolant density were also matched. Numerical computations were made with the Glenn-HT code of the same geometry and compared with the experimental results. A transient thermochromic liquid crystal technique was used to obtain steady state heat transfer data on the mid-span geometry of an instrumented vane with 12 rows of circular and shaped film cooling holes. A mixture of SF6 and Argon gases was used for film coolant to match the coolant-to-gas density ratio of a real engine. The exit Mach number and Reynolds number were 0.725 and 2.7 million respectively. Trends from the experimental heat transfer data matched well with the computational prediction, particularly for the film cooled case.
Relation of Fuel-Air Ratio to Engine Performance
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.
NASA Technical Reports Server (NTRS)
Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean
1987-01-01
An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.
System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Reid, Bryan M.
2004-01-01
State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.
System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Reid, Bryan M.
2004-01-01
State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.
Mixing Characteristics of Coaxial Injectors at High Gas to Liquid Momentum Ratios
NASA Technical Reports Server (NTRS)
Strakey, P. A.; Talley, D. G.; Hutt, J. J.
1999-01-01
A study of the spray of a swirl coaxial gas-liquid injector operating at high gas to liquid momentum ratios is reported. Mixing and droplet size characteristics of the swirl injector are also compared to a shear coaxial injector, currently being used in the Space Shuttle Main Engine fuel preburner. The injectors were tested at elevated chamber pressures using water as a LOX simulant and nitrogen and helium as gaseous hydrogen simulants. The elevated chamber pressure allowed for matching of several of the preburner injector conditions including; gas to liquid momentum ratio, density ratio and Mach number. Diagnostic techniques used to characterize the spray included; strobe back-light imaging, laser sheet spray imaging, mechanical patternation, and a phase Doppler interferometry. Results thus far indicate that the radial spreading of the swirl coaxial spray is much less than was reported in previous studies of swirl injectors operating at atmospheric back-pressure. The swirl coaxial spray does, however, exhibit a smaller overall droplet size which may be interpreted as an increase in local mixing.
Automotive Stirling engine system component review
NASA Technical Reports Server (NTRS)
Hindes, Chip; Stotts, Robert
1987-01-01
The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.
NASA Technical Reports Server (NTRS)
Dunbar, William R; Wentworth, Carl B; Crowl, Robert J
1957-01-01
The performance of a control system designed for variable thrust applications was determined in an altitude free-jet facility at various Mach numbers, altitudes and angles of attack for a wide range of engine operation. The results are presented as transient response characteristics for step disturbances in fuel flow and stability characteristics as a function of control constants and engine operating conditions. The results indicate that the control is capable of successful operation over the range of conditions tested, although variations in engine gains preclude optimum response characteristics at all conditions with fixed control constants.
Performance of B. M. W. 185-Horsepower Airplane Engine
NASA Technical Reports Server (NTRS)
Sparrow, S W
1923-01-01
This report deals with the results of a test made upon a B. M. W. Engine in the altitude chamber of the Bureau of Standards, where controlled conditions of temperature and pressure can be made to simulate those of the desired altitude. A remarkably low value of fuel consumption - 041 per B. H. P. hour - is obtained at 1,200 revolutions per minute at an air density of 0.064 pound per cubic foot and a brake thermal efficiency of 33 per cent and an indicated efficiency of 37 per cent at the above speed and density. In spite of the fact that the carburetor adjustment does not permit the air-fuel ratio of maximum economy to be obtained at air densities lower than 0.064, the economy is superior to most engines tested thus far, even at a density lower than 0.064, the economies superior to most engines tested thus far, even at a density (0.03) corresponding to an altitude of 25,000 feet. The brake mean effective pressure even at full throttle is rather low. Since the weight of much of the engine is governed more by its piston displacement than by the power developed, a decreased mean effective pressure usually necessitates increased weight per horsepower. The altitude performance of the engine is, in general, excellent, and its low fuel consumption is the outstanding feature of merit.
Space power demonstrator engine, phase 1
NASA Technical Reports Server (NTRS)
1987-01-01
The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.
Performance Increase Verification for a Bipropellant Rocket Engine
NASA Technical Reports Server (NTRS)
Alexander, Leslie; Chapman, Jack; Wilson, Reed; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott; England, Chris
2008-01-01
Component performance assessment testing for a, pressure-fed earth storable bipropellant rocket engine was successfully completed at Aerojet's Redmond test facility. The primary goal of the this development project is to increase the specific impulse of an apogee class bi-propellant engine to greater than 330 seconds with nitrogen tetroxide and monomethylhydrazine propellants and greater than 335 seconds with nitrogen tetroxide and hydrazine. The secondary goal of the project is to take greater advantage of the high temperature capabilities of iridium/rhenium chambers. In order to achieve these goals, the propellant feed pressures were increased to 400 psia, nominal, which in turn increased the chamber pressure and temperature, allowing for higher c*. The tests article used a 24-on-24 unlike doublet injector design coupled with a copper heat sink chamber to simulate a flight configuration combustion chamber. The injector is designed to produce a nominal 200 lbf of thrust with a specific impulse of 335 seconds (using hydrazine fuel). Effect of Chamber length on engine C* performance was evaluated with the use of modular, bolt-together test hardware and removable chamber inserts. Multiple short duration firings were performed to characterize injector performance across a range of thrust levels, 180 to 220 lbf, and mixture ratios, from 1.1 to 1.3. During firing, ignition transient, chamber pressure, and various temperatures were measured in order to evaluate the performance of the engine and characterize the thermal conditions. The tests successfully demonstrated the stable operation and performance potential of a full scale engine with a measured c* of XXXX ft/sec (XXXX m/s) under nominal operational conditions.
Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
NASA Technical Reports Server (NTRS)
Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)
2001-01-01
This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.
NASA Technical Reports Server (NTRS)
Ray, R. J.; Myers, L. P.
1986-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.
NASA Technical Reports Server (NTRS)
Schum, Harold J; Davison, Elmer H
1956-01-01
The over-all component performance characteristics of a J71 experimental three-stage turbine with 97 percent design stator areas were determined over a range of speed and pressure ratio at inlet-air conditions of approximately 35 inches of mercury absolute and 700 degrees R. The turbine break internal efficiency at design operating conditions was 0.877; the maximum efficiency of 0.886 occurred at a pressure ratio of 4.0 at 120 percent of design equivalent rotor speed. In general, the turbine yielded a wide range of efficient operation, permitting flexibility in the choice of different modes of engine operation. Limiting blade loading of the third rotor was approached but not obtained over the range of conditions investigated herein. At the design operating point, the turbine equivalent weight flow was approximately 105 percent of design. Choking of the third-rotor blades occurred at design speed and an over-all pressure ratio of 4.2.
Use of cooling air heat exchangers as replacements for hot section strategic materials
NASA Technical Reports Server (NTRS)
Gauntner, J. W.
1983-01-01
Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines. Previously announced in STAR as N83-34946
Low-thrust Isp sensitivity study
NASA Technical Reports Server (NTRS)
Schoenman, L.
1982-01-01
A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.
NASA Technical Reports Server (NTRS)
Lee, Chi M.; Schock, Harold J.
1988-01-01
Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.
NASA Technical Reports Server (NTRS)
Howard, D. F.
1977-01-01
The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.
Small Laminated Axial Turbine Design and Test Program.
1980-12-01
ILLUSTRATIONS Figure No. Title Page 1 Typical Test Results from TFE731 -3 Hot-Rig Testing. 5 2 Laminated Blade Chordwise Flow Patterns 8 3 Laminated Blade Cooling...Flow Parameter Versus Pressure Ratio 36 24 Blade Flow Distribution 37 25 TFE731 Turbofan Engine 38 26 Laminated Turbine Wheel 40 27 Selected Blade...facility, which was specifically developed to permit evaluation of cooled compo- nents for gas turbine engines. Four TFE731 -3 Laminated Turbine Wheels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Cosmin E.; Mueller, Charles J.; Kurtz, Eric
Natural luminosity and chemiluminescence imaging diagnostics were employed to investigate if a 50/50 blend by volume of tripropylene-glycol monomethyl ether (TPGME) and ultra-low sulfur #2 diesel certification fuel (CF) could enable leaner-lifted flame combustion (LLFC), a non-sooting mode of mixing-controlled combustion associated with equivalence ratios below approximately 2. The experiments were performed in a singlecylinder heavy-duty optical compression-ignition engine at three injection pressures and three dilution levels. Results indicate that TPGME addition effectively eliminated engine-out smoke emissions by curtailing soot production and/or increasing soot oxidation during and after the end of fuel injection. TPGME greatly reduced soot luminosity when compared with neat CF, but did not enable LLFC because the equivalence ratios at the lift-off length,more » $$\\phi$$(H), never reached the non-sooting limit. Nevertheless, this study showed that TPGME addition has the potential to enable LLFC under different experimental conditions that would further decrease $$\\phi$$(H) to ~ 2 and below. Concerning other engine-out emissions, injection pressure influenced the effects of TPGME addition on NO x emissions. Finally, HC and CO emissions were higher compared to baseline fuel likely due to the lower net heat of combustion of TPGME and the need to limit fuel-injection duration for valid optical measurements.« less
Dumitrescu, Cosmin E.; Mueller, Charles J.; Kurtz, Eric
2015-12-31
Natural luminosity and chemiluminescence imaging diagnostics were employed to investigate if a 50/50 blend by volume of tripropylene-glycol monomethyl ether (TPGME) and ultra-low sulfur #2 diesel certification fuel (CF) could enable leaner-lifted flame combustion (LLFC), a non-sooting mode of mixing-controlled combustion associated with equivalence ratios below approximately 2. The experiments were performed in a singlecylinder heavy-duty optical compression-ignition engine at three injection pressures and three dilution levels. Results indicate that TPGME addition effectively eliminated engine-out smoke emissions by curtailing soot production and/or increasing soot oxidation during and after the end of fuel injection. TPGME greatly reduced soot luminosity when compared with neat CF, but did not enable LLFC because the equivalence ratios at the lift-off length,more » $$\\phi$$(H), never reached the non-sooting limit. Nevertheless, this study showed that TPGME addition has the potential to enable LLFC under different experimental conditions that would further decrease $$\\phi$$(H) to ~ 2 and below. Concerning other engine-out emissions, injection pressure influenced the effects of TPGME addition on NO x emissions. Finally, HC and CO emissions were higher compared to baseline fuel likely due to the lower net heat of combustion of TPGME and the need to limit fuel-injection duration for valid optical measurements.« less
NASA Technical Reports Server (NTRS)
Wear, Jerrold D; Butze, Helmut F
1954-01-01
The effects of combustor operation at conditions representative of those encountered in high pressure-ratio turbojet engines or at high flight speeds on carbon deposition, exhaust smoke, and combustion efficiency were studied in a single tubular combustor. Carbon deposition and smoke formation tests were conducted over a range of combustor-inlet pressures from 33 to 173 pounds per square inch absolute and combustor reference velocities from 78 to 143 feet per second. Combustion efficiency tests were conducted over a range of pressures from 58 to 117 pounds per square inch absolute and velocities from 89 to 172 feet per second.
Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing
NASA Technical Reports Server (NTRS)
Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram
2001-01-01
Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.
Radiant heat transfer from flames in a single tubular turbojet combustor / Leonard Topper
NASA Technical Reports Server (NTRS)
Topper, Leonard
1952-01-01
An experimental investigation of thermal radiation from the flame of a single tubular turbojet-engine combustor to the combustor liner is presented. The effects of combustor inlet-air pressure, air mass flow, and fuel-air ratio on the radiant intensity and the temperature and emissivity of the flame are reported. The total radiation of the "luminous" flames (containing incandescent soot particles) was much greater (4 to 21 times) than the "nonluminous" molecular radiation. The intensity of radiation from the flame increased rapidly with an increase in combustor inlet-air pressure; it was affected to a lesser degree by variations in fuel-air ratio and air mass flow.
NASA Technical Reports Server (NTRS)
1974-01-01
Conceptual design studies of V/STOL Lift Fan Commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The remote lift fan configurations with a variation in fan pressure ratio from 1.2 to 1.5 were investigated. Also studied were variation in stage length from 200 nautical miles to 800 nautical miles and cruise Mach numbers of 0.75 and 0.85. These results indicate a four engine configuration was feasible. The 95 PNdb noise footprint would be approximately 45 acres and the DOC's would be about 60% greater than conventional transports.
NASA Technical Reports Server (NTRS)
Klassen, H. A.
1975-01-01
A low-pressure-ratio centrifugal compressor was tested with nine combinations of three diffuser throat areas and three impeller inducer inlet areas which were 75, 100, and 125 percent of design values. For a given inducer inlet area, increases in diffuser area within the range investigated resulted in increased mass flow and higher peak efficiency. Changes in both diffuser and inducer areas indicated that efficiencies within one point of the maximum efficiency were obtained over a compressor specific speed range of 27 percent. The performance was analyzed of an assumed two-spool open-cycle engine using the 75 percent area inducer with a variable area diffuser.
Design and Testing of the Contra-Rotating Turbine for the Scimitar Precooled Mach 5 Cruise Engine
NASA Astrophysics Data System (ADS)
Varvill, R.; Paniagua, G.; Kato, H.; Thatcher, M.
tion chamber and subsequent expansion through the main noz- zle to produce thrust. In subsonic flight it becomes the gas generator driving a high bypass ratio ducted fan through a hub turbine, the exhaust mixing with the duct flow and discharging through the bypass nozzle to produce thrust. In both modes the turbo-compressor is driven by a helium turbine which has contra rotating stages to improve its efficiency at low rotational speed and reduce the number of stages required. Due to the large speed of sound mismatch between the air compressor and the helium turbine it is possible to eliminate the turbine stators by contra rotating the spools. The compressor is divided into low pressure and high pressure spools although by normal gas turbine standards they are both low pressure ratio machines.
Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Saxon, Jeff (Technical Monitor)
2002-01-01
In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.
Detonation wave compression in gas turbines
NASA Technical Reports Server (NTRS)
Wortman, A.
1986-01-01
A study was made of the concept of augmenting the performance of low pressure ratio gas turbines by detonation wave compression of part of the flow. The concept exploits the constant volume heat release of detonation waves to increase the efficiency of the Brayton cycle. In the models studied, a fraction of the compressor output was channeled into detonation ducts where it was processed by transient transverse detonation waves. Gas dynamic studies determined the maximum cycling frequency of detonation ducts, proved that upstream propagation of pressure pulses represented no problems and determined the variations of detonation duct output with time. Mixing and wave compression were used to recombine the combustor and detonation duct flows and a concept for a spiral collector to further smooth the pressure and temperature pulses was presented as an optional component. The best performance was obtained with a single firing of the ducts so that the flow could be re-established before the next detonation was initiated. At the optimum conditions of maximum frequency of the detonation ducts, the gas turbine efficiency was found to be 45 percent while that of a corresponding pressure ratio 5 conventional gas turbine was only 26%. Comparable improvements in specific fuel consumption data were found for gas turbines operating as jet engines, turbofans, and shaft output machines. Direct use of the detonation duct output for jet propulsion proved unsatisfactory. Careful analysis of the models of the fluid flow phenomena led to the conclusion that even more elaborate calculations would not diminish the uncertainties in the analysis of the system. Feasibility of the concept to work as an engine now requires validation in an engineering laboratory experiment.
Energy efficient engine: Preliminary design and integration studies
NASA Technical Reports Server (NTRS)
Johnston, R. P.; Hirschkron, R.; Koch, C. C.; Neitzel, R. E.; Vinson, P. W.
1978-01-01
Parametric design and mission evaluations of advanced turbofan configurations were conducted for future transport aircraft application. Economics, environmental suitability and fuel efficiency were investigated and compared with goals set by NASA. Of the candidate engines which included mixed- and separate-flow, direct-drive and geared configurations, an advanced mixed-flow direct-drive configuration was selected for further design and evaluation. All goals were judged to have been met except the acoustic goal. Also conducted was a performance risk analysis and a preliminary aerodynamic design of the 10 stage 23:1 pressure ratio compressor used in the study engines.
A measuring stand for a ducted fan aircraft propulsion unit
NASA Astrophysics Data System (ADS)
Hlaváček, David
2014-03-01
The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.
Experimental evaluation of exhaust mixers for an Energy Efficient Engine
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Kraft, G.
1980-01-01
Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.
Effects of biodiesel on continuous regeneration DPF characteristics
NASA Astrophysics Data System (ADS)
Chen, Tao; Xie, Hui; Gao, Guoyou; Wang, Wei; Hui, Chun
2017-06-01
A critical requirement for the implementation of DPF on a modern engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. In order to study the influence of biodiesel on the Regenerating Characteristics of Continuously Regeneration DPF, Bench test were carried out to investigate the BET of a continuously regeneration DPF assembled with a diesel engine fueled with neat diesel and biodiesel. Test results show that at the same engine operation conditions the fuel consumption is higher for biodiesel case, and also the intake air quantity and boost pressure are lower; the BET for the Diesel fuel is about 310 ° while it is about 250 ° for the Biodiesel case. When the engine is at the low torque and low exhaust temperature operation condition, CO conversion rate is extremely low, NO2/NOX ratio is small; with the increase of torque and exhaust temperature, CO conversion and NO2/NOX ratio increased significantly, and the maximum NO2/NOX ratio (about 35%) has been measured at 350 °. In addition, the DPF has better filtration efficiency for biodiesel PM, and the use of biodiesel to engine assembled with DPF has significant benefits.
Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels
NASA Astrophysics Data System (ADS)
Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew
2013-05-01
In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.
Jet Engine Noise Generation, Prediction and Control. Chapter 86
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Envia, Edmane
2004-01-01
Aircraft noise has been a problem near airports for many years. It is a quality of life issue that impacts millions of people around the world. Solving this problem has been the principal goal of noise reduction research that began when commercial jet travel became a reality. While progress has been made in reducing both airframe and engine noise, historically, most of the aircraft noise reduction efforts have concentrated on the engines. This was most evident during the 1950 s and 1960 s when turbojet engines were in wide use. This type of engine produces high velocity hot exhaust jets during takeoff generating a great deal of noise. While there are fewer commercial aircraft flying today with turbojet engines, supersonic aircraft including high performance military aircraft use engines with similar exhaust flow characteristics. The Pratt & Whitney F100-PW-229, pictured in Figure la, is an example of an engine that powers the F-15 and F-16 fighter jets. The turbofan engine was developed for subsonic transports, which in addition to better fuel efficiency also helped mitigate engine noise by reducing the jet exhaust velocity. These engines were introduced in the late 1960 s and power most of the commercial fleet today. Over the years, the bypass ratio (that is the ratio of the mass flow through the fan bypass duct to the mass flow through the engine core) has increased to values approaching 9 for modern turbofans such as the General Electric s GE-90 engine (Figure lb). The benefits to noise reduction for high bypass ratio (HPBR) engines are derived from lowering the core jet velocity and temperature, and lowering the tip speed and pressure ratio of the fan, both of which are the consequences of the increase in bypass ratio. The HBPR engines are typically very large in diameter and can produce over 100,000 pounds of thrust for the largest engines. A third type of engine flying today is the turbo-shaft which is mainly used to power turboprop aircraft and helicopters. An example of this type of engine is shown in Figure IC, which is a schematic of the Honeywell T55 engine that powers the CH-47 Chinook helicopter. Since the noise from the propellers or helicopter rotors is usually dominant for turbo-shaft engines, less attention has been paid to these engines in so far as community noise considerations are concerned. This chapter will concentrate mostly on turbofan engine noise and will highlight common methods for their noise prediction and reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, Guillaume; Whitesides, Russel
UQHCCI_2 propagates the uncertainties of mass-average quantities (temperature, heat capacity ratio) and the output performances (IMEP, heat release, CA50 and RI) of a HCCI engine test bench using the pressure trace, and intake and exhaust molar fraction and IVC temperature distributions, as inputs (those inputs may be computed using another code UQHCCI_2, or entered independently).
40 CFR 60.4248 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... is designed to properly function in terms of reliability and fuel consumption, without being... gaseous state at standard atmospheric temperature and pressure under ordinary conditions, and which is... recommendations regarding air/fuel ratio will be considered a rich burn engine if the excess oxygen content of the...
Precision Adjustable Liquid Regulator (ALR)
NASA Astrophysics Data System (ADS)
Meinhold, R.; Parker, M.
2004-10-01
A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.
NASA Technical Reports Server (NTRS)
Hale, P. L.
1982-01-01
The weight and major envelope dimensions of small aircraft propulsion gas turbine engines are estimated. The computerized method, called WATE-S (Weight Analysis of Turbine Engines-Small) is a derivative of the WATE-2 computer code. WATE-S determines the weight of each major component in the engine including compressors, burners, turbines, heat exchangers, nozzles, propellers, and accessories. A preliminary design approach is used where the stress levels, maximum pressures and temperatures, material properties, geometry, stage loading, hub/tip radius ratio, and mechanical overspeed are used to determine the component weights and dimensions. The accuracy of the method is generally better than + or - 10 percent as verified by analysis of four small aircraft propulsion gas turbine engines.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
Wave rotor-enhanced gas turbine engines
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.
1995-01-01
The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.
Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...
2017-03-28
Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James
Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less
Nuclear Aircraft Feasibility Study. Volume 1
1975-03-01
Cycle 6-36 6.2.2 Helium Mass Flow 6-42 6.2.3 Fan Pressure Ratio 6-42 6.2.4 Regenerative Cycle Application 6-43 6.2.5 Brayton Cycle...6-8 Engine Systems Summary 6-9 T-S Diagram of Ideal Brayton Cycle 6-13 T-S Diagram of Brayton Cycle for Turbofan Engine 6-15 Comparison of... Brayton Closed Cycle Thermodynamic Analysis 6-50 6.2.8-1 Indirect Cycle Gas Circulation System 6-53 6.2.8-2 Gas Turbine Generator — Pump Cycle
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)
2015-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Monzon, Byron R. (Inventor); Gallagher, Edward J. (Inventor)
2016-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
Diffuser/ejector system for a very high vacuum environment
NASA Technical Reports Server (NTRS)
Riggs, K. E.; Wojciechowski, C. J. (Inventor)
1984-01-01
Turbo jet engines are used to furnish the necessary high temperature, high volume, medium pressure gas to provide a high vacuum test environment at comparatively low cost for space engines at sea level. Moreover, the invention provides a unique way by use of the variable area ratio ejectors with a pair of meshing cones are used. The outer cone is arranged to translate fore and aft, and the inner cone is interchangeable with other cones having varying angles of taper.
2010-09-01
RTO-EN-AVT-185 2 - 1 The Mission Defines the Cycle: Turbojet, Turbofan and Variable Cycle Engines for High Speed Propulsion Joachim Kurzke...following turbine parts 1 %. With T4=2000K the amounts of cooling air are 10% and 6% respectively. Burner pressure ratio is taken into account with 0.97 and...Figure 2 . Figure 3 shows specific thrust (i.e. thrust per unit of air flow) and specific fuel consumption SFC for three altitude / Mach number
Infrared measurements of a scramjet exhaust. [to determine combustion efficiency
NASA Technical Reports Server (NTRS)
Reed, R. A.; Slack, M. W.
1980-01-01
Diagnostic 2 - 5 mm infrared spectra of a hydrogen burning scramjet exhaust were measured with an interferometer spectrometer. Exhaust gas temperatures and water vapor partial pressures were determined from the observed intensity and spectral profile of the H2O 2.7 mm infrared emission band. Overall engine combustion efficiencies were derived by combining these measurements with the known engine operating conditions. Efficiencies fall (70 - 50 percent) as fuel equivalence ratios rise (0.4 - 1.0). Data analysis techniques and sensitivity studies are also presented.
NASA Technical Reports Server (NTRS)
Bloomer, Harry E.; Groesbeck, Donald E.
1957-01-01
Internal performance of an XJ79-GE-1 variable ejector was experimentally determined with the primary nozzle in two representative after-burning positions. Jet-thrust and air-handling data were obtained in quiescent air for 4 selected ejector configurations over a wide range of secondary to primary airflow ratios and primary-nozzle pressure ratios. The experimental ejector data are presented in both graphical and tabulated form.
Liner cooling research at NASA Lewis Research Center. [for gas turbine combustion chambers
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.
1987-01-01
Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.
Effect of inert propellant injection on Mars ascent vehicle performance
NASA Technical Reports Server (NTRS)
Colvin, James E.; Landis, Geoffrey A.
1992-01-01
A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection.
Preliminary flight results of an adaptive engine control system of an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Walsh, Kevin R.
1987-01-01
Results of the flight demonstration of the adaptive engine control system (ADECS), an integrated flight and propulsion control system, are reported. The ADECS system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated in accordance with the maneuver requirements, flight conditions, and engine information. As a result of EPR uptrimming, engine thrust has increased by as much as 10.5 percent, rate of climb has increased by 10 percent, and the time to climb from 10,000 to 40,000 ft has been reduced by 12.5 percent. Increases in acceleration of 9.3 and 13 percent have been obtained at intermediate and maximum power, respectively. No engine anomalies have been detected for EPR increases up to 12 percent.
Factors of airplane engine performance
NASA Technical Reports Server (NTRS)
Gage, Victor R
1921-01-01
This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.
Periyasamy, R; Mishra, A; Anand, Sneh; Ammini, A C
2011-09-01
Women and men are anatomically and physiologically different in a number of ways. They differ in both shape and size. These differences could potentially mean foot pressure distribution variation in men and women. The purpose of this study was to analyze standing foot pressure image to obtain the foot pressure distribution parameter - power ratio variation between men and women using image processing in frequency domain. We examined 28 healthy adult subjects (14 men and 14 women) aged between 20 and 45 years was recruited for our study. Foot pressure distribution patterns while standing are obtained by using a PedoPowerGraph plantar pressure measurement system for foot image formation, a digital camera for image capturing, a TV tuner PC-add on card, a WinDvr software for still capture and Matlab software with dedicated image processing algorithms have been developed. Various PedoPowerGraphic parameters such as percentage medial impulse (PMI), fore foot to hind foot pressure distribution ratio (F/H), big toe to fore foot pressure distribution ratio (B/F) and power ratio (PR) were evaluated. In men, contact area was significantly larger in all regions of the foot compared with women. There were significant differences in plantar pressure distribution but there was no significant difference in F/H and B/F ratio. Mean PR value was significantly greater in men than women under the hind foot and fore foot. PMI value was greater in women than men. As compared to men, women have maximum PR variations in the mid foot. Hence there is significant difference at level p<0.05 in medial mid foot and mid foot PR of women as compared to men. There was variation in plantar pressure distribution because the contact area of the men foot was larger than that of women foot. Hence knowledge of pressure distributions variation of both feet can provide suitable guidelines to biomedical engineers and doctor for designing orthotic devices for reliving the area of excessively high pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.
2009-01-01
Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1
Laser ignition of liquid petroleum gas at elevated pressures
NASA Astrophysics Data System (ADS)
Loktionov, E.; Pasechnikov, N.; Telekh, V.
2017-11-01
Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.
Turbine Engine Control Synthesis. Volume 1. Optimal Controller Synthesis and Demonstration
1975-03-01
Nomenclature (Continued) Symbol Deseription M Matrix (of Table 12) M Mach number N Rotational speed, rpm N ’ Nonlinear rotational speed, rpm P Power lever... P Pressure, N /m 2; bfh/ft 2 PLA Power lever angle PR = PT3/PT2 Pressure ratio ( P Power, ft-lbf/sec Q Matrix (of Table 30) R Universal gas constant, 53...function, i = 1, 2, 3, ... in Inlet n Stage number designation out Outlet p Variable associated with particle s Static condition _se Static condition
Transpiration Cooled Throat for Hydrocarbon Rocket Engines
1991-12-01
entering the oxidizer circuit. Maximum dew point requirement was -500F. The purge pressure provided an oxidizer injector cold-flow pressure of 80 psia...energy bal- ance with the core gas is assumed wherein the heat flux to the annular liquid RP-I layer is equal’ 50 042 0 I- C3 I C30 ME1 M1 49 410 CI... gas generator mixture ratio MW molecular weight NASA/L.RC NASA Lewis Research Center NBP normal boiling point Ni chemical symbol for nickel nom
NASA Technical Reports Server (NTRS)
Biaglow, J. A.; Trout, A. M.
1976-01-01
A test program was conducted to evaluate the effects of four flame stabilizer designs on the performance and gaseous pollutant levels of an experimental full-annular swirl-can combustor. Combustor operating parameters, including inlet-air temperature, reference velocity, and fuel-air ratio, were set to simulate conditions in a 30:1 pressure ratio engine. Combustor inlet total pressure was held constant at 6 atm due to the facility limit. Combustor performance and gaseous pollutant levels were strongly affected by the geometry and resulting total pressure loss of the four flame stabilizer designs investigated. The addition of shrouds to two designs produced an 18 to 22% decrease in the combustion chamber pressure loss and thus resulted in doubling the exit temperature pattern factor and up to 42% higher levels of oxides of nitrogen. A previously developed oxides of nitrogen correlating parameter agreed with each model within an emission index of plus or minus 1 but was not capable of correlating all models together.
Performance Benefits for a Turboshaft Engine Using Nonlinear Engine Control Technology Investigated
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2004-01-01
The potential benefits of nonlinear engine control technology applied to a General Electric T700 helicopter engine were investigated. This technology is being developed by the U.S. Navy SPAWAR Systems Center for a variety of applications. When used as a means of active stability control, nonlinear engine control technology uses sensors and small amounts of injected air to allow compressors to operate with reduced stall margin, which can improve engine pressure ratio. The focus of this study was to determine the best achievable reduction in fuel consumption for the T700 turboshaft engine. A customer deck (computer code) was provided by General Electric to calculate the T700 engine performance, and the NASA Glenn Research Center used this code to perform the analysis. The results showed a 2- to 5-percent reduction in brake specific fuel consumption (BSFC) at the three Sikorsky H-60 helicopter operating points of cruise, loiter, and hover.
Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigel Clark; Gregory Thompson; Richard Atkinson
Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine.more » Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber suitable for a given engine. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passes over fresh sorbent material. This aspect of the research will continue into 2006, and the benefits and challenges of SNR will be compared with those of competing systems, such as Selective Catalytic Reduction. Chemical kinetic modeling using the CHEMKIN software package was extended in 2005 to the case of slightly rich burn with EGR. Simulations were performed at 10%, 20%, 30% and 40% of the intake air replaced with EGR. NOx decomposition efficiency was calculated at the point in time where 98% of fuel was consumed, which is believed to be a conservative approach. The modeling data show that reductions of over 70% are possible using the ''98% fuel burned'' assumption.« less
A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Eldred, C. H.; Gordon, S. V.
1976-01-01
A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Koznacheev, I. A.; Ermolaeva, E. M.
2014-11-01
On the basis of thermodynamic calculations, the features of the combustion of a solid-fuel mixture based on the glycidyl azide polymer were investigated, the thermal cycle of the combustion chamber of a model engine system was analyzed, and the efficiency of this chamber was determined for a wide range of pressures in it and different ratios between the components of the combustible mixture. It was established that, when the pressure in the combustion chamber of an engine system increases, two maxima arise successively on the dependence of the thermal efficiency of the chamber on the weight fractions of the components of the combustible mixture and that the first maximum shifts to the side of smaller concentrations of the glycidyl azide polymer with increase in the pressure in the chamber; the position of the second maximum is independent of this pressure, coincides with the minimum on the dependence of the rate of combustion of the mixture, and corresponds to the point of its structural phase transition at which the mole fractions of the carbon and oxygen atoms in the mixture are equal. The results obtained were interpreted on the basis of the Le-Chatelier principle.
Vanguard 2C VTOL Airplane Tested in the Ames 40x80 Foot Wind Tunnel.
1960-02-01
Vanguard 2C vertical take-off and landing (VTOL) airplane, wind tunnel test. Front view from below, model 14 1/2 feet high disk off. Nasa Ames engineer Ralph Maki in photo. Variable height struts and ground plane, low pressure ratio, fan in wing. 02/01/1960.
NASA Technical Reports Server (NTRS)
Graham, Robert C.; Hartmann, Melvin J.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Anderson, William E.
2005-01-01
The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.
Ignition characterization of LOX/hydrocarbon propellants
NASA Technical Reports Server (NTRS)
Lawver, B. R.; Rousar, D. C.; Wong, K. Y.
1985-01-01
The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.
NASA Technical Reports Server (NTRS)
Blivas, Darnold; Taylor, Burt L., III
1950-01-01
Performance data obtained with recording oscillographs are presented to show the transient response of the General Electric Integrated Electronic Control operating on the J47 RXl-3 turbo-Jet engine over a range of altitudes from 10,000 to 45,000 feet and at ram pressure ratios of 1.03 and 1.4. These data represent the performance of the final control configuration developed after an investigation of the engine transient behavior in the NACA altitude wind tunnel. Oscillograph traces of controlled accelerations (throttle bursts),oontrolled decelerations (throttle chops), and controlled altitude starts are presented.
Design considerations for a pressure-driven multi-stage rocket
NASA Astrophysics Data System (ADS)
Sauerwein, Steven Craig
2002-01-01
The purpose of this study was to examine the feasibility of using propellant tank pressurization to eliminate the use of high-pressure turbopumps in multi-stage liquid-fueled satellite launchers. Several new technologies were examined to reduce the mass of such a rocket. Composite materials have a greater strength-to-weight ratio than metals and can be used to reduce the weight of rocket propellant tanks and structure. Catalytically combined hydrogen and oxygen can be used to heat pressurization gas, greatly reducing the amount of gas required. Ablatively cooled rocket engines can reduce the complexity and cost of the rocket. Methods were derived to estimate the mass of the various rocket components. These included a method to calculate the amount of gas needed to pressurize a propellant tank by modeling the behavior of the pressurization gas as the liquid propellant flows out of the tank. A way to estimate the mass and size of a ablatively cooled composite cased rocket engine. And a method to model the flight of such a rocket through the atmosphere in conjunction with optimization of the rockets trajectory. The results show that while a liquid propellant rocket using tank pressurization are larger than solid propellant rockets and turbopump driven liquid propellant rockets, they are not impractically large.
Integrated flight/propulsion control - Adaptive engine control system mode
NASA Technical Reports Server (NTRS)
Yonke, W. A.; Terrell, L. A.; Meyers, L. P.
1985-01-01
The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
A study of the durability of beryllium rocket engines. [space shuttle reaction control system
NASA Technical Reports Server (NTRS)
Paster, R. D.; French, G. C.
1974-01-01
An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system.
Forward Swept Compressor Testing
NASA Technical Reports Server (NTRS)
Miller, David P.
1997-01-01
A new forward-swept rotor designed by Allison Engine Company was tested in NASA Lewis Research Center's CE-18 facility. This testing was a follow-on project sponsored by NASA Lewis to study range enhancements in small turbomachinery. The test was conducted against a baseline rotor design that was also tested in CE-18. The design point for the rotor was a rotor pressure ratio of 2.69, a mass flow of 10.52 lbm/sec, and an adiabatic efficiency of 89.1 percent. Test data indicate that the rotor met the pressure ratio of 2.69 with a 10.77 lbm/sec flow rate, a 87.5-percent adiabatic efficiency, and a 19.5-percent stall margin. The baseline rotor achieved a pressure ratio of 2.69 at a 10.77 lbm/sec flow rate with a stall margin of only 9.2 percent and an adiabatic efficiency of 87.0 percent. The major differences are the significant stall margin increase and the substantially higher off-design peak efficiencies of the forward-swept rotor. The substantially higher performance over the baseline rotor design makes the new design a viable technology candidate for future products.
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Ehlers, Robert C.
1961-01-01
Local experimental heat-transfer coefficients were measured in the chamber and throat of a 2400-pound-thrust ammonia-oxygen rocket engine with a nominal chamber pressure of 600 pounds per square inch absolute. Three injector configurations were used. The rocket engine was run over a range of oxidant-fuel ratio and chamber pressure. The injector that achieved the best performance also produced the highest rates of heat flux at design conditions. The heat-transfer data from the best-performing injector agreed well with the simplified equation developed by Bartz at the throat region. A large spread of data was observed for the chamber. This spread was attributed generally to the variations of combustion processes. The spread was least evident, however, with the best-performing injector.
NASA Technical Reports Server (NTRS)
Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.
1990-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.
Durability Challenges for Next Generation of Gas Turbine Engine Materials
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2012-01-01
Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.
Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine
Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand
2012-01-01
Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246
Free-piston Stirling hydraulic engine and drive system for automobiles
NASA Technical Reports Server (NTRS)
Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.
1982-01-01
The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.
Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.
Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand
2012-01-01
Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.
Experimental Analyses of Flow Field Structures around Clustered Linear Aerospike Nozzles
NASA Astrophysics Data System (ADS)
Taniguchi, Mashio; Mori, Hideo; Nishihira, Ryutaro; Niimi, Tomohide
2005-05-01
An aerospike nozzle has been expected as a candidate for an engine of a reusable space shuttle to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structures in any cross sections around clustered linear aerospike nozzles are visualized and analyzed, using laser induced fluorescence (LIF) of NO seeded in the carrier gas N2. Since flow field structures are affected mainly by pressure ratio (Ps/Pa, Ps: the source pressure in a reservoir, Pa: the ambient pressure in the vacuum chamber), the clustered linear aerospike nozzle is set inside a vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 200. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly-IBM-co-TFEM is also applied to measurement of the complicated pressure distribution on the spike surface, and to verification of contribution of a truncation plane to the thrust. Finally, to examine the effect of the sidewalls attached to the aerospike nozzle, the flow fields around the nozzle with the sidewalls are compared with those without sidewalls.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
Plug cluster module demonstration
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1978-01-01
The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.
Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation
NASA Technical Reports Server (NTRS)
Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.
1998-01-01
The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.
Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai
2018-01-01
A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.
Internal-Performance Evaluation of Two Fixed-Divergent-Shroud Ejectors
NASA Technical Reports Server (NTRS)
Mihaloew, James R.
1960-01-01
Ejectors designed for use in a Mach 2.2 aircraft were evaluated over a range of representative primary pressure ratios and ejector corrected weight-flow ratios. Basic thrust and pumping characteristics are discussed in terms of an assumed engine operating schedule to illustrate the variation of performance with Mach number. The two designs differed about 16 percent in the shroud longitudinal spacing ratio. For corrected ejector weight-flow ratios up to 0.10, the performance of the fixed-shroud ejector designs is comparable with that of a similar continuously variable ejector except at conditions corresponding to acceleration with afterburning from Mach 0.4 to 1.2. In this region, the ejector thrust ratio decreased to a minimum of 0.96.
An inlet analysis for the NASA hypersonic research engine aerothermodynamic integration model
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Russell, J. W.; Mackley, E. A.; Simmonds, A. L.
1974-01-01
A theoretical analysis for the inlet of the NASA Hypersonic Research Engine (HRE) Aerothermodynamic Integration Model (AIM) has been undertaken by use of a method-of-characteristics computer program. The purpose of the analysis was to obtain pretest information on the full-scale HRE inlet in support of the experimental AIM program (completed May 1974). Mass-flow-ratio and additive-drag-coefficient schedules were obtained that well defined the range effected in the AIM tests. Mass-weighted average inlet total-pressure recovery, kinetic energy efficiency, and throat Mach numbers were obtained.
Flight investigation of an air-cooled plug nozzle with afterburning turbojet
NASA Technical Reports Server (NTRS)
Samanich, N. E.
1972-01-01
A convectively cooled plug nozzle, using 4 percent of the engine air as the coolant, was tested in 1967 K (3540 R) temperature exhaust gas. No significant differences in cooling characteristics existed between flight and static results. At flight speeds above Mach 1.1, nozzle performance was improved by extending the outer shroud. Increasing engine power improved nozzle efficiency considerably more at Mach 1.2 than at 0.9. The effect of nozzle pressure ratio and secondary weight flow on nozzle performance are also presented.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.
Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.
Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II
NASA Technical Reports Server (NTRS)
Gray, D. E.; Gardner, W. B.
1983-01-01
The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.
NASA/Navy lift/cruise fan. Phase 1: Design summary
NASA Technical Reports Server (NTRS)
1977-01-01
The initial design of the LCF459 lift/cruise fan system is documented. The LCF459 is a 1.5 meter diameter turbotip lift/cruise fan whose design point pressure ratio is 1.32 at a tip speed of 353 meters per second. The gas source for the tip turbine is the YJ97-GE-100 engine.
NASA Technical Reports Server (NTRS)
Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.
2015-01-01
NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency of large gas turbine engines. Under ERA the task for a High Pressure Ratio Core Technology program calls for a higher overall pressure ratio of 60 to 70. This mean that the HPC would have to almost double in pressure ratio and keep its high level of efficiency. The challenge is how to match the corrected mass flow rate of the front two supersonic high reaction and high corrected tip speed stages with a total pressure ratio of 3.5. NASA and GE teamed to address this challenge by using the initial geometry of an advanced GE compressor design to meet the requirements of the first 2 stages of the very high pressure ratio core compressor. The rig was configured to run as a 2 stage machine, with Strut and IGV, Rotor 1 and Stator 1 run as independent tests which were then followed by adding the second stage. The goal is to fully understand the stage performances under isolated and multi-stage conditions and fully understand any differences and provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to isolate fluid dynamics loss source mechanisms due to interaction and endwalls. The paper will present the description of the compressor test article, its predicted performance and operability, and the experimental results for both the single stage and two stage configurations. We focus the detailed measurements on 97 and 100 of design speed at 3 vane setting angles.
NASA Astrophysics Data System (ADS)
Vuilleumier, David Malcolm
The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.
Evaluation of fuel preparation systems for lean premixing-prevaporizing combustors
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.
1985-01-01
A series of experiments was carried out in order to produce design data for a premixing prevaporizing fuel-air mixture preparation system for aircraft gas turbine engine combustors. The fuel-air mixture uniformity of four different system design concepts was evaluated over a range of conditions representing the cruise operation of a modern commercial turbofan engine. Operating conditions including pressure, temperature, fuel-to-air ratio, and velocity, exhibited no clear effect on mixture uniformity of systems using pressure-atomizing fuel nozzles and large-scale mixing devices. However, the performance of systems using atomizing fuel nozzles and large-scale mixing devices was found to be sensitive to operating conditions. Variations in system design variables were also evaluated and correlated. Mixing uniformity was found to improve with system length, pressure drop, and the number of fuel injection points per unit area. A premixing system capable of providing mixing uniformity to within 15 percent over a typical range of cruise operating conditions is demonstrated.
An Investigation of the Jetevator as a Means of Thrust Vector Control
1958-02-01
actual rocket firings. Description of the Tests The cold-flow jetevator tcsts were conduc.ted in the engine test cells of the Ordnance Aerophysics...45 and 210 psia, as noted on the figures. The cel. pres- sure was adjusted to give a ratio of supply pressure to cell pressure of approximately 37...CORPORATO t. r .U and SPACE DIVISION - FDN LMSD-2630 °; •GN F.]DE NT1 .A.L`. -[, GAP DEFLECTED NOZZLE JETEVATOR FLOW 6 =220 JETEVATOR .°=60O HINGE POINT
Experimental investigation of combustor effects on rocket thrust chamber performance
NASA Technical Reports Server (NTRS)
1972-01-01
A design and experimental program to develop special instrumentation systems, design engine hardware, and conduct tests using LOX/GH2 propellants in which the propellant flow stratification was controlled is described. The mixture ratio was varied from 4.6 to 6 overall. The mixture ratios in the core and outer zone were varied from 3.5 to 6 and 5 to 8, respectively. The range in boundary layer coolant was from 0 to 10 percent of the fuel. The nominal chamber pressure and thrust were 225 psia and 7000 pounds, respectively. Pressure and heat flux profiles as well as gas sampling of the exhaust products were obtained. Specific impulse efficiencies of approximately 94 percent and characteristic velocity efficiencies of approximately 97 percent were obtained during the experiments.
Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics
NASA Technical Reports Server (NTRS)
Stevens, Howard C., Jr.
1947-01-01
An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.
NASA Astrophysics Data System (ADS)
Krishnamoorthi, M.; Malayalamurthi, R.
2018-02-01
The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.
Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions
NASA Technical Reports Server (NTRS)
Useller, James W.; Russey, Robert E.
1955-01-01
An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.
2012-01-01
Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.
NASA Technical Reports Server (NTRS)
1972-01-01
Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.
NASA Astrophysics Data System (ADS)
Zegers, R. P. C.; Yu, M.; Bekdemir, C.; Dam, N. J.; Luijten, C. C. M.; de Goey, L. P. H.
2013-08-01
Planar laser-induced fluorescence (LIF) of toluene has been applied in an optical engine and a high-pressure cell, to determine temperatures of fuel sprays and in-cylinder vapors. The method relies on a redshift of the toluene LIF emission spectrum with increasing temperature. Toluene fluorescence is recorded simultaneously in two disjunct wavelength bands by a two-camera setup. After calibration, the pixel-by-pixel LIF signal ratio is a proxy for the local temperature. A detailed measurement procedure is presented to minimize measurement inaccuracies and to improve precision. n-Heptane is used as the base fuel and 10 % of toluene is added as a tracer. The toluene LIF method is capable of measuring temperatures up to 700 K; above that the signal becomes too weak. The precision of the spray temperature measurements is 4 % and the spatial resolution 1.3 mm. We pay particular attention to the construction of the calibration curve that is required to translate LIF signal ratios into temperature, and to possible limitations in the portability of this curve between different setups. The engine results are compared to those obtained in a constant-volume high-pressure cell, and the fuel spray results obtained in the high-pressure cell are also compared to LES simulations. We find that the hot ambient gas entrained by the head vortex gives rise to a hot zone on the spray axis.
Preliminary noise tests of the engine-over-the-wing concept. 2: 10 deg - 20 deg flap position
NASA Technical Reports Server (NTRS)
Reshotko, M.; Olsen, W. A.; Dorsch, R. G.
1972-01-01
Preliminary acoustic tests of the engine-over-the-wing concept as a method for reducing the aerodynamic noise created by conventional and short takeoff aircraft are discussed. Tests were conducted with a small wing section model having two flaps which can be set for either the landing or takeoff positions. Data was acquired with the flaps set at 10 degrees and 20 degrees for takeoff and 30 and 60 degrees for landing. The engine exhaust was simulated by an air jet from a convergent nozzle. Far field noise data are presented for nominal pressure ratios of 1.25, 1.4 and 1.7 for both the flyover and sideline modes.
Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology
NASA Technical Reports Server (NTRS)
Hebert, Leonard J.
2006-01-01
This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.
The Rolls Royce Allison RB580 turbofan - Matching the market requirement for regional transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadler, J.H.R.; Peacock, N.J.; Snyder, L.
1989-01-01
The RB580 high bypass turbofan engine has a thrust growth capability to 10,000 lb and has been optimized for efficient operation in regional markets involving 50-70 seat airliners with higher-than-turboprop cruise speeds. The two-spool engine configuration achieves an overall pressure ratio of 24 and features a single-stage wide-chord fan for high efficiency/low noise operation. The highly modular design of the configuration facilitates maintenance and repair; a dual-redundant full-authority digital electronic control system is incorporated. An SFC reduction of the order of 10 percent at cruise thrust is achieved, relative to current engines of comparable thrust class.
NASA Technical Reports Server (NTRS)
Waites, W. L.; Chin, Y. T.
1974-01-01
A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.
Hydrodynamic Characteristics of Two Low-Drag Supercavitating Hydrofoils
NASA Technical Reports Server (NTRS)
McGehee, John R.; Johnson, Virgil E., Jr.
1959-01-01
An experimental investigation has been conducted in Langley tank no. 2 to determine the hydrodynamic characteristics of two low-drag supercavitating hydrofoils operating in a range of cavitation numbers from 0 to approximately 6. The hydrofoils had aspect ratios of 1 and 3, and the sections were derived by assuming five terms in the vorticity-distribution expansion of the equivalent airfoil. The aspect-ratio-1 hydrofoil was also tested at zero cavitation number with two sets of end plates having depths of 3/8 and 1/4 chords. Zero cavitation number was established by operating the hydrofoils near the water surface so that complete ventilation of the upper surfaces could be obtained. For those depths of submersion where complete ventilation was not obtained through vortex ventilation, two probes were used to introduce air to the upper surfaces of the hydrofoils and to induce complete ventilation. Data were obtained for a range of speeds from 20 to 80 fps, angles of attack from 2 to 20 deg, and ratios of depth of submersion to chord from 0 to 0.85. The experimental results obtained from the aspect-ratio-1 and aspect-ratio-3, five-term hydrofoils were compared with a three-dimensional zero-cavitation-number theory. The theoretical and experimental values of lift and center of pressure for the aspect-ratio-1 hydrofoil were in agreement, within engineering accuracy, for the range of lift coefficients investigated. The theoretical drag coefficients were lower, by a constant amount, than the experimental drag coefficients. The theoretical expressions derived for the lift, drag, and center of pressure of the aspect-ratio-3 hydrofoil were in agreement, within engineering accuracy, with the experimental values. The theoretical and experimental drag coefficients of the aspect-ratio-3 five-term hydrofoil were lower than the theoretical drag coefficients computed for a comparable Tulin-Burkart hydrofoil.
Preliminary study of advanced turbofans for low energy consumption
NASA Technical Reports Server (NTRS)
Knip, G.
1975-01-01
This analysis determines the effect of higher overall engine pressure ratios (OPR's), bypass ratios (BPR's), and turbine rotor-inlet temperature on a Mach-0.85 transport having a range of 5556 km (3000 nmi) and carrying a payload of 18144 kg (40,000 lbs-200 passengers). Sideline noises (jet plus fan) of between 91 and 106 EPNdB (FAR36) are considered. Takeoff gross weight (TOGW), fuel consumption (kg/pass. km) and direct operating cost (DOC) are used at the figures of merit. Based on predicted 1985 levels of engine technology and a noise goal of 96 EPNdB, the higher-OPR engine results in an airplane that is 18 percent lighter in terms of TOGW, uses 22.3 percent less fuel, and has a 14.7 percent lower DOC than a comparable airplane powered by a current turbofan. Cooling the compressor bleed air and lowering the cruise Mach number appear attractive in terms of further improving the figures of merit.
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
Engine combustion control at low loads via fuel reactivity stratification
Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L
2014-10-07
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.
Engine having a high pressure hydraulic system and low pressure lubricating system
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2000-01-01
An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.
NASA Technical Reports Server (NTRS)
Knip, G.; Plencner, R. M.; Eisenberg, J. D.
1980-01-01
The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.
Effects of rising angle on upstream blades and intermediate turbine duct
NASA Astrophysics Data System (ADS)
Liu, Jun; Wang, Pei; Du, Qiang; Liu, Guang; Zhu, Junqiang
2016-08-01
With the improvement of requirement, design and manufacture technology, aero-engines for the future are characterized by further reduction in fuel consumption, cost, but increment in propulsion efficiency, which leads to ultra-high bypass ratio. The intermediate turbine duct (ITD), which connects the high pressure turbine (HPT) with the low pressure turbine (LPT), has a critical impact on the overall performances of such future engines. Therefore, it becomes more and more urgent to master the design technique of aggressive, even super-aggressive ITDs. Over the last years, a lot of research works about the flow mechanism in the diffuser ducts were carried out. Many achievements were reported, but further investigation should be performed. With the aid of numerical method, this paper focuses on the change of performance and flow field of ITD, as well as nearby turbines, brought by rising angle (RA). Eight ITDs with the same area ratio and length, but different RAs ranges from 8 degrees to 45 degrees, are compared. According to the investigation, flow field, especially outlet Ma of swirl blade is influenced by RA under potential effect, which is advisable for designers to modify HPT rotor blades after changing ITD. In addition to that, low velocity area moves towards upstream until the first bend as RA increases, while pressure loss distribution at S2 stream surface shows that hub boundary layer is more sensitive to RA, and casing layer keeps almost constant. On the other hand, the overall total pressure loss could keep nearly equivalent among different RA cases, which implies the importance of optimization.
NASA Astrophysics Data System (ADS)
Liu, Hongrui; Ji, Lucheng; Liu, Jun; Du, Qiang; Liu, Guang; Wang, Pei; Du, Meimei
2017-10-01
In order to improve the efficiency, ultra-high bypass ratio engine attracts more and more attention because of its huge advantage, which has larger diameter low pressure turbine (LPT). This trend will lead to aggressive (high diffusion) intermediate turbine duct (ITD) design. It is necessary to guide the flow leaving high pressure turbine (HPT) to LPT at a larger diameter without any severe loss generating separation or flow disturbances. In this paper, eight ITDs with upstream swirl vanes and downstream LPT nozzle are investigated with the aid of numerical method. These models are modified from a unique ITD prototype, which comes from a real engine. Key parameters like area ratio, inlet height, and non-dimensional length of the ITDs are kept unchanged, while the rising angle (radial offset) is the only changed parameter which ranges from 8 degrees to 45 degrees. In this paper, the effects of rising angle (RA) on ITD, as well as nearby turbines, will be analyzed in detail. According to the investigation results, RA could be as large as 40 degrees in such model of this paper to escape separation; When RA increases, local inlet flow field of LPT nozzle appears to be with apparent variation; while a positive result is that outlet flow field could be kept almost unchanged through modifying blade profile. On the other hand, it seems optimistic that the overall total pressure loss could be kept nearly equivalent among different RA cases. And a valuable conclusion is that outer wall curvature is more important for pressure loss, which advises a clear direction for optimizing ITD.
Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngblood, Stewart
A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less
Hypersonic Technology Developments with EU Co-Funded Projects
2010-09-01
metal or even high performance alloys . The hollow sphere technology allows high degrees of porosities, reproducible properties and fair process control...sandwich structure configuration will be investigated. Titanium alloys and Ti-aluminides exhibit excellent mechanical properties for applications where...cooling techniques, new alloys , improved thermodynamic cycles by increased pressure ratios and TIT, etc… As the Olympus 593 engine was based on the
LPG as a Fuel for Diesel Engines-Experimental Investigations
NASA Astrophysics Data System (ADS)
Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel
2017-10-01
The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].
Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Cheng, Xiang; Tan, Haishu
2016-01-01
In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac
1987-01-01
A preliminary uncertainty analysis was performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis is presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac
1987-01-01
A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.
Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections
NASA Technical Reports Server (NTRS)
Bullock, Robert O.; Keetch, Robert C.; Moses, Jason J.
1945-01-01
A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.
Deep Atmosphere Ammonia Mixing Ratio at Jupiter from the Galileo Probe Mass Spectrometer
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Niemann, H. B.; Demick, J. E.
1999-01-01
New laboratory studies employing the Engineering Unit (EU) of the Galileo Probe Mass Spectrometer (GPMS) have resulted in a substantial reduction in the previously reported upper limit on the ammonia mixing ratio derived from the GPMS experiment at Jupiter. This measurement is complicated by background ammonia contributions in the GPMS during direct atmospheric sampling produced from the preceding gas enrichment experiments. These backgrounds can be quantified with the data from the EU studies when they are carried out in a manner that duplicates the descent profile of pressure and enrichment cell loading. This background is due to the tendency of ammonia to interact strongly with the walls of the mass spectrometer and on release to contribute to the gas being directly directed into the ion source from the atmosphere through a capillary pressure reduction leak. It is evident from the GPMS and other observations that the mixing ratio of ammonia at Jupiter reaches the deep atmosphere value at substantially higher pressures than previously assumed. This is a likely explanation for the previously perceived discrepancy between ammonia values derived from ground based microwave observations and those obtained from attenuation of the Galileo Probe radio signal.
NASA Technical Reports Server (NTRS)
Fleming, William A.
1948-01-01
An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
NASA Technical Reports Server (NTRS)
Koenig, R. W.; Fishbach, L. H.
1972-01-01
A computer program entitled GENENG employs component performance maps to perform analytical, steady state, engine cycle calculations. Through a scaling procedure, each of the component maps can be used to represent a family of maps (different design values of pressure ratios, efficiency, weight flow, etc.) Either convergent or convergent-divergent nozzles may be used. Included is a complete FORTRAN 4 listing of the program. Sample results and input explanations are shown for one-spool and two-spool turbojets and two-spool separate- and mixed-flow turbofans operating at design and off-design conditions.
NASA Astrophysics Data System (ADS)
Han, Yong-taek; Kim, Ki-bum; Lee, Ki-hyung
2008-11-01
Based upon the method of temperature calibration using the diffusion flame, the temperature and soot concentrations of the turbulent flame in a visualized diesel engine were qualitatively measured. Two different cylinder heads were used to investigate the effect of swirl ratio within the combustion chamber. From this experiment, we find that the highest flame temperature of the non-swirl head engine is approximately 2400 K and that of the swirl head engine is 2100 K. In addition, as the pressure of fuel injection increases, the in-cylinder temperature increases due to the improved combustion of a diesel engine. This experiment represented the soot quantity in the KL factor and revealed that the KL factor was high when the fuel collided with the cylinder wall. Moreover, the KL factor was also high in the area of the chamber where the temperature dropped rapidly.
Centrifugal compressor design for electrically assisted boost
NASA Astrophysics Data System (ADS)
Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.
2013-12-01
Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.
Oxygen/Alcohol Dual Thrust RCS Engines
NASA Technical Reports Server (NTRS)
Angstadt, Tara; Hurlbert, Eric
1999-01-01
A non-toxic dual thrust RCS engine offers significant operational, safety, and performance advantages to the space shuttle and the next generation RLVs. In this concept, a single engine produces two thrust levels of 25 and 870 lbf. The low thrust level is provided by the spark torch igniter, which, with the addition of 2 extra valves, can also be made to function as a vernier. A dual thrust RCS engine allows 38 verniers to be packaged more efficiently on a vehicle. These 38 vemiers improve translation and reduce cross coupling, thereby providing more pure roll, pitch, and yaw maneuvers of the vehicle. Compared to the 6 vemiers currently on the shuttle, the 38 dual thrust engines would be 25 to 40% more efficient for the same maneuvers and attitude control. The vernier thrust level also reduces plume impingement and contamination concerns. Redundancy is also improved, thereby improving mission success reliability. Oxygen and ethanol are benign propellants which do not create explosive reaction products or contamination, as compared to hypergolic propellants. These characteristics make dual-thrust engines simpler to implement on a non-toxic reaction control system. Tests at WSTF in August 1999 demonstrated a dual-thrust concept that is successful with oxygen and ethanol. Over a variety of inlet pressures and mixture ratios at 22:1 area ratio, the engine produced between 230 and 297 sec Isp, and thrust levels from 8 lbf. to 50 lbf. This paper describes the benefits of dual-thrust engines and the recent results from tests at WSTF.
NASA Technical Reports Server (NTRS)
Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.
1947-01-01
A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.
An interactive computer code for calculation of gas-phase chemical equilibrium (EQLBRM)
NASA Technical Reports Server (NTRS)
Pratt, B. S.; Pratt, D. T.
1984-01-01
A user friendly, menu driven, interactive computer program known as EQLBRM which calculates the adiabatic equilibrium temperature and product composition resulting from the combustion of hydrocarbon fuels with air, at specified constant pressure and enthalpy is discussed. The program is developed primarily as an instructional tool to be run on small computers to allow the user to economically and efficiency explore the effects of varying fuel type, air/fuel ratio, inlet air and/or fuel temperature, and operating pressure on the performance of continuous combustion devices such as gas turbine combustors, Stirling engine burners, and power generation furnaces.
Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.
A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to themore » incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.« less
Free-piston Stirling engine conceptual design and technologies for space power, phase 1
NASA Technical Reports Server (NTRS)
Penswick, L. Barry; Beale, William T.; Wood, J. Gary
1990-01-01
As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.
Engine combustion control at low loads via fuel reactivity stratification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustionmore » chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.« less
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
Thermo-mechanical concepts applied to modeling liquid propellant rocket engine stability
NASA Astrophysics Data System (ADS)
Kassoy, David R.; Norris, Adam
2016-11-01
The response of a gas to transient, spatially distributed energy addition can be quantified mathematically using thermo-mechanical concepts available in the literature. The modeling demonstrates that the ratio of the energy addition time scale to the acoustic time scale of the affected volume, and the quantity of energy added to that volume during the former determine the whether the responses to heating can be described as occurring at nearly constant volume, fully compressible or nearly constant pressure. Each of these categories is characterized by significantly different mechanical responses. Application to idealized configurations of liquid propellant rocket engines provides an opportunity to identify physical conditions compatible with gasdynamic disturbances that are sources of engine instability. Air Force Office of Scientific Research.
Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.
Two-tank working gas storage system for heat engine
Hindes, Clyde J.
1987-01-01
A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.
Design, Activation, and Operation of the J2-X Subscale Simulator (JSS)
NASA Technical Reports Server (NTRS)
Saunders, Grady P.; Raines, Nickey G.; Varner, Darrel G.
2009-01-01
The purpose of this paper is to give a detailed description of the design, activation, and operation of the J2-X Subscale Simulator (JSS) installed in Cell 1 of the E3 test facility at Stennis Space Center, MS (SSC). The primary purpose of the JSS is to simulate the installation of the J2-X engine in the A3 Subscale Rocket Altitude Test Facility at SSC. The JSS is designed to give aerodynamically and thermodynamically similar plume properties as the J2-X engine currently under development for use as the upper stage engine on the ARES I and ARES V spacecraft. The JSS is a scale pressure fed, LOX/GH fueled rocket that is geometrically similar to the J2-X from the throat to the nozzle exit plane (NEP) and is operated at the same oxidizer to fuel ratios and chamber pressures. This paper describes the heritage hardware used as the basis of the JSS design, the newly designed rocket hardware, igniter systems used, and the activation and operation of the JSS.
NASA Astrophysics Data System (ADS)
Rotaru, Constantin
2017-06-01
In this paper are presented some results about the study of combustion chamber geometrical configurations that are found in aircraft gas turbine engines. The main focus of this paper consists in a study of a new configuration of the aircraft engine combustion chamber with an optimal distribution of gas velocity in front of the turbine. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio. The Arrhenius relationship, which describes the basic dependencies of the reaction rate on pressure, temperature and concentration has been used. and the CFD simulations were made with jet A fuel (which is presented in the Fluent software database) for an annular flame tube with 24 injectors. The temperature profile at the turbine inlet exhibits nonuniformity due to the number of fuel injectors used in the circumferential direction, the spatial nonuniformity in dilution air cooling and mixing characteristics as well as other secondary flow patterns and instabilities that are set up in the flame tube.
Ma, Lin; Weisman, Catherine; Baltean-Carlès, Diana; Delbende, Ivan; Bauwens, Luc
2015-08-01
The influence of a resistive load on the starting performance of a standing-wave thermoacoustic engine is investigated numerically. The model used is based upon a low Mach number assumption; it couples the two-dimensional nonlinear flow and heat exchange within the thermoacoustic active cell with one-dimensional linear acoustics in the loaded resonator. For a given engine geometry, prescribed temperatures at the heat exchangers, prescribed mean pressure, and prescribed load, results from a simulation in the time domain include the evolution of the acoustic pressure in the active cell. That signal is then analyzed, extracting growth rate and frequency of the dominant modes. For a given load, the temperature difference between the two sides is then varied; the most unstable mode is identified and so is the corresponding critical temperature ratio between heater and cooler. Next, varying the load, a stability diagram is obtained, potentially with a predictive value. Results are compared with those derived from Rott's linear theory as well as with experimental results found in the literature.
Energy Efficient Engine: High-pressure compressor test hardware detailed design report
NASA Technical Reports Server (NTRS)
Howe, David C.; Marchant, R. D.
1988-01-01
The objective of the NASA Energy Efficient Engine program is to identify and verify the technology required to achieve significant reductions in fuel consumption and operating cost for future commercial gas turbine engines. The design and analysis is documented of the high pressure compressor which was tested as part of the Pratt and Whitney effort under the Energy Efficient Engine program. This compressor was designed to produce a 14:1 pressure ratio in ten stages with an adiabatic efficiency of 88.2 percent in the flight propulsion system. The corresponding expected efficiency for the compressor component test rig is 86.5 percent. Other performance goals are a surge margin of 20 percent, a corrected flow rate of 35.2 kg/sec (77.5 lb/sec), and a life of 20,000 missions and 30,000 hours. Low loss, highly loaded airfoils are used to increase efficiency while reducing the parts count. Active clearance control and case trenches in abradable strips over the blade tips are included in the compressor component design to further increase the efficiency potential. The test rig incorporates variable geometry stator vanes in all stages to permit maximum flexibility in developing stage-to-stage matching. This provision precluded active clearance control on the rear case of the test rig. Both the component and rig designs meet or exceed design requirements with the exception of life goals, which will be achievable with planned advances in materials technology.
Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.; Ratcliff, M. A.; Zigler, B. T.
2012-04-19
A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
NASA Technical Reports Server (NTRS)
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
Performance improvements of an F-15 airplane with an integrated engine-flight control system
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Walsh, Kevin R.
1988-01-01
An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 deg, respectively.
Performance improvements of an F-15 airplane with an integrated engine-flight control system
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Walsh, Kevin R.
1988-01-01
An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.
Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane
NASA Technical Reports Server (NTRS)
Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.
1993-01-01
Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.
Indicator system provides complete data of engine cylinder pressure variation
NASA Technical Reports Server (NTRS)
Mc Jones, R. W.; Morgan, N. E.
1966-01-01
Varying reference pressure used together with a balanced pressure pickup /a diaphragm switch/ to switch the electric output of the pressure transducer in a reference pressure line obtains precise engine cylinder pressure data from a high speed internal combustion engine.
Flow Analysis of a Gas Turbine Low- Pressure Subsystem
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1997-01-01
The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
2002-01-01
In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high pressure, which will gradually return to ambient pressure as an almost spherical shock wave expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors have accounted for this situation either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a two-dimensional calculation first, including a domain external to the detonation tube, and using the resulting exit pressure temporal distribution as the boundary condition for one-dimensional calculations. These calculations show that the increased pressure does affect the PDE performance. In the present work, a simple model of the exit process is used to estimate the pressure decay time. The planar shock wave emerging from the tube is assumed to transform into a spherical shock wave. The initial strength of the spherical shock wave is determined from comparison with experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given by a numerical blast wave calculation. The model agrees reasonably well with other, limited, results. Finally, the model was used as the exit boundary condition for a one-dimensional calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary condition. The modified boundary condition had no performance impact for values of L/D > 10, and moderate impact for L/D = 4.
Computational Analysis of a Low-Boom Supersonic Inlet
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
2011-01-01
A low-boom supersonic inlet was designed for use on a conceptual small supersonic aircraft that would cruise with an over-wing Mach number of 1.7. The inlet was designed to minimize external overpressures, and used a novel bypass duct to divert the highest shock losses around the engine. The Wind-US CFD code was used to predict the effects of capture ratio, struts, bypass design, and angles of attack on inlet performance. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center. Test results showed that the inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a stable operating range much larger than that of an engine. Predictions generally compared very well with the experimental data, and were used to help interpret some of the experimental results.
Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control
NASA Technical Reports Server (NTRS)
1995-01-01
Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.
Linear air-fuel sensor development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, F.; Miller, C.
1996-12-14
The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less
NASA Technical Reports Server (NTRS)
Allen, J L; Beke, Andrew
1953-01-01
Force and pressure-recovery characteristics of a nacelle-type conical-spike inlet with a fixed-area bypass located in the top or bottom of the diffuser are presented for flight Mach numbers of 1.6, 1.8, and 2.0 for angles of attack from 0 degrees to 9 degrees. Top or bottom location of the bypass did not have significant effects on diffuser pressure-recovery, bypass mass-flow ratio, or drag coefficient over the range of angles of attack, flight Mach numbers, and stable engine mass-flow ratios investigated. A larger stable subcritical operating range was obtained with the bypass on the bottom at angles of attack from 3 degrees to 9 degrees at a flight Mach number of 2.0. At a flight Mach number of 2.0, the discharge of 14 percent of the critical mass flow of the inlet by means of a bypass increased the drag only one-fifth of the additive drag that would result for equivalent spillage behind an inlet normal shock without significant reductions in diffuser pressure recovery.
NASA Technical Reports Server (NTRS)
Cole, T. W.; Rathburn, E. A.
1974-01-01
A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, P.K.; Logsdon, W.A.; Begley, J.A.
1989-10-01
The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less
NASA Technical Reports Server (NTRS)
Melcher, J. C.; Morehead, Robert L.
2014-01-01
The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.
NASA Astrophysics Data System (ADS)
Zhou, S. Y.; Zhang, B.; Cai, Z. F.
2010-05-01
This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.
Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging
NASA Astrophysics Data System (ADS)
Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.
1994-10-01
An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.
Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew
2011-01-01
The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Briggs, Thomas E; Cho, Kukwon
2011-01-01
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less
Study of an advanced General Aviation Turbine Engine (GATE)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.
1979-01-01
The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.
Validation of the solidifying soil process using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Zhao-Xiang; Liu, Lin-Mei; Liu, Lu-Wen
2016-09-01
Although an Ionic Soil Stabilizer (ISS) has been widely used in landslide control, it is desirable to effectively monitor the stabilization process. With the application of laser-induced breakdown spectroscopy (LIBS), the ion contents of K, Ca, Na, Mg, Al, and Si in the permeable fluid are detected after the solidified soil samples have been permeated. The processes of the Ca ion exchange are analyzed at pressures of 2 and 3 atm, and it was determined that the cation exchanged faster as the pressure increased. The Ca ion exchanges were monitored for different stabilizer mixtures, and it was found that a ratio of 1:200 of ISS to soil is most effective. The investigated plasticity and liquidity indexes also showed that the 1:200 ratio delivers the best performance. The research work indicates that it is possible to evaluate the engineering performances of soil solidified by ISS in real time and online by LIBS.
V/STOL model fan stage rig design report
NASA Technical Reports Server (NTRS)
Cheatham, J. G.; Creason, T. L.
1983-01-01
A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.
Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System
NASA Technical Reports Server (NTRS)
Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan
2015-01-01
The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y
2011-01-01
An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less
NASA Technical Reports Server (NTRS)
Grey, Ralph E; Brightwell, Virginia L; Barson, Zelmar; NACA
1950-01-01
An altitude-chamber investigation of British Rolls-Royce Nene II turbojet engine was conducted over range of altitudes from sea level to 65,000 feet and ram pressure ratios from 1.10 to 3.50, using an 18.00-inch-diameter jet nozzle. The 18.00-inch-diameter jet nozzle gave slightly lower values of net-thrust specific fuel consumption than either the 18.41- or the standard 18.75-inch-diameter jet nozzles at high flight speeds. At low flight speeds, the 18.41-inch-diameter jet nozzle gave the lowest value of net-thrust specific fuel consumption.
NASA Technical Reports Server (NTRS)
Hatch, James E.; Lucas, James G.; Finger, Harold B.
1953-01-01
The performance of a 13-stage development comressor for the J40-WE-24 engine has been determined at equivalent speeds from 30 to 112 percent of design. The design total-pressure ratio of 6.0 and the design weight flow of 164 pounds per second were not attained, An analysis was conducted to determine the reasons for the poor performance at the design and over-design speed. The analysis indicated that most of the difficulty could be attributed to the fact that the first stage was overcompromised to favor part-speed performance,
NASA Technical Reports Server (NTRS)
Pauckert, R. P.
1974-01-01
The performance and heat transfer characteristics of a doublet element type injector for the space shuttle orbiter maneuvering engine thrust chamber were investigated. Ths stability characteristics were evaluated over a range of chamber pressures and mixture ratios. The specific objectives of the test were: (1) to determine whether stability has been influenced by injection of boundary layer coolant across the cavity entrance, (2) if the injector is stable, to determine the minimum cavity area required to maintain stability, and (3) if the injector is unstable, to determine the effects of entrance geometry and increased area on stability.
1976-03-01
6- 18 6.5 Acceleration Mode - Purumeter Accuracy Comparison 6- 18 6.6 Acceleratiin Mode - Sensor Accuracy Cormpriwon 6- 0 6.7 .OP/P Surqt Control...Spool Speeds 6-42 6. 18 Fan Pressure Ratio Schedule 6-43 6.19 SFC with Control Mode 01 6-45 6.20 Optimal T4.1 vs. NHCl 6-46 6.21 Adjusted SFC for... 18 Intermediate Power to Idle Decelberation at Mach 2.2 and 36,089 Feet 7-39 7.19 Idle to Intermediate Power Acceleration at Mach 1.2 and 500 feet 7
NASA Technical Reports Server (NTRS)
Eisenberg, J. D.
1977-01-01
The effect on fuel consumption of turbofans with intercooled, regenerative cycles and with intercooled, regenerative, reheat cycles was studied. The technology level for both engine and aircraft was that projected for 1985. The simulated mission was a 5556 km flight carrying 200 passengers at Mach 0.8 at 11582 min. Results indicate that these relatively complex cycles offer little, if any, fuel savings potential relative to a conventional turbofan cycle of comparable advanced technology. The intercooled, regenerative cycle yields about the same fuel economy as a conventional cycle at close to the same overall pressure ratio.
Heat exchangers in regenerative gas turbine cycles
NASA Astrophysics Data System (ADS)
Nina, M. N. R.; Aguas, M. P. N.
1985-09-01
Advances in compact heat exchanger design and fabrication together with fuel cost rises continuously improve the attractability of regenerative gas turbine helicopter engines. In this study cycle parameters aiming at reduced specific fuel consumption and increased payload or mission range, have been optimized together with heat exchanger type and size. The discussion is based on a typical mission for an attack helicopter in the 900 kw power class. A range of heat exchangers is studied to define the most favorable geometry in terms of lower fuel consumption and minimum engine plus fuel weight. Heat exchanger volume, frontal area ratio and pressure drop effect on cycle efficiency are considered.
Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai
2016-12-01
In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO 2 emission decreases. Meanwhile, the ratio of NO 2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO 2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.
An Introduction to Atomic Layer Deposition with Thermal Applications
NASA Technical Reports Server (NTRS)
Dwivedi, Vivek H.
2015-01-01
Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.
NASA Astrophysics Data System (ADS)
Ono, Fumiei; Tamura, Hiroshi; Sakamoto, Hiroshi; Sasaki, Masaki
1991-09-01
The combustion characteristics of Liquid Oxygen (LO2)/Gaseous Methane (GCH4) fuel rich preburners were experimentally studied using subscale hardware. Three types of preburners with coaxial type propellant injection elements were designed and fabricated, and were used for hot fire testing. LO2 was used as oxidizer, and GCH4 at room temperature was used as fuel. The tests were conducted at chamber pressures ranging from 6.7 to 11.9 M Pa, and oxidizer to fuel ratios ranged from 0.16 to 0.42. The test results, which include combustion gas temperature T(sub c), characteristic velocity C(sup *) and soot adhesion data, are presented. The T(sub c) efficiency and the C(sup *) efficiency were found to be a function of oxidizer to fuel ratio and chamber pressure. These efficiencies are correlated by an empirical correlation parameter which accounts for the effects of oxidizer to fuel ratio and chamber pressure. The exhaust plumes were colorless and transparent under all tests conditions. There was some soot adhesion to the chamber wall, but no soot adhesion was observed on the main injector simulator orifices. Higher temperature igniter gas was required to ignite the main propellants of the preburner compared with that of the LO2/Gaseous Hydrogen (GH2) propellants combination.
Performance Evaluation of Reduced-Chord Rotor Blading as Applied to J73 Two-Stage Turbine
NASA Technical Reports Server (NTRS)
Schurn, Harold J.
1957-01-01
The multistage turbine from the J73 turbojet engine has previously been investigated with standard and with reduced-chord rotor blading in order to determine the individual performance characteristics of each configuration over a range of over-all pressure ratio and speed. Because both turbine configurations exhibited peak efficiencies of over 90 percent, and because both units had relatively wide efficient operating ranges, it was considered of interest to determine the performance of the first stage of the turbine as a separate component. Accordingly, the standard-bladed multistage turbine was modified by removing the second-stage rotor disk and stator and altering the flow passage so that the first stage of the unit could be operated independently. The modified single-stage turbine was then operated over a range of stage pressure ratio and speed. The single-stage turbine operated at a peak brake internal efficiency of over 90 percent at an over-all stage pressure ratio of 1.4 and at 90 percent of design equivalent speed. Furthermore, the unit operated at high efficiencies over a relatively wide operating range. When the single-stage results were compared with the multistage results at the design operating point, it was found that the first stage produced approximately half the total multistage-turbine work output.
Nanoshells as a high-pressure gauge
NASA Astrophysics Data System (ADS)
Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac
2012-02-01
Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.
Temperature dependence of thermal pressure for NaCl
NASA Astrophysics Data System (ADS)
Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.
2018-05-01
Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.
NASA Technical Reports Server (NTRS)
Finger, Harold B.; Essig, Robert H.; Conrad, E. William
1952-01-01
An investigation to increase the compressor surge-limit pressure ratio of the XJ40-WE-6 turbojet engine at high equivalent speeds was conducted at the NACA Lewis altitude wind tunnel. This report evaluates the compressor modifications which were restricted to (1) twisting rotor blades (in place) to change blade section angles and (2) inserting new stator diaphragms with different blade angles. Such configuration changes could be incorporated quickly and easily in existing engines at overhaul depots. It was found that slight improvements in the compressor surge limit were possible by compressor blade adjustment. However, some of the modifications also reduced the engine air flow and hence penalized the thrust. The use of a mixer assembly at the compressor outlet improved the surge limit with no appreciable thrust penalty.
Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Dinc, Ali
2016-09-01
In this study, a genuine code was developed for optimization of selected parameters of a turboprop engine for an unmanned aerial vehicle (UAV) by employing elitist genetic algorithm. First, preliminary sizing of a UAV and its turboprop engine was done, by the code in a given mission profile. Secondly, single and multi-objective optimization were done for selected engine parameters to maximize loiter duration of UAV or specific power of engine or both. In single objective optimization, as first case, UAV loiter time was improved with an increase of 17.5% from baseline in given boundaries or constraints of compressor pressure ratio and burner exit temperature. In second case, specific power was enhanced by 12.3% from baseline. In multi-objective optimization case, where previous two objectives are considered together, loiter time and specific power were increased by 14.2% and 9.7% from baseline respectively, for the same constraints.
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.
Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition
NASA Astrophysics Data System (ADS)
Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.
A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.
NASA Technical Reports Server (NTRS)
Opila, Elizabeth
2005-01-01
The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.
Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...
2013-02-01
In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less
A Laboratory Model of a Hydrogen/Oxygen Engine for Combustion and Nozzle Studies
NASA Technical Reports Server (NTRS)
Morren, Sybil Huang; Myers, Roger M.; Benko, Stephen E.; Arrington, Lynn A.; Reed, Brian D.
1993-01-01
A small laboratory diagnostic thruster was developed to augment present low thrust chemical rocket optical and heat flux diagnostics at the NASA Lewis Research Center. The objective of this work was to evaluate approaches for the use of temperature and pressure sensors for the investigation of low thrust rocket flow fields. The nominal engine thrust was 110 N. Tests were performed at chamber pressures of about 255 kPa, 370 kPa, and 500 kPa with oxidizer to fuel mixture ratios between 4.0 and 8.0. Two gaseous hydrogen/gaseous oxygen injector designs were tested with 60 percent and 75 percent fuel film cooling. The thruster and instrumentation designs were proven to be effective via hot fire testing. The thruster diagnostics provided inner wall temperature and static pressure measurements which were compared to the thruster global performance data. For several operating conditions, the performance data exhibited unexpected trends which were correlated with changes in the axial wall temperature distribution. Azimuthal temperature distributions were found to be a function of operating conditions and hardware configuration. The static pressure profiles showed that no severe pressure gradients were present in the rocket. The results indicated that small differences in injector design can result in dramatically different thruster performance and wall temperature behavior, but that these injector effects may be overshadowed by operating at a high fuel film cooling rate.
NASA Astrophysics Data System (ADS)
Waters, Daniel Francis
This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (<10%) decrease in power density. Thermodynamic models of SOFCs, catalytic partial oxidation (CPOx) reactors, and three GT engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed that account for equilibrium gas phase and electrochemical reaction, pressure losses, and heat losses in ways that capture `down-the-channel' effects (a level of fidelity necessary for making meaningful performance, mass, and volume estimates). Models are created in a NASA-developed environment called Numerical Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty <1%. Reductions of 15-20% are possible at the 200 kW power level. GT-SOFCs are also able to provide more electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important limiter of the combined propulsion/electrical generation concept. However, up to 100-200 kW can be produced in a bypass ratio = 8, overall pressure ratio = 40 turbofan with little or no drag penalty. This study shows that it is possible to create cooperatively integrated GT-SOFC systems for combined propulsion and power with better overall performance than stand-alone components.
Stochastic stability assessment of a semi-free piston engine generator concept
NASA Astrophysics Data System (ADS)
Kigezi, T. N.; Gonzalez Anaya, J. A.; Dunne, J. F.
2016-09-01
Small engines, as power generators with low-noise and vibration characteristics, are needed in two niche application areas: as electric vehicle range extenders and as domestic micro Combined Heat and Power systems. A recent semi-free piston design known as the AMOCATIC generator fully meets this requirement. The engine potentially allows for high energy conversion efficiencies at resonance derived from having a mass and spring assembly. As with free-piston engines in general, stability and control of piston motion has been cited as the prime challenge limiting the technology's widespread application. Using physical principles, we derive in this paper two important results: an energy balance criterion and a related general stability criterion for a semi-free piston engine. Control is achieved by systematically designing a Proportional Integral (PI) controller using a control-oriented engine model for which a specific stability condition is stated. All results are presented in closed form throughout the paper. Simulation results under stochastic pressure conditions show that the proposed energy balance, stability criterion, and PI controller, operate as predicted to yield stable engine operation at fixed compression ratio.
An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1
NASA Technical Reports Server (NTRS)
Beard, B. B.; Foley, W. H.
1982-01-01
The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.