Sample records for engine providing higher

  1. Where Is the Engineering I Applied For? A Longitudinal Study of Students' Transition into Higher Education Engineering, and Their Considerations of Staying or Leaving

    ERIC Educational Resources Information Center

    Holmegaard, Henriette Tolstrup; Madsen, Lene Møller; Ulriksen, Lars

    2016-01-01

    This paper presents results from a qualitative longitudinal study of students' transition into higher education engineering. The study aims at comparing upper-secondary school students' expectations of engineering with their actual experiences when encountering the engineering programme. It explores how this encounter provides a platform for…

  2. Double-reed exhaust valve engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Charles L.

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  3. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  4. "They're Not Girly Girls": An Exploration of Quantitative and Qualitative Data on Engineering and Gender in Higher Education

    ERIC Educational Resources Information Center

    Barnard, S.; Hassan, T.; Bagilhole, B.; Dainty, A.

    2012-01-01

    Despite sustained efforts to promote engineering careers to young women, it remains the most male-dominated academic discipline in Europe. This paper will provide an overview of UK data and research on women in engineering higher education, within the context of Europe. Comparisons between data from European countries representing various regions…

  5. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the team members. The self-directed team was more motivated to learn their topic than was the manager-directed team, but they struggled with their path in following their vision whereas the manager-directed team kept their focus under the guidance of their manager. Finally, both teams are in fact effective; however specific circumstances may be an important objective when deciding to utilize either a self-directed or manager-directed team.

  6. An Exemplary Program in Higher Education for Chemists, Engineers, and Chemistry Teachers.

    ERIC Educational Resources Information Center

    Ayers, Jerry B.; And Others

    This paper presents the rationale, structure, and specifications for a model program for the preparation of chemists, chemical engineers, and high school chemistry teachers. The model (an application of systems technology to program development in higher education) is based on the structure provided by the Georgia Educational Model Specifications…

  7. Development of an integrated indicator system to assess the impacts of reclamation engineering on a river estuary.

    PubMed

    Xu, Yan; Cai, Yanpeng; Sun, Tao; Yin, Xin'An; Tan, Qian

    2017-06-30

    An integrated indicator system was developed for determining synthetic environmental responses under multiple types of coastal reclamation engineering in the Yellow River estuary, China. Four types of coastal engineering works were analyzed, namely port construction, petroleum exploitation, fishery and aquaculture, and seawall defense. In addition, two areas with limited human disturbances were considered for comparison. From the weights of the response value for each indicator, port construction was determined to be the primary impact contributor among the four engineering works studies. Specifically, hydrodynamic conditions, ecological status, economic costs, and engineering intensity were on average 72.78%, 65.03%, 75.03%, and 66.35% higher than those of other engineering types. Furthermore, fishery and aquaculture impact on water quality was 42.51% higher than that of other engineering types, whereas seawall defense impact on landscape variation was 51.75% higher than that of other engineering types. The proposed indicator system may provide effective coastal management in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Industrial Work Placement in Higher Education: A Study of Civil Engineering Student Engagement

    ERIC Educational Resources Information Center

    Tennant, Stuart; Murray, Mike; Gilmour, Bob; Brown, Linda

    2018-01-01

    For civil engineering undergraduates, short-term industrial work placement provides an invaluable learning experience. Notwithstanding the near-universal endorsement of short-term placement programmes, the resulting experience is rarely articulated through the student voice. This article provides an analysis of 174 questionnaires returned by…

  9. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  10. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  11. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  12. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  13. Engaging Community College Students Using an Engineering Learning Community

    NASA Astrophysics Data System (ADS)

    Maccariella, James, Jr.

    The study investigated whether community college engineering student success was tied to a learning community. Three separate data collection sources were utilized: surveys, interviews, and existing student records. Mann-Whitney tests were used to assess survey data, independent t-tests were used to examine pre-test data, and independent t-tests, analyses of covariance (ANCOVA), chi-square tests, and logistic regression were used to examine post-test data. The study found students that participated in the Engineering TLC program experienced a significant improvement in grade point values for one of the three post-test courses studied. In addition, the analysis revealed the odds of fall-to-spring retention were 5.02 times higher for students that participated in the Engineering TLC program, and the odds of graduating or transferring were 4.9 times higher for students that participated in the Engineering TLC program. However, when confounding variables were considered in the study (engineering major, age, Pell Grant participation, gender, ethnicity, and full-time/part-time status), the analyses revealed no significant relationship between participation in the Engineering TLC program and course success, fall-to-spring retention, and graduation/transfer. Thus, the confounding variables provided alternative explanations for results. The Engineering TLC program was also found to be effective in providing mentoring opportunities, engagement and motivation opportunities, improved self confidence, and a sense of community. It is believed the Engineering TLC program can serve as a model for other community college engineering programs, by striving to build a supportive environment, and provide guidance and encouragement throughout an engineering student's program of study.

  14. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2018-07-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  15. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    NASA Astrophysics Data System (ADS)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further increasing combustion efficiency.

  16. Quality Assurance and Accreditation of Engineering Education in Jordan

    ERIC Educational Resources Information Center

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-01-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the…

  17. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  18. Engineering, global health, and inclusive innovation: focus on partnership, system strengthening, and local impact for SDGs.

    PubMed

    Clifford, Katie L; Zaman, Muhammad H

    2016-01-01

    The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering-global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all.

  19. ALTERNATIVE AVIATION FUELS FOR USE IN MILITARY APUS AND ENGINES VERSATILE AFFORDABLE ADVANCED TURBINE ENGINE (VAATE), PHASE II AND III. Delivery Order 0007: Alternative Aviation Fuels for Use in Military Auxiliary Power Units (APUs) and Engines

    DTIC Science & Technology

    2017-06-03

    used and the test cell had been thoroughly purged of the previous fuel, and to provide fuel properties needed to run the test. Posttest fuel samples...altitude hot day generator load. All tests were run at actual engine conditions (not scaled). Fuel flows were adjusted to provide a constant heat input...blends had slightly higher temperatures at the blade tip location and slightly lower temperatures at the blade hub location, but these differences are

  20. The Effect of Back Pressure on the Operation of a Diesel Engine

    DTIC Science & Technology

    2011-02-01

    increased back pressure on a turbocharged diesel engine. Steady state and varying back pressure are considered. The results show that high back...a turbocharged diesel engine using the Ricardo Wave engine modelling software, to gain understanding of the problem and provide a good base for...higher pressure. The pressure ratios across the turbocharger compressor and turbine decrease, reducing the mass flow of air through these components

  1. The Effect of Back Pressure on the Operation of a Disel Engine

    DTIC Science & Technology

    2011-02-01

    increased back pressure on a turbocharged diesel engine. Steady state and varying back pressure are considered. The results show that high back...a turbocharged diesel engine using the Ricardo Wave engine modelling software, to gain understanding of the problem and provide a good base for...higher pressure. The pressure ratios across the turbocharger compressor and turbine decrease, reducing the mass flow of air through these components

  2. A Computational Study to Investigate the Effect of Altitude on Deteriorated Engine Performance

    NASA Astrophysics Data System (ADS)

    Koh, W. C.; Mazlan, N. M.; Rajendran, P.; Ismail, M. A.

    2018-05-01

    This study presents an investigation on the effect of operational altitudes on the performance of the deteriorated engine. A two-spool high bypass ratio turbofan engine is used as the test subject for this study. The engine is modelled in Gas Turbine Simulation Program (GSP) based on an existing engine model from literature. Real flight data were used for the validation. Deterioration rate of 0.1% per day is applied for all turbofan components engine. The simulation is performed by varying the altitude from sea level until 9000m. Results obtained show reduction in air mass flow rate and engine thrust as altitude increases. The reduction in air mass flow rate is due to the lower air density at higher altitude hence reduces amount of engine thrust. At 1000m to 4000m, thrust specific fuel consumption (TSFC) of the engine is improved compared to sea level. However depleted in TSFC is shown when the aircraft flies at altitude higher than 4000m. At this altitude, the effect of air density is dominant. As a result, the engine is required to burn more fuel to provide a higher thrust to sustain the aircraft speed. More fuel is consumed hence depletion in TSFC is obtained.

  3. An Exploration of Progression Rates of Widening Participation Students on to an Integrated Master of Engineering

    ERIC Educational Resources Information Center

    Humphries-Smith, Tania; Hunt, Clive

    2017-01-01

    This paper reports on an investigation into the potential to widen participation to Higher Education provided by a flexible learning MEng Engineering. The MEng is part of an integrated programme that provides progression routes from a traditional day release Apprenticeship, through HNC, FdEng at a Further Education College to a flexible learning…

  4. The Use of Steady and Unsteady Detonation Waves for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)

    1995-01-01

    Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.

  5. [An object-oriented intelligent engineering design approach for lake pollution control].

    PubMed

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  6. A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells.

    PubMed

    Teo, Ailing; Mantalaris, Athanasios; Song, Kedong; Lim, Mayasari

    2014-05-01

    Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 10(5) cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.

  7. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  8. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  9. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    Prouty, Dale A.; Klahr, Philip

    1988-01-01

    A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.

  10. Two phase exhaust for internal combustion engine

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  11. Air Taxi at Your Service

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Under an exclusive agreement with Eclipse Aviation Corporation, Williams International is manufacturing the EJ22 engine, a commercial version of the NASA/Williams FJX-2, for the Eclipse 500 aircraft. The new engine, which weighs approximately 85 pounds and delivers over 770 pounds of thrust, provides a higher thrust-to-weight ratio than any commercial turbofan ever produced. Being the smallest, quietest, and lightest commercial aircraft engine currently available, the EJ22 engine makes a whole new class of twinjet light aircraft feasible.

  12. Emerging Media in Engineering Technology: A Case Study in Higher Education

    ERIC Educational Resources Information Center

    Ostler, Karl B.

    2013-01-01

    Technical illustration, 3D modeling, and design drafting under the discipline of engineering technology face rapid change and advancements in technologies such that educational leaders must continually anticipate change and make intelligent choices in providing a quality educational experience to adult students. However, how successful program…

  13. Women and Men of the Engineering Path: A Model for Analyses of Undergraduate Careers.

    ERIC Educational Resources Information Center

    Adelman, Clifford

    This monograph provides college academic administrators, institutional researchers, professional and learned societies, and academic advisors with information to improve understanding of the paths students take through engineering programs in higher education. The evidence used in this study comes principally from the 11-year college transcript…

  14. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  15. Higher Education in the German Democratic Republic. Monographs on Higher Education.

    ERIC Educational Resources Information Center

    Schulz, H. J.

    The system of higher education of the German Democratic Republic is described. Information on the different kinds of colleges--universities, university colleges, and engineering and technical colleges--is provided, including admission procedures, course objectives, course content and structure, further education, paths leading to the award of…

  16. Octane and Internal Combustion Engine Advancements from a Long(er) Term Perspective: Insights from the Co-Optima Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John T

    Co-Optima research and analysis have identified fuel properties that enable advanced LD and HD engines. 95 RON will directionally improve boosted SI efficiency, but higher RON and S provide additional benefits. The optimal fuel properties for future engines are still uncertain. There are a large number of blendstocks readily derived from biomass (and petroleum) that possess beneficial properties.

  17. Engineering, global health, and inclusive innovation: focus on partnership, system strengthening, and local impact for SDGs

    PubMed Central

    Clifford, Katie L.; Zaman, Muhammad H.

    2016-01-01

    The recent drafting of the Sustainable Development Goals challenges the research community to rethink the traditional approach to global health and provides the opportunity for science, technology, engineering, and mathematical (STEM) disciplines, particularly engineering, to demonstrate their benefit to the field. Higher education offers a platform for engineering to intersect with global health research through interdisciplinary partnerships among international universities that provide excellence in education, attract nontraditional STEM students, and foster a sense of innovation. However, a traditional lack of engineering–global health collaborations, as well as limited faculty and inadequate STEM research funding in low-income countries, has stifled progress. Still, the impact of higher education on development efforts holds great potential. This value will be realized in low-income countries through strengthening local capacity, supporting innovation through educational initiatives, and encouraging the inclusion of women and minorities in STEM programs. Current international university-level partnerships are working towards integrating engineering into global health research and strengthening STEM innovation among universities in low-income countries, but more can be done. Global health research informs sustainable development, and through integrating engineering into research efforts through university partnerships, we can accelerate progress and work towards a healthier future for all. PMID:26790462

  18. Solar power plant and still

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, W.P.

    This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less

  19. Development Status of the NASA MC-1 (Fastrac) Engine

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.; Olive, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    The MC-1 (formerly known as the Fastrac 60K) Engine is being developed for the X-34 technology demonstrator vehicle. It is a pump-fed liquid rocket engine with fixed thrust operating at one rated power level of 60,000 lbf vacuum thrust using a 15:1 area ratio nozzle (slightly higher for the 30:1 flight nozzle). Engine system development testing of the MC-1 has been ongoing since 24 Oct 1998. To date, 48 tests have been conducted on three engines using three separate test stands. This paper will provide some details of the engine, the tests conducted, and the lessons learned to date.

  20. Nano-Science-Engineering-Technology Applications to Food and Nutrition.

    PubMed

    Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R

    2015-01-01

    Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.

  1. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  2. Rockets -- Part II.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)

  3. A Triangular Approach to Integrate Research, Education and Practice in Higher Engineering Education

    ERIC Educational Resources Information Center

    Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka

    2017-01-01

    Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is…

  4. A Self-Ethnographic Investigation of Continuing Education Program in Engineering Arising from Economic Structural Change

    ERIC Educational Resources Information Center

    Kaihlavirta, Auri; Isomöttönen, Ville; Kärkkäinen, Tommi

    2015-01-01

    This paper provides a self-ethnographic investigation of a continuing education program in engineering in Central Finland. The program was initiated as a response to local economic structural change, in order to offer re-education possibilities for a higher educated workforce currently under unemployment threat. We encountered considerable…

  5. Regaining America's leading global position in the innovation of science and technology: Increasing engineering program enrollment in higher education

    NASA Astrophysics Data System (ADS)

    Burklo, Daniel A.

    While the United States has always been a global leader in the innovation of science and technology, this leading global position is in jeopardy. As other developing countries produce intellectual capital in the form of engineers at increasing rates, the country will continue to lose ground. Today the need for the country to produce engineers is greater than ever before. Recognizing this need, attempts have been made to increase entrance into engineering fields in higher education by providing STEM (science, technology, engineering, and mathematics) activities during K-12 education. While STEM initiatives create awareness and interest, this study investigates what actually motivates individuals to choose engineering programs in higher education. A quantitative study utilizing survey results from 202 first year engineering students in the state of Ohio illustrates what has motivated them to choose engineering as a major. The study examines who, when, and what motivated the students to choose engineering by examining the relationship of influential people and STEM initiatives participated in during their K-12 education to enrollment in engineering programs at colleges and universities in the state of Ohio. The study proved the general hypothesis that there are influential people in an individual's college choice, such as the parent, and there are time periods during K-12 education when individuals are more motivated, such as the high school years. The study also showed a positive correlation between the motivation toward engineering programs and the number of STEM opportunities in which individuals participated yet there was little difference when comparing the different types of STEM initiatives.

  6. ONR K-16 Engineering Pipeline: Engineering Success in STEM Project

    DTIC Science & Technology

    2016-10-19

    contributed to fewer items being rated as significantly higher on the post - test . Most of these items were designed to assess confidence with specific...the second group talked about the application of the EDP in many different content areas. One stated , "What I like about the engineering design ... designating a point person at each school and providing some direction for unit development to get groups started. One example was the suggestion to

  7. Materials for Liquid Propulsion Systems. Chapter 12

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Cannon, James L.; Brown, Corey

    2016-01-01

    Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid rocket engine operational factors can be described in terms of extremes: temperatures ranging from that of liquid hydrogen (-423 F) to 6000 F hot gases; enormous thermal shock (7000 F/sec); large temperature differentials between contiguous components; reactive propellants; extreme acoustic environments; high rotational speeds for turbo machinery and extreme power densities. These factors place great demands on materials selection and each must be dealt with while maintaining an engine of the lightest possible weight. This chapter will describe the design considerations for the materials used in the various components of liquid rocket engines and provide examples of usage and experiences in each.

  8. ISS Has an Attitude! Determining ISS Attitude at the ISS Window Observational Research Facility (WORF) Using Landmarks

    NASA Technical Reports Server (NTRS)

    Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan

    2011-01-01

    Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination

  9. A Model Retention Program for Science and Engineering Students: Contributions of the Institutional Research Office.

    ERIC Educational Resources Information Center

    Andrade, Sally J.; Stigall, Sam; Kappus, Sheryl S.; Ruddock, Maryann; Oburn, Martha

    This paper asserts that the continuing decline in admissions to science and engineering graduate programs may lead to a shortage of skilled professionals that undermines the U.S. economy and to a shortage in higher education faculty. The Louis Stokes Alliance for Minority Participation (LSAMP) provides academic activities and retention services to…

  10. Meeting the STEM Workforce Challenge: Leveraging Higher Education's Untapped Potential to Prepare Tomorrow's STEM Workforce. BHEF Policy Brief

    ERIC Educational Resources Information Center

    Business-Higher Education Forum (NJ1), 2011

    2011-01-01

    Innovations in science and engineering have driven economic growth in the United States over the last five decades. More recently, technology has risen to become a defining driver of productivity in business and industry. In that context, college graduates in science, technology, engineering, and mathematics (STEM) disciplines provide critical…

  11. Aerothermal modeling. Executive summary

    NASA Technical Reports Server (NTRS)

    Kenworthy, M. K.; Correa, S. M.; Burrus, D. L.

    1983-01-01

    One of the significant ways in which the performance level of aircraft turbine engines has been improved is by the use of advanced materials and cooling concepts that allow a significant increase in turbine inlet temperature level, with attendant thermodynamic cycle benefits. Further cycle improvements have been achieved with higher pressure ratio compressors. The higher turbine inlet temperatures and compressor pressure ratios with corresponding higher temperature cooling air has created a very hostile environment for the hot section components. To provide the technology needed to reduce the hot section maintenance costs, NASA has initiated the Hot Section Technology (HOST) program. One key element of this overall program is the Aerothermal Modeling Program. The overall objective of his program is to evolve and validate improved analysis methods for use in the design of aircraft turbine engine combustors. The use of such combustor analysis capabilities can be expected to provide significant improvement in the life and durability characteristics of both combustor and turbine components.

  12. High Specific Stiffness Shafts and Advanced Bearing Coatings for Gas Turbine Engines Final Report CRADA No. TC-1089-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbee, Troy; Chin, Herbert

    At the time of the CRADA, the largest in-service gas-turbine aircraft engines strove for increased thrust and power density to meet the requirements for take-off thrust, given the increase in take-off gross weight (TOGW) associated with longer range transport requirements. The trend in modem turbo shaft engines was toward turbine shafts with higher and higher length-to-diameter ratios, which reduced the shaft critical speed. Using co nventional shaft materials, this lead to shafts that needed to operate near or above sensitive shaft bending critical speeds, therefore requiring multiple bearings and/ or multiple squeeze-film dampers to control the dynamic response. Using newmore » materials and d esign concepts this project demonstrated the use of new shaft materials which could provide increased shaft speed range above existing maximum engine speeds without encountering a critic al speed event and high vector deflections. This increased main shaft speed also resulted in decreased bearing life associated with lower heat dissipation and higher centrifugal forces. Thus, a limited effort was devoted to feasibility of higher performance bearing coatings to mitigate the speed effects.« less

  13. Authentic scientific research in an international setting as a path toward higher education

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.

    2016-12-01

    Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the international research experience have important implications for environmental engineering and other scientific fields in terms of inducing greater self-efficacy and fostering an interest in higher education for students from groups traditionally under-represented in the sciences.

  14. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].

    PubMed

    Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda

    2017-02-28

    Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.

  15. A triangular approach to integrate research, education and practice in higher engineering education

    NASA Astrophysics Data System (ADS)

    Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka

    2017-11-01

    Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is proposed. The results from the application of TA, both at the course and programme level, indicate that the approach is suitable for developing engineering education. The student pass rate for courses where TA has been used has been higher than for previous approaches, and the student feedback has been very positive. Although TA aims to take both theoretical and practical aspects of engineering as well as research and education into account, the approach concentrates mainly on activities and therefore leaves the goals of these activities as well as the values behind these goals uncovered.

  16. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOEpatents

    Dec, John E [Livermore, CA; Sjoberg, Carl-Magnus G [Livermore, CA

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  17. Sex segregation in undergraduate engineering majors

    NASA Astrophysics Data System (ADS)

    Litzler, Elizabeth

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher education, I explore gender stratification within one field: engineering. This dissertation investigates why some engineering disciplines have a greater representation of women than other engineering disciplines. I assess the individual and institutional factors and conditions associated with women's representation in certain engineering departments and compare the mechanisms affecting women's and men's choice of majors. I use national data from the Engineering Workforce Commission, survey data from 21 schools in the Project to Assess Climate in Engineering study, and Carnegie Foundation classification information to study sex segregation in engineering majors from multiple perspectives: the individual, major, institution, and country. I utilize correlations, t-tests, cross-tabulations, log-linear modeling, multilevel logistic regression and weighted least squares regression to test the relative utility of alternative explanations for women's disproportionate representation across engineering majors. As a whole, the analyses illustrate the importance of context and environment for women's representation in engineering majors. Hypotheses regarding hostile climate and discrimination find wide support across different analyses, suggesting that women's under-representation in certain engineering majors is not a question of choice or ability. However, individual level factors such as having engineering coursework prior to college show an especially strong association with student choice of major. Overall, the analyses indicate that institutions matter, albeit less for women, and women's under-representation in engineering is not reducible to individual choice. This dissertation provides a broad, descriptive view of the state of sex segregation in engineering as well as a careful analysis of how individual and institutional factors inhibit or encourage sex segregation. This study contributes to the research literature through the use of novel data, testing of occupational segregation theories, and the use of multiple levels of analysis. The analyses provide new insight into an enduring phenomenon, and suggest new avenues for understanding sex segregation in higher education.

  18. Quality assurance and accreditation of engineering education in Jordan

    NASA Astrophysics Data System (ADS)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  19. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.

    2017-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  20. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes

    2016-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  1. J-2X Gas Generator Development Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reynolds, D. C.; Hormonzian, Carlo

    2010-01-01

    NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.

  2. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  3. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  4. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  5. Study of occupational stress among railway engine pilots

    PubMed Central

    Kumar, Devesh; Singh, Jai Vir; Kharwar, Poonam S.

    2011-01-01

    Background: Traffic volume and speed is going to be increased in Indian Railways successively, leading to higher stress in staff connected with train operations. The jobs of railway engine pilots come under the category of high-strain jobs, necessitating a need to conduct multicentric study to unfold the factors associated with occupational stress and organizational strategies. Materials and Methods: Present study covered 185 railway engine pilots and office clerks working in various railway zones by incidental method. Occupational Stress Index (OSI) test developed by Srivastva and Singh, questionnaire of specific stressors constructed by authors and laboratory test battery for psychological screening of high-speed train pilots were used as tools. Results: Means of OSI and all the 12 occupational stressors of railway engine pilots were found significantly higher to that of office clerks. Means of OSI and occupational stressors of goods train pilots were significantly higher in comparison to high-speed train pilots and passenger train pilots. Study revealed positive correlation of speed perception and complex reaction time tests and negative correlation of other constituent tests of laboratory test battery to OSI test. Highest subgroup of stressor observedwas role overload followed by role conflict. Conclusions: These findings provide a prima facie evidence of higher occupational stress among railway engine pilots because of identified specific stressors prevalent in their job and explore the possible intervention strategies for its reduction. Significant correlation is noticed between OSI and laboratory test results, indicating its relevant utility in preliminary psychological screening. PMID:21808497

  6. Improved Stirling engine performance using jet impingement

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Britt, E. J.; Thieme, L. G.

    1982-01-01

    Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.

  7. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  8. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  9. Nuclei-mode particulate emissions and their response to fuel sulfur content and primary dilution during transient operations of old and modern diesel engines.

    PubMed

    Liu, Z Gerald; Vasys, Victoria N; Kittelson, David B

    2007-09-15

    The effects of fuel sulfur content and primary dilution on PM number emissions were investigated during transient operations of an old and a modern diesel engine. Emissions were also studied during steady-state operations in order to confirm consistency with previous findings. Testing methods were concurrent with those implemented by the EPA to regulate PM mass emissions, including the use of the Federal Transient Testing Procedure-Heavy Duty cycle to simulate transient conditions and the use of a Critical Flow Venturi-Constant Volume System to provide primary dilution. Steady-state results were found to be consistent with previous studies in that nuclei-mode particulate emissions were largely reduced when lower-sulfur content fuel was used in the newer engine, while the nuclei-mode PM emissions from the older engine were much less affected by fuel sulfur content. The transient results, however, show that the total number of nuclei-mode PM emissions from both engines increases with fuel sulfur content, although this effect is only seen under the higher primary dilution ratios with the older engine. Transient results further show that higher primary dilution ratios increase total nuclei-mode PM number emissions in both engines.

  10. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected participants in fields of science, engineering, math, and other disciplines spend approximately 10 weeks working with their professional peers on research projects at NASA facilities. Workshops and seminars further enrich the experience. This program is only for U.S. citizens.

  11. How to make mathematics relevant to first-year engineering students: perceptions of students on student-produced resources

    NASA Astrophysics Data System (ADS)

    Loch, Birgit; Lamborn, Julia

    2016-01-01

    Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering and multimedia students the task to 'make maths relevant' for first-year students. This approach is novel as we moved away from the traditional thinking that staff should produce these resources to students producing the same. These students have more recently undertaken first-year mathematical study themselves and can also provide a more mature student perspective to the task than first-year students. Two final-year engineering students and three final-year multimedia students worked on this project over the Australian summer term and produced two animated videos showing where concepts taught in first-year mathematics are applied by professional engineers. It is this student perspective on how to make mathematics relevant to first-year students that we investigate in this paper. We analyse interviews with higher year students as well as focus groups with first-year students who had been shown the videos in class, with a focus on answering the following three research questions: (1) How would students demonstrate the relevance of mathematics in engineering? (2) What are first-year students' views on the resources produced for them? (3) Who should produce resources to demonstrate the relevance of mathematics? There seemed to be some disagreement between first- and final-year students as to how the importance of mathematics should be demonstrated in a video. We therefore argue that it should ideally be a collaboration between higher year students and first-year students, with advice from lecturers, to produce such resources.

  12. Experimental performance of the regenerator for the Chrysler upgraded automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Winter, J. M.; Nussle, R. C.

    1982-01-01

    Automobile gas turbine engine regenerator performance was studied in a regenerator test facility that provided a satisfactory simulation of the actual engine operating environment but with independent control of airflow and gas flow. Velocity and temperature distributions were measured immediately downstream of both the core high-pressure-side outlet and the core low-pressure-side outlet. For the original engine housing, the regenerator temperature effectiveness was 1 to 2 percent higher than the design value, and the heat transfer effectiveness was 2 to 4 percent lower than the design value over the range of test conditions simulating 50 to 100 percent of gas generator speed. Recalculating the design values to account for seal leakage decreased the design heat transfer effectiveness to values consistent with those measured herein. A baffle installed in the engine housing high-pressure-side inlet provided more uniform velocities out of the regenerator but did not improve the effectiveness. A housing designed to provide more uniform axial flow to the regenerator was also tested. Although temperature uniformity was improved, the effectiveness values were not improved. Neither did 50-percent flow blockage (90 degree segment) applied to the high-pressure-side inlet change the effectiveness significantly.

  13. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  14. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  15. The 4A Metric Algorithm: A Unique E-Learning Engineering Solution Designed via Neuroscience to Counter Cheating and Reduce Its Recidivism by Measuring Student Growth through Systemic Sequential Online Learning

    ERIC Educational Resources Information Center

    Osler, James Edward

    2016-01-01

    This paper provides a novel instructional methodology that is a unique E-Learning engineered "4A Metric Algorithm" designed to conceptually address the four main challenges faced by 21st century students, who are tempted to cheat in a myriad of higher education settings (face to face, hybrid, and online). The algorithmic online…

  16. Injected Water Augments Cooling In Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1989-01-01

    Report describes experiments in which water injected into compressor-bleed cooling air of aircraft turboshaft engine. Injection of water previously suggested as way to provide additional cooling needed to sustain operation at power levels higher than usual. Involves turbine-inlet temperatures high enough to shorten lives of first-stage high-pressure turbine blades. Latent heat of vaporization of injected water serves as additional heat sink to maintain blades at design operating temperatures during high-power operation.

  17. The potential for CMCs to replace superalloys in engine exhaust ducts

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel P.; Field, Frank R.

    1994-01-01

    The Materials Systems Laboratory at the Massachusetts Institute of Technology has conducted research to develop decision tools that can facilitate materials selection and provide a deeper understanding of the design tradeoffs that occur when choosing among advanced aerospace materials for high-temperature applications. As an illustration of the use of these tools, this paper describes research done to evaluate the material alternatives currently under consideration for exhaust ducts in aircraft gas turbine engines. Although nickel-based superalloys currently prevail for this application, the increasing temperatures of modern engines are necessitating the usage of higher temperature materials.

  18. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  19. Three-dimensional transient numerical simulation for intake process in the engine intake port-valve-cylinder system.

    PubMed

    Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao

    2003-01-01

    This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.

  20. 3 CFR 9018 - Proclamation 9018 of September 13, 2013. National Hispanic-Serving Institutions Week, 2013

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., knowledge-based economy, higher education helps build a skilled workforce and provides clear pathways to... passions. From the arts and humanities to education to science, technology, engineering, and mathematics...

  1. Enabling High Efficiency Ethanol Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less

  2. The potential of supplemental instruction in engineering education: creating additional peer-guided learning opportunities in difficult compulsory courses for first-year students

    NASA Astrophysics Data System (ADS)

    Malm, Joakim; Bryngfors, Leif; Mörner, Lise-Lotte

    2016-09-01

    Supplemental Instruction (SI) can be an efficient way of improving student success in difficult courses. Here, a study is made on SI attached to difficult first-year engineering courses. The results show that both the percentage of students passing a difficult first-year engineering course, and scores on the course exams are considerably higher for students attending SI, compared to students not attending. The study also shows that a higher percentage of female students attend SI, compared to male students. However, both genders seem to benefit to the same degree as a result of attending SI meetings. Also all students, independent of prior academic ability, benefit from attending SI. A qualitative study suggests that SI meetings provide elements important for understanding course material, which are missing from other scheduled learning opportunities in the courses.

  3. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    PubMed

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  4. Liquid Oxygen/Liquid Methane Ascent Main Engine Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Stephenson, David D.

    2008-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LO2)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon the Exploration Systems Architecture Study (ESAS). The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. The current application considering this technology is the lunar ascent main engine (AME). AME is anticipated to be an expendable, pressure-fed engine to provide ascent from the moon at the completion of a 210 day lunar stay. The engine is expected to produce 5,500 lbf (24,465 N) thrust with variable inlet temperatures due to the cryogenic nature of the fuel and oxidizer. The primary technology risks include establishing reliable and robust ignition in vacuum conditions, maximizing specific impulse, developing rapid start capability for the descent abort, providing the capability for two starts and producing a total engine bum time over 500 seconds. This paper will highlight the efforts of the Marshall Space Flight Center (MSFC) in addressing risk reduction activities for this technology.

  5. Engine sizing and integration requirements for hypersonic airbreathing missile applications

    NASA Astrophysics Data System (ADS)

    Waltrup, P. J.; Billig, F. S.; Stockbridge, R. D.

    1982-03-01

    A procedure that provides a rational means for selecting an inlet/combustor configuration for a hypersonic airbreathing missile is presented. The particular problem that is addressed is the design of the sustained engine of a two stage missile that is constrained to be launched from a stowage volume that is either square or circular in cross section. The sustainer engine accelerates from a low altitude separation at Mach 4 and climbs to high altitude for cruise at Mach 8. The results show that a missile with an axisymmetric nose inlet provides a somewhat higher thrust capability and slightly better fuel efficiency than a chin type inlet. Aft entry inlets are shown to have a substantially lower thrust potential and lower engine efficiency. A criterion for determining the maximum contraction ratio of a fixed geometry inlet is established and applied to the exemplary missile designs. Combustor area ratio is examined and found to have a relatively small effect on engine performance for area ratios equal to or larger than that required to obtain maximum thrust at the take-over Mach number.

  6. Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines

    NASA Astrophysics Data System (ADS)

    Korakianitis, T.; Beier, K. J.

    1994-04-01

    Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

  7. Unified Perspective for Categorization of Educational Quality Indicators from an Accreditation Process View--Relationships between Educational Quality Indicators Defined by Accrediting Agencies in México at the Institutional and Program Level, and Those Defined by Institutions of Higher Education

    ERIC Educational Resources Information Center

    Sosa Lopez, Jorge; Salinas Yañez, Miguel Alberto; Morales Salgado, Maria Del Rocío; Reyes Vergara, Maria De Lourdes

    2016-01-01

    This research provides an introduction and background on accreditation of higher education in México focusing on FIMPES (Federation of Mexican Private Institutions of Higher Education), CACEI (Council for Accreditation and Certification of Education in Engineering), and CETYS University as a case study to establish relationships between…

  8. Innovative Design of Complex Engineering Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2004-01-01

    The document contains the proceedings of the training workshop on Innovative Design of Complex Engineering Systems. The workshop was held at the Peninsula Higher Education Center, Hampton, Virginia, March 23 and 24, 2004. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to a) provide broad overviews of the diverse activities related to innovative design of high-tech engineering systems; and b) identify training needs for future aerospace work force development in the design area. The format of the workshop included fifteen, half-hour overview-type presentations, a panel discussion on how to teach and train engineers in innovative design, and three exhibits by commercial vendors.

  9. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  10. Frontiers in Learning. The Association of Higher Education Facilities Officers Educational Conference and Annual Meeting Proceedings (83rd, Salt Lake City, Utah, July 21-23, 1996).

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, Alexandria, VA.

    These 25 papers from a conference of higher education facilities offices are grouped into 5 categories: business management; energy and environment; human resources; operations and maintenance; and planning, design and construction. Papers are: (1) "Provider of Choice" (Jerry C. Black); (2) "Re-Engineering--'Inside-Inside' or Outside-Inside': A…

  11. Power control system for a hot gas engine

    DOEpatents

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  12. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  13. Bone Engineering of Maxillary Sinus Bone Deficiencies Using Enriched CD90+ Stem Cell Therapy: A Randomized Clinical Trial.

    PubMed

    Kaigler, Darnell; Avila-Ortiz, Gustavo; Travan, Suncica; Taut, Andrei D; Padial-Molina, Miguel; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Giannobile, William V

    2015-07-01

    Bone engineering of localized craniofacial osseous defects or deficiencies by stem cell therapy offers strong prospects to improve treatment predictability for patient care. The aim of this phase 1/2 randomized, controlled clinical trial was to evaluate reconstruction of bone deficiencies of the maxillary sinus with transplantation of autologous cells enriched with CD90+ stem cells and CD14+ monocytes. Thirty human participants requiring bone augmentation of the maxillary sinus were enrolled. Patients presenting with 50% to 80% bone deficiencies of the maxillary sinus were randomized to receive either stem cells delivered onto a β-tricalcium phosphate scaffold or scaffold alone. Four months after treatment, clinical, radiographic, and histologic analyses were performed to evaluate de novo engineered bone. At the time of alveolar bone core harvest, oral implants were installed in the engineered bone and later functionally restored with dental tooth prostheses. Radiographic analyses showed no difference in the total bone volume gained between treatment groups; however, density of the engineered bone was higher in patients receiving stem cells. Bone core biopsies showed that stem cell therapy provided the greatest benefit in the most severe deficiencies, yielding better bone quality than control patients, as evidenced by higher bone volume fraction (BVF; 0.5 versus 0.4; p = 0.04). Assessment of the relation between degree of CD90+ stem cell enrichment and BVF showed that the higher the CD90 composition of transplanted cells, the greater the BVF of regenerated bone (r = 0.56; p = 0.05). Oral implants were placed and restored with functionally loaded dental restorations in all patients and no treatment-related adverse events were reported at the 1-year follow-up. These results provide evidence that cell-based therapy using enriched CD90+ stem cell populations is safe for maxillary sinus floor reconstruction and offers potential to accelerate and enhance tissue engineered bone quality in other craniofacial bone defects and deficiencies (Clinicaltrials.gov NCT00980278). © 2015 American Society for Bone and Mineral Research.

  14. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    NASA Technical Reports Server (NTRS)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a rigorous baseline for the functional architecture.

  15. 16 CFR 1407.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GENERATORS: REQUIREMENTS TO PROVIDE PERFORMANCE AND TECHNICAL DATA BY LABELING § 1407.2 Definitions. (a) The... portable generator is an internal combustion engine-driven electric generator rated no higher than 15..., and may have alternating- or direct-current (DC) sections for supplying energy to battery charging...

  16. Wave combustors for trans-atmospheric vehicles

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc; Bowles, Jeffrey V.

    1989-01-01

    The Wave Combustor is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture and thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter, lighter engine compared to the scramjet. This engine, which is called the Oblique Detonation Wave Engine (ODWE), can then be utilized to provide a smaller, lighter vehicle or to provide a higher payload capability for a given vehicle weight. An analysis of the performance of a conceptual trans-atmospheric vehicle powered by an ODWE is given here.

  17. Comparison of engagement with ethics between an engineering and a business program.

    PubMed

    Culver, Steven M; Puri, Ishwar K; Wokutch, Richard E; Lohani, Vinod

    2013-06-01

    Increasing university students' engagement with ethics is becoming a prominent call to action for higher education institutions, particularly professional schools like business and engineering. This paper provides an examination of student attitudes regarding ethics and their perceptions of ethics coverage in the curriculum at one institution. A particular focus is the comparison between results in the business college, which has incorporated ethics in the curriculum and has been involved in ethics education for a longer period, with the engineering college, which is in the nascent stages of developing ethics education in its courses. Results show that student attitudes and perceptions are related to the curriculum. In addition, results indicate that it might be useful for engineering faculty to use business faculty as resources in the development of their ethics curricula.

  18. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  19. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  20. Implementation of In-Situ Impedance Techniques on a Full Scale Aero-Engine System

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Mendoza, J. M.; Jones, M. G.

    2007-01-01

    Determination of acoustic liner impedance for jet engine applications remains a challenge for the designer. Although suitable models have been developed that take account of source amplitude and the local flow environment experienced by the liner, experimental validation of these models has been difficult. This is primarily due to the inability of researchers to faithfully mimic the environment in jet engine nacelles in the laboratory. An in-situ measurement technique, one that can be implemented in an actual engine, is desirable so an accurate impedance can be determined for future modeling and quality control. This paper documents the implementation of such a local acoustic impedance measurement technique that is used under controlled laboratory conditions as well as on full scale turbine engine liner test article. The objective for these series of in-situ measurements is to substantiate treatment design, provide understanding of flow effects on installed liner performance, and provide modeling input for fan noise propagation computations. A series of acoustic liner evaluation tests are performed that includes normal incidence tube, grazing incidence tube, and finally testing on a full scale engine on a static test stand. Lab tests were intended to provide insight and guidance for accurately measuring the impedance of the liner housed in the inlet of a Honeywell Tech7000 turbofan. Results have shown that one can acquire very reasonable liner impedance data for a full scale engine under realistic test conditions. Furthermore, higher fidelity results can be obtained by using a three-microphone coherence technique that can enhance signal-to-noise ratio at high engine power settings. This research has also confirmed the limitations of this particular type of in-situ measurement. This is most evident in the installation of instrumentation and its effect on what is being measured.

  1. Using the PhysX engine for physics-based virtual surgery with force feedback.

    PubMed

    Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu

    2009-09-01

    The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.

  2. Problem Based Learning for engineering.

    PubMed

    Kumar, Dinesh; Radcliffe, Pj

    2017-07-01

    the role of Problem Based Learning (PBL) is relative clear in domains such as medicine but its efficacy in engineering is as yet less certain. To clarify the role of PBL in engineering, a 3 day workshop was conducted for senior Brazilian engineering academics where they were given the theory and then an immersive PBL experience. One major purpose for running this workshop was for them to identify suitable courses where PBL could be considered. During this workshop, they were split in teams and given a diverse range of problems. At the conclusion of the workshop, a quantifiable survey was conducted and the results show that PBL can deliver superior educational outcomes providing the student group is drawn from the top 5% of the year 12 students, and that significantly higher resources are made available. Thus, any proposed PBL program in engineering must be able to demonstrate that it can meet these requirements before it can move forward to implementation.

  3. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  4. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  5. Engineering, technology and science disciplines and gender difference: a case study among Indian students

    NASA Astrophysics Data System (ADS)

    Cheruvalath, Reena

    2018-01-01

    It is proposed to examine the argument that females cannot perform better in engineering and science fields because of their poor mathematical or logical reasoning. The major reason for the reduced number of females in the above fields in India is the socio-cultural aversion towards females choosing the field and restriction in providing higher education for them by their parents. The present study shows that the females who get the opportunity to study engineering and science perform equal to or better than their male counterparts. An analysis of CGPA (Cumulative Grade Point Average) of 2631 students who have completed their engineering or science programme in one of the top engineering colleges in India for five years shows that female academic performance is equal to or better than that of males. Mathematical, logical, verbal and mechanical reasoning are tested while calculating CGPA.

  6. Datasets on demographic trends in enrollment into undergraduate engineering programs at Covenant University, Nigeria.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; Odukoya, Jonathan A; Omole, David O; Ajayi, Priscilla

    2018-06-01

    In this data article, we present and analyze the demographic data of undergraduates admitted into engineering programs at Covenant University, Nigeria. The population distribution of 2649 candidates admitted into Chemical Engineering, Civil Engineering, Computer Engineering, Electrical and Electronics Engineering, Information and Communication Engineering, Mechanical Engineering, and Petroleum Engineering programs between 2002 and 2009 are analyzed by gender, age, and state of origin. The data provided in this data article were retrieved from the student bio-data submitted to the Department of Admissions and Student Records (DASR) and Center for Systems and Information Services (CSIS) by the candidates during the application process into the various engineering undergraduate programs. These vital information is made publicly available, after proper data anonymization, to facilitate empirical research in the emerging field of demographics analytics in higher education. A Microsoft Excel spreadsheet file is attached to this data article and the data is thoroughly described for easy reuse. Descriptive statistics and frequency distributions of the demographic data are presented in tables, plots, graphs, and charts. Unrestricted access to these demographic data will facilitate reliable and evidence-based research findings for sustainable education in developing countries.

  7. Engineering Potato Starch with a Higher Phosphate Content

    PubMed Central

    Xu, Xuan; Huang, Xing-Feng; Visser, Richard G. F.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (de)phosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal). Interestingly, expression of an (engineered) laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf). Modified starches exhibited altered granule morphology and size compared to the control. About 20–30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself. PMID:28056069

  8. Index of satisfaction in engineering courses in Portugal based on the students perspective

    NASA Astrophysics Data System (ADS)

    Oliveira, Raquel; Gonçalves, A. Manuela; Vasconcelos, Rosa M.

    2016-06-01

    In this work we describe and characterize the student's allocation satisfaction in the Portuguese public higher education system through the students' point of view, namely, in the academic engineering programs, extending previous studies of the author's team. We compare the ratio provided by the Portuguese Education Ministry through the Institutions' point of view, demand satisfaction index with the ratio proposed, applicant's satisfaction index, for the so called post-Bologna period. The data used in this paper covers the years from 2007 to 2013, provided by the Portuguese Education Institute. Mann-Whitney and Kruskal-Wallis tests were performed in order to assess whether there are significant differences between the ratios.

  9. Accessibility, nature and quality of health information on the Internet: a survey on osteoarthritis.

    PubMed

    Maloney, S; Ilic, D; Green, S

    2005-03-01

    This study aims to determine the quality and validity of information available on the Internet about osteoarthritis and to investigate the best way of sourcing this information. Keywords relevant to osteoarthritis were searched across 15 search engines representing medical, general and meta-search engines. Search engine efficiency was defined as the percentage of unique and relevant websites from all websites returned by each search engine. The quality of relevant information was appraised using the DISCERN tool and the concordance of the information offered by the website with the available evidence about osteoarthritis determined. A total of 3443 websites were retrieved, of which 344 were identified as unique and providing information relevant to osteoarthritis. The overall quality of website information was poor. There was no significant difference between types of search engine in sourcing relevant information; however, the information retrieved from medical search engines was of a higher quality. Fewer than a third of the websites identified as offering relevant information cited evidence to support their recommendations. Although the overall quality of website information about osteoarthritis was poor, medical search engines may provide consumers with the opportunity to source high-quality health information on the Internet. In the era of evidence-based medicine, one of the main obstacles to the Internet reaching its potential as a medical resource is the failure of websites to incorporate and attribute evidence-based information.

  10. [Quality of health information about epilepsy on the Internet: Evaluation of French websites].

    PubMed

    Auvin, S; Dupont, S

    2013-03-01

    The Internet is now the single largest source of health information and is used by many patients who are affected by epilepsy and their families. To assess the quality of information provided by French website on the different forms of epilepsy and their treatment, we used search engines (French pages from Bing, Google and Yahoo) to look for information using the French equivalent of three keywords epilepsy (Épilepsie); epilepsy treatment (Épilepsie traitement) and seizure (Convulsions). The websites were evaluated for content quality by using an adaptation of the validated DISCERN rating instrument. Each website was evaluated by three investigators (a naive observer, a pediatric neurologist and a neurologist). Most of the information on epilepsy and its treatment were from community websites. We found six French websites which were scored higher than half of the maximal value of our scoring system (≥27.5/55): www.passeportsante.net; fr.wikipedia.org; www.fondation-epilepsie.fr; www.epilepsie-france.fr; www.doctissimo.fr; www.caducee.net. This study provides a list of French websites that have been evaluated for the quality of their information. We did not observe any correlation between the quality of the information and priority on search engine listings. Websites sponsored by patients associations and by institutions should update their content more frequently or work on their search engine indexation to appear higher on search engine listings. Copyright © 2012. Published by Elsevier Masson SAS.

  11. Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers

    PubMed Central

    Liao, I-Chien; Liu, Jason B.; Bursac, Nenad; Leong, Kam W.

    2009-01-01

    Tissue engineering may provide an alternative to cell injection as a therapeutic solution for myocardial infarction. A tissue-engineered muscle patch may offer better host integration and higher functional performance. This study examined the differentiation of skeletal myoblasts on aligned electrospun polyurethane (PU) fibers and in the presence of electromechanical stimulation. Skeletal myoblasts cultured on aligned PU fibers showed more pronounced elongation, better alignment, higher level of transient receptor potential cation channel-1 (TRPC-1) expression, upregulation of contractile proteins and higher percentage of striated myotubes compared to those cultured on random PU fibers and film. The resulting tissue constructs generated tetanus forces of 1.1 mN with a 10-ms time to tetanus. Additional mechanical, electrical, or synchronized electromechanical stimuli applied to myoblasts cultured on PU fibers increased the percentage of striated myotubes from 70 to 85% under optimal stimulation conditions, which was accompanied by an upregulation of contractile proteins such as α-actinin and myosin heavy chain. In describing how electromechanical cues can be combined with topographical cue, this study helped move towards the goal of generating a biomimetic microenvironment for engineering of functional skeletal muscle. PMID:19774099

  12. Engineering of carboligase activity reaction in Candida glabrata for acetoin production.

    PubMed

    Li, Shubo; Xu, Nan; Liu, Liming; Chen, Jian

    2014-03-01

    Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction. Copyright © 2013. Published by Elsevier Inc.

  13. High energy density propulsion systems and small engine dynamometer

    NASA Astrophysics Data System (ADS)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  14. Laying the foundations for a bio-economy

    PubMed Central

    2008-01-01

    Biological technologies are becoming an important part of the economy. Biotechnology already contributes at least 1% of US GDP, with revenues growing as much as 20% annually. The introduction of composable biological parts will enable an engineering discipline similar to the ones that resulted in modern aviation and information technology. As the sophistication of biological engineering increases, it will provide new goods and services at lower costs and higher efficiencies. Broad access to foundational engineering technologies is seen by some as a threat to physical and economic security. However, regulation of access will serve to suppress the innovation required to produce new vaccines and other countermeasures as well as limiting general economic growth. PMID:19003445

  15. Navigating the science, technology, engineering, and mathematics pipeline: How social capital impacts the educational attainment of college-bound female students

    NASA Astrophysics Data System (ADS)

    Lee, Rebecca Elizabeth

    Despite the proliferation of women in higher education and the workforce, they have yet to achieve parity with men in many of the science, technology, engineering, and math (STEM) majors and careers. The gap is even greater in the representation of women from lower socioeconomic backgrounds. This study examined pre-college intervention strategies provided by the University of Southern California's Math, Engineering, Science Achievement (MESA) program, as well as the relationships and experiences that contributed to the success of underrepresented female high school students in the STEM pipeline. A social capital framework provided the backdrop to the study. This qualitative study takes an ethnographic approach, incorporating 11 interviews, 42 hours of observation, and document analysis to address the research questions: How does involvement in the MESA program impact female students' decisions to pursue a mathematics or science major in college? What is the role of significant others in supporting and encouraging student success? The findings revealed a continuous cycle of support for these students. The cycle started in the home environment, where parents were integral in the early influence on the students' decisions to pursue higher education. Relationships with teachers, counselors, and peers provided critical networks of support in helping these students to achieve their academic goals. Participation in the MESA program empowered the students and provided additional connections to knowledge-based resources. This study highlights the interplay among family, school, and the MESA program in the overall support of underrepresented female students in the STEM pipeline.

  16. Work-Based Higher Degrees: Responding to the Knowledge Needs of Chemical Engineers

    ERIC Educational Resources Information Center

    Winberg, Christine

    2007-01-01

    University-workplace partnerships are strategies increasingly called for in higher education. This article reports on collaborative knowledge production between employed professional chemical engineers (registered for higher degrees) and their university-based supervisors (researchers in the field of chemical engineering). The study draws on a…

  17. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  18. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1991-01-01

    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  19. Peer Assessment of Soft Skills and Hard Skills

    ERIC Educational Resources Information Center

    Zhang, Aimao

    2012-01-01

    Both the information technology (IT) industry and the Accreditation Board for Engineering and Technology (ABET) demand soft-skill training in higher education and require IT graduates to demonstrate competence in interpersonal communication, teamwork, and conflict management. Group projects provide teamwork environment for soft-skill training, but…

  20. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay

    2006-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.

  1. Improving Career Access in Science and Engineering for Students with Disabilities. Conference Proceedings of the National Association for Industry-Education Cooperation; American Association for the Advancement of Science; Association on Higher Education and Disability; National Parent Network on Disability, Federation for Children with Special Needs.

    ERIC Educational Resources Information Center

    National Association for Industry - Education Cooperation, Buffalo, NY.

    Many are concerned that America will not have a sufficient supply of scientists and engineers in the workforce for the 21st century. Five regional workshops were held by four organizations (in Boston, Massachusetts; Minneapolis, Minnesota; Seattle-Tacoma, Washington; and Phoenix-Tempe, Arizona) to provide a forum for all those concerned with…

  2. Propagation of waves in elliptic ducts. A theoretical study. [in view of jet engine compressor noise reduction

    NASA Technical Reports Server (NTRS)

    Baskaran, S.

    1974-01-01

    The cut-off frequencies for high order circumferential modes were calculated for various eccentricities of an elliptic duct section. The problem was studied with a view to the reduction of jet engine compressor noise by elliptic ducts, instead of circular ducts. The cut-off frequencies for even functions decrease with increasing eccentricity. The third order eigen frequencies are oscillatory as the eccentricity increases for odd functions. The eigen frequencies decrease for higher order odd functions inasmuch as, for higher orders, they assume the same values as those for even functions. Deformation of a circular pipe into an elliptic one of sufficiently large eccentricity produces only a small reduction in the cut-off frequency, provided the area of the pipe section is kept invariable.

  3. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  4. Effects of globalisation on higher engineering education in Germany - current and future demands

    NASA Astrophysics Data System (ADS)

    Morace, Christophe; May, Dominik; Terkowsky, Claudius; Reynet, Olivier

    2017-03-01

    Germany is well known around the world for the strength of its economy, its industry and for the 'German model' for higher engineering education based on developing technological skills at a very high level. In this article, we firstly describe the former and present model of engineering education in Germany in a context of the globalisation of the world economy and of higher education, in order to understand how it covers the current demand for engineering resources. Secondly, we analyse the impact of globalisation from a technological perspective. To this end, we describe initiatives for innovation driven by the German federal government and engineering societies, and summarise the first impacts on engineering education and on social competence for engineers. Thirdly, we explore to what extent engineering education in Germany trains engineers in social and intercultural competency to comply with the future demands of the challenge of globalisation.

  5. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  6. Robot-aided electrospinning toward intelligent biomedical engineering.

    PubMed

    Tan, Rong; Yang, Xiong; Shen, Yajing

    2017-01-01

    The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.

  7. NASA Conducts First RS-25 Rocket Engine Test of 2015

    NASA Image and Video Library

    2015-01-09

    From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and engineers have been working diligently to design, modify and activate an extremely complex and capable facility in support of RS-25 engine testing." Testing will resume in April after upgrades are completed on the high pressure industrial water system, which provides cool water for the test facility during a hot fire test. Eight tests, totaling 3,500 seconds, are planned for the current development engine. Another development engine later will undergo 10 tests, totaling 4,500 seconds. The second test series includes the first test of new flight controllers, known as green running. The first flight test of the SLS will feature a configuration for a 70-metric-ton (77-ton) lift capacity and carry an uncrewed Orion spacecraft beyond low-Earth orbit to test the performance of the integrated system. As the SLS is upgraded, it will provide an unprecedented lift capability of 130 metric tons (143 tons) to enable missions even farther into our solar system.

  8. 78 FR 7718 - Review of the General Purpose Costing System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... for switching cars, regardless of car ownership. These costs are referred to as ``switch engine minute... provide the railroad industry and shippers with a standardized costing model; to cost the Board's Car Load... movement. Next, URCS applies ``efficiency adjustments'' to higher-volume movements (multi-car and trainload...

  9. Using Toolkits to Achieve STEM Enterprise Learning Outcomes

    ERIC Educational Resources Information Center

    Watts, Carys A.; Wray, Katie

    2012-01-01

    Purpose: The purpose of this paper is to evaluate the effectiveness of using several commercial tools in science, technology, engineering and maths (STEM) subjects for enterprise education at Newcastle University, UK. Design/methodology/approach: The paper provides an overview of existing toolkit use in higher education, before reviewing where and…

  10. 3 CFR 13532 - Executive Order 13532 of February 26, 2010. Promoting Excellence, Innovation, and Sustainability...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in higher education, strengthen the capacity of historically black colleges and universities to provide the highest quality education, increase opportunities for these institutions to participate in and... undergraduate and graduate students. These institutions continue to be important engines of economic growth and...

  11. Systems Engineering Knowledge Asset (SEKA) Management for Higher Performing Engineering Teams: People, Process and Technology toward Effective Knowledge-Workers

    ERIC Educational Resources Information Center

    Shelby, Kenneth R., Jr.

    2013-01-01

    Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…

  12. On the Compliance of Women Engineers with a Gendered Scientific System.

    PubMed

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers-regardless of their gender-contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse.

  13. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  14. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  15. The development of Sustainability Graduate Community (SGC) as a learning pathway for sustainability education - a framework for engineering programmes in Malaysia Technical Universities Network (MTUN)

    NASA Astrophysics Data System (ADS)

    Johan, Kartina; Mohd Turan, Faiz

    2016-11-01

    ‘Environmental and sustainability’ is one of the Program Outcome (PO) designated by the Board of Engineers Malaysia (BEM) as one of the accreditation program requirement. However, to-date the implementation of sustainability elements in engineering programme in the technical universities in Malaysia is within individual faculty's curriculum plan and lack of university-level structured learning pathway, which enable all students to have access to an education in sustainability across all disciplines. Sustainability Graduate Community (SGC) is a framework designed to provide a learning pathway in the curriculum of engineering programs to inculcate sustainability education among engineering graduates. This paper aims to study the required attributes in Sustainability Graduate Community (SGC) framework to produce graduates who are not just engineers but also skilful in sustainability competencies using Global Project Management (GPM) P5 Standard for Sustainability. The development of the conceptual framework is to provide a constructive teaching and learning plan for educators and policy makers to work on together in developing the Sustainability Graduates (SG), the new kind of graduates from Malaysia Technical Universities Network (MTUN) in Malaysia who are literate in sustainability practices. The framework also support the call for developing holistic students based on Malaysian Education Blueprint (Higher Education) and address the gap between the statuses of engineering qualification to the expected competencies from industries in Malaysia in particular by achieving the SG attributes outlined in the framework

  16. A journey of negotiation and belonging: understanding students' transitions to science and engineering in higher education

    NASA Astrophysics Data System (ADS)

    Holmegaard, Henriette Tolstrup; Madsen, Lene Møller; Ulriksen, Lars

    2014-09-01

    The paper presents results from a longitudinal study of students' decisions to enrol on a higher education science programme and their experiences of it. The aim is to give insights into students' transition process and negotiation of identity. This is done by following a cohort of 38 students in a series of qualitative interviews during a 3-year period starting as they were about to finish upper secondary school. We find that the students' choice of study is an ongoing process of meaning-making, which continues when the students enter higher education and continuously work on their identities to gain a sense of belonging to their science or engineering programme. The use of a narrative methodology provides understanding of choice of study as involving changes in future perspectives and in the interpretation of past experiences. Further, we gain access into how this meaning-making process over time reflects the students' negotiations in terms of belonging to higher education and their coping strategies when their expectations of their new programme interact with their first-year experiences.

  17. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  18. New potentials for conventional aircraft when powered by hydrogen-enriched gasoline

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Moynihan, P. I.; Rupe, J. H.

    1976-01-01

    Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.

  19. Subsonic Performance of Ejector Systems

    NASA Astrophysics Data System (ADS)

    Weil, Samuel

    Combined cycle engines combining scramjets with turbo jets or rockets can provide efficient hypersonic flight. Ejectors have the potential to increase the thrust and efficiency of combined cycle engines near static conditions. A computer code was developed to support the design of a small-scale, turbine-based combined cycle demonstrator with an ejector, built around a commercially available turbojet engine. This code was used to analyze the performance of an ejector system built around a micro-turbojet. With the use of a simple ejector, net thrust increases as large as 20% over the base engine were predicted. Additionally the specific fuel consumption was lowered by 10%. Increasing the secondary to primary area ratio of the ejector lead to significant improvements in static thrust, specific fuel consumption (SFC), and propulsive efficiency. Further ejector performance improvements can be achieved by using a diffuser. Ejector performance drops off rapidly with increasing Mach number. The ejector has lower thrust and higher SFC than the turbojet core at Mach numbers above 0.2. When the nozzle chokes a significant drop in ejector performance is seen. When a diffuser is used, higher Mach numbers lead to choking in the mixer and a shock in the nozzle causing a significant decrease in ejector performance. Evaluation of different turbo jets shows that ejector performance depends significantly on the properties of the turbojet. Static thrust and SFC improvements can be achieved with increasing ejector area for all engines, but size of increase and change in performance at higher Mach numbers depend heavily on the turbojet. The use of an ejector in a turbine based combined cycle configuration also increases performance at static conditions with a thrust increase of 5% and SFC decrease of 5% for the tested configuration.

  20. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    PubMed

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  1. Constructively Aligned Teaching and Learning in Higher Education in Engineering: What Do Students Perceive as Contributing to the Learning of Interdisciplinary Thinking?

    ERIC Educational Resources Information Center

    Spelt, E. J. H.; Luning, P. A.; van Boekel, M. A. J. S.; Mulder, M.

    2015-01-01

    Increased attention to the need for constructively aligned teaching and learning in interdisciplinary higher education in engineering is observed. By contrast, little research has been conducted on the implementation of the outcome-based pedagogical approach to interdisciplinary higher education in engineering. Therefore, the present design-based…

  2. Stokes waves revisited: Exact solutions in the asymptotic limit

    NASA Astrophysics Data System (ADS)

    Davies, Megan; Chattopadhyay, Amit K.

    2016-03-01

    The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic "secular variation" in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n -ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.

  3. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  4. Noise Reduction Potential of Large, Over-the-Wing Mounted, Advanced Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2000-01-01

    As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Indeed, the noise goal for NASA's Aeronautics Enterprise calls for technologies that will help to provide a 20 EPNdB reduction relative to today's levels by the year 2022. Further, the large fan diameters of modem, increasingly higher bypass ratio engines pose a significant packaging and aircraft installation challenge. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large, ultra high bypass ratio cycles to continue, this over-the-wing design is believed to offer noise shielding benefits to observers on the ground. This paper describes the analytical certification noise predictions of a notional, long haul, commercial quadjet transport with advanced, high bypass engines mounted above the wing.

  5. Microtextured Surfaces for Turbine Blade Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  6. Tropical rainforest response to marine sky brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  7. A Review of Three-Dimensional Printing in Tissue Engineering.

    PubMed

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  8. Airstart performance of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Licata, S. J.; Burcham, F. W., Jr.

    1983-01-01

    The airstart performance of the F100 engine equipped with a digital electronic engine control (DEEC) system was evaluated in an F-15 airplane. The DEEC system incorporates closed-loop airstart logic for improved capability. Spooldown and jet fuel starter-assisted airstarts were made over a range of airspeeds and altitudes. All jet fuel starter-assisted airstarts were successful, with airstart time varying from 35 to 60 sec. All spooldown airstarts at airspeeds of 200 knots and higher were successful; airstart times ranged from 45 sec at 250 knots to 135 sec at 200 knots. The effects of altitude on airstart success and time were small. The flight results agreed closely with previous altitude facility test results. The DEEC system provided successful airstarts at airspeeds at least 50 knots lower than the standard F100 engine control system.

  9. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  10. Single-cylinder diesel engine study of four vegetable oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermalmore » efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.« less

  11. Clostridia: a flexible microbial platform for the production of alcohols.

    PubMed

    Ren, Cong; Wen, Zhiqiang; Xu, Yan; Jiang, Weihong; Gu, Yang

    2016-12-01

    Solventogenic clostridia are native producers of ethanol and many higher alcohols employing a broad range of cheap renewable substrates, such as lignocellulosic materials and C1 gases (CO and CO 2 ). These characteristics enable solventogenic clostridia to act as flexible microbial platforms for the production of liquid biofuels. With the rapid development of genetic tools in recent years, the intrinsic intractability of clostridia has been largely overcome, thus, engineering clostridia for production of chemicals and fuels has attracted increasing interests. Here, we provide an overview of recent progress in the production of alcohols based on solventogenic clostridia. Saccharolytic, cellulolytic and gas-fermenting clostridia are discussed, with a special focus on strategies for metabolic engineering to enable and to improve clostridia for the production of higher alcohols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Two-tank working gas storage system for heat engine

    DOEpatents

    Hindes, Clyde J.

    1987-01-01

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  13. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  14. Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuaki

    2016-06-01

    We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.

  15. Manpower Resources for Scientific Activities at Universities and Colleges, January 1976.

    ERIC Educational Resources Information Center

    Loycano, Robert J.; And Others

    This report presents national statistics concerning professional and technical personnel in the sciences and engineering employed at institutions of higher education as of January 1976. Information is provided on trends in overall employment levels for: (1) teaching versus research; (2) public versus private universities and colleges; and (3)…

  16. Use of Web Search Engines and Personalisation in Information Searching for Educational Purposes

    ERIC Educational Resources Information Center

    Salehi, Sara; Du, Jia Tina; Ashman, Helen

    2018-01-01

    Introduction: Students increasingly depend on Web search for educational purposes. This causes concerns among education providers as some evidence indicates that in higher education, the disadvantages of Web search and personalised information are not justified by the benefits. Method: One hundred and twenty university students were surveyed about…

  17. What Is STEM? The Need for Unpacking Its Definitions and Applications

    ERIC Educational Resources Information Center

    Siekmann, Gitta

    2016-01-01

    There is a strong belief by most governments, enterprises and higher education providers that competence in the academic fields of science, technology, engineering and mathematics (STEM) is not developing as quickly as required in spite of the importance for innovation, productivity, prosperity and international standing. This belief is often…

  18. 75 FR 9196 - Letter From Secretary of Energy Accepting Defense Nuclear Facilities Safety Board (Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... capability for non- vital laboratory room electrical loads that provides an engineered control to reduce..., approximately two orders of magnitude higher than our evaluation guideline for selecting safety class controls. Approval of the DSA included recognition of weaknesses in the facility's control set and the need to...

  19. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  20. Magnetostrictive Alternator

    NASA Technical Reports Server (NTRS)

    Bruder, Geoffrey A. (Inventor); Dyson, Jr., Rodger W. (Inventor)

    2018-01-01

    A magnetostrictive alternator configured to convert pressure waves into electrical energy is provided. It should be appreciated that the magnetostrictive alternator may be combined in some embodiments with a Stirling engine to produce electrical power. The Stirling engine creates the oscillating pressure wave and the magnetostrictive alternator converts the pressure wave into electricity. In some embodiments, the magnetostrictive alternator may include aerogel material and magnetostrictive material. The aerogel material may be configured to convert a higher amplitude pressure wave into a lower amplitude pressure wave. The magnetostrictive material may be configured to generate an oscillating magnetic field when the magnetostrictive material is compressed by the lower amplitude pressure wave.

  1. Robust operative diagnosis as problem solving in a hypothesis space

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.

    1988-01-01

    This paper describes an approach that formulates diagnosis of physical systems in operation as problem solving in a hypothesis space. Such a formulation increases robustness by: (1) incremental hypotheses construction via dynamic inputs, (2) reasoning at a higher level of abstraction to construct hypotheses, and (3) partitioning the space by grouping fault hypotheses according to the type of physical system representation and problem solving techniques used in their construction. It was implemented for a turbofan engine and hydraulic subsystem. Evaluation of the implementation on eight actual aircraft accident cases involving engine faults provided very promising results.

  2. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  3. Generic Divide and Conquer Internet-Based Computing

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J. (Technical Monitor); Radenski, Atanas

    2003-01-01

    The growth of Internet-based applications and the proliferation of networking technologies have been transforming traditional commercial application areas as well as computer and computational sciences and engineering. This growth stimulates the exploration of Peer to Peer (P2P) software technologies that can open new research and application opportunities not only for the commercial world, but also for the scientific and high-performance computing applications community. The general goal of this project is to achieve better understanding of the transition to Internet-based high-performance computing and to develop solutions for some of the technical challenges of this transition. In particular, we are interested in creating long-term motivation for end users to provide their idle processor time to support computationally intensive tasks. We believe that a practical P2P architecture should provide useful service to both clients with high-performance computing needs and contributors of lower-end computing resources. To achieve this, we are designing dual -service architecture for P2P high-performance divide-and conquer computing; we are also experimenting with a prototype implementation. Our proposed architecture incorporates a master server, utilizes dual satellite servers, and operates on the Internet in a dynamically changing large configuration of lower-end nodes provided by volunteer contributors. A dual satellite server comprises a high-performance computing engine and a lower-end contributor service engine. The computing engine provides generic support for divide and conquer computations. The service engine is intended to provide free useful HTTP-based services to contributors of lower-end computing resources. Our proposed architecture is complementary to and accessible from computational grids, such as Globus, Legion, and Condor. Grids provide remote access to existing higher-end computing resources; in contrast, our goal is to utilize idle processor time of lower-end Internet nodes. Our project is focused on a generic divide and conquer paradigm and on mobile applications of this paradigm that can operate on a loose and ever changing pool of lower-end Internet nodes.

  4. Women in physics in the UK: Update 2008-2011

    NASA Astrophysics Data System (ADS)

    Thompson, Carol; Marks, Ann; Wilkin, Nicola; Leslie, Dawn; D'Amico, Irene; Dyer, Jennifer

    2013-03-01

    Positive progress has continued in the past three years for women in physics in the UK. The Institute of Physics has aggressively advocated and organized initiatives for women in science through its Diversity Programme and its Women in Physics Group. Surveys are routinely carried out and acted upon, most recently on postdoctoral researchers and childcare issues. The Institute's Juno Award program encourages higher education institutes to address the underrepresentation of women in physics. The UK Resource Centre for Women in SET (science, engineering, and technology) provides resources and support for women working in physics and other science and engineering disciplines. The Equality Act of 2010 provides renewed focus on equality and a framework within which women physicists can continue to push for progress. The recent achievements of women physicists are noted.

  5. Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.

    PubMed

    Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia

    2015-08-01

    Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  6. Engineers: Going Global

    ERIC Educational Resources Information Center

    Feest, Tim

    2008-01-01

    This article demonstrates the need for engineering courses in UK higher education to give a higher priority to global and sustainability issues. In support of this case, the author summarizes and assesses evidence from a recently-concluded study by the Institute of Education, University of London, and Engineers Against Poverty, a specialist…

  7. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2013-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.

  8. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less

  9. Towards Smart Homes Using Low Level Sensory Data

    PubMed Central

    Khattak, Asad Masood; Truc, Phan Tran Ho; Hung, Le Xuan; Vinh, La The; Dang, Viet-Hung; Guan, Donghai; Pervez, Zeeshan; Han, Manhyung; Lee, Sungyoung; Lee, Young-Koo

    2011-01-01

    Ubiquitous Life Care (u-Life care) is receiving attention because it provides high quality and low cost care services. To provide spontaneous and robust healthcare services, knowledge of a patient’s real-time daily life activities is required. Context information with real-time daily life activities can help to provide better services and to improve healthcare delivery. The performance and accuracy of existing life care systems is not reliable, even with a limited number of services. This paper presents a Human Activity Recognition Engine (HARE) that monitors human health as well as activities using heterogeneous sensor technology and processes these activities intelligently on a Cloud platform for providing improved care at low cost. We focus on activity recognition using video-based, wearable sensor-based, and location-based activity recognition engines and then use intelligent processing to analyze the context of the activities performed. The experimental results of all the components showed good accuracy against existing techniques. The system is deployed on Cloud for Alzheimer’s disease patients (as a case study) with four activity recognition engines to identify low level activity from the raw data captured by sensors. These are then manipulated using ontology to infer higher level activities and make decisions about a patient’s activity using patient profile information and customized rules. PMID:22247682

  10. Performance Evaluation of 40 cm Ion Optics for the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Haag, Thomas W.; Patterson, Michael J.

    2002-01-01

    The results of performance tests with two 40 cm ion optics sets are presented and compared to those of 30 cm ion optics with similar aperture geometries. The 40 cm ion optics utilized both NSTAR and TAG (Thick-Accelerator-Grid) aperture geometries. All 40 cm ion optics tests were conducted on a NEXT (NASA's Evolutionary Xenon Thruster) laboratory model ion engine. Ion optics performance tests were conducted over a beam current range of 1.20 to 3.52 A and an engine input power range of 1.1 to 6.9 kW. Measured ion optics' performance parameters included near-field radial beam current density profiles, impingement-limited total voltages, electron backstreaming limits, screen grid ion transparencies, beam divergence angles, and start-up transients. Impingement-limited total voltages for 40 cm ion optics with the NSTAR aperture geometry were 60 to 90 V lower than those with the TAG aperture geometry. This difference was speculated to be due to an incomplete burn-in of the TAG ion optics. Electron backstreaming limits for the 40 cm ion optics with the TAG aperture geometry were 8 to 19 V higher than those with the NSTAR aperture geometry due to the thicker accelerator grid of the TAG geometry. Because the NEXT ion engine provided beam flatness parameters that were 40 to 63 percent higher than those of the NSTAR ion engine, the 40 cm ion optics outperformed the 30 cm ion optics.

  11. Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes

    ERIC Educational Resources Information Center

    Bokhonko, Yevhen

    2017-01-01

    The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…

  12. Supporting Active Learning in an Undergraduate Geotechnical Engineering Course Using Group-Based Audience Response Systems Quizzes

    ERIC Educational Resources Information Center

    Donohue, Shane

    2014-01-01

    The use of audience response systems (ARSs) or "clickers" in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS…

  13. Modularity and Perspectives of Command and Control of Contingent Army of the Czech Republic during the Operation in Afghanistan

    DTIC Science & Technology

    2011-06-01

    are provided as needed: − RCP requesting – in favour of mobile patrols, due to engineer reconnaissance in areas with higher risk of IED occurrence... hospitals , EOD and other military specialists gradually operated. PRT established by the Czech Republic within the ISAF operation in the province of Logar

  14. Longitudinal Study of Factors Impacting the Implementation of Notebook Computer Based CAD Instruction

    ERIC Educational Resources Information Center

    Goosen, Richard F.

    2009-01-01

    This study provides information for higher education leaders that have or are considering conducting Computer Aided Design (CAD) instruction using student owned notebook computers. Survey data were collected during the first 8 years of a pilot program requiring engineering technology students at a four year public university to acquire a notebook…

  15. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells

    DOE PAGES

    Park, Joong Sun; An, Jihwan; Lee, Min Hwan; ...

    2015-11-01

    In this study, we report systematic investigation of the surface properties of yttria-stabilized zirconia (YSZ) electrolytes with the control of the grain boundary (GB) density at the surface, and its effects on electrochemical activities. The GB density of thin surface layers deposited on single crystal YSZ substrates is controlled by changing the annealing temperature (750-1450 °C). Higher oxygen reduction reactions (ORR) kinetics is observed in samples annealed at lower temperatures. The higher ORR activity is ascribed to the higher GB density at the YSZ surface where 'mobile' oxide ion vacancies are more populated. Meanwhile, oxide ion vacancies concurrently created withmore » yttrium segregation at the surface at the higher annealing temperature are considered inactive to oxygen incorporation reactions. Our results provide additional insight into the interplay between the surface chemistry, microstructures, and electrochemical activity. They potentially provide important guidelines for engineering the electrolyte electrode interfaces of solid oxide fuel cells for higher electrochemical performance.« less

  16. Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5

    NASA Technical Reports Server (NTRS)

    Mak, Audie; Meier, John

    2007-01-01

    This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.

  17. Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation

    DOE PAGES

    Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin

    2018-04-03

    3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less

  18. Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin

    3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less

  19. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O

    2018-04-01

    Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.

  20. On the Compliance of Women Engineers with a Gendered Scientific System

    PubMed Central

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R.

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers—regardless of their gender—contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse. PMID:26716831

  1. A Bibliometric Analysis of Climate Engineering Research

    NASA Astrophysics Data System (ADS)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  2. An Evaluation of HigherEd 2.0 Technologies in Undergraduate Mechanical Engineering Courses

    ERIC Educational Resources Information Center

    Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane

    2012-01-01

    Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…

  3. Factorial analysis of diesel engine performance using different types of biofuels.

    PubMed

    Tashtoush, Ghassan M; Al-Widyan, Mohamad I; Albatayneh, Aiman M

    2007-09-01

    In this study, several bio-source-fuels like fresh and waste vegetable oil and waste animal fat were tested at different injector pressures (120, 140, 190, 210 bar) in a direct-injection, naturally aspirated, single-cylinder diesel engine with a design injection pressure of 190 bar. Using 2k factorial analysis, the effect of injection pressure (Pi) and fuel type on three engine parameters, namely, combustion efficiency (etac), mass fuel consumption (mf), and engine speed (N) was examined. It was found that Pi and fuel type significantly affected both etac and mf while they had a slight effect on engine speed. Moreover, with diesel and biodiesels, the etac increased to a maximum at 190 bar but declined at the higher Pi value. In contrast, higher Pi had a favorable effect on etac over the whole Pi range with all the other more viscous fuels tested. In addition, the mass fuel consumption consistently decreased with an increase in Pi for all the fuels including the baseline diesel fuel, with which the engine consistently attained higher etac and higher rpm compared to all the other fuels tested.

  4. Contextual Shaping of Student Design Practices: The Role of Constraint in First-Year Engineering Design

    NASA Astrophysics Data System (ADS)

    Goncher, Andrea M.

    thResearch on engineering design is a core area of concern within engineering education, and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. This dissertation contributes to scholarship on engineering design by addressing a critical, but as yet underexplored, problem: how does the context in which students design shape their design practices? Using a qualitative study comprising of video data of design sessions, focus group interviews with students, and archives of their design work, this research explored how design decisions and actions are shaped by context, specifically the context of higher education. To develop a theoretical explanation for observed behavior, this study used the nested structuration. framework proposed by Perlow, Gittell, & Katz (2004). This framework explicated how teamwork is shaped by mutually reinforcing relationships at the individual, organizational, and institutional levels. I appropriated this framework to look specifically at how engineering students working on a course-related design project identify constraints that guide their design and how these constraints emerge as students interact while working on the project. I first identified and characterized the parameters associated with the design project from the student perspective and then, through multi-case studies of four design teams, I looked at the role these parameters play in student design practices. This qualitative investigation of first-year engineering student design teams revealed mutual and interconnected relationships between students and the organizations and institutions that they are a part of. In addition to contributing to research on engineering design, this work provides guidelines and practices to help design educators develop more effective design projects by incorporating constraints that enable effective design and learning. Moreover, I found that when appropriated in the context of higher education, multiple sublevels existed within nested structuration's organizational context and included course-level and project-level factors. The implications of this research can be used to improve the design of engineering course projects as well as the design of research efforts related to design in engineering education.

  5. Parametric Study of a Mach 2.4 Transport Engine with Supersonic Through-Flow Rotor and Supersonic Counter-Rotating Diffuser (SSTR/SSCRD)

    NASA Technical Reports Server (NTRS)

    Tran, Donald H.

    2004-01-01

    A parametric study is conducted to evaluate a mixed-flow turbofan equipped with a supersonic through-flow rotor and a supersonic counter-rotating diffuser (SSTR/SSCRD) for a Mach 2.4 civil transport. Engine cycle, weight, and mission analyses are performed to obtain a minimum takeoff gross weight aircraft. With the presence of SSTR/SSCRD, the inlet can be shortened to provide better pressure recovery. For the same engine airflow, the inlet, nacelle, and pylon weights are estimated to be 73 percent lighter than those of a conventional inlet. The fan weight is 31 percent heavier, but overall the installed engine pod weight is 11 percent lighter than the current high-speed civil transport baseline conventional mixed-flow turbofan. The installed specific fuel consumption of the supersonic fan engine is 2 percent higher than that of the baseline turbofan at supersonic cruise. Finally, the optimum SSTR/SSCRD airplane meets the FAR36 Stage 3 noise limit and is within 7 percent of the baseline turbofan airplane takeoff gross weight over a 5000-n mi mission.

  6. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  7. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  8. Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines

    NASA Technical Reports Server (NTRS)

    Brockmeyer, Jerry W.; Schnittgrund, Gary D.

    1990-01-01

    Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.

  9. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia.

    PubMed

    Lee, Esmond; Milan, Anna; Urbani, Luca; De Coppi, Paolo; Lowdell, Mark W

    2017-05-01

    Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.

  10. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  11. Curriculum design and German student exchange for Sino-German Bachelor program majored in optoelectronics engineering

    NASA Astrophysics Data System (ADS)

    Zheng, Jihong; Fuhrmann, Thomas; Xu, Boqing; Schreiner, Rupert; Jia, Hongzhi; Zhang, Wei; Wang, Ning; Seebauer, Gudrun; Zhu, Jiyan

    2017-08-01

    Different higher education backgrounds in China and Germany led to challenges in the curriculum design at the beginning of our cooperative bachelor program in Optoelectronics Engineering. We see challenges in different subject requirements from both sides and in the German language requirements for Chinese students. The curriculum was optimized according to the ASIIN criteria, which makes it acceptable and understandable by both countries. German students are integrated into the Chinese class and get the same lectures like their Chinese colleagues. Intercultural and curriculum challenges are successfully solved. The results are summarized to provide an example for other similar international programs.

  12. Large Scale Wind and Solar Integration in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to comparemore » and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.« less

  13. Composite coatings improve engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funatani, K.; Kurosawa, K.

    1994-12-01

    About 40% of the power loss in engine systems is attributed to the adverse effects of friction in reciprocating engine components. Over half of this power loss is caused by friction between pistons, piston rings, and cylinder bores. In addition, engine parts may be attacked by corrosive gasoline substitutes such as liquid propane gas and alcohol/gasoline mixtures. To solve both friction and corrosion problems, Nihon Parkerizing Co. has improved the nickel-phosphorus based ceramic composite (NCC) plating technology that was developed for cylinder bores and pistons by Suzuki Motor Co. in the mid 1970s. Iron and nickel-based composite plating technologies havemore » been investigated since the early 1970s, and a few have been used on small two-stroke motorcycle, outboard marine, snowmobile, and some luxury passenger car engine components. Both nickel- and iron-base plating processes are used on cylinders and pistons because they offer excellent wear and corrosion resistance. Nickel-base films have higher corrosion resistance than those based on iron, and are capable of withstanding the corrosive conditions characteristic of high methanol fuels. Unfortunately, they experience a decrease in hardness as operating temperatures increase. However, NCC coatings with phosphorus additions have high hardness even under severe operating conditions, and hardness increases upon exposure to elevated temperatures. In addition to high hardness and corrosion resistance, NCC coatings provide a low friction coefficient, which contributes to the reduction of friction losses between sliding components. When used in low-quality or alcohol fuels, the corrosion resistance of NCC coatings is far higher than that of Fe-P plating. Additionally, the coatings reduce wall and piston temperature, wear of ring groove and skirt, and carbon deposit formation, and they improve output power and torque. These advantages all contribute to the development of light and efficient engines with better fuel mileage.« less

  14. High concentration biotherapeutic formulation and ultrafiltration: Part 1 pressure limits.

    PubMed

    Lutz, Herb; Arias, Joshua; Zou, Yu

    2017-01-01

    High therapeutic dosage requirements and the desire for ease of administration drive the trend to subcutaneous administration using delivery systems such as subcutaneous pumps and prefilled syringes. Because of dosage volume limits, prefilled syringe administration requires higher concentration liquid formulations, limited to about 30 cP or roughly 100-300 g L -1 for mAb's. Ultrafiltration (UF) processes are routinely used to formulate biological therapeutics. This article considers pressure constraints on the UF process that may limit its ability to achieve high final product concentrations. A system hardware analysis shows that the ultrafiltration cassette pressure drop is the major factor limiting UF systems. Additional system design recommendations are also provided. The design and performance of a new cassette with a lower feed channel flow resistance is described along with 3D modeling of feed channel pressure drop. The implications of variations in cassette flow channel resistance for scaling up and setting specifications are considered. A recommendation for a maximum pressure specification is provided. A review of viscosity data and theory shows that molecular engineering, temperature, and the use of viscosity modifying excipients including pH adjustment can be used to achieve higher concentrations. The combined use of a low pressure drop cassette with excipients further increased final concentrations by 35%. Guidance is provided on system operation to control hydraulics during final concentration. These recommendations should allow one to design and operate systems to routinely achieve the 30 cP target final viscosity capable of delivery using a pre-filled syringe. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:113-124, 2017. © 2016 American Institute of Chemical Engineers.

  15. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  16. Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Naiman, Cynthia G.

    2001-01-01

    The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Szybist, James P

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios withmore » high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less

  18. Physical Metallurgy of Rene 65, a Next-Generation Cast and Wrought Nickel Superalloy for use in Aero Engine Components

    NASA Astrophysics Data System (ADS)

    Wessman, Andrew Ezekiel

    Advancements in the design of turbine engines are in large part made possible by advancements in the capability of nickel based superalloys. Greater temperature and stress capabilities in these materials allow for increased operating temperatures and speeds in the engines, which lead to increased fuel efficiency. Early jet engines were built using austenitic stainless steels, and moved to cast and wrought nickel alloys as higher temperatures were required. By the 1970s, the state of the art nickel superalloy was Inconel 718, which is strengthened by the Ni3Nb phase known as gamma double prime. This alloy performs well and is still in heavy use in turbine engines at temperatures up to approximately 650°C (1200°F), but at higher temperatures the main strengthening precipitate phase, gamma', is thermodynamically unstable, resulting in a loss of strength following exposure to high temperature. Further advancements in nickel superalloys generally involved alloys strengthened by the Ni3Al phase known as gamma'. This precipitate is stable at much higher temperatures, but due to compositional segregation in cast and wrought processing, these alloys were processed using powder metallurgy methods, at considerable economic cost. This study will examine the microstructure of a next generation cast and wrought nickel superalloy that can provide increased temperature capability relative to Inconel 718, at lower cost than powder metallurgy superalloys. The alloy chemistry is similar to that of the powder metallurgy superalloy Rene 88DT, with changes to make it better suited for cast and wrought processing and with a different processing route from billet processing through to final part heat treatment. It is a gamma prime strengthened superalloy. The alloy has been recently introduced into service in turbine engines by GE Aviation as the alloy Rene 65, the composition of which is shown below. In this work, the following has been shown: • Rene 65 gamma' precipitate structure is related to thermal history of the material, and the particle size distribution can be predicted using established models for precipitation in superalloys. • Rene 65 shows a predictable microstructural response to high temperature exposure, with gamma' coarsening that is predictable using the Lifshitz-Slyozov-Wagner theory. • Rene 65 tensile and creep capability are determined by the gamma' distribution, and the yield strength of the alloy can be predicted using a critical resolved shear stress approach. • This work has also provided a comprehensive overview of the structure of Rene 65 during various processing stages and following thermal exposures expected during use of the alloy in turbine engines. The processing-structure-property relationships for this advanced cast and wrought nickel based superalloy developed for use in turbine engine applications are described in detail, which will serve as a useful guide in the manufacture and use of components made from the alloy, and contribute to the overall body of knowledge in the field of metallurgy of nickel based superalloys.

  19. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  20. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  1. A thermodynamically general theory for convective vortices

    NASA Astrophysics Data System (ADS)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  2. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    ERIC Educational Resources Information Center

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  3. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  4. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  5. 40 CFR 1036.625 - In-use compliance with family emission limits (FELs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE HEAVY-DUTY HIGHWAY ENGINES... us to apply a higher in-use FEL for certain in-use engines, subject to the provisions of this section... higher in-use FELs to your engines, we would intend to accurately reflect the actual in-use performance...

  6. Research Laboratory for Engineering and Tehnology (ReLEnT)-Summer Program

    NASA Technical Reports Server (NTRS)

    Okhio, Cyril B.

    1996-01-01

    During the fiscal years 1994-1995 students at Central State University (CSU) have worked diligently under the supervision of the PI and associates to plan, design and conduct a four-week hands on summer program for high school students in grades 9 to 12. These workshops consists of experiments and computer aided design and manufacturing, designed to constructively stimulate interests in engineering and technology, and promote enrollment at CSU after they matriculate from high school. The experience gained in two years will be utilized to realize one of the deliverables for CSU engineering program during 1996. In FY-96 a new total of 30 students are now being interviewed for the 1996 program. This grant also provides resource for students enrolled in CSU's engineering program to work as undergraduate research assistants and ReLEnT tuition scholarship awards. These students are involved in the development of research, design projects, workshop procedures, laboratory exercises and seminars. Undergraduate students receiving tuition scholarships are required to maintain a cumulative grade point average of 3.0 or higher. Finally, the ReLEnT award has made it possible for CSU to acquire some experimental and CFD capability which now provides us with the opportunity to compete and respond to RFP's on a competitive basis and a timely manner.

  7. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    NASA Astrophysics Data System (ADS)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  8. Community College Leadership: A Multidimensional Model for Leading Change

    ERIC Educational Resources Information Center

    Eddy, Pamela L.

    2010-01-01

    Two-year colleges are facing major change. The majority will undergo a turnover in college presidencies in the next ten years, at a time when they are being asked to be engines for economic growth, enable more students--and a greater diversity of students--to gain 21st century qualifications, and provide a pathway to higher degrees, all with…

  9. Expenditures for Scientific and Engineering Activities at Universities and Colleges, Fiscal Year 1974.

    ERIC Educational Resources Information Center

    Biggar, Ronald S.; Hoehn, James B.

    The National Science Survey of Scientific Activities of Institutions of Higher Education, the subject of this report, is designed to provide national statistics that cast light on these issues. Through analyses of the data, a better picture is purported to be produced on the impact of Federal policy in support of scientific endeavors. The report…

  10. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.

  11. Bioblendstocks that Enable High Efficiency Engine Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol.more » These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel at significant volume percentage will require higher CN blendstocks or the use of cetane improving additives.« less

  12. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Ewen, R. L.

    1981-01-01

    This study identifies and evaluates promising LO2/HC rocket engine cycles, produces a consistent and reliable data base for vehicle optimization and design studies, demonstrates the significance of propulsion system improvements, and selects the critical technology areas necessary to realize an improved surface to orbit transportation system. Parametric LO2/HC engine data were generated over a range of thrust levels from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500 kN (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCH4, LC3H8, LO2, and LH2. LO2/RP-1 G.G. cycles were found to be not acceptable for advanced engines. The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2 as the coolant and incorporates an oxidizer rich preburner. The highest performing cycle for LO2/LCH4 and LO2/LC3H8 utilizes fuel cooling and incorporates both fuel and oxidizer rich preburners. LO2/HC engine cycles permitting the use of a third fluid LH2 coolant and an LH2 rich gas generator provide higher performance at significantly lower pump discharge pressures. The LO2/HC dual throat engine, because of its high altitude performance, delivers the highest payload for the vehicle configuration that was investigated.

  13. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering.

    PubMed

    Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L

    2013-06-01

    The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.

  14. Effects of Globalisation on Higher Engineering Education in Germany--Current and Future Demands

    ERIC Educational Resources Information Center

    Morace, Christophe; May, Dominik; Terkowsky, Claudius; Reynet, Olivier

    2017-01-01

    Germany is well known around the world for the strength of its economy, its industry and for the "German model" for higher engineering education based on developing technological skills at a very high level. In this article, we firstly describe the former and present model of engineering education in Germany in a context of the…

  15. Ethics education in the consulting engineering environment: where do we start?

    PubMed

    Elder, Keith E

    2004-04-01

    As a result of in-house discussions stimulated by previous Gonzaga engineering ethics conferences, Coffman Engineers began the implementation of what is to be a company-wide ethics training program. While preparing a curriculum aimed at consulting engineers, we found very little guidance as to how to proceed with most available literature being oriented towards the academic environment. We consulted a number of resources that address the teaching of engineering ethics in higher education, but questioned their applicability for the Consulting Engineering environment. This lack of guidance led us to informal research into the ethical knowledge and attitudes of both consulting engineers and engineering students. Some of our findings were unexpected, and suggest that a simpler approach to teaching ethics to working professionals might be preferred to that typically promoted in higher education.

  16. Energy production, distribution, and pollution controls: Combining engineering and economic analysis to enhance efficiency and policy design

    NASA Astrophysics Data System (ADS)

    Perkis, David F.

    Three published articles are presented which focus on enhancing various aspects of the energy supply chain. While each paper adopts a different methodology, all three combine engineering data and/or techniques with economic analysis to improve efficiency or policy design within energy markets. The first paper combines a chemical engineering plant design model with an economic assessment of product enhancements within an ethanol production facility. While a new chemical process is shown to achieve greater ethanol yields, the animal feed by-products are denatured and decrease in value due to the degradation of a key nutritional amino acid. Overall, yield increases outweigh any costs, providing additional value to firms adopting this process. The second paper uses a mixed integer linear model to assess the optimal location of cellulosic ethanol production facilities within the state of Indiana. Desired locations with low costs are linked to regions with high yield corn growth, as these areas provide an abundance of corn stover, a by-product of corn and a cellulosic source of ethanol. The third paper implements experimental economic methods to assess the effectiveness of policies intended to control prices in emissions permit markets. When utilizing reserve permit auctions as an alternative to setting explicit maximum prices, prices are elevated beyond the theoretical predictions of the model within the conditions of the experiment. The most likely cause of higher prices is the negotiating power provided to sellers by grandfathering permits as evidenced by higher than expected welfare gains to sellers. Before presenting the articles, a discussion is introduced regarding the role of assumptions used by economists. For each article, a key assumption is highlighted and the consequences of making a different assumption are provided. Whether the consequences are large or small, the benefits of elucidating our models with assumptions based on real world behaviors are clearly demonstrated.

  17. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.

  18. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less

  19. Gender Equality in Public Higher Education Institutions of Ethiopia: The Case of Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Egne, Robsan Margo

    2014-01-01

    Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…

  20. An ocean of stress? The relationship between psychosocial workload and mental strain among engine officers in the Swedish merchant fleet.

    PubMed

    Rydstedt, Leif W; Lundh, Monica

    2010-01-01

    The first purpose of this study was to compare the psychosocial working conditions and mental health of our sample of maritime engine officers with a sample of British shore-based professional engineers. The second purpose was to analyse the relationship between the psychosocial working conditions onboard and mental strain for the Swedish maritime engine officers. There were a total of 731 engine officers in the Swedish merchant fleet, almost all males with higher education. The British comparison sample consisted of 312 professional shore-based engineers. A questionnaire was distributed to the Swedish engine officers with a modified version of the JCQ for the DC-S model, the Role conflict and Ambiguity scale, and two items on family-work inter-role conflicts (WFI/FWI), as workload indicators. The General Health Questionnaire (GHQ12) and Perceived Stress Scale (PSS10) were used as strain indicators. There were no significant differences in perceived job stain or in WFI/FWI between the Swedish engine officers and the British professional engineers in perceived job strain. While the British shore-based engineers reported significantly higher role ambiguity the Swedish engine officers perceived a significantly higher degree of role conflict and higher perceived stress. Hierarchic linear regression analysis showed that the Role Stress was strongly related to perceived stress (R(2) = 0.319) as well as to mental health (R(2) = 0.222). When introduced in the second step the DC-S model was significantly related to the outcome measures, as was WFI/FWI when finally introduced. The main source of the high degree of perceived stress among the engine officers does not seem to be the job content but may rather be understood from an interactional perspective, where conflicting requirements are directed towards the individual officer. It can be assumed that the fast technological and organizational changes and the increased pressure for economic profitability that characterize the shipping industry have attenuated these role conflicts.

  1. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.

  2. Improving Scientific Communication and Publication Output in a Multidisciplinary Laboratory: Changing Culture Through Staff Development Workshops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, Christine F.; Stratton, Kelly G.

    Communication plays a fundamental role in science and engineering disciplines. However, many higher education programs provide little, if any, technical communication coursework. Without strong communication skills scientists and engineers have less opportunity to publish, obtain competitive research funds, or grow their careers. This article describes the role of scientific communication training as an innovative staff development program in a learning-intensive workplace – a national scientific research and development laboratory. The findings show that involvement in the workshop has increased overall participating staff annual publications by an average of 61 percent compared to their pre-workshop publishing performance as well as confidencemore » level in their ability to write and publish peer-reviewed literature. Secondary benefits include improved information literacy skills and the development of informal communities of practice. This work provides insight into adult education in the workplace.« less

  3. Construction of physical crosslink-based chitosan/liquid crystal composite hydrogel and evaluation on their cytocompatibility

    PubMed Central

    Du, Lin; Yang, Xiaohui; Li, Wenqiang; Luo, Xuhui; Wu, Hao; Zhang, Jiaqing; Tu, Mei

    2017-01-01

    In order to provide a novel biomimetic composite substrate for tissue engineering and explore the interaction between cells and this type of material, we developed chitosan/liquid crystal (CS/LC) composite hydrogel with embedded LC phases by composing of cholesterol hydroxypropyl cellulose ester liquid crystalline material and CS. The micromorphology of CS/LC composite hydrogels exhibited ‘islands-sea’ phase separation structures similar to the ‘fluid mosaic model’ of biomembrane. In vitro cell compatibility study suggested that 3T3 is fibroblasts exhibited better initial cell adhesions and higher proliferation rates on the composite hydrogel than on the polystyrene control plate and the pure LC membrane. This novel CS/LC composite hydrogel provides more favorable interface for cell growth and proliferation and may serve as potentially active substrate for engineering interfaces to live cells. PMID:28149528

  4. Why Do Women Leave Science and Engineering? NBER Working Paper No. 15853

    ERIC Educational Resources Information Center

    Hunt, Jennifer

    2010-01-01

    I use the 1993 and 2003 National Surveys of College Graduates to examine the higher exit rate of women compared to men from science and engineering relative to other fields. I find that the higher relative exit rate is driven by engineering rather than science, and show that 60% of the gap can be explained by the relatively greater exit rate from…

  5. Engineering blood vessels by gene and cell therapy.

    PubMed

    Zarbiv, Gabriel; Preis, Meir; Ben-Yosef, Yaara; Flugelman, Moshe Y

    2007-08-01

    Cardiovascular-related syndromes are the leading cause of morbidity and mortality worldwide. Arterial narrowing and blockage due to atherosclerosis cause reduced blood flow to the brain, heart and legs. Bypass surgery to improve blood flow to the heart and legs in these patients is performed in hundreds of thousands of patients every year. Autologous grafts, such as the internal thoracic artery and saphenous vein, are used in most patients, but in a significant number of patients such grafts are not available and synthetic grafts are used. Synthetic grafts have higher failure rates than autologous grafts due to thrombosis and scar formation within graft lumen. Cell and gene therapy combined with tissue engineering hold a great promise to provide grafts that will be biocompatible and durable. This review describes the field of vascular grafts in the context of tissue engineering using cell and gene therapies.

  6. Engagement vs Performance: Using Electronic Portfolios to Predict First Semester Engineering Student Persistence

    ERIC Educational Resources Information Center

    Aguiar, Everaldo; Ambrose, G. Alex; Chawla, Nitesh V.; Goodrich, Victoria; Brockman, Jay

    2014-01-01

    As providers of higher education begin to harness the power of big data analytics, one very fitting application for these new techniques is that of predicting student attrition. The ability to pinpoint students who might soon decide to drop out, or who may be following a suboptimal path to success, allows those in charge not only to understand the…

  7. NAKAHARA JUNZO Who Was A Leading Japanese Practical Engineer of The Meiji Era Born in Kumamoto

    NASA Astrophysics Data System (ADS)

    Iwai, Zenta

    Nakahara Junzo is one of the leading engineers in the Meiji era who contributed the introduction and the construction of western style higher engineering education system after the Meiji restoration. He was born at Yamaga, Kumamoto Prefecture, in 1856. He learned at Kumamoto Yo-Gakko from 1871 to 1874. Then he entered Kohbu Dai-Gakko, one of the forerunners of the engineering departments of the University of Tokyo, in 1876 and graduated from this school in 1882. He served as the first principal of the Kumamoto Koto Kogyou Gakko, the first dean of the Faculty of Engineering, Kyushu Imperial University and the 7th president of the Japan Society of Mechanical Engineers, respectively. In this report, it is summarized and evaluated about his contributions concerning the progress of the Japanese higher engineering education and practical researches done by him in the field of mechanical engineering.

  8. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  9. High temperature thruster technology for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1991-01-01

    A technology program intended to develop high-temperature oxidation-resistant thrusters for spacecraft applications is considered. The program will provide the requisite material characterizations and fabrication to incorporate iridium coated rhenium material into small rockets for spacecraft propulsion. This material increases the operating temperature of thrusters to 2200 C, a significant increase over the 1400 C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20-25 seconds higher than niobium chambers. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines.

  10. Caterpillars benefit from thermal ecosystem engineering by wandering albatrosses on sub-Antarctic Marion Island.

    PubMed

    Sinclair, Brent J; Chown, Steven L

    2006-03-22

    Wandering albatrosses (Diomedea exulans) nest on Southern Ocean islands, building elevated nests upon which they incubate eggs and raise chicks, and which the chicks occupy through winter. The nests support high invertebrate biomass, including larvae of the flightless moth Pringleophaga marioni. Here we argue that high biomass of P. marioni in the nests is not associated with nutrient loading as previously suspected, but that higher temperatures in the nests increase growth and feeding rate, and decrease deleterious repeated cold exposure, providing fitness advantages for P. marioni. Thus, wandering albatrosses may be serving as thermal engineers, modifying temperature and therefore enabling better resource use by P. marioni.

  11. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn; hide

    2009-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.

  12. Stirling engines for low-temperature solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.

  13. Object-oriented design tools for supramolecular devices and biomedical nanotechnology.

    PubMed

    Lee, Stephen C; Bhalerao, Khaustaub; Ferrari, Mauro

    2004-05-01

    Nanotechnology provides multifunctional agents for in vivo use that increasingly blur the distinction between pharmaceuticals and medical devices. Realization of such therapeutic nanodevices requires multidisciplinary effort that is difficult for individual device developers to sustain, and identification of appropriate collaborations outside ones own field can itself be challenging. Further, as in vivo nanodevices become increasingly complex, their design will increasingly demand systems level thinking. System engineering tools such as object-oriented analysis, object-oriented design (OOA/D) and unified modeling language (UML) are applicable to nanodevices built from biological components, help logically manage the knowledge needed to design them, and help identify useful collaborative relationships for device designers. We demonstrate the utility of these systems engineering tools by reverse engineering an existing molecular device (the bacmid molecular cloning system) using them, and illustrate how object-oriented approaches identify fungible components (objects) in nanodevices in a way that facilitates design of families of related devices, rather than single inventions. We also explore the utility of object-oriented approaches for design of another class of therapeutic nanodevices, vaccines. While they are useful for design of current nanodevices, the power of systems design tools for biomedical nanotechnology will become increasingly apparent as the complexity and sophistication of in vivo nanosystems increases. The nested, hierarchical nature of object-oriented approaches allows treatment of devices as objects in higher-order structures, and so will facilitate concatenation of multiple devices into higher-order, higher-function nanosystems.

  14. Modeling Heat Loss through Piston and Effects of Thermal Boundary Coatings in Diesel Engine Simulations using Conjugate Heat Transfer models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Prithwish; Scarcelli, Riccardo; Som, Sibendu

    Heat loss through wall boundaries play a dominant role in the overall performance and efficiency of internal combustion engines. Typical engine simulations use constant temperature wall boundary conditions. These boundary conditions cannot be estimated accurately from experiments due to the complexities involved with engine combustion. As a result they introduce a large uncertainty in engine simulations and serve as a tuning parameter. Modeling the process of heat transfer through the solid walls in an unsteady engine computational fluid dynamics (CFD) simulation can lead to the development of higher fidelity engine calculations. These models can be used to study the impactmore » of heat loss on engine efficiency and explore new design methodologies that can reduce heat losses. In this work, a single cylinder diesel engine is modeled along with the solid piston coupled to the fluid domain. Conjugate heat transfer (CHT) modeling techniques were implemented to model heat losses for a full cycle of a Navistar diesel engine. This CFD model is then validated against experimental data available from thermocouples embedded inside the piston surface. The overall predictions from the model match closely with the experimental observations. The validated model is further used to explore the benefits of thermal barrier coatings (TBC) on piston bowls. The effect of TBC coatings were modeled as a thermal resistance in the heat transfer models. Full cycle 3D engine simulations provide quantitative insights into heat loss and thus calculate the efficiency gain by the use of TBC coatings. The work establishes a validated modeling framework for CHT modeling in reciprocating engine simulations.« less

  15. Joint Engineering Leadership Development Program: Developing a Diverse Regional Engineering Talent Ecosystem. A BHEF Case Study

    ERIC Educational Resources Information Center

    Business-Higher Education Forum, 2017

    2017-01-01

    Through the collaboration of its business and academic partners, the Business-Higher Education Forum (BHEF) launched the National Higher Education and Workforce Initiative (HEWI) to support business-higher education partnerships that co-design innovative community college and university pathways to careers, as well as maximize work-based learning…

  16. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  17. Developing Leadership Skills of Undergraduate Engineering Students: Perspectives from Engineering Faculty

    ERIC Educational Resources Information Center

    Cox, Monica F.; Cekic, Osman; Adams, Stephanie G.

    2010-01-01

    The engineering education community (motivated by internal and external factors) has begun to focus on leadership abilities of college students in engineering fields via reports from ABET, the National Academy of Engineering, and the National Research Council. These reports have directed criticism toward higher education institutions for their…

  18. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  19. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  20. Research report: learning styles of biomedical engineering students.

    PubMed

    Dee, Kay C; Nauman, Eric A; Livesay, Glen A; Rice, Janet

    2002-09-01

    Examining students' learning styles can yield information useful to the design of learning activities, courses, and curricula. A variety of measures have been used to characterize learning styles, but the literature contains little information specific to biomedical engineering (BMEN) students. We, therefore, utilized Felder's Index of Learning Styles to investigate the learning style preferences of BMEN students at Tulane University. Tulane BMEN students preferred to receive information visually (preferred by 88% of the student sample) rather than verbally, focus on sensory information (55%) instead of intuitive information, process information actively (66%) instead of reflectively, and understand information globally (59%) rather than sequentially. These preferences varied between cohorts (freshman, sophomore, etc.) and a significantly higher percentage of female students preferred active and sensing learning styles. Compared to other engineering student populations, our sample of Tulane BMEN students contained the highest percentage of students preferring the global learning style. Whether this is a general trend for all BMEN students or a trait specific to Tulane engineers requires further investigation. Regardless, this study confirms the existence of a range of learning styles within biomedical engineering students, and provides motivation for instructors to consider how well their teaching style engages multiple learning styles.

  1. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.

    PubMed

    Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-11-01

    A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.

  2. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    PubMed

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  3. ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlmeister, J E; Haberer, W V; Casey, D F

    1960-12-15

    The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less

  4. Fly-by-Wireless Update

    NASA Technical Reports Server (NTRS)

    Studor, George

    2010-01-01

    The presentation reviews what is meant by the term 'fly-by-wireless', common problems and motivation, provides recent examples, and examines NASA's future and basis for collaboration. The vision is to minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus areas are system engineering and integration methods to reduce cables and connectors, vehicle provisions for modularity and accessibility, and a 'tool box' of alternatives to wired connectivity.

  5. E-learning in engineering education: a theoretical and empirical study of the Algerian higher education institution

    NASA Astrophysics Data System (ADS)

    Benchicou, Soraya; Aichouni, Mohamed; Nehari, Driss

    2010-06-01

    Technology-mediated education or e-learning is growing globally both in scale and delivery capacity due to the large diffusion of the ubiquitous information and communication technologies (ICT) in general and the web technologies in particular. This statement has not yet been fully supported by research, especially in developing countries such as Algeria. The purpose of this paper was to identify directions for addressing the needs of academics in higher education institutions in Algeria in order to adopt the e-learning approach as a strategy to improve quality of education. The paper will report results of an empirical study that measures the readiness of the Algerian higher education institutions towards the implementation of ICT in the educational process and the attitudes of faculty members towards the application of the e-learning approach in engineering education. Three main objectives were targeted, namely: (a) to provide an initial evaluation of faculty members' attitudes and perceptions towards web-based education; (b) reporting on their perceived requirements for implementing e-learning in university courses; (c) providing an initial input for a collaborative process of developing an institutional strategy for e-learning. Statistical analysis of the survey results indicates that the Algerian higher education institution, which adopted the Licence - Master and Doctorate educational system, is facing a big challenge to take advantage of emerging technological innovations and the advent of e-learning to further develop its teaching programmes and to enhance the quality of education in engineering fields. The successful implementation of this modern approach is shown to depend largely on a set of critical success factors that would include: 1. The extent to which the institution will adopt a formal and official e-learning strategy. 2. The extent to which faculty members will adhere and adopt this strategy and develop ownership of the various measures in the context of their teaching and research responsibilities. 3. The extent to which the university will offer adequate support in terms of training, software platform administration, online resource development and impact monitoring and assessment.

  6. Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John; Lewis, Samuel; Moses-DeBusk, Melanie

    Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on a Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEP g) to mediummore » load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEP g). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations. In addition, part of the raw exhaust was diluted and sampled for HC speciation. Canisters and sorbent membranes were used to collect volatile HCs and semi-volatile HCs, respectively. Di-nitrophenyl hydrazine (DNPH) cartridges were also used for collecting oxygenated species. Results showed overall lower HC emissions with the RON 80 E0 fuel compared to the RON 92 E10 fuel. For both fuels, the percentage of aromatic HCs was higher in the exhaust than in the fuels themselves. High engine-out aldehyde and ketone emissions were observed for both fuels. The reported HC speciation information can be useful for the development of a robust emission control system.« less

  7. Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

    DOE PAGES

    Storey, John; Lewis, Samuel; Moses-DeBusk, Melanie; ...

    2017-02-05

    Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on a Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEP g) to mediummore » load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEP g). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations. In addition, part of the raw exhaust was diluted and sampled for HC speciation. Canisters and sorbent membranes were used to collect volatile HCs and semi-volatile HCs, respectively. Di-nitrophenyl hydrazine (DNPH) cartridges were also used for collecting oxygenated species. Results showed overall lower HC emissions with the RON 80 E0 fuel compared to the RON 92 E10 fuel. For both fuels, the percentage of aromatic HCs was higher in the exhaust than in the fuels themselves. High engine-out aldehyde and ketone emissions were observed for both fuels. The reported HC speciation information can be useful for the development of a robust emission control system.« less

  8. Characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from a UH-1H helicopter engine and its impact on the ambient environment

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Lee, Wen-Jhy; Uang, Shi-Nian; Lee, Su-Hsing; Tsai, Perng-Jy

    The objective of this study is to characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from a UH-1H helicopter turboshaft engine and its impact on the ambient environment. Five power settings of the ground idle (GI), fly idle (FI), beed band check (BBC), inlet guide vane (IGV), and take off (TO) were selected and samples were collected from the exhaust by using an isokinetic sampling system. Twenty-two PAH compounds were analyzed by gas chromatograph (GC)/MS. We found the mean total PAH concentration in the exhaust of the UH-1H engine (843 μg m -3) is 1.05-51.7 times in magnitude higher than those of the heavy-duty diesel (HDD) engine, motor vehicle engine, and F101 aircraft engine. Two- and three-ringed PAHs account for 97.5% of total PAH emissions from the UH-1H engine. The mean total PAH and total BaP eq emission factors for the UH-1H engine (63.4 and 0.309 mg L -1·fuel) is 1.65-23.4 and 1.30-7.54 times in magnitude higher than those for the motor vehicle engine, HDD engine, and F101 aircraft engine. The total emission level of the single PAH compound, BaP, for the UH-1H engine (EL BaP) during one landing and take off (LTO) cycle (2.19 mg LTO -1) was higher than the European Commission standard (1.24 mg LTO -1) suggesting that appropriate measures should be taken to reduce PAH emissions from UH-1H engines in the future.

  9. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    PubMed Central

    Michie, Laura; Taylor, Ben W.

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  10. An examination of the identity development of African American undergraduate engineering students attending an HBCU

    NASA Astrophysics Data System (ADS)

    Taylor, Kenneth J.

    This study examined the identity development for a sample of 90 African American undergraduate engineering male and female students attending an HBCU. Using the Student Development Task and Lifestyle Assessment (SDTLA), which is based on Chickering and Reisser's identity development theory, differences in identity development were examined with respect to gender, academic classification, and grade point average. Previous research has shown the need to look beyond academic factors to understand and influence the persistence of African American engineering students. Non-cognitive factors, including identity development have proven to be influential in predicting persistence, especially for African American engineering students. Results from the analysis revealed significant means for academic classification and five of the dependent variables to include career planning peer relations, emotional autonomy, educational involvement, and establishing and clarifying purpose. Post hoc analysis confirmed significant differences for four of those dependent variables. However, the analysis failed to confirm statistical significant differences in peer relations due to academic classification. The significant decline in the mean scores for development in these four areas, as students progressed from sophomore to senior year revealed strong implications for the need to provide programming and guidance for those students. Institutions of higher education should provide more attention to the non-cognitive areas of development as a means of understanding identity development and working toward creating support systems for students.

  11. Engineer Examines Cluster of Ion Engines in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1963-01-21

    New staff member Paul Margosian inspects a cluster of ion engines in the Electric Propulsion Laboratory’s 25-foot diameter vacuum tank at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, and but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory contained two large vacuum tanks capable of simulating the space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank was intended for testing electric thrusters with condensable propellants. The tank’s test compartment, seen here, was 10 feet in diameter. Margosian joined Lewis in late 1962 during a major NASA hiring phase. The Agency reorganized in 1961 and began expanding its ranks through a massive recruiting effort. Lewis personnel increased from approximately 2,700 in 1961 to over 4,800 in 1966. Margosian, who worked with Bill Kerslake in the Electromagnetic Propulsion Division’s Propulsion Systems Section, wrote eight technical reports on mercury and electron bombardment thrusters, thermoelectrostatic generators, and a high voltage insulator.

  12. Control-enhanced multiparameter quantum estimation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Yuan, Haidong

    2017-10-01

    Most studies in multiparameter estimation assume the dynamics is fixed and focus on identifying the optimal probe state and the optimal measurements. In practice, however, controls are usually available to alter the dynamics, which provides another degree of freedom. In this paper we employ optimal control methods, particularly the gradient ascent pulse engineering (GRAPE), to design optimal controls for the improvement of the precision limit in multiparameter estimation. We show that the controlled schemes are not only capable to provide a higher precision limit, but also have a higher stability to the inaccuracy of the time point performing the measurements. This high time stability will benefit the practical metrology, where it is hard to perform the measurement at a very accurate time point due to the response time of the measurement apparatus.

  13. Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak

    2017-12-01

    Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolovich, S.D.; Saxena, A.; Cullers, C.

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is consideredmore » a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems.« less

  16. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  17. Dual education and industrial cooperation in electrical engineering

    NASA Astrophysics Data System (ADS)

    Váradiné Szarka, A.

    2016-11-01

    Dual education in higher education is a new system in Hungary introduced by Mercedes Benz with cooperation of Kecskemet College. In the new system companies support certain number of students and provide them strong practical education in their field. Students applying successfully for dual education study together with non-dual students at the university, so they go through the same university courses as their non-dual colleagues, but while non-dual students’ academic year includes 2×14 weeks active semester and 2×6 weeks exam session, all over 40 weeks, dual students have 48 working weeks including study at the university and practicing at the company. The main question of the success which one is the most effective model to be applied. This paper summarises 2 models of dual education with their advantages and disadvantages and also it presents practical realization at the University of Debrecen with special attention to measurement and instrumentation. Dual education in BSc level electrical engineering course cooperates with 6 multinational companies of the region in four specialization. Dual education also has great impact to the modernisation of engineering education. Detailed study of dual education in field of instrumentation and measurement is provided in the paper.

  18. Forming engineers' sociocultural competence: Engineering ethics at tomsk polytechnic university

    NASA Astrophysics Data System (ADS)

    Galanina, E.; Dulzon, A.; Schwab, A.

    2015-10-01

    The aim of the present research is to discuss Tomsk Polytechnic University in respect of forming engineers’ sociocultural competence and teaching engineering ethics. Today international standards of training engineers cover efficient communication skills, ability to understand societal and environment context, professional and ethical responsibility. This article deals with the problem of contradiction between the need to form engineers’ sociocultural competence in Russian higher education institutions in order to meet the requirements of international accreditation organizations and the real capabilities of existing engineering curricula. We have described ethics teaching experience of TPU, studied the engineering master programs of TPU to see how the planned results are achieved. We have also given our recommendations to alter the structure of TPU educational curricula, which can also be applied in other higher education institutions.

  19. Computer Tutorial "Higher Mathematics" for Engineering Specialties.

    ERIC Educational Resources Information Center

    Slivina, Natalia A.; Krivosheev, Anatoly O.; Fomin, Sergey S.

    This paper presents a CD-ROM computer tutorial titled "Higher Mathematics," that contains 17 educational mathematical programs and is intended for use in Russian university engineering education. The first section introduces the courseware climate in Russia and outlines problems with commercially available universal mathematical…

  20. Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft.

    PubMed

    Boyd, Douglas D

    2015-04-01

    Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased training should be provided on single engine procedures in the event of an engine failure. Second, more focus should be placed on instrument approaches and recovery from unusual aircraft attitude where visibility is degraded. Third, pilots should be made aware of appropriate speed selection for inadvertent flights in convective weather. Finally, emphasizing the importance of conducting night operations under instrument flight rules with its altitude restrictions should lead to a diminished proportion of accidents attributed to failure to maintain obstacle/terrain clearance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Engineering Education and Its Rewards in the United States and Japan.

    ERIC Educational Resources Information Center

    Kinmonth, Earl H.

    1986-01-01

    Contrary to misinformation circulating in the United States, the United States has more engineers absolutely and relatively than does Japan; and U.S. engineers have higher relative income and status than their Japanese counterparts. Compares U.S. and Japanese enrollments in engineering education, curriculum content, engineers' earnings relative to…

  2. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less

  3. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine

    NASA Astrophysics Data System (ADS)

    Adem, ACIR; Eşref, BAYSAL

    2018-07-01

    In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained 10 vol% TRISO particles and 90 vol% natural lithium coolant mixture. TRISO fuel compositions have Mod①: reactor grade plutonium (RG-Pu), Mod②: weapon grade plutonium (WG-Pu) and Mod③: minor actinides (MAs). Tritium breeding ratios (TBR) were computed as 1.52, 1.62 and 1.46 for Mod①, Mod② and Mod③, respectively. The operation period was computed as ∼21 years when the reference TBR > 1.05 for a self-sustained reactor for all investigated cases. Blanket energy multiplication values (M) were calculated as 4.18, 4.95 and 3.75 for Mod①, Mod② and Mod③, respectively. The burnup (BU) values were obtained as ∼1230, ∼1550 and ∼1060 GWd tM–1, respectively. As a result, the higher BU were provided with using TRISO particles for all cases in LIFE engine.

  4. Engine performance analysis and optimization of a dual-mode scramjet with varied inlet conditions

    NASA Astrophysics Data System (ADS)

    Tian, Lu; Chen, Li-Hong; Chen, Qiang; Zhong, Feng-Quan; Chang, Xin-Yu

    2016-02-01

    A dual-mode scramjet can operate in a wide range of flight conditions. Higher thrust can be generated by adopting suitable combustion modes. Based on the net thrust, an analysis and preliminary optimal design of a kerosene-fueled parameterized dual-mode scramjet at a crucial flight Mach number of 6 were investigated by using a modified quasi-one-dimensional method and simulated annealing strategy. Engine structure and heat release distributions, affecting the engine thrust, were chosen as analytical parameters for varied inlet conditions (isolator entrance Mach number: 1.5-3.5). Results show that different optimal heat release distributions and structural conditions can be obtained at five different inlet conditions. The highest net thrust of the parameterized dual-mode engine can be achieved by a subsonic combustion mode at an isolator entrance Mach number of 2.5. Additionally, the effects of heat release and scramjet structure on net thrust have been discussed. The present results and the developed analytical method can provide guidance for the design and optimization of high-performance dual-mode scramjets.

  5. IdentiPy: An Extensible Search Engine for Protein Identification in Shotgun Proteomics.

    PubMed

    Levitsky, Lev I; Ivanov, Mark V; Lobas, Anna A; Bubis, Julia A; Tarasova, Irina A; Solovyeva, Elizaveta M; Pridatchenko, Marina L; Gorshkov, Mikhail V

    2018-06-18

    We present an open-source, extensible search engine for shotgun proteomics. Implemented in Python programming language, IdentiPy shows competitive processing speed and sensitivity compared with the state-of-the-art search engines. It is equipped with a user-friendly web interface, IdentiPy Server, enabling the use of a single server installation accessed from multiple workstations. Using a simplified version of X!Tandem scoring algorithm and its novel "autotune" feature, IdentiPy outperforms the popular alternatives on high-resolution data sets. Autotune adjusts the search parameters for the particular data set, resulting in improved search efficiency and simplifying the user experience. IdentiPy with the autotune feature shows higher sensitivity compared with the evaluated search engines. IdentiPy Server has built-in postprocessing and protein inference procedures and provides graphic visualization of the statistical properties of the data set and the search results. It is open-source and can be freely extended to use third-party scoring functions or processing algorithms and allows customization of the search workflow for specialized applications.

  6. Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption.

    PubMed

    Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M; Wang, Gunuk

    2017-10-04

    A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method for fabricating selector-less memristor arrays using an engineered nanoporous Ta 2 O 5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (∼2.7 × 10 -6 W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta 2 O 5-x layer. Our results, on the basis of the structural engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor arrays with acceptable device uniformity and low power consumption without the need for additional addressing selectors.

  7. Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Gardner, W. B.

    1983-01-01

    The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.

  8. Women's Reasons for Leaving the Engineering Field.

    PubMed

    Fouad, Nadya A; Chang, Wen-Hsin; Wan, Min; Singh, Romila

    2017-01-01

    Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. Specifically, we analyze the reasons for departure given by national sample of 1,464 women engineers who left the profession after having worked in the engineering field. We applied a person-environment fit theoretical lens, in particular, the Theory of Work Adjustment (TWA) (Dawis and Lofquist, 1984) to understand and categorize the reasons for leaving the engineering field. According to the TWA, occupations have different "reinforcer patterns," reflected in six occupational values, and a mismatch between the reinforcers provided by the work environment and individuals' needs may trigger departure from the environment. Given the paucity of literature in this area, we posed research questions to explore the reinforcer pattern of values implicated in women's decisions to leave the engineering field. We used qualitative analyses to understand, categorize, and code the 1,863 statements that offered a glimpse into the myriad reasons that women offered in describing their decisions to leave the engineering profession. Our results revealed the top three sets of reasons underlying women's decision to leave the jobs and engineering field were related to: first, poor and/or inequitable compensation, poor working conditions, inflexible and demanding work environment that made work-family balance difficult; second, unmet achievement needs that reflected a dissatisfaction with effective utilization of their math and science skills, and third, unmet needs with regard to lack of recognition at work and adequate opportunities for advancement. Implications of these results for future research as well as the design of effective intervention programs aimed at women engineers' retention and engagement in engineering are discussed.

  9. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-01-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  10. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Astrophysics Data System (ADS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-02-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  11. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  12. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  13. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  14. NASA systems engineering handbook. Draft

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Chamberlain, Robert G.; Aster, Robert; Bilardo, Vincent; Forsberg, Kevin; Hammond, Walter E.; Mooz, Harold; Polaski, Lou; Wade, Ron; Cassingham, Randy (Editor)

    1992-01-01

    This handbook is intended to provide information on systems engineering that will be useful to NASA system engineers, especially new ones. Its primary objective is to provide a generic description of systems engineering as it should be applied throughout NASA. Field Center Handbooks are encouraged to provide center-specific details of implementation. For NASA system engineers to choose to keep a copy of this handbook at their elbows, it must provide answers that cannot be easily found elsewhere. Consequently, it provides NASA-relevant perspectives and NASA-particular data. NASA management instructions (NMI's) are referenced when applicable. This handbook's secondary objective is to serve as a useful companion to all of the various courses in systems engineering that are being offered under NASA's auspices. The coverage of systems engineering is general to techniques, concepts, and generic descriptions of processes, tools, and techniques. It provides good systems engineering practices, and pitfalls to avoid. This handbook describes systems engineering as it should be applied to the development of major NASA product and producing systems.

  15. Space transportation booster engine configuration study. Addendum: Design definition document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.

  16. Racializing Experiences of Foreign-Born and Ethnically Diverse Black Male Engineering Graduate Students: Implications for Student Affairs Practice, Policy, and Research

    ERIC Educational Resources Information Center

    Burt, Brian A.; Knight, Alexander; Robeson, Justin

    2017-01-01

    Despite a growing body of work on the experiences of Black collegians, the higher education knowledge base lacks scholarship focused on Black men in graduate programs who are foreign-born and/or identify ethnically as other than African American. In this article, we provide a domain-specific investigation (i.e., based on students' field of study),…

  17. Federal Support to Universities, Colleges, and Nonprofit Institutions: Fiscal Year 1990. A Report to the President and Congress. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    Bennof, Richard

    The data presented in this report represent all categories of direct Federal support to institutions of higher education in the United States. The data were provided by the 15 federal agencies that account for virtually all support for science and engineering (S&E) research and development (R&D) at universities, colleges, and nonprofit…

  18. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  19. Research and Innovation of Engineering Education in Europe the contribution of SEFI

    NASA Astrophysics Data System (ADS)

    Graaff, Erik De; Borri, Claudio

    The roots of engineering education lie in the workplace. It was not until the 19th century that higher engineering education moved to a more scholarly environment. True to its origins, research in the applied sciences never aimed at pure understanding alone. The goal of engineering investigations has always been to devise solutions to practice problems with a mixture of design, construction and innovation. If the establishing of a research tradition in engineering has taken quite a long time, the time needed to apply an academic mode of thinking to the approach to teaching and learning has been much longer. In fact, most of the design choices concerning the curricula in higher engineering education were made based on intuition, rather than on insight, until well over the half of the last century. Aiming at to support the development of engineering education in Europe, in 1973 the European Society of Engineering Education was established (labelled SEFI according to the French acronym Société. Européenne pour la Formation des Ingénieurs). Presently the society represents 196 institutional members. SEFI promotes cooperation between higher engineering education institutions and other scientific and international bodies on issues of research and development in Engineering Education, for instance through participating in European network projects such as the SOCRATES Thematic Network “TREE” (Teaching and Research in Engineering Education in Europe). SEFI is also engaged in policy development regarding engineering education publishing statements regarding issues like the Bologna process and the proposed European Institute of Technology. In the future SEFI aims to consolidate and strengthen its role in the European arena and to represent Europe on the Global stage.

  20. Project Alexander the Great: a study on the world proliferation of bioengineering/biomedical engineering education.

    PubMed

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.

  1. Architecture-Led Safety Process

    DTIC Science & Technology

    2016-12-01

    Action Hazard Guide 42 Table 18: Comparative Table of Safety and Reliability Terms 47 CMU/SEI-2016-TR-012 | SOFTWARE ENGINEERING INSTITUTE...provides too much thrust Engine is slow to pro- vide commanded thrust (increase or de- crease) Engine will not shut- down when com - manded...Thrust level must be provided at the com - manded level H4: Engine is slow to provide commanded thrust SC3: Engine must provide commanded thrust in

  2. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.

  3. Aircraft Engine-Monitoring System And Display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Person, Lee H., Jr.

    1992-01-01

    Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.

  4. The influence of engineers' training models on ethics and civic education component in engineering courses in Portugal

    NASA Astrophysics Data System (ADS)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-03-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its historical roots. In Portugal, engineer education is done based on two different higher education subsystems, the university and the polytechnic. This study analyses how engineers' educational models, present in the two Portuguese higher education subsystems, influence and are reflected in the importance attached to students' ethic and civic education and in the role that this training plays. Although the data suggest the prevalence of the distinction between the two training models and the corresponding distinction of ethic and civic education that is incorporated in the curricula, it is also noted the existence of mixed feature courses in university education.

  5. Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1991-01-01

    One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.

  6. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  7. Entropy-Based Performance Analysis of Jet Engines; Methodology and Application to a Generic Single-Spool Turbojet

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammad

    Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.

  8. Stress and fatigue in sound engineers: the effect of broadcasting in a life show and shift work.

    PubMed

    Vangelova, Katia K

    2008-06-01

    The aim was to study the time-of-day variations of cortisol, fatigue and sleep disturbances in sound engineers in relation to job task and shift work. The concentration of saliva cortisol and feeling of stress, sleepiness and fatigue were followed at three hour intervals in 21 sound engineers: 13 sound engineers, aged 45.1 +/- 7.3 years, broadcasting in a life show during fast forward rotating shifts and 8 sound engineers, aged 47.1 +/- 9.8 years, making records in a studio during fast rotating day shifts. Cortisol concentration was assessed in saliva with radioimmunological kits. The participants reported for stress symptoms during the shifts and filled sleep diary. The data were analyzed by tests of between-subjects effects (SPSS). A trend for higher cortisol was found with the group broadcasting in a life show. The sound engineers broadcasting in a life show reported higher scores of stress, sleepiness and fatigue, but no significant differences concerning the sleep disturbances between the groups were found. In conclusion our data show moderate level of stress and fatigue with the studied sound engineers, higher with the subjects broadcasting in a life show. The quality of sleep showed no significant differences between the studied groups, an indication that the sound engineers were able to tolerate the fast forward rotating shifts.

  9. Engine Development Design Margins Briefing Charts

    NASA Technical Reports Server (NTRS)

    Bentz, Chuck

    2006-01-01

    New engines experience durability problems after entering service. The most prevalent and costly is the hot section, particularly the high-pressure turbine. The origin of durability problems can be traced back to: 1) the basic aero-mechanical design systems, assumptions, and design margins used by the engine designers, 2) the available materials systems, and 3) to a large extent, aggressive marketing in a highly competitive environment that pushes engine components beyond the demonstrated capability of the basic technology available for the hardware designs. Unfortunately the user must operate the engine in the service environment in order to learn the actual thrust loading and the time at max effort take-off conditions used in service are needed to determine the hot section life. Several hundred thousand hours of operational service will be required before the demonstrated reliability of a fleet of engines or the design deficiencies of the engine hot section parts can be determined. Also, it may take three to four engine shop visits for heavy maintenance on the gas path hardware to establish cost effective build standards. Spare parts drive the oerator's engine maintenance costs but spare parts also makes lots of money for the engine manufacturer during the service life of an engine. Unless competition prevails for follow-on engine buys, there is really no motivation for an OEM to spend internal money to improve parts durability and reduce earnings derived from a lucrative spare parts business. If the hot section life is below design goals or promised values, the OEM migh argue that the engine is being operated beyond its basic design intent. On the other hand, the airframer and the operator will continue to remind the OEM that his engine was selected based on a lot of promises to deliver spec thrust with little impact on engine service life if higher thrust is used intermittently. In the end, a standoff prevails and nothing gets fixed. This briefing will propose ways to hold competing engine manufacturers more accountable for engine hot section design margins during the entire Engine Development process as well as provide tools to assess the design temperature margins in the hot section parts of Service Engines.

  10. Engineering cyanobacteria for direct biofuel production from CO2.

    PubMed

    Savakis, Philipp; Hellingwerf, Klaas J

    2015-06-01

    For a sustainable future of our society it is essential to close the global carbon cycle. Oxidised forms of carbon, in particular CO2, can be used to synthesise energy-rich organic molecules. Engineered cyanobacteria have attracted attention as catalysts for the direct conversion of CO2 into reduced fuel compounds. Proof of principle for this approach has been provided for a vast range of commodity chemicals, mostly energy carriers, such as short chain and medium chain alcohols. More recently, research has focused on the photosynthetic production of compounds with higher added value, most notably terpenoids. Below we review the recent developments that have improved the state-of-the-art of this approach and speculate on future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Innovative Competencies of Mining engineers in Transition to the Sustainable Development

    NASA Astrophysics Data System (ADS)

    Krechetov, Andrey; Khoreshok, Alexey; Blumenstein, Valery

    2017-11-01

    The transition to the sustainable development posed new challenges to the system of mining higher education. They are determined by the acceleration of scientific and technological progress and widespread introduction of innovations, convergence of technologies from various industries. On the one hand, globalization and rapid technology development are constantly increasing quality requirements for the labor resources of the mineral and raw materials complex and constant improvement of their skills. On the other hand, the transition to the sustainable development provides the necessity for rational use of raw materials and environmental protection. This requires the improvement of staff support system for mining operations and the interaction of enterprises with universities training mining engineers, aimed at the innovative competencies development of future miners.

  12. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    PubMed

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  13. Re-Engineering Mexican Higher Education toward Economic Development and Quality. The XXI Century Challenge.

    ERIC Educational Resources Information Center

    Mungaray-Lagarda, Alejandro

    2002-01-01

    Explaining the Mexico has faced deep economic and social changes over the last decade, explores the changes or re-engineering needed in the country's higher education institutions to improve institutional efficiency through greater linkages with local economic and social development. (EV)

  14. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program... Engineering Improvement Program (MSEIP), authorized by Title III, Part E of the Higher Education Act of 1965...

  15. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar

    2013-04-01

    The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.

  16. High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.

    2004-01-01

    As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices. Composite panels with system B were heat treated at Glenn, and the pores that remained open were filled by silicon melt infiltration (MI). Panels with system A and the other SiC/SiC systems were not heat treated, and remaining open pores in these systems were filled with SiC slurry and silicon MI.

  17. An assessment on the trustworthiness of engineers in higher tertiary institutions

    NASA Astrophysics Data System (ADS)

    Ooi Kuan, Tan; Lloyd, Ling; Mou Chuan, Cheng

    2017-10-01

    In Malaysian higher education history, the evolution from public funded to private funded and now to private non profit oriented model has been taking place since 80s. The evolution also demarcated higher learning institution into academic or research based university. As such, postgraduate studies became increasingly competitive in students intake. The evolution also created doubt to the public in term of the quality of postgraduate education offered by different classifications. This study investigates the gender specific perception and trustworthiness of engineering postgraduate students in private non profit oriented higher tertiary institution. An equally divided gender groups of 118 respondents were chosen for the study. Non-parametric statistics were used and the result showed that there was no difference and no correlation of genders in perception on teaching role and trustworthiness among the future engineers in private non profit oriented higher tertiary institution.

  18. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  19. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  20. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  1. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  2. 26 CFR 1.414(r)-2 - Line of business.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. Example 6. Employer B is a diversified engineering firm offering civil, chemical, and aeronautical engineering services to government and private industry. Employer B provides no other property or... civil engineering services, a second providing all its chemical engineering services, a third providing...

  3. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase.

    PubMed

    Chandrayan, Sanjeev K; McTernan, Patrick M; Hopkins, R Christopher; Sun, Junsong; Jenney, Francis E; Adams, Michael W W

    2012-01-27

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.

  4. Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase*

    PubMed Central

    Chandrayan, Sanjeev K.; McTernan, Patrick M.; Hopkins, R. Christopher; Sun, Junsong; Jenney, Francis E.; Adams, Michael W. W.

    2012-01-01

    The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H2 production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production. PMID:22157005

  5. The Problem of Engineering Creativity in Russia: A Critical Review

    ERIC Educational Resources Information Center

    Kukushkin, Sergey; Churlyaeva, Natalya

    2012-01-01

    The problem of technological creativity in Russia is briefly discussed. Special attention is paid to the development of indigenous engineering corpus in unfavourable conditions and some reasons for engineers' low creativity are revealed. The Soviet system of engineering higher education (HE) is criticised as not focused on fostering creative…

  6. Fostering Passion among First Year Engineering Students

    ERIC Educational Resources Information Center

    Mazumder, Quamrul H.

    2010-01-01

    Engineering is a complex field of study. Declining enrollment in engineering programs in the United States is of concern and understanding the various factors that contribute to this decline is in order. Fostering a higher level of student engagement with the content may foster passion towards engineering which could increase academic competency…

  7. Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine

    DTIC Science & Technology

    2013-03-01

    Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that

  8. Engines without Fuel?--Empirical Findings on Finnish Higher Education Institutions as Education Exporters

    ERIC Educational Resources Information Center

    Schatz, Monika

    2016-01-01

    In 2010, the Finnish Ministry of Education and Culture formulated Finland's first education export strategy. This policy document attributed Finnish Higher Education Institutions (HEIs) a significant role in the emerging sector by declaring them as "engines" of education export. Situated in a phenomenological approach towards…

  9. Demonstration, Testing and Qualification of a High Temperature, High Speed Magnetic Thrust Bearing

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth

    2005-01-01

    The gas turbine industry has a continued interest in improving engine performance and reducing net operating and maintenance costs. These goals are being realized because of advancements in aeroelasticity, materials, and computational tools such as CFD and engine simulations. These advancements aid in increasing engine thrust-to-weight ratios, specific fuel consumption, pressure ratios, and overall reliability through higher speed, higher temperature, and more efficient engine operation. Currently, rolling element bearing and squeeze film dampers are used to support rotors in gas turbine engines. Present ball bearing configurations are limited in speed (<2 million DN) and temperature (<5OO F) and require both cooling air and an elaborate lubrication system. Also, ball bearings require extensive preventative maintenance in order to assure their safe operation. Since these bearings are at their operational limits, new technologies must be found in order to take advantage of other advances. Magnetic bearings are well suited to operate at extreme temperatures and higher rotational speeds and are a promising solution to the problems that conventional rolling element bearings present. Magnetic bearing technology is being developed worldwide and is considered an enabling technology for new engine designs. Using magnetic bearings, turbine and compressor spools can be radically redesigned to be significantly larger and stiffer with better damping and higher rotational speeds. These advances, a direct result of magnetic bearing technology, will allow significant increases in engine power and efficiency. Also, magnetic bearings allow for real-time, in-situ health monitoring of the system, lower maintenance costs and down time.

  10. High Pressure Earth Storable Rocket Technology Program: Basic Program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Sicher, D.; Huang, D.; Mueller, T.

    1995-01-01

    The HIPES Program was conducted for NASA-LeRC by TRW. The Basic Program consisted of system studies, design of testbed engine, fabrication and testing of engine. Studies of both pressure-fed and pump-fed systems were investigated for N2O4 and both MMH and N2H4 fuels with the result that N2H4 provides the maximum payload for all satellites over MMH. The higher pressure engine offers improved performance with smaller envelope and associated weight savings. Pump-fed systems offer maximum payload for large and medium weight satellites while pressure-fed systems offer maximum payload for small light weight satellites. The major benefits of HIPES are high performance within a confined length maximizing payload for lightsats which are length (volume) constrained. Three types of thrust chambers were evaluated -- Copper heatsink at 400, 500 and 600 psia chamber pressures for performance/thermal; water cooled to determine heat absorbed to predict rhenium engine operation; and rhenium to validate the concept. The HIPES engine demonstrated very high performance at 50 lbf thrust (epsilon = 150) and Pc = 500 psia with both fuels: Isp = 337 sec using N2O4-N2H4 and ISP = 327.5 sec using N2O4-MMH indicating combustion efficiencies greater than 98%. A powder metallurgy rhenium engine demonstrated operation with high performance at Pc = 500 psia which indicated the viability of the concept.

  11. Comparison of Performance of AN-F-58 Fuel and Gasoline in J34-WE-22 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Dowman, Harry W; Younger, George G

    1949-01-01

    As part of an investigation of the performance of AN-F-58 fuel in various types of turbojet engine, the performance of this fuel in a 3000-pound-thrust turbojet engine has been investigated in an altitude test chamber together with the comparative performance of 62-octane gasoline. The investigation of normal engine performance, which covered a range of engine speeds at altitudes from 5000 to 50,000 feet and flight Mach numbers up to 1.00, showed that both the net thrust and average turbine-outlet temperatures were approximately the same for both fuels. The specific fuel consumption and the combustion efficiency at the maximum engine speeds investigated were approximately the same for both fuels at altitudes up to 35,000 feet, but at an altitude of 50,000 feet the specific fuel consumption was about 9 percent higher and the combustion efficiency was correspondingly lower with the AN-F-58 fuel than with gasoline. The low-engine-speed blow-out limits were about the same for both fuels. Ignition of AN-F-58 fuel with the standard spark plug was possible only with the spark plug in a clean condition; ignition was impossible at all flight conditions investigated when the plug was fouled by an accumulation of liquid fuel from a preceding false start. Use of an extended-electrode spark plug provided satisfactory ignition over a slightly smaller range of altitudes and flight Mach numbers than for gasoline with the standard spark plug.

  12. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  13. Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine

    NASA Astrophysics Data System (ADS)

    Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan

    2012-06-01

    A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.

  14. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    Meeting NASA's N+3 goals requires a fundamental shift in approach to aircraft and engine design. Material and design improvements allow higher pressure and higher temperature core engines which improve the thermal efficiency. Propulsive efficiency, the other half of the overall efficiency equation, however, is largely determined by the fan pressure ratio (FPR). Lower FPR increases propulsive efficiency, but also dramatically reduces fan shaft speed through the combination of larger diameter fans and reduced fan tip speed limits. The result is that below an FPR of 1.5 the maximum fan shaft speed makes direct drive turbines problematic. However, it is the low pressure ratio fans that allow the improvement in propulsive efficiency which, along with improvements in thermal efficiency in the core, contributes strongly to meeting the N+3 goals for fuel burn reduction. The lower fan exhaust velocities resulting from lower FPRs are also key to meeting the aircraft noise goals. Adding a gear box to the standard turbofan engine allows acceptable turbine speeds to be maintained. However, development of a 50,000+ hp gearbox required by fans in a large twin engine transport aircraft presents an extreme technical challenge, therefore another approach is needed. This paper presents a propulsion system which transmits power from the turbine to the fan electrically rather than mechanically. Recent and anticipated advances in high temperature superconducting generators, motors, and power lines offer the possibility that such devices can be used to transmit turbine power in aircraft without an excessive weight penalty. Moving to such a power transmission system does more than provide better matching between fan and turbine shaft speeds. The relative ease with which electrical power can be distributed throughout the aircraft opens up numerous other possibilities for new aircraft and propulsion configurations and modes of operation. This paper discusses a number of these new possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1

  15. Federal Support to Universities, Colleges, and Selected Nonprofit Institutions, Fiscal Year 1976 and Transition Quarter. Detailed Statistical Tables Appendix B. A Report to the President and Congress.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    Statistical data concerning funds budgeted by 14 federal agencies for grants and contracts in science and engineering to institutions of higher education in fiscal year 1976 are compiled in this appendix of a report issued by the National Science Foundation. These funds provide an estimated 95 percent of all funds for scientific and engineering…

  16. Analysis of Ordinary Public Fund and Its Impact on the Quality of Academic Programs in the Higher Education in the Subsystem of the Polytechnic Universities in Mexico

    ERIC Educational Resources Information Center

    Monroy, Pedro Salazar; Arcos-Vega, José L.; Garcia, Juan J. Sevilla

    2017-01-01

    In 2015, there was the need of making this study to determine the efficient and effectiveness management for making decisions in respect to the ordinary fund allocations and their impact on the quality of the academic programs into the Polytechnic engineering universities in Mexico. This analysis is very important for providing essential evidence…

  17. Search engine ranking, quality, and content of webpages that are critical vs noncritical of HPV vaccine

    PubMed Central

    Fu, Linda Y.; Zook, Kathleen; Spoehr-Labutta, Zachary; Hu, Pamela; Joseph, Jill G.

    2015-01-01

    Purpose Online information can influence attitudes toward vaccination. The aim of the present study is to provide a systematic evaluation of the search engine ranking, quality, and content of webpages that are critical versus noncritical of HPV vaccination. Methods We identified HPV vaccine-related webpages with the Google search engine by entering 20 terms. We then assessed each webpage for critical versus noncritical bias as well as for the following quality indicators: authorship disclosure, source disclosure, attribution of at least one reference, currency, exclusion of testimonial accounts, and readability level less than 9th grade. We also determined webpage comprehensiveness in terms of mention of 14 HPV vaccine relevant topics. Results Twenty searches yielded 116 unique webpages. HPV vaccine-critical webpages comprised roughly a third of the top, top 5 and top 10-ranking webpages. The prevalence of HPV vaccine-critical webpages was higher for queries that included term modifiers in addition to root terms. Compared with noncritical webpages, webpages critical of HPV vaccine overall had a lower quality score than those with a noncritical bias (p<.01) and covered fewer important HPV-related topics (p<.001). Critical webpages required viewers to have higher reading skills, were less likely to include an author byline, and were more likely to include testimonial accounts. They also were more likely to raise unsubstantiated concerns about vaccination. Conclusion Webpages critical of HPV vaccine may be frequently returned and highly ranked by search engine queries despite being of lower quality and less comprehensive than noncritical webpages. PMID:26559742

  18. Beyond Bias and Barriers: Fulfilling the Potential of Women in Academic Science and Engineering

    NASA Astrophysics Data System (ADS)

    Agogino, Alice

    2007-04-01

    Review of the report by the National Academies, with a focus on action strategies in the physical sciences. Women face barriers to hiring and promotion in research universities in many fields of science and engineering; a situation that deprives the United States of an important source of talent as the country faces increasingly stiff global competition in higher education, science and technology, and the marketplace. Eliminating gender bias in universities requires immediate, overarching reform and decisive action by university administrators, professional societies, government agencies, and Congress. Forty years ago, women made up only 3 percent of America's scientific and technical workers, but by 2003 they accounted for nearly one-fifth. In addition, women have earned more than half of the bachelor's degrees awarded in science and engineering since 2000. However, their representation on university and college faculties fails to reflect these gains. Among science and engineering Ph.D.s, four times more men than women hold full-time faculty positions. And minority women with doctorates are less likely than white women or men of any racial or ethnic group to be in tenure positions. The report urges higher education organizations and professional societies to form collaborative, self-monitoring body that would recommend standards for faculty recruitment, retention, and promotion; collect data; and track compliance across institutions. A ``report card'' template is provided in the report. To read the report online, add a comment, or purchase hard copy, go to: http://www.engineeringpathway.com/ep/learningresource/summary/index.jhtml?id=94A4929D-F1B2-432E-8167-63335569CB4E.

  19. Solar Thermal Propulsion Improvements at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2003-01-01

    Solar Thermal Propulsion (STP) is a concept which operates by transferring solar energy to a propellant, which thermally expands through a nozzle. The specific impulse performance is about twice that of chemical combustions engines, since there is no need for an oxidizer. In orbit, an inflatable concentrator mirror captures sunlight and focuses it inside an engine absorber cavity/heat exchanger, which then heats the propellant. The primary application of STP is with upperstages taking payloads from low earth orbit to geosynchronous earth orbit or earth escape velocities. STP engines are made of high temperature materials since heat exchanger operation requires temperatures greater than 2500K. Refractory metals such as tungsten and rhenium have been examined. The materials must also be compatible with hot hydrogen propellant. MSFC has three different engine designs, made of different refractory metal materials ready to test. Future engines will be made of high temperature carbide materials, which can withstand temperatures greater than 3000K, hot hydrogen, and provide higher performance. A specific impulse greater than 1000 seconds greatly reduces the amount of required propellant. A special 1 OkW solar ground test facility was made at MSFC to test various STP engine designs. The heliostat mirror, with dual-axis gear drive, tracks and reflects sunlight to the 18 ft. diameter concentrator mirror. The concentrator then focuses sunlight through a vacuum chamber window to a small focal point inside the STP engine. The facility closely simulates how the STP engine would function in orbit. The flux intensity at the focal point is equivalent to the intensity at a distance of 7 solar radii from the sun.

  20. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.

    PubMed

    Ni, PeiYan; Fu, ShaoZhi; Fan, Min; Guo, Gang; Shi, Shuai; Peng, JinRong; Luo, Feng; Qian, ZhiYong

    2011-01-01

    Polylactide (PLA) electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol) (PEG)/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC) attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin) and OPN (osteopontin), accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the mineralization stage of differentiation. After transplantation into the thigh muscle pouches of rats, and evaluating the inflammatory cells surrounding the scaffolds and the physiological characteristics of the surrounding tissues, the PEG/PLA scaffolds presented good biocompatibility. Based on the good cellular response and excellent osteogenic potential in vitro, as well as the biocompatibility with the surrounding tissues in vivo, the electrospun PEG/PLA fibrous scaffolds could be one of the most promising candidates in bone tissue engineering.

  1. Deep Space 1 Ion Engine Completed a 3-Year Journey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.; Rawlin, Vincent K.; Hamley, John A.

    2001-01-01

    A xenon ion engine and power processor system, which was developed by the NASA Glenn Research Center in partnership with the Jet Propulsion Laboratory and Boeing Electron Dynamic Devices, completed nearly 3 years of operation aboard the Deep Space 1 spacecraft. The 2.3-kW ion engine, which provided primary propulsion and two-axis attitude control, thrusted for more than 16,000 hr and consumed more than 70 kg of xenon propellant. The Deep Space 1 spacecraft was launched on October 24, 1998, to validate 12 futuristic technologies, including the ion-propulsion system. After the technology validation process was successfully completed, the Deep Space 1 spacecraft flew by the small asteroid Braille on July 29, 1999. The final objective of this mission was to encounter the active comet Borrelly, which is about 6 miles long. The ion engine was on a thrusting schedule to navigate the Deep Space 1 spacecraft to within 1400 miles of the comet. Since the hydrazine used for spacecraft attitude control was in short supply, the ion engine also provided two-axis attitude control to conserve the hydrazine supply for the Borrelly encounter. The comet encounter took place on September 22, 2001. Dr. Marc Rayman, project manager of Deep Space 1 at the Jet Propulsion Laboratory said, "Deep Space 1 plunged into the heart of the comet Borrelly and has lived to tell every detail of its spinetingling adventure! The images are even better than the impressive images of comet Halley taken by Europe's Giotto spacecraft in 1986." The Deep Space 1 mission, which successfully tested the 12 high-risk, advanced technologies and captured the best images ever taken of a comet, was voluntarily terminated on December 18, 2001. The successful demonstration of the 2-kW-class ion propulsion system technology is now providing mission planners with off-the-shelf flight hardware. Higher power, next generation ion propulsion systems are being developed for large flagship missions, such as outer planet explorers and sample-return missions.

  2. 48 CFR 9.505-1 - Providing systems engineering and technical direction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...

  3. 48 CFR 9.505-1 - Providing systems engineering and technical direction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...

  4. 48 CFR 9.505-1 - Providing systems engineering and technical direction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...

  5. 48 CFR 9.505-1 - Providing systems engineering and technical direction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...

  6. 48 CFR 9.505-1 - Providing systems engineering and technical direction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... engineering and technical direction. 9.505-1 Section 9.505-1 Federal Acquisition Regulations System FEDERAL... of Interest 9.505-1 Providing systems engineering and technical direction. (a) A contractor that provides systems engineering and technical direction for a system but does not have overall contractual...

  7. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  8. Vehicle Engine Classification Using Spectral Tone-Pitch Vibration Indexing and Neural Network*

    PubMed Central

    Wei, Jie; Vongsy, Karmon; Mendoza-Schrock, Olga; Liu, Chi-Him

    2015-01-01

    As a non-invasive and remote sensor, the Laser Doppler Vibrometer (LDV) has found a broad spectrum of applications in various areas such as civil engineering, biomedical engineering, and even security and restoration within art museums. LDV is an ideal sensor to detect threats earlier and provide better protection to society, which is of utmost importance to military and law enforcement institutions. However, the use of LDV in situational surveillance, in particular vehicle classification, is still in its infancy due to the lack of systematic investigations on its behavioral properties. In this work, as a result of the pilot project initiated by Air Force Research Laboratory, the innate features of LDV data from many vehicles are examined, beginning with an investigation of feature differences compared to human speech signals. A spectral tone-pitch vibration indexing scheme is developed to capture the engine’s periodic vibrations and the associated fundamental frequencies over the vehicles’ surface. A two-layer feed-forward neural network with 20 intermediate neurons is employed to classify vehicles’ engines based on their spectral tone-pitch indices. The classification results using the proposed approach over the complete LDV dataset collected by the project are exceedingly encouraging; consistently higher than 96% accuracies are attained for all four types of engines collected from this project. PMID:26788417

  9. Design process of the nanofluid injection mechanism in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  10. Design process of the nanofluid injection mechanism in nuclear power plants

    PubMed Central

    2011-01-01

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner. PMID:21711896

  11. Design process of the nanofluid injection mechanism in nuclear power plants.

    PubMed

    Kang, Myoung-Suk; Jee, Changhyun; Park, Sangjun; Bang, In Choel; Heo, Gyunyoung

    2011-04-27

    Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs). This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs) assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD) in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  12. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose

    PubMed Central

    Divate, Nileema R.; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-01-01

    ABSTRACT A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress. PMID:27484300

  13. Mathematics/Arithmetic Knowledge-Based Way of Thinking and Its Maintenance Needed for Engineers

    NASA Astrophysics Data System (ADS)

    Harada, Shoji

    Examining curriculum among universities revealed that no significant difference in math class or related subjects can be seen. However, amount and depth of those studies, in general, differed depending on content of curriculum and the level of achievement at entrance to individual university. Universalization of higher education shows that students have many problems in learning higher level of traditional math and that the memory of math they learned quickly fades away after passing in exam. It means that further development of higher math knowledgebased engineer after graduation from universities. Under these circumstances, the present author, as one of fun of math, propose how to maintain way of thinking generated by math knowledge. What necessary for engineer is to pay attention to common books, dealing with elementary mathematics or arithmetic- related matters. This surely leads engineer to nourish math/arithmetic knowledge-based way of thinking.

  14. Engineering strategy of yeast metabolism for higher alcohol production.

    PubMed

    Matsuda, Fumio; Furusawa, Chikara; Kondo, Takashi; Ishii, Jun; Shimizu, Hiroshi; Kondo, Akihiko

    2011-09-08

    While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  15. Repurposing Mass-produced Internal Combustion Engines Quantifying the Value and Use of Low-cost Internal Combustion Piston Engines for Modular Applications in Energy and Chemical Engineering Industries

    NASA Astrophysics Data System (ADS)

    L'Heureux, Zara E.

    This thesis proposes that internal combustion piston engines can help clear the way for a transformation in the energy, chemical, and refining industries that is akin to the transition computer technology experienced with the shift from large mainframes to small personal computers and large farms of individually small, modular processing units. This thesis provides a mathematical foundation, multi-dimensional optimizations, experimental results, an engine model, and a techno-economic assessment, all working towards quantifying the value of repurposing internal combustion piston engines for new applications in modular, small-scale technologies, particularly for energy and chemical engineering systems. Many chemical engineering and power generation industries have focused on increasing individual unit sizes and centralizing production. This "bigger is better" concept makes it difficult to evolve and incorporate change. Large systems are often designed with long lifetimes, incorporate innovation slowly, and necessitate high upfront investment costs. Breaking away from this cycle is essential for promoting change, especially change happening quickly in the energy and chemical engineering industries. The ability to evolve during a system's lifetime provides a competitive advantage in a field dominated by large and often very old equipment that cannot respond to technology change. This thesis specifically highlights the value of small, mass-manufactured internal combustion piston engines retrofitted to participate in non-automotive system designs. The applications are unconventional and stem first from the observation that, when normalized by power output, internal combustion engines are one hundred times less expensive than conventional, large power plants. This cost disparity motivated a look at scaling laws to determine if scaling across both individual unit size and number of units produced would predict the two order of magnitude difference seen here. For the first time, this thesis provides a mathematical analysis of scaling with a combination of both changing individual unit size and varying the total number of units produced. Different paths to meet a particular cumulative capacity are analyzed and show that total costs are path dependent and vary as a function of the unit size and number of units produced. The path dependence identified is fairly weak, however, and for all practical applications, the underlying scaling laws seem unaffected. This analysis continues to support the interest in pursuing designs built around small, modular infrastructure. Building on the observation that internal combustion engines are an inexpensive power-producing unit, the first optimization in this thesis focuses on quantifying the value of engine capacity committing to deliver power in the day-ahead electricity and reserve markets, specifically based on pricing from the New York Independent System Operator (NYISO). An optimization was written in Python to determine, based on engine cost, fuel cost, engine wear, engine lifetime, and electricity prices, when and how much of an engine's power should be committed to a particular energy market. The optimization aimed to maximize profit for the engine and generator (engine genset) system acting as a price-taker. The result is an annual profit on the order of \\$30 per kilowatt. The most value in the engine genset is in its commitments to the spinning reserve market, where power is often committed but not always called on to deliver. This analysis highlights the benefits of modularity in energy generation and provides one example where the system is so inexpensive and short-lived, that the optimization views the engine replacement cost as a consumable operating expense rather than a capital cost. Having the opportunity to incorporate incremental technological improvements in a system's infrastructure throughout its lifetime allows introduction of new technology with higher efficiencies and better designs. An alternative to traditionally large infrastructure that locks in a design and today's state-of-the-art technology for the next 50 - 70 years, is a system designed to incorporate new technology in a modular fashion. The modular engine genset system used for power generation is one example of how this works in practice. The largest single component of this thesis is modeling, designing, retrofitting, and testing a reciprocating piston engine used as a compressor. Motivated again by the low cost of an internal combustion engine, this work looks at how an engine (which is, in its conventional form, essentially a reciprocating compressor) can be cost-effectively retrofitted to perform as a small-scale gas compressor. In the laboratory, an engine compressor was built by retrofitting a one-cylinder, 79 cc engine. Various retrofitting techniques were incorporated into the system design, and the engine compressor performance was quantified in each iteration. Because the retrofitted engine is now a power consumer rather than a power-producing unit, the engine compressor is driven in the laboratory with an electric motor. Experimentally, compressed air engine exhaust (starting at elevated inlet pressures) surpassed 650 psia (about 45 bar), which makes this system very attractive for many applications in chemical engineering and refining industries. A model of the engine compressor system was written in Python and incorporates experimentally-derived parameters to quantify gas leakage, engine friction, and flow (including backflow) through valves. The model as a whole was calibrated and verified with experimental data and is used to explore engine retrofits beyond what was tested in the laboratory. Along with the experimental and modeling work, a techno-economic assessment is included to compare the engine compressor system with state-of-the-art, commercially-available compressors. Included in the financial analysis is a case study where an engine compressor system is modeled to achieve specific compression needs. The result of the assessment is that, indeed, the low engine cost, even with the necessary retrofits, provides a cost advantage over incumbent compression technologies. Lastly, this thesis provides an algorithm and case study for another application of small-scale units in energy infrastructure, specifically in energy storage. This study focuses on quantifying the value of small-scale, onsite energy storage in shaving peak power demands. This case study focuses on university-level power demands. The analysis finds that, because peak power is so costly, even small amounts of energy storage, when dispatched optimally, can provide significant cost reductions. This provides another example of the value of small-scale implementations, particularly in energy infrastructure. While the study focuses on flywheels and batteries as the energy storage medium, engine gensets could also be used to deliver power and shave peak power demands. The overarching goal of this thesis is to introduce small-scale, modular infrastructure, with a particular focus on the opportunity to retrofit and repurpose inexpensive, mass-manufactured internal combustion engines in new and unconventional applications. The modeling and experimental work presented in this dissertation show very compelling results for engines incorporated into both energy generation infrastructure and chemical engineering industries via compression technologies. The low engine cost provides an opportunity to add retrofits whilst remaining cost competitive with the incumbent technology. This work supports the claim that modular infrastructure, built on the indivisible unit of an internal combustion engine, can revolutionize many industries by providing a low-cost mechanism for rapid change and promoting small-scale designs.

  16. ITER-FEAT operation

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.

  17. Supporting active learning in an undergraduate geotechnical engineering course using group-based audience response systems quizzes

    NASA Astrophysics Data System (ADS)

    Donohue, Shane

    2014-01-01

    The use of audience response systems (ARSs) or 'clickers' in higher education has increased over the recent years, predominantly owing to their ability to actively engage students, for promoting individual and group learning, and for providing instantaneous feedback to students and teachers. This paper describes how group-based ARS quizzes have been integrated into an undergraduate civil engineering course on foundation design. Overall, the ARS summary quizzes were very well received by the students. Feedback obtained from the students indicates that the majority believed the group-based quizzes were useful activities, which helped to improve their understanding of course materials, encouraged self-assessment, and assisted preparation for their summative examination. Providing students with clickers does not, however, necessarily guarantee the class will be engaged with the activity. If an ARS activity is to be successful, careful planning and design must be carried out and modifications adopted where necessary, which should be informed by the literature and relevant student feedback.

  18. Future development of the PLATO Observatory for Antarctic science

    NASA Astrophysics Data System (ADS)

    Ashley, Michael C. B.; Bonner, Colin S.; Everett, Jon R.; Lawrence, Jon S.; Luong-Van, Daniel; McDaid, Scott; McLaren, Campbell; Storey, John W. V.

    2010-07-01

    PLATO is a self-contained robotic observatory built into two 10-foot shipping containers. It has been successfully deployed at Dome A on the Antarctic plateau since January 2008, and has accumulated over 730 days of uptime at the time of writing. PLATO provides 0.5{1kW of continuous electrical power for a year from diesel engines running on Jet-A1, supplemented during the summertime with solar panels. One of the 10-foot shipping containers houses the power system and fuel, the other provides a warm environment for instruments. Two Iridium satellite modems allow 45 MB/day of data to be transferred across the internet. Future enhancements to PLATO, currently in development, include a more modular design, using lithium iron-phosphate batteries, higher power output, and a light-weight low-power version for eld deployment from a Twin Otter aircraft. Technologies used in PLATO include a CAN (Controller Area Network) bus, high-reliability PC/104 com- puters, ultracapacitors for starting the engines, and fault-tolerant redundant design.

  19. Higher-Order Mixed Finite Element Methods for Time Domain Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Stowell, M; Koning, J

    This is the final report for LDRD 01-ERD-005. The Principal Investigator was Niel Madsen of the Defense Sciences Engineering Division (DSED). Collaborators included Daniel White, Joe Koning and Nathan Champagne of DSED, Mark Stowell of Center for Applications Development and Software Engineering (CADSE), and Ph.D. students Rob Rieben and Aaron Fisher at the UC Davis Department of Applied Science. It should be noted that the students were partially supported by the LLNL Student-Employee Graduate Research Fellow program. We begin with an Introduction which provides background and motivation for this research effort. Section II contains high-level description of our Approach, andmore » Section III summarizes our key research Accomplishments. A description of the Software deliverables is provided in Section IV, and Section V includes simulation Validation and Results. It should be noted we do not get into the mathematical details in this report, rather these can be found in our publications which are listed in Section III.« less

  20. Nanotechnology Investigated for Future Gelled and Metallized Gelled Fuels

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2003-01-01

    The objective of this research is to create combustion data for gelled and metallized gelled fuels using unique nanometer-sized gellant particles and/or nanometer-sized aluminum particles. Researchers at the NASA Glenn Research Center are formulating the fuels for both gas turbine and pulsed detonation engines. We intend to demonstrate metallized gelled fuel ignition characteristics for pulse detonation engines with JP/aluminum fuel and for gas turbine engines with gelled JP, propane, and methane fuel. The fuels to be created are revolutionary as they will deliver the highest theoretically maximum performance of gelled and metallized gelled fuels. Past combustion work has used micrometer-sized particles, which have limited the combustion performance of gelled and metallized gelled fuels. The new fuel used nanometer-sized aluminum oxide particles, which reduce the losses due to mismatch in the gas and solid phases in the exhaust. Gelled fuels provide higher density, added safety, reduced fuel slosh, reduced leakage, and increased exhaust velocity. Altogether, these benefits reduce the overall size and mass of the vehicle, increasing its flexibility.

  1. Problematising the `Career Academic' in UK construction and engineering education: does the system want what the system gets?

    NASA Astrophysics Data System (ADS)

    Pilcher, Nick; Forster, Alan; Tennant, Stuart; Murray, Mike; Craig, Nigel

    2017-11-01

    'Career Academics' are principally research-led, entering academia with limited or no industrial or practical experience. UK Higher Education Institutions welcome them for their potential to attain research grant funding and publish world-leading journal papers, ultimately enhancing institutional reputation. This polemical paper problematises the Career Academic around three areas: their institutional appeal; their impact on the student experience, team dynamics and broader academic functions; and current strategic policy to employ them. We also argue that recent UK Government teaching-focused initiatives will not address needs to employ practical academics, or 'Pracademics' in predominantly vocational Construction and Engineering Education. We generate questions for policy-makers, institutions and those implementing strategy. We argue that research is key, but partial rebalancing will achieve a diverse academic skill base to achieve contextualised construction and engineering education. In wider European contexts, the paper resonates with issues of academic 'drift' and provides reflection for others on the UK context.

  2. Creating the learning situation to promote student deep learning: Data analysis and application case

    NASA Astrophysics Data System (ADS)

    Guo, Yuanyuan; Wu, Shaoyan

    2017-05-01

    How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.

  3. Design Concepts for Cooled Ceramic Composite Turbine Vane

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  4. Genotype Specification Language.

    PubMed

    Wilson, Erin H; Sagawa, Shiori; Weis, James W; Schubert, Max G; Bissell, Michael; Hawthorne, Brian; Reeves, Christopher D; Dean, Jed; Platt, Darren

    2016-06-17

    We describe here the Genotype Specification Language (GSL), a language that facilitates the rapid design of large and complex DNA constructs used to engineer genomes. The GSL compiler implements a high-level language based on traditional genetic notation, as well as a set of low-level DNA manipulation primitives. The language allows facile incorporation of parts from a library of cloned DNA constructs and from the "natural" library of parts in fully sequenced and annotated genomes. GSL was designed to engage genetic engineers in their native language while providing a framework for higher level abstract tooling. To this end we define four language levels, Level 0 (literal DNA sequence) through Level 3, with increasing abstraction of part selection and construction paths. GSL targets an intermediate language based on DNA slices that translates efficiently into a wide range of final output formats, such as FASTA and GenBank, and includes formats that specify instructions and materials such as oligonucleotide primers to allow the physical construction of the GSL designs by individual strain engineers or an automated DNA assembly core facility.

  5. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations.

    PubMed

    Janardhanan, Sathyanarayana; Wang, Martha O; Fisher, John P

    2012-08-01

    The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.

  6. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  7. Variability of patient spine education by Internet search engine.

    PubMed

    Ghobrial, George M; Mehdi, Angud; Maltenfort, Mitchell; Sharan, Ashwini D; Harrop, James S

    2014-03-01

    Patients are increasingly reliant upon the Internet as a primary source of medical information. The educational experience varies by search engine, search term, and changes daily. There are no tools for critical evaluation of spinal surgery websites. To highlight the variability between common search engines for the same search terms. To detect bias, by prevalence of specific kinds of websites for certain spinal disorders. Demonstrate a simple scoring system of spinal disorder website for patient use, to maximize the quality of information exposed to the patient. Ten common search terms were used to query three of the most common search engines. The top fifty results of each query were tabulated. A negative binomial regression was performed to highlight the variation across each search engine. Google was more likely than Bing and Yahoo search engines to return hospital ads (P=0.002) and more likely to return scholarly sites of peer-reviewed lite (P=0.003). Educational web sites, surgical group sites, and online web communities had a significantly higher likelihood of returning on any search, regardless of search engine, or search string (P=0.007). Likewise, professional websites, including hospital run, industry sponsored, legal, and peer-reviewed web pages were less likely to be found on a search overall, regardless of engine and search string (P=0.078). The Internet is a rapidly growing body of medical information which can serve as a useful tool for patient education. High quality information is readily available, provided that the patient uses a consistent, focused metric for evaluating online spine surgery information, as there is a clear variability in the way search engines present information to the patient. Published by Elsevier B.V.

  8. Supercruiser Arrow HS-8

    NASA Technical Reports Server (NTRS)

    Lord, Paul; Kao, Edward; Abobo, Joey B.; Collins, Todd A.; Ma, Leong; Murad, Adnan; Naran, Hitesh; Nguyen, Thuan P.; Nuon, Timithy I.; Thomas, Dimitri D.

    1992-01-01

    Technology in aeronautics has advanced dramatically since the last design of a production High Speed Civil Transport (HSCT) aircraft. Newly projected requirements call for a new High Speed Civil Transport aircraft with a range of approximately 550 nm and at least 275 passenger capacity. The aircraft must be affordable and marketable. The new HSCT must be able to sustain long-duration flights and to absorb the abuse of daily operation. The new aircraft must be safe and simple to fly and require a minimum amount of maintenance. This aircraft must meet FAA certification criteria of FAR Part 25 and environmental constraints. Several design configurations were examined and two designs were selected for further investigation. The first design employs the delta planform wings and conventional empennage layout. The other design uses a swing wing layout and conventional empennage. Other engineering challenges, including materials and propulsion are also discussed. At a cruise flight speed between Mach 2.2 and Mach 3.0, no current generation of materials can endure the thermal loading of supersonic flight and satisfy the stringent weight requirements. A new generation of lightweight composite materials must be developed for the HSCT. With the enforcement of stage 3 noise restrictions, these new engines must be able to propel the aircraft and satisfy the noise limit. The engine with the most promise is the variable cycle engine. At low subsonic speeds the engine operates like a turbofan engine, providing the most efficient performance. At higher speeds the variable cycle engine operates as a turbojet power plant. The two large engine manufacturers, General Electric and Pratt & Whitney in the United States, are combining forces to make the variable cycle engine a reality.

  9. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less

  10. Attracting Prospective Engineering Students in the Emerging European Space for Higher Education

    ERIC Educational Resources Information Center

    Lopez-Martin, Antonio J.

    2010-01-01

    A set of outreach activities implemented by the College of Engineering of the Public University of Navarra, Spain, is described. They represent different initiatives aimed to improve recruitment of young engineers in the difficult context of declining interest in engineering and the educational changes Europe is facing nowadays. The initiatives…

  11. Undergraduate Women's Participation in Professional Organizations

    NASA Astrophysics Data System (ADS)

    Hartman, Moshe; Hartman, Harriet

    This article focuses on the differences among female undergraduate engineering students who choose to affiliate with student chapters of discipline-specific, mixed-gender professional organizations, the student chapter of the Society of Women Engineers (SWE), or not to affiliate at all. Participants in the different kinds of organizations are compared to nonparticipants to explore how participation is related to professionalization and the development of engineering social capital. Compared with nonparticipants, participants were more involved in extracurricular enrichment and "help" activities; they were more satisfied with most aspects of the engineering program; they had higher grades; they were more self-confident about themselves as engineers, and by the end of the academic year, about their engineering competencies; and they were more strongly committed to a future in engineering. Participation in SWE was associated with greater involvement in study activities, higher satisfaction with the coursework load, and a different perception of the problems women face in the field. Data were taken from a survey of engineering students at Rowan University during the 2000-2001 academic year, which was funded by the National Science Foundation.

  12. Examining maintenance responsibilities.

    PubMed

    Lam, K C

    2001-06-01

    This paper has examined the important responsibilities of the two organisations involved in the provision of maintenance service for the vital building services in many of our highly serviced buildings. The issues raised could be put to beneficial use in both clients and maintenance providers. All in all, the clients should work closely with their maintenance providers. Engineering services in buildings will not perform satisfactorily and efficiently if both parties do not work together and understand the maintenance tasks based on a business partnering mode. Put forward is the view that the management of the activities involved in the operation and maintenance process is a "shared commitment/involvement" between the client and the maintenance provider. It is obvious that many factors can influence the continued effectiveness of a quality maintenance scheme set up by client and provider. Some of these factors are: Change in key personnel Updates in technology Amendments to engineering practice Implementation of legislative requirements Changes in operation by client or provider Change of use of building Passage of time These factors must be fully reviewed by both parties from time to time, and necessary actions taken. A cooperative team working relationship and improved communication should be fostered by the client and his provider for the best management of services maintenance. This arrangement will contribute to better building services systems with continuous improvement; improved value for clients and higher return for the maintenance provider.

  13. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.

    PubMed

    Faulhammer, E; Zellnitz, S; Wutscher, T; Stranzinger, S; Zimmer, A; Paudel, A

    2018-01-30

    This study investigates engineered carrier, as well as engineered API particles, and shows that there are distinct performance indicators of particle engineering for carrier-based dry powder inhalers (DPIs). Spray dried (SDSS) and jet-milled (JMSS) salbutamol sulphate (SS) was blended with untreated α-lactose monohydrate (LAC_R) and α-lactose monohydrate engineered (LAC_E). Subsequent capsule filling was performed with different process settings on a dosator nozzle capsule filling machine in order to reach a target fill weight of 20-25 mg. To evaluate the performance of the different mixtures, in vitro lung deposition experiments were carried out with a next generation impactor, the emitted dose (ED) and fine particle fraction (FPF) were calculated based on the specification of the European pharmacopoeia. The FPF of micronised powder blends is significantly higher (20%) compared to the FPF of spray dried blends (5%). Compared to API engineering, carrier engineering had a positive effect on the capsule filling performance (weight variability and mean fill weight) at lower compression ratios (setting 1). Results further showed that higher compression ratios appear to be beneficial in terms of capsule filling performance (higher fill weight and less fill weight variation). Concluding, it can be stated that the carrier engineering, or generally carrier properties, govern downstream processing, whereas the API engineering and API properties govern the aerosolisation performance and thereby significantly affect the dose delivery to the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Critical Thinking Disposition: The Effects of Infusion Approach in Engineering Drawing

    ERIC Educational Resources Information Center

    Darby, Norazlinda Mohd; Rashid, Abdullah Mat

    2017-01-01

    Critical Thinking Disposition is known as an important factor that drives a student to use Higher Order Thinking Skills (HOTS) in order to solve engineering drawing problems. Infusing them while teaching the subject may enhance students' disposition and higher order thinking skills. However, no research has been done in critical thinking…

  15. Engineers' Spatial Orientation Ability Development at the European Space for Higher Education

    ERIC Educational Resources Information Center

    Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero

    2011-01-01

    The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…

  16. Flight Investigation of the Knock-Limited Performance of a Triptane Blend, a Toluene Blend, and 28-R Fuel in an R-1830-75 Engine

    NASA Technical Reports Server (NTRS)

    Blackman, Calvin C.

    1946-01-01

    Knock-limited performance data were obtained for three fuels on an R-1830-75 engine in a B-24D airplane at engine speeds of 1800, 2250, and 2600 rpm, a spark advance of 25 degrees B.T.C., and carburetor-air temperatures of 85 F for 1800 and 2250 rpm and 100 F for 2600 rpm. The test fuels were a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), a blend of 80 percent 28-R plus 15 percent toluene (leaded to 4.5 ml TEL / gal), and 28-R fuel. The knock-limited manifold pressure of the toluene blend depreciated more in the lean region than the triptane blend or 28-R fuel. The knock-limited brake horsepower for the triptane blend varied from 16 to 25 percent higher than 28-R in the lean region and 18 to 30 percent higher in the rich region. The knock-limited brake horsepower of the toluene blend was approximately 15 percent higher than that of 28-R in the rich region and varied from 2 to 10 percent higher in the lean region. Knock limits of the triptane blend and 28-R fuel tested in the R-1830-75 engine agreed with limits for the same fuels determined with the R-1830-94 engine for engine speeds of 1800 and 2250 rpm.

  17. Development of a One-Stop Data Search and Discovery Engine using Ontologies for Semantic Mappings (HydroSeek)

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Beran, B.

    2007-12-01

    Search engines have changed the way we see the Internet. The ability to find the information by just typing in keywords was a big contribution to the overall web experience. While the conventional search engine methodology worked well for textual documents, locating scientific data remains a problem since they are stored in databases not readily accessible by search engine bots. Considering different temporal, spatial and thematic coverage of different databases, especially for interdisciplinary research it is typically necessary to work with multiple data sources. These sources can be federal agencies which generally offer national coverage or regional sources which cover a smaller area with higher detail. However for a given geographic area of interest there often exists more than one database with relevant data. Thus being able to query multiple databases simultaneously is a desirable feature that would be tremendously useful for scientists. Development of such a search engine requires dealing with various heterogeneity issues. In scientific databases, systems often impose controlled vocabularies which ensure that they are generally homogeneous within themselves but are semantically heterogeneous when moving between different databases. This defines the boundaries of possible semantic related problems making it easier to solve than with the conventional search engines that deal with free text. We have developed a search engine that enables querying multiple data sources simultaneously and returns data in a standardized output despite the aforementioned heterogeneity issues between the underlying systems. This application relies mainly on metadata catalogs or indexing databases, ontologies and webservices with virtual globe and AJAX technologies for the graphical user interface. Users can trigger a search of dozens of different parameters over hundreds of thousands of stations from multiple agencies by providing a keyword, a spatial extent, i.e. a bounding box, and a temporal bracket. As part of this development we have also added an environment that allows users to do some of the semantic tagging, i.e. the linkage of a variable name (which can be anything they desire) to defined concepts in the ontology structure which in turn provides the backbone of the search engine.

  18. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  19. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  20. Engine performance with a hydrogenated safety fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1933-01-01

    This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.

  1. Regulation of EPS production in Lactobacillus casei LC2W through metabolic engineering.

    PubMed

    Li, N; Huang, Y; Liu, Z; You, C; Guo, B

    2015-12-01

    Lactobacillus casei LC2W is an exopolysaccharide(EPS)-producing strain with probiotic effects. The low efficiency and unclear regulation mechanism of EPS biosynthesis have become main constraints for its application in food industry. To investigate the major rate-limiting factors of EPS biosynthesis and to improve its yield, metabolic engineering was applied to this strain. Eight relevant genes related to central metabolism, sugar-nucleotides supply, glycosyltransferase and cofactor engineering were cloned and overexpressed. The results suggested that nox, pfk, rfbB and galT genes were the largest contributors to EPS biosynthesis in this study, which elevated EPS yield by 46·0, 20, 17·4 and 19·6% respectively. Notably, under aerobic condition which was not a suitable condition for lactobacilli to grow in, recombinant strain LC-nox achieved the highest EPS yield of 263·7 mg l(-1) , which was increased by 75% compared to that of the starting strain. The oxygen stress was excluded since the phenomenon was not observed in the control strain under the same condition. Therefore, it was probably that higher NADH oxidase activity led to a decreased NADH availability and reduced lactate concentration, which resulted in the elevation of EPS yield. This study contributed to the understanding of EPS biosynthesis in Lact. casei through metabolic engineering and provided a starting point for introducing cofactor engineering into this strain. Overexpression of NADH oxidase was found to have a most significant effect on the EPS production. It is the first report that EPS could be accumulated to such a high level under aerobic condition in lactobacilli. Our results provided a novel strategy for the improvement of EPS production in lactic acid bacteria. © 2015 The Society for Applied Microbiology.

  2. That None Shall Perish

    NASA Astrophysics Data System (ADS)

    Mack, Kelly

    2010-03-01

    Despite efforts to increase the number of women faculty in the STEM disciplines, the representation of women, particularly in higher academic ranks remains disproportionately low. As a means of addressing this issue, the National Science Foundation (NSF) ADVANCE Program has as its mission to increase the participation and advancement of women in academic science and engineering careers. As such, the Program utilizes advances in social science research, as well as both demonstrated and novel strategies rooted in organizational change theory as a means of targeting gender diversity issues in the science, technology, engineering, and mathematics (STEM) disciplines. This presentation will provide an overview of the current status of women faculty, as well as the ADVANCE Program and the mechanisms by which it has supported institutions of higher education. Additionally, vital best practices and the concomitant incorporation of them into the institutional infrastructure will be discussed. These include, but are not limited to: strategic training on implicit bias, programmatic focus on departmental leadership, use of professional development grants, institutionalization of mentoring, incorporation of transparency in policies and procedures, demonstration of sensitivities toward work-life balance issues and women of color.

  3. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  4. Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered β-galactosidase.

    PubMed

    Estevinho, Berta N; Samaniego, Nuria; Talens-Perales, David; Fabra, Maria José; López-Rubio, Amparo; Polaina, Julio; Marín-Navarro, Julia

    2018-08-01

    Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a β-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% lactose to a high extent. Reuse of the immobilized enzyme was limited by the stability of the β-galactosidase module, whereas the CBM2 module provided stable attachment of the hybrid enzyme to the BC support, after long incubation periods (3 h) at 75 °C. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  6. Design and experimental investigations on six-stroke SI engine using acetylene with water injection.

    PubMed

    Gupta, Keshav; Suthar, Kishanlal; Jain, Sheetal Kumar; Agarwal, Ghanshyam Das; Nayyar, Ashish

    2018-06-02

    In the present study, a four-stroke cycle gasoline engine is redesigned and converted into a six-stroke cycle engine and experimental study has been conducted using gasoline and acetylene as fuel with water injection at the end of the recompression stroke. Acetylene has been used as an alternative fuel along with gasoline and performance of the six-stroke spark ignition (SI) engine with these two fuels has been studied separately and compared. Brake power and thermal efficiency are found to be 5.18 and 1.55% higher with acetylene as compared to gasoline in the six-stroke engine. However, thermal efficiency is found to be 45% higher with acetylene in the six-stroke engine as compared to four-stroke SI engine. The CO and HC emissions were found to be reduced by 13.33 and 0.67% respectively with acetylene as compared to gasoline due to better combustion of acetylene. The NO x emission was reduced by 5.65% with acetylene due to lower peak temperature by water injection. The experimental results showed better engine performance and emissions with acetylene as fuel in the six-stroke engine.

  7. Providing Co-Curricular Support: A Multi-Case Study of Engineering Student Support Centers

    ERIC Educational Resources Information Center

    Lee, Walter C., Jr.

    2015-01-01

    In response to the student retention and diversity issues that have been persistent in undergraduate engineering education, many colleges have developed Engineering Student Support Centers (ESSCs) such as Minority Engineering Programs (MEPs) and Women in Engineering Programs (WEPs). ESSCs provide underrepresented students with co-curricular…

  8. Sustainable Development in Engineering Education

    ERIC Educational Resources Information Center

    Taoussanidis, Nikolaos N.; Antoniadou, Myrofora A.

    2006-01-01

    The principles and practice of environmentally and socially sustainable engineering are in line with growing community expectations and the strengthening voice of civil society in engineering interventions. Pressures towards internationalization and globalization are reflected in new course accreditation criteria and higher education structures.…

  9. The PIT MkV pulsed inductive thruster

    NASA Technical Reports Server (NTRS)

    Dailey, C. Lee; Lovberg, Ralph H.

    1993-01-01

    The pulsed inductive thruster (PIT) is an electrodeless, magnetic rocket engine that can operate with any gaseous propellant. A puff of gas injected against the face of a flat (spiral) coil is ionized and ejected by the magnetic field of a fast-rising current pulse from a capacitor bank discharge. Single shot operation on an impulse balance has provided efficiency and I(sub sp) data that characterize operation at any power level (pulse rate). The 1-m diameter MkV thruster concept offers low estimated engine mass at low powers, together with power capability up to more than 1 MW for the 1-m diameter design. A 20 kW design estimate indicates specific mass comparable to Ion Engine specific mass for 10,000 hour operation, while a 100,000 hour design would have a specific mass 1/3 that of the Ion Engine. Performance data are reported for ammonia and hydrazine. With ammonia, at 32 KV coil voltage, efficiency is a little more than 50 percent from 4000 to more than 8000 seconds I(sub sp). Comparison with data at 24 and 28 kV indicates that a wider I(sub sp) range could be achieved at higher coil voltages, if required for deep space missions.

  10. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    PubMed

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of a turbojet engine gearbox test rig for prognostics and health management

    NASA Astrophysics Data System (ADS)

    Rezaei, Aida; Dadouche, Azzedine

    2012-11-01

    Aircraft engine gearboxes represent one of the many critical systems/elements that require special attention for longer and safer operation. Reactive maintenance strategies are unsuitable as they usually imply higher repair costs when compared to condition based maintenance. This paper discusses the main prognostics and health management (PHM) approaches, describes a newly designed gearbox experimental facility and analyses preliminary data for gear prognosis. The test rig is designed to provide full capabilities of performing controlled experiments suitable for developing a reliable diagnostic and prognostic system. The rig is based on the accessory gearbox of the GE J85 turbojet engine, which has been slightly modified and reconfigured to replicate real operating conditions such as speeds and loads. Defect to failure tests (DTFT) have been run to evaluate the performance of the rig as well as to assess prognostic metrics extracted from sensors installed on the gearbox casing (vibration and acoustic). The paper also details the main components of the rig and describes the various challenges encountered. Successful DTFT results were obtained during an idle engine performance test and prognostic metrics associated with the sensor suite were evaluated and discussed.

  12. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.

    PubMed

    Fischer, Simon; Handrick, René; Otte, Kerstin

    2015-12-01

    Chinese hamster ovary (CHO) cells represent the most frequently applied host cell system for industrial manufacturing of recombinant protein therapeutics. CHO cells are capable of producing high quality biologics exhibiting human-like post-translational modifications in gram quantities. However, production processes for biopharmaceuticals using mammalian cells still suffer from cellular limitations such as limited growth, low productivity and stress resistance as well as higher expenses compared to bacterial or yeast based expression systems. Besides bioprocess, media and vector optimizations, advances in host cell engineering technologies comprising introduction, knock-out or post-transcriptional silencing of engineering genes have paved the way for remarkable achievements in CHO cell line development. Furthermore, thorough analysis of cellular pathways and mechanisms important for bioprocessing steadily unravels novel target molecules which might be addressed by functional genomic tools in order to establish superior production cell factories. This review provides a comprehensive summary of the most fundamental achievements in CHO cell engineering over the past three decades. Finally, the authors discuss the potential of novel and innovative methodologies that might contribute to further enhancement of existing CHO based production platforms for biopharmaceutical manufacturing in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  14. Advanced solar receivers for space power

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Coombs, M. G.; Lacy, D. E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability and, when implemented, will be lighter, smaller, and/or more efficient than baseline systems such as the configuration used for the Brayton solar receiver under development by Garrett AiResearch for the NASA Space Station. In addition to the baseline designs, four other receiver concepts were designed and evaluated with respect to Brayton and Stirling engines. These concepts include a higher temperature version of the baseline receiver, a packed bed receiver, a plate-fin receiver, and a heat pipe receiver. The thermal storage for all designs is provided by the melting and freezing of a salt.

  15. Expanded Guidance for NASA Systems Engineering. Volume 1: Systems Engineering Practices

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.

    2016-01-01

    This document is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the expanded guidance is to increase awareness and consistency across the Agency and advance the practice of SE. This guidance provides perspectives relevant to NASA and data particular to NASA. This expanded guidance should be used as a companion for implementing NPR 7123.1, Systems Engineering Processes and Requirements, the Rev 2 version of SP-6105, and the Center-specific handbooks and directives developed for implementing systems engineering at NASA. It provides a companion reference book for the various systems engineering-related training being offered under NASA's auspices.

  16. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    NASA Astrophysics Data System (ADS)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.

  17. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  18. Möglichkeiten und Grenzen der genetischen Manipulation

    NASA Astrophysics Data System (ADS)

    Klingmüller, Walter

    1981-03-01

    Examples for genetic engineering are the transfer of nuclei between cells of higher animals and the introduction of heterologous DNA into bacteria by means of plasmids. The former approach will help to establish new ways in animal breeding, the latter provides bacterial cells that produce proteins of medical importance. The moral justification of related studies in man is still open, but the possible risks of gene technology can be coped with by adhering to proper safety regulations.

  19. The National Shipbuilding Research Program. Application of Industrial Engineering Techniques to Reduce Workers’ Compensation and Environmental Costs - Deliverable D

    DTIC Science & Technology

    1999-10-01

    Electrostatic guns provide opportunities for exterior application of topcoats such as urethanes, acrylics , alkyds and epoxies. Most shipbuilding...A hybrid of airless spray and conventional air-atomized spray, this kind of gun uses fluid pressures higher than those used in conventional air...voltage) by simply flipping a switch. All essential controls are located right at the back of the gun. Other electrostatic systems require constant

  20. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    ERIC Educational Resources Information Center

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  1. How to Make Mathematics Relevant to First-Year Engineering Students: Perceptions of Students on Student-Produced Resources

    ERIC Educational Resources Information Center

    Loch, Birgit; Lamborn, Julia

    2016-01-01

    Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering…

  2. Recruitment and Retention of Full-Time Engineering Faculty, Fall 1980. Higher Education Panel Report Number 52.

    ERIC Educational Resources Information Center

    Atelsek, Frank J.; Gomberg, Irene L.

    The extent of faculty vacancies in colleges of engineering, the effects of such vacancies upon research and instructional programs, and the nature of the competition between academia and industry in hiring engineering faculty were surveyed. The focus is on permanent full-time faculty positions in the following major engineering fields:…

  3. Can your software engineer program your PLC?

    NASA Astrophysics Data System (ADS)

    Borrowman, Alastair J.; Taylor, Philip

    2016-07-01

    The use of Programmable Logic Controllers (PLCs) in the control of large physics experiments is ubiquitous1, 2, 3. The programming of these controllers is normally the domain of engineers with a background in electronics, this paper introduces PLC program development from the software engineer's perspective. PLC programs provide the link between control software running on PC architecture systems and physical hardware controlled and monitored by digital and analog signals. The higher-level software running on the PC is typically responsible for accepting operator input and from this deciding when and how hardware connected to the PLC is controlled. The PLC accepts demands from the PC, considers the current state of its connected hardware and if correct to do so (based upon interlocks or other constraints) adjusts its hardware output signals appropriately for the PC's demands. A published ICD (Interface Control Document) defines the PLC memory locations available to be written and read by the PC to control and monitor the hardware. Historically the method of programming PLCs has been ladder diagrams that closely resemble circuit diagrams, however, PLC manufacturers nowadays also provide, and promote, the use of higher-level programming languages4. Based on techniques used in the development of high-level PC software to control PLCs for multiple telescopes, this paper examines the development of PLC programs to operate the hardware of a medical cyclotron beamline controlled from a PC using the Experimental Physics and Industrial Control System (EPICS), which is also widely used in telescope control5, 6, 7. The PLC used is the new generation Siemens S7-1200 programmed using Siemens Pascal based Structured Control Language (SCL), which is their implementation of Structured Text (ST). The approach described is that from a software engineer's perspective, utilising Siemens Totally Integrated Automation (TIA) Portal integrated development environment (IDE) to create modular PLC programs based upon reusable functions capable of being unit tested without the PLC connected to hardware. Emphasis has been placed on designing an interface between EPICS and SCL that enforces correct operation of hardware through stringent separation of PC accessible PLC memory and hardware I/O addresses used only by the PLC. The paper also introduces the method used to automate the creation, from the same source document, the PLC memory structure (tag) definitions (defining memory used to access hardware I/O and that accessed by the PC) and creation of the PC program data structures (EPICS database records) used to access the permitted PLC addresses. From direct experience this paper demonstrates the advantages of PLC program development being shared between electronic and software engineers, to enable use of the most appropriate processes from both the perspective of the hardware and the higher-level software used to control it.

  4. Geoscience salaries up by 10.8%

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.

  5. Los Alamos National Security, LLC Request for Information on how industry may partner with the Laboratory on KIVA software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, Kathleen Herrera

    2016-02-29

    KIVA is a family of Fortran-based computational fluid dynamics software developed by LANL. The software predicts complex fuel and air flows as well as ignition, combustion, and pollutant-formation processes in engines. The KIVA models have been used to understand combustion chemistry processes, such as auto-ignition of fuels, and to optimize diesel engines for high efficiency and low emissions. Fuel economy is heavily dependent upon engine efficiency, which in turn depends to a large degree on how fuel is burned within the cylinders of the engine. Higher in-cylinder pressures and temperatures lead to increased fuel economy, but they also create moremore » difficulty in controlling the combustion process. Poorly controlled and incomplete combustion can cause higher levels of emissions and lower engine efficiencies.« less

  6. The Roles of Professional Engineers at the Institutions of Higher Learning in Nation-Building

    ERIC Educational Resources Information Center

    Harun, Zambri; Khamis, Nor Kamaliana; Isa, Mohamad Dali; Hashim, Hashimah

    2013-01-01

    This paper discusses the roles of professional engineers (PEs) who are attached to the Institutions of Higher Learning (IHLs) and how their contributions are as important as their counterparts in the industry. This paper highlights the roles for PEs at IHLs based on a survey conducted at selected IHLs in Malaysia. Academician-professional…

  7. How Well Does the SAT and GPA Predict the Retention of Science, Technology, Engineering, Mathematics, and Business Students

    ERIC Educational Resources Information Center

    Rohr, Samuel L.

    2013-01-01

    This study examined the relationship between various admissions selection criteria utilized by a small, Liberal Arts College in Indiana. More specifically, the study examined if a higher college preparatory GPA and a higher aggregate score on the SAT helped predict the retention of science, technology, engineering, mathematics, and business…

  8. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  9. Does the Internet provide patients or clinicians with useful information regarding faecal incontinence? An observational study.

    PubMed

    Leo, C A; Murphy, J; Hodgkinson, J D; Vaizey, C J; Maeda, Y

    2018-01-01

    The Internet has become an important platform for information communication. This study aim to investigate the utility of social media and search engines to disseminate faecal incontinence information. We looked into Social media platforms and search engines. There was not a direct patient recruitment and any available information from patients was already on public domain at the time of search. A quantitative analysis of types and volumes of information regarding faecal incontinence was made. Twelve valid pages were identified on Facebook: 5 (41%) pages were advertising commercial incontinence products, 4 (33%) pages were dedicated to patients support groups and 3 (25%) pages provided healthcare information. Also we found 192 Facebook posts. On Twitter, 2890 tweets were found of which 51% tweets provided healthcare information; 675 (45%) were sent by healthcare professionals to patients, 530 tweets (35.3%) were between healthcare professionals, 201 tweets (13.4%) were from medical journals or scientific books and 103 tweets (7%) were from hospitals or clinics with information about events and meetings. The second commonest type of tweets was advertising commercial incontinence products 27%. Patients tweeted to exchange information and advice between themselves (20.5%). In contrast, search engines as Google/Yahoo/Bing had a higher proportion of healthcare information (over 70%). Internet appears to have potential to be a useful platform for patients to learn about faecal incontinence and share information; however, given one lack of focus of available data, patients may struggle to identify valid and useful information.

  10. Dual Enrollment Academy Programs

    ERIC Educational Resources Information Center

    Gonzalez, Nicolas; Chavez, Guadalupe

    2009-01-01

    Dual Enrollment Engineering (DEEA) and Medical Science (DEMSA) Academies are two-year dual enrollment programs for high school students. Students explore engineering and medical careers through college coursework. Students prepare for higher education in engineering and medical fields while completing associate degrees in biology or engineering…

  11. Education for Professional Engineering Practice

    ERIC Educational Resources Information Center

    Bramhall, Mike D.; Short, Chris

    2014-01-01

    This paper reports on a funded collaborative large-scale curriculum innovation and enhancement project undertaken as part of a UK National Higher Education Science, Technology Engineering and Mathematics (STEM) programme. Its aim was to develop undergraduate curricula to teach appropriate skills for professional engineering practice more…

  12. Increasing the Extracted Beam Current Density in Ion Thrusters

    NASA Astrophysics Data System (ADS)

    Arthur, Neil Anderson

    Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam area to increase while maintaining a fixed span-to-gap. The central stalk also provides additional surface area for electron collection. Circumventing the anode area limitation, the annular ion engine can operate closer to the Child-Langmuir limit as compared to a conventional cylindrical ion thruster. Preliminary discharge characterization of a 65 cm annular ion engine shows >90% uniformity and validates the scalability of the technology. Operating beyond the Child-Langmuir limit would allow for even larger performance gains. This classic law does not consider the ion injection velocity into the grid sheath. The Child-Langmuir limit shifts towards higher current as the ion velocity increases. Ion drift velocity can be created by enhancing the axially-directed electric field. One method for creating this field is to modify the plasma potential distribution. This can be accomplished by biasing individual magnetic cusps, through isolated, conformal electrodes placed on each magnet ring. Experiments on a 15 cm ion thruster have shown that plasma potential in the bulk can be modified by as much as 5 V and establish ion drift towards the grid plane. Increases in ion current density at the grid by up to 20% are demonstrated. Performance implications are also considered, and increases in simulated beam current of 15% and decreases in discharge losses of 5% are observed. Electron density measurements within the magnetic cusps revealed, surprisingly, as cusp current draw increases, the leak width does not change. This suggests that instead of increasing the electron collection area, cusp bias enhances electron mobility along field lines.

  13. Success in Undergraduate Engineering Programs: A Comparative Analysis by Race and Gender

    NASA Astrophysics Data System (ADS)

    Lord, Susan

    2010-03-01

    Interest in increasing the number of engineering graduates in the United States and promoting gender equality and diversification of the profession has encouraged considerable research on women and minorities in engineering programs. Drawing on a framework of intersectionality theory, this work recognizes that women of different ethnic backgrounds warrant disaggregated analysis because they do not necessarily share a common experience in engineering education. Using a longitudinal, comprehensive data set of more than 79,000 students who matriculated in engineering at nine universities in the Southeastern United States, this research examines how the six-year graduation rates of engineering students vary by disaggregated combinations of gender and race/ethnicity. Contrary to the popular opinion that women drop out of engineering at higher rates, our results show that Asian, Black, Hispanic, Native American, and White women who matriculate in engineering are as likely as men to graduate in engineering in six years. In fact, Asian, Black, Hispanic, and Native American women engineering matriculants graduate at higher rates than men and there is a small difference for white students. 54 percent of White women engineering matriculants graduate in six-years compared with 53 percent of white men. For male and female engineering matriculants of all races, the most likely destination six years after entering college is graduation within engineering. This work underscores the importance of research disaggregated by race and gender and points to the critical need for more recruitment of women into engineering as the low representation of women in engineering education is primarily a reflection of their low representation at matriculation.

  14. Teaching introductory game development with unreal engine: Challenges, strategies, and experiences

    NASA Astrophysics Data System (ADS)

    Head, Nicholas A.

    From the days of Pong to 100 million dollar projects such as the Grand Theft Auto franchise, video games have evolved significantly over the years. This evolution has also changed the way game development is viewed as a career. Today, video games are one of the most profitable forms of entertainment, and game development courses are appearing at universities around the world. Even with this growth, a degree from a university has yet to be an important factor in finding a job in game development (Owen, 2013). This thesis examines a method of creating and implementing an introductory gaming course and recommends ways to improve the curriculum. The main focus of the course was to introduce game development to the students. Each week, they were given an exercise that covered a different topic. Students also took part in a team project in which they were tasked with creating a complete game. The goal of the team projects was to expand the student's basic knowledge given to them from the exercises. Data was gathered on the students' subjective experiences with the class. This data and the class's overall performance were compared with past iterations of the course. New to the course was the Unreal Engine. Students used the latest version of the engine, Unreal Engine 4, to complete exercises. Not all students chose to use this engine for the team project. Instructor and students experiences with the engine were also recorded. While there were some problems implementing the engine within our lab environment, we were still able to execute the overall lesson plan. Even with the engine issues, the course had overall good performance. CGT 241, Introduction to 3D Animation, was shown to help the students to complete the course while CGT 215, Computer Graphics Programming I, did not provide enough information on game programming. Exercises were found to be helpful but students wanted a better understanding of how these skills can be applied to game development. Team projects also went well with most teams creating a functional project. Students wanted more time to complete projects along with a structured approach to the project. Confidence in game development and the Unreal Engine were not high but students were enthusiastic in continuing in the field of game development. Recommendations were made to the curriculum in order to fix some of the issues with the introductory course and help students find a career. In order to fix the gap between the programming course and the introductory game course, a video game programming course was recommended that focused on teaching students how code works with video game engines. An option to specialize was also recommended in order to see a higher level of understanding on game concepts and a higher level of quality of game projects. Changes to the higher courses were also made for a yearlong course where students would focus on a single project to publish. This would expand on the introductory course while also replicating the game development process.

  15. Protein-Level Integration Strategy of Multiengine MS Spectra Search Results for Higher Confidence and Sequence Coverage.

    PubMed

    Zhao, Panpan; Zhong, Jiayong; Liu, Wanting; Zhao, Jing; Zhang, Gong

    2017-12-01

    Multiple search engines based on various models have been developed to search MS/MS spectra against a reference database, providing different results for the same data set. How to integrate these results efficiently with minimal compromise on false discoveries is an open question due to the lack of an independent, reliable, and highly sensitive standard. We took the advantage of the translating mRNA sequencing (RNC-seq) result as a standard to evaluate the integration strategies of the protein identifications from various search engines. We used seven mainstream search engines (Andromeda, Mascot, OMSSA, X!Tandem, pFind, InsPecT, and ProVerB) to search the same label-free MS data sets of human cell lines Hep3B, MHCCLM3, and MHCC97H from the Chinese C-HPP Consortium for Chromosomes 1, 8, and 20. As expected, the union of seven engines resulted in a boosted false identification, whereas the intersection of seven engines remarkably decreased the identification power. We found that identifications of at least two out of seven engines resulted in maximizing the protein identification power while minimizing the ratio of suspicious/translation-supported identifications (STR), as monitored by our STR index, based on RNC-Seq. Furthermore, this strategy also significantly improves the peptides coverage of the protein amino acid sequence. In summary, we demonstrated a simple strategy to significantly improve the performance for shotgun mass spectrometry by protein-level integrating multiple search engines, maximizing the utilization of the current MS spectra without additional experimental work.

  16. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  17. High-performance thermoelectric nanocomposites from nanocrystal building blocks.

    PubMed

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu

    2016-03-07

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  18. Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets.

    PubMed

    Lan, Qing; Vermeulen, Roel; Dai, Yufei; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Bin, Ping; Kim, Christopher; Bassig, Bryan A; Hosgood, H Dean; Silverman, Debra; Zheng, Yuxin; Rothman, Nathaniel

    2015-05-01

    The International Agency for Research on Cancer recently classified diesel engine exhaust (DEE) as a Group I carcinogen based largely on its association with lung cancer. However, the exposure-response relationship is still a subject of debate and the underlying mechanism by which DEE causes lung cancer in humans is not well understood. We conducted a cross-sectional molecular epidemiology study in a diesel engine truck testing facility of 54 workers exposed to a wide range of DEE (ie, elemental carbon air levels, median range: 49.7, 6.1-107.7 µg/m(3)) and 55 unexposed comparable controls. The total lymphocyte count (p=0.00044) and three of the four major lymphocyte subsets (ie, CD4+ T cells (p=0.00019), CD8+ T cells (p=0.0058) and B cells (p=0.017)) were higher in exposed versus control workers and findings were highly consistent when stratified by smoking status. In addition, there was evidence of an exposure-response relationship between elemental carbon and these end points (ptrends<0.05), and CD4+ T cell levels were significantly higher in the lowest tertile of DEE exposed workers compared to controls (p=0.012). Our results suggest that DEE exposure is associated with higher levels of cells that play a key role in the inflammatory process, which is increasingly being recognised as contributing to the aetiology of lung cancer. This study provides new insights into the underlying mechanism of DEE carcinogenicity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Virgin and recycled engine oil differentiation: a spectroscopic study.

    PubMed

    Al-Ghouti, Mohammad A; Al-Atoum, Lina

    2009-01-01

    As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied.

  20. One-pot engineering TiO2/graphene interface for enhanced adsorption and photocatalytic degradation of multiple organics.

    PubMed

    Song, Jianhua; Ling, Yun; Xie, Yu; Liu, Lianjun; Zhu, Huihua

    2018-06-13

    It is challenging to design a multifunctional structure or composite for simultaneously adsorb and photocatalytic degrade organic pollutants in water. Towards this goal, this work innovatively engineered interfacial sites between TiO2 particles and reduced graphene oxide (RGO) sheets by employing in situ one-pot one-step solvothermal method. The interface was associated with the content of RGO, solvothermal time and solvent ratio of n-pentanol to n-hexane. It was found that when at a moderate amount of RGO (25%), TiO2 nanoparticles were well dispersed on the surface of RGO or wrapped by RGO, thus leading to a fully contact and strong interaction to form Ti - O - C interfacial structure. But when at a low content of RGO (6%), TiO2 aggregates were mixture of nanosheets, nanoparticles and nanorods. 25%RGO/TiO2 also had 175% higher surface area (146m2/g), 95% larger volume (0.339 cm3/g) and smaller band gap than 6%RGO/TiO2. More importantly, 25%RGO/TiO2 demonstrated higher adsorption efficiency (25%) and 4 times faster degradation rate than TiO2 (0%). It also exhibited good capability to eliminate multiple organics and stable long-term cycle performance (up to 93% retention after 30 cycles). Its superiority was attributed to the large surface area and unique interface between TiO2 and RGO, which not only provided more active sites to capture pollutants but also enhanced charge transfer (3 µA/cm2, 5 times higher than TiO2). This work offered a promising way to purify water through engineering new materials structure and integrating adsorption and photodegradation technologies. © 2018 IOP Publishing Ltd.

  1. Women’s Reasons for Leaving the Engineering Field

    PubMed Central

    Fouad, Nadya A.; Chang, Wen-Hsin; Wan, Min; Singh, Romila

    2017-01-01

    Among the different Science, Technology, Engineering, and Math fields, engineering continues to have one of the highest rates of attrition (Hewlett et al., 2008). The turnover rate for women engineers from engineering fields is even higher than for men (Frehill, 2010). Despite increased efforts from researchers, there are still large gaps in our understanding of the reasons that women leave engineering. This study aims to address this gap by examining the reasons why women leave engineering. Specifically, we analyze the reasons for departure given by national sample of 1,464 women engineers who left the profession after having worked in the engineering field. We applied a person-environment fit theoretical lens, in particular, the Theory of Work Adjustment (TWA) (Dawis and Lofquist, 1984) to understand and categorize the reasons for leaving the engineering field. According to the TWA, occupations have different “reinforcer patterns,” reflected in six occupational values, and a mismatch between the reinforcers provided by the work environment and individuals’ needs may trigger departure from the environment. Given the paucity of literature in this area, we posed research questions to explore the reinforcer pattern of values implicated in women’s decisions to leave the engineering field. We used qualitative analyses to understand, categorize, and code the 1,863 statements that offered a glimpse into the myriad reasons that women offered in describing their decisions to leave the engineering profession. Our results revealed the top three sets of reasons underlying women’s decision to leave the jobs and engineering field were related to: first, poor and/or inequitable compensation, poor working conditions, inflexible and demanding work environment that made work-family balance difficult; second, unmet achievement needs that reflected a dissatisfaction with effective utilization of their math and science skills, and third, unmet needs with regard to lack of recognition at work and adequate opportunities for advancement. Implications of these results for future research as well as the design of effective intervention programs aimed at women engineers’ retention and engagement in engineering are discussed. PMID:28713295

  2. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  3. Phase of Photothermal Emission Analysis as a Diagnostic Tool for Thermal Barrier Coatings on Serviceable Engine Components

    NASA Astrophysics Data System (ADS)

    Kakuda, Tyler

    Power generation and aircraft companies are continuously improving the efficiency of gas turbines to meet economic and environmental goals. The trend towards higher efficiency has been achieved in part by raising the operating temperature of engines. At elevated temperatures, engine components are subject to many forms of degradation including oxidation, creep deformation and thermal cycle fatigue. To minimize these harmful effects, ceramic thermal barrier coatings (TBCs) are routinely used to insulate metal components from excessive heat loads. Efforts to make realistic performance assessments of current and candidate coating materials has led to a diverse battery of creative measurement techniques. While it is unrealistic to envision a single measurement that would provide all conceivable information about the TBC, it is arguable that the capability for the single most important measurement is still lacking. A quantitative and nondestructive measurement of the thermal protection offered by a coating is not currently among the measurements one can employ on a serviceable engine part (or even many experimental specimens). In this contribution, phase of photothermal emission analysis (PopTea) is presented as a viable thermal property measurement for serviceable engine components. As it will be shown, PopTea has the versatility to make measurements on gas turbine parts in situ, with the goal of monitoring TBCs over the lifetime of the engine. The main challenges toward this goal are dealing with changes that occur to the TBC during service. Several of the main degradations seen on engine equipment include: aging, surface contamination and infiltration of foreign deposits. Measuring coatings under these conditions, is the impetus of this work. Furthermore, it is demonstrated that PopTea can be used on real engine equipment with measurements made on an actual turbine blade.

  4. Methods Developed by the Tools for Engine Diagnostics Task to Monitor and Predict Rotor Damage in Real Time

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa

    2003-01-01

    Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.

  5. OCT imaging with temporal dispersion induced intense and short coherence laser source

    NASA Astrophysics Data System (ADS)

    Manna, Suman K.; le Gall, Stephen; Li, Guoqiang

    2016-10-01

    Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.

  6. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  7. Job Prospects for Chemical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    After several lean years, chemical engineering (a popular discipline among women) is witnessing a higher job demand for new graduates. Companies show a trend toward specialty chemicals with resultant needs for more engineering talent. Other opportunities in the field include agriculture and food processing, environmental control, biotechnology,…

  8. Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

    EPA Science Inventory

    Low-pressure loop exhaust gas recirculation (LPL- EGR) combined with a higher compression ratio is a technology package that has been the focus of significant research to increase engine thermal efficiency of downsized, turbocharged GDI engines. Research shows that the addition ...

  9. Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing; Yuan, Juan; He, Hong

    Detailed carbonyls emissions from ethanol-blended gasoline (containing 10% v/v, ethanol, E-10) and biodiesel-ethanol-diesel (BE-diesel) were carefully investigated on an EQ491i gasoline engine equipped with a three-way-catalyst (TWC) and a Commins-4B diesel engine. In engine-out emissions for the gasoline engine, total carbonyls from E-10 varied in the range of 66.7-99.4 mg kW -1 h -1, which was 3.1-8.2% less than those from fossil gasoline (E-0). In tailpipe emissions, total carbonyls from E-10 varied in the range of 9.2-20.7 mg kW -1 h -1, which were 3.0-61.7% higher than those from E-0. The total carbonyls emissions from BE-diesel were 1-22% higher than those from diesel at different engine operating conditions. Compared with fossil fuels, E-10 can slightly reduce CO emission, and BE-diesel can substantially decrease PM emission, while both alternative fuels increased slightly NO x emission.

  10. ATK Launch Systems Engineering NASA Programs Engineering Examples

    NASA Technical Reports Server (NTRS)

    Richardson, David

    2007-01-01

    This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.

  11. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    NASA Astrophysics Data System (ADS)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  12. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    NASA Astrophysics Data System (ADS)

    Tang, Nicholas W.; Apte, Joshua S.; Martien, Philip T.; Kirchstetter, Thomas W.

    2015-08-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate ;head-end; power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  13. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  14. PVD TBC experience on GE aircraft engines

    NASA Technical Reports Server (NTRS)

    Bartz, A.; Mariocchi, A.; Wortman, D. J.

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of Thermal Barrier Coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the Physical Vapor Deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micrometer (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than uncoated components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however, a significant temperature reduction was realized over an airfoil without any TBC.

  15. PVD TBC experience on GE aircraft engines

    NASA Technical Reports Server (NTRS)

    Maricocchi, Antonio; Bartz, Andi; Wortman, David

    1995-01-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reliability of materials in the turbine. The increased engine temperatures required to achieve the higher performance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings (TBC's) have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition (PVD) process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 micron (0.005 in) PVD TBC have demonstrated component operating temperatures of 56-83 C (100-150 F) lower than non-PVD TBC components. Engine testing has also revealed the TBC is susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes away in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area, however a significant temperature reduction was realized over an airfoil without TBC.

  16. PVD TBC experience on GE aircraft engines

    NASA Astrophysics Data System (ADS)

    Maricocchi, A.; Bartz, A.; Wortman, D.

    1997-06-01

    The higher performance levels of modern gas turbine engines present significant challenges in the reli-ability of materials in the turbine. The increased engine temperatures required to achieve the higher per-formance levels reduce the strength of the materials used in the turbine sections of the engine. Various forms of thermal barrier coatings have been used for many years to increase the reliability of gas turbine engine components. Recent experience with the physical vapor deposition process using ceramic material has demonstrated success in extending the service life of turbine blades and nozzles. Engine test results of turbine components with a 125 μm (0.005 in.) PVD TBC have demonstrated component operating tem-peratures of 56 to 83 °C (100 to 150 °F) lower than non-PVD TBC components. Engine testing has also revealed that TBCs are susceptible to high angle particle impact damage. Sand particles and other engine debris impact the TBC surface at the leading edge of airfoils and fracture the PVD columns. As the impacting continues, the TBC erodes in local areas. Analysis of the eroded areas has shown a slight increase in temperature over a fully coated area ; however, a significant temperature reduc-tion was realized over an airfoil without TBC.

  17. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    PubMed

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.

  18. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  19. Low-Thermal-Conductivity Pyrochlore Oxide Materials Developed for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2005-01-01

    When turbine engines operate at higher temperatures, they consume less fuel, have higher efficiencies, and have lower emissions. The upper-use temperatures of the base materials (superalloys, silicon-based ceramics, etc.) used for the hot-section components of turbine engines are limited by the physical, mechanical, and corrosion characteristics of these materials. Thermal barrier coatings (TBCs) are applied as thin layers on the surfaces of these materials to further increase the operating temperatures. The current state-of-the-art TBC material in commercial use is partially yttria-stabilized zirconia (YSZ), which is applied on engine components by plasma spraying or by electron-beam physical vapor deposition. At temperatures higher than 1000 C, YSZ layers are prone to sintering, which increases thermal conductivity and makes them less effective. The sintered and densified coatings can also reduce thermal stress and strain tolerance, which can reduce the coating s durability significantly. Alternate TBC materials with lower thermal conductivity and better sintering resistance are needed to further increase the operating temperature of turbine engines.

  20. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Fiona K.; Work, Victoria H.; Beliaev, Alex S.

    2014-06-19

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially-relevant chemicals. High-titer microbial synthesis of limonene and α- bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L-1 limonene and 0.6 mg L-1 α-bisabolene through heterologous expression of the Mentha spicata L-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either thatmore » dodecane traps large quantities of volatile limonene and α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate and acetate) during nitrogen deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6 to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.« less

  1. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.

    PubMed

    Davies, Fiona K; Work, Victoria H; Beliaev, Alexander S; Posewitz, Matthew C

    2014-01-01

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L(-1) limonene and 0.6 mg L(-1) α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  2. Search Engine Ranking, Quality, and Content of Web Pages That Are Critical Versus Noncritical of Human Papillomavirus Vaccine.

    PubMed

    Fu, Linda Y; Zook, Kathleen; Spoehr-Labutta, Zachary; Hu, Pamela; Joseph, Jill G

    2016-01-01

    Online information can influence attitudes toward vaccination. The aim of the present study was to provide a systematic evaluation of the search engine ranking, quality, and content of Web pages that are critical versus noncritical of human papillomavirus (HPV) vaccination. We identified HPV vaccine-related Web pages with the Google search engine by entering 20 terms. We then assessed each Web page for critical versus noncritical bias and for the following quality indicators: authorship disclosure, source disclosure, attribution of at least one reference, currency, exclusion of testimonial accounts, and readability level less than ninth grade. We also determined Web page comprehensiveness in terms of mention of 14 HPV vaccine-relevant topics. Twenty searches yielded 116 unique Web pages. HPV vaccine-critical Web pages comprised roughly a third of the top, top 5- and top 10-ranking Web pages. The prevalence of HPV vaccine-critical Web pages was higher for queries that included term modifiers in addition to root terms. Compared with noncritical Web pages, Web pages critical of HPV vaccine overall had a lower quality score than those with a noncritical bias (p < .01) and covered fewer important HPV-related topics (p < .001). Critical Web pages required viewers to have higher reading skills, were less likely to include an author byline, and were more likely to include testimonial accounts. They also were more likely to raise unsubstantiated concerns about vaccination. Web pages critical of HPV vaccine may be frequently returned and highly ranked by search engine queries despite being of lower quality and less comprehensive than noncritical Web pages. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  3. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  4. Predictors of effective leadership in industry - should engineering education focus on traditional intelligence, personality, or emotional intelligence?

    NASA Astrophysics Data System (ADS)

    Lappalainen, Pia

    2015-03-01

    Despite the changing global and industrial conditions requiring new approaches to leadership, management training as part of higher engineering education still remains understudied. The subsequent gap in engineering education calls for research on today's leader requirements and pedagogy supporting the inclusion of management competence in higher engineering education. Previous organisation and management studies have, on a general level, established the importance of managerial qualities for industrial performance, but the nature and make-up of these qualifications has not been adequately analysed. To fill the related research gap, the present work embarked on a quantitative empirical effort to identify predictors of successful leadership in engineering. In particular, this study investigated relationships between perceived leader performance and three dimensions of managerial capability: (1) mathematical-logical intelligence, (2) personality, and (3) socio-emotional intelligence. This work complemented previous research by resorting to both self-reports and other-reports: the results acquired from the managerial sample were compared to subordinate perceptions as measured through an emotive intelligence other-report and a general managerial competence multi-source appraisal. The sample comprised 80 superiors and 354 subordinates operating in seven organisations in engineering industries. The results from the quantitative measurements signalled the strongest correlation for socio-emotional intelligence and certain personality dimensions with successful leadership. Mathematical-logical intelligence demonstrated no correlation with subordinate perceptions of good leadership. These findings lay the foundation for the incorporation of socio-emotive skills into higher engineering education.

  5. Assessment of Innovative Emergency Department Information Displays in a Clinical Simulation Center

    PubMed Central

    McGeorge, Nicolette; Hegde, Sudeep; Berg, Rebecca L.; Guarrera-Schick, Theresa K.; LaVergne, David T.; Casucci, Sabrina N.; Hettinger, A. Zachary; Clark, Lindsey N.; Lin, Li; Fairbanks, Rollin J.; Benda, Natalie C.; Sun, Longsheng; Wears, Robert L.; Perry, Shawna; Bisantz, Ann

    2016-01-01

    The objective of this work was to assess the functional utility of new display concepts for an emergency department information system created using cognitive systems engineering methods, by comparing them to similar displays currently in use. The display concepts were compared to standard displays in a clinical simulation study during which nurse-physician teams performed simulated emergency department tasks. Questionnaires were used to assess the cognitive support provided by the displays, participants’ level of situation awareness, and participants’ workload during the simulated tasks. Participants rated the new displays significantly higher than the control displays in terms of cognitive support. There was no significant difference in workload scores between the display conditions. There was no main effect of display type on situation awareness, but there was a significant interaction; participants using the new displays showed improved situation awareness from the middle to the end of the session. This study demonstrates that cognitive systems engineering methods can be used to create innovative displays that better support emergency medicine tasks, without increasing workload, compared to more standard displays. These methods provide a means to develop emergency department information systems—and more broadly, health information technology—that better support the cognitive needs of healthcare providers. PMID:27974881

  6. Supporting Educational Games in Higher Education: The Creation and Implementation of Custom Game Engine for a University

    ERIC Educational Resources Information Center

    Choi, Gi Woong; Pursel, Barton K.; Stubbs, Chris

    2017-01-01

    Interest towards implementing educational gaming into courses within higher education continues to increase, but it requires extensive amounts of resources to create individual games for each course. This paper is a description of a university's effort to create a custom educational game engine to streamline the game development process within the…

  7. Raising of Operating a Motor Vehicle Effects on Environment in Winter

    NASA Astrophysics Data System (ADS)

    Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.

    2016-08-01

    Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.

  8. Lewis Researcher in the Materials and Stresses Building

    NASA Image and Video Library

    1952-12-21

    A materials researcher at the NACA’s Lewis Flight Propulsion Laboratory examines a surface crack detection apparatus in the Materials and Stresses Building during December 1952. Materials research was an important aspect of propulsion technology. Advanced engine systems relied upon alloys, and later composites, that were strong, lightweight, and impervious to high temperatures. Jet engines which became increasingly popular in the late 1940s, produced much higher temperatures than piston engines. These higher temperatures stressed engine components, particularly turbines. Although Lewis materials research began during World War II, the Materials and Thermodynamics Division was not created until 1949. Its primary laboratories were located in the Materials and Stresses Building. The group sought to create new, improved materials and to improve engine design through increased understanding of materials. The Lewis materials researchers of the 1950s made contributions to nickel-aluminum alloys, cermet blades, metal matrix composites, oxide dispersion strengthened superalloys, and universal slopes.

  9. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  10. Research on the Undergraduate Financial Engineering Education in China

    ERIC Educational Resources Information Center

    Ma, Haiyong; Zhang, Weiwei

    2011-01-01

    The rapid development of modern economy has put forward higher requirements for financial engineering education. This paper analyzes the status and problems in undergraduate financial engineering education in china, such as indistinct training objective, rigid curriculum structure, and superficial teaching methods, etc. and puts forward…

  11. Environmental Engineering Talent Demand and Undergraduate Education in China

    ERIC Educational Resources Information Center

    Zhang, Huan-zhen; Li, Jian-bo; Luo, Xiang-nan; Zhao, Bin-yan; Luo, Ren-ming; Wang, Qiao-ling

    2004-01-01

    In Chinese higher environmental education, undergraduate education of environmental engineering starts earliest and develops fastest. The undergraduate has been playing an important role in controlling pollution for more than twenty years. The setting and distribution of the environmental engineering major was analyzed, the conditions of the…

  12. Mineral Engineering Education in the West.

    ERIC Educational Resources Information Center

    Borgmann, Carl W.; Bartram, John W.

    A large percentage of all US degrees in mineral engineering fields are awarded by 14 institutions of higher education in 13 western states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. But low undergraduate enrollments in the mineral engineering curricula have increased…

  13. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.

  14. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.

  15. From soil mechanics to chick development.

    PubMed

    Wolpert, Lewis

    2018-01-01

    Here, I provide some recollections of my life, starting as a civil engineer in South Africa and how I gradually became interested in biology, particularly pattern formation. In retrospect, I think that my decision to work on chick embryos to study limb development back in 1966 turned out to be the right one. The principles discovered in these 50 years, both by my collaborators and by other colleagues, have established the principles of how the limb develops in higher vertebrates, including humans.

  16. Environmental-Toxicological Characteristics of Waters and Their Sources at Magnitogorsk With the Its Iron and Steel Industry

    NASA Astrophysics Data System (ADS)

    Koshkina, V. S.; Serova, A. A.; Timofeev, V. Yu

    2016-08-01

    This study summarizes the information necessary to characterize and assess the quality of drinking and industrial water supply in industrial centers with metallurgical engineering and provides information about the pollution impact on the natural environment. The study shows the influence of air pollution, of the soil pollution on the environment of water objects; it also demonstrates the role of the quality of water supply for establishing a higher risk of health problems for children.

  17. Noise and Fuel Burn Reduction Potential of an Innovative Subsonic Transport Configuration

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Nickol, Craig L.; Thomas, Russell H.

    2014-01-01

    A study is presented for the noise and fuel burn reduction potential of an innovative double deck concept aircraft with two three-shaft direct-drive turbofan engines. The engines are mounted from the fuselage so that the engine inlet is over the main wing. It is shown that such an aircraft can achieve a cumulative Effective Perceived Noise Level (EPNL) about 28 dB below the current aircraft noise regulations of Stage 4. The combination of high bypass ratio engines and advanced wing design with laminar flow control technologies provide fuel burn reduction and low noise levels simultaneously. For example, the fuselage mounted engine position provides more than 4 EPNLdB of noise reduction by shielding the inlet radiated noise. To identify the potential effect of noise reduction technologies on this concept, parametric studies are presented to reveal the system level benefits of various emerging noise reduction concepts, for both engine and airframe noise reduction. These concepts are discussed both individually to show their respective incremental noise reduction potential and collectively to assess their aggregate effects on the total noise. Through these concepts approximately about 8 dB of additional noise reduction is possible, bringing the cumulative noise level of this aircraft to 36 EPNLdB below Stage 4, if the entire suite of noise reduction technologies would mature to practical application. In a final step, an estimate is made for this same aircraft concept but with higher bypass ratio, geared, turbofan engines. With this geared turbofan propulsion system, the noise is estimated to reach as low as 40-42 dB below Stage 4 with a fuel burn reduction of 43-47% below the 2005 best-in-class aircraft baseline. While just short of the NASA N+2 goals of 42 dB and 50% fuel burn reduction, for a 2025 in service timeframe, this assessment shows that this innovative concept warrants refined study. Furthermore, this design appears to be a viable potential future passenger aircraft, not only in meeting the regulatory requirements, but also in competing with aircraft of different advanced designs within this N+2 timeframe and goal framework.

  18. Conversion of a micro, glow-ignition, two-stroke engine from nitromethane-methanol blend fuel to military jet propellant (JP-8)

    NASA Astrophysics Data System (ADS)

    Wiegand, Andrew L.

    The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.

  19. Engineered microbes and methods for microbial oil production

    DOEpatents

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  20. An end user evaluation of query formulation and results review tools in three medical meta-search engines.

    PubMed

    Leroy, Gondy; Xu, Jennifer; Chung, Wingyan; Eggers, Shauna; Chen, Hsinchun

    2007-01-01

    Retrieving sufficient relevant information online is difficult for many people because they use too few keywords to search and search engines do not provide many support tools. To further complicate the search, users often ignore support tools when available. Our goal is to evaluate in a realistic setting when users use support tools and how they perceive these tools. We compared three medical search engines with support tools that require more or less effort from users to form a query and evaluate results. We carried out an end user study with 23 users who were asked to find information, i.e., subtopics and supporting abstracts, for a given theme. We used a balanced within-subjects design and report on the effectiveness, efficiency and usability of the support tools from the end user perspective. We found significant differences in efficiency but did not find significant differences in effectiveness between the three search engines. Dynamic user support tools requiring less effort led to higher efficiency. Fewer searches were needed and more documents were found per search when both query reformulation and result review tools dynamically adjust to the user query. The query reformulation tool that provided a long list of keywords, dynamically adjusted to the user query, was used most often and led to more subtopics. As hypothesized, the dynamic result review tools were used more often and led to more subtopics than static ones. These results were corroborated by the usability questionnaires, which showed that support tools that dynamically optimize output were preferred.

  1. Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P.; Splitter, Derek A.

    The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less

  2. Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine

    DOE PAGES

    Szybist, James P.; Splitter, Derek A.

    2018-01-02

    The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less

  3. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  4. A Cost and Performance System (CAPS) in a Federal agency

    NASA Technical Reports Server (NTRS)

    Huseonia, W. F.; Penton, P. G.

    1994-01-01

    Cost and Performance System (CAPS) is an automated system used from the planning phase through implementation to analysis and documentation. Data is retrievable or available for analysis of cost versus performance anomalies. CAPS provides a uniform system across intra- and international elements. A common system is recommended throughout an entire cost or profit center. Data can be easily accumulated and aggregated into higher levels of tracking and reporting of cost and performance.The level and quality of performance or productivity is indicated in the CAPS model and its process. The CAPS model provides the necessary decision information and insight to the principal investigator/project engineer for a successful project management experience. CAPS provides all levels of management with the appropriate detailed level of data.

  5. Advanced OTV engine concepts

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1984-01-01

    The results and status of engine technology efforts to date and related company funded activities are presented. Advanced concepts in combustors and injectors, high speed turbomachinery, controls, and high-area-ratio nozzles that package within a short length result is engines with specific impulse values 35 to 46 seconds higher than those now realized by operational systems. The improvement in life, reliability, and maintainability of OTV engines are important.

  6. Mechanical Objects and the Engineering Learner: An Experimental Study of How the Presence of Objects Affects Students' Performance on Engineering Related Tasks

    ERIC Educational Resources Information Center

    Bairaktarova, Diana N.

    2013-01-01

    People display varying levels of interaction with the mechanical objects in their environment; engineers in particular as makers and users of these objects display a higher level of interaction with them. Investigating the educational potential of mechanical objects in stimulating and supporting learning in engineering is warranted by the fact…

  7. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68more » vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.« less

  8. Efficiency of the rocket engines with a supersonic afterburner

    NASA Astrophysics Data System (ADS)

    Sergienko, A. A.

    1992-08-01

    The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.

  9. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  10. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  11. A novel paradigm for engineering education: virtual internships with individualized mentoring and assessment of engineering thinking.

    PubMed

    Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David

    2015-02-01

    Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.

  12. Virtual Reality System Offers a Wide Perspective

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Robot Systems Technology Branch engineers at Johnson Space Center created the remotely controlled Robonaut for use as an additional "set of hands" in extravehicular activities (EVAs) and to allow exploration of environments that would be too dangerous or difficult for humans. One of the problems Robonaut developers encountered was that the robot s interface offered an extremely limited field of vision. Johnson robotics engineer, Darby Magruder, explained that the 40-degree field-of-view (FOV) in initial robotic prototypes provided very narrow tunnel vision, which posed difficulties for Robonaut operators trying to see the robot s surroundings. Because of the narrow FOV, NASA decided to reach out to the private sector for assistance. In addition to a wider FOV, NASA also desired higher resolution in a head-mounted display (HMD) with the added ability to capture and display video.

  13. Bio-based extraction and stabilization of anthocyanins.

    PubMed

    Roy, Anirban; Mukherjee, Rudra Palash; Howard, Luke; Beitle, Robert

    2016-05-01

    This work reports a novel method of recovering anthocyanin compounds from highly-pigmented grapes via a fermentation based approach. It was hypothesized that batch growth of Zymomonas mobilis on simple medium would produce both ethanol and enzymes/biomass-acting materials, the combination of which will provide a superior extraction when compared to simple alcohol extraction. To examine this hypothesis, Z. mobilis was fermented in a batch consisting of mashed Vitis vinifera and glucose, and the recovered anthocyanin pool was compared to that recovered via extraction with ethanol. Data indicated higher amounts of anthocyanins were recovered when compared to simple solvent addition. Additionally, the percent polymeric form of the anthocyanins could be manipulated by the level of aeration maintained in the fermentation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:601-605, 2016. © 2016 American Institute of Chemical Engineers.

  14. Examining Elementary School Students' Transfer of Learning through Engineering Design Using Think-Aloud Protocol Analysis

    ERIC Educational Resources Information Center

    Kelley, Todd; Sung, Euisuk

    2017-01-01

    The introduction of engineering practices within the "Next Generation Science Standards" provides technology educators with opportunities to help STEM educators infuse engineering design within a core curriculum. The introduction of teaching engineering design in early elementary grades also provides opportunities to conduct research…

  15. Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1955-02-21

    The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.

  16. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    PubMed

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-04-01

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  17. Water Injection Feasibility for Boeing 747 Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.

    2005-01-01

    Can water injection be offered at a reasonable cost to large airplane operators to reduce takeoff NO( sub x) emissions? This study suggests it may be possible. This report is a contract deliverable to NASA Glenn Research Center from the prime contractor, The Boeing Commercial Airplane Company of Seattle, WA. This study was supported by a separate contract to the Pratt & Whitney Engine Company of Hartford, CT (contract number NNC04QB58P). Aviation continues to grow and with it, environmental pressures are increasing for airports that service commercial airplanes. The feasibility and performance of an emissions-reducing technology, water injection, was studied for a large commercial airplane (e.g., Boeing 747 with PW4062 engine). The primary use of the water-injection system would be to lower NOx emissions while an important secondary benefit might be to improve engine turbine life. A tradeoff exists between engine fuel efficiency and NOx emissions. As engines improve fuel efficiency, by increasing the overall pressure ratio of the engine s compressor, the resulting increased gas temperature usually results in higher NOx emissions. Low-NO(sub x) combustors have been developed for new airplanes to control the increases in NO(sub x) emissions associated with higher efficiency, higher pressure ratio engines. However, achieving a significant reduction of NO(sub x) emissions at airports has been challenging. Using water injection during takeoff has the potential to cut engine NO(sub x) emissions some 80 percent. This may eliminate operating limitations for airplanes flying into airports with emission constraints. This study suggests an important finding of being able to offer large commercial airplane owners an emission-reduction technology that may also save on operating costs.

  18. 2. X15 RUN UP AREA (Jan 59). A sharp, higher ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. X-15 RUN UP AREA (Jan 59). A sharp, higher altitide low oblique aerial view to the north, showing runway, at far left; X-15 Engine Test Complex in the center. This view predates construction of observation bunkers. - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  19. Factors That Female Higher Education Faculty in Select Science, Technology, Engineering, and Mathematics (STEM) Fields Perceive as Being Influential to Their Success and Persistence in Their Chosen Professions

    ERIC Educational Resources Information Center

    Opare, Phyllis Bernice

    2012-01-01

    The purpose of this study was to determine factors female higher education faculty in select science, technology, engineering, and mathematics (STEM) fields perceived as influential to their success and persistence in their chosen professions. Females are underrepresented in STEM professions including academia, despite the fact that female…

  20. Dropouts and Budgets: A Test of a Dropout Reduction Model among Students in Israeli Higher Education

    ERIC Educational Resources Information Center

    Bar-Am, Ran; Arar, Osama

    2017-01-01

    This article deals with the problem of student dropout during the first year in a higher education institution. To date, no model on a budget has been developed and tested to prevent dropout among Engineering Students. This case study was conducted among first-year students taking evening classes in two practical engineering colleges in Israel.…

  1. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting. Both facility and engine starting were achieved. Further, the static pressure distributions compared well with the results previously obtained in a 40% subscale flowpath study conducted in the LERC 1X1 supersonic wind tunnel (SWT), as well as the results of CFD analysis. Fueled performance results were obtained for the engine at both simulated Mach 6 (1670 K) and Mach 6.6 (1950 K) conditions. For all these tests the primary fuel was liquid JP-10 with gaseous silane (a mixture of 20% SiH4 and 80% H2 by volume) as an ignitor/pilot. These tests verified performance of this engine flowpath in a freejet mode. High combustor pressures were reached and significant changes in axial force were achieved due to combustion. Future test plans include redistributing the fuel to improve mixing, and consequently performance, at higher equivalence ratios.

  2. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  3. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  4. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco.

    PubMed

    Cai, Zhen; Liu, Guoxia; Zhang, Junli; Li, Yin

    2014-07-01

    Photosynthetic CO(2) fixation is the ultimate source of organic carbon on earth and thus is essential for crop production and carbon sequestration. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the first step of photosynthetic CO(2) fixation. However, the extreme low carboxylation efficiency of Rubisco makes it the most attractive target for improving photosynthetic efficiency. Extensive studies have focused on re-engineering a more efficient enzyme, but the effort has been impeded by the limited understanding of its structure-function relationships and the lack of an efficient selection system towards its activity. To address the unsuccessful molecular engineering of Rubisco, we developed an Escherichia coli-based activity-directed selection system which links the growth of host cell solely to the Rubisco activity therein. A Synechococcus sp. PCC7002 Rubisco mutant with E49V and D82G substitutions in the small subunit was selected from a total of 15,000 mutants by one round of evolution. This mutant showed an 85% increase in specific carboxylation activity and a 45% improvement in catalytic efficiency towards CO(2). The small-subunit E49V mutation was speculated to influence holoenzyme catalysis through interaction with the large-subunit Q225. This interaction is conserved among various Rubisco from higher plants and Chlamydomonas reinhardtii. Knowledge of these might provide clues for engineering Rubisco from higher plants, with the potential of increasing the crop yield.

  5. Programming experience promotes higher STEM motivation among first-grade girls.

    PubMed

    Master, Allison; Cheryan, Sapna; Moscatelli, Adriana; Meltzoff, Andrew N

    2017-08-01

    The gender gap in science, technology, engineering, and math (STEM) engagement is large and persistent. This gap is significantly larger in technological fields such as computer science and engineering than in math and science. Gender gaps begin early; young girls report less interest and self-efficacy in technology compared with boys in elementary school. In the current study (N=96), we assessed 6-year-old children's stereotypes about STEM fields and tested an intervention to develop girls' STEM motivation despite these stereotypes. First-grade children held stereotypes that boys were better than girls at robotics and programming but did not hold these stereotypes about math and science. Girls with stronger stereotypes about robotics and programming reported lower interest and self-efficacy in these domains. We experimentally tested whether positive experience with programming robots would lead to greater interest and self-efficacy among girls despite these stereotypes. Children were randomly assigned either to a treatment group that was given experience in programming a robot using a smartphone or to control groups (no activity or other activity). Girls given programming experience reported higher technology interest and self-efficacy compared with girls without this experience and did not exhibit a significant gender gap relative to boys' interest and self-efficacy. These findings show that children's views mirror current American cultural messages about who excels at computer science and engineering and show the benefit of providing young girls with chances to experience technological activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 77 FR 32700 - Agency Information Collection Activities; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... provide national estimates on the science and engineering workforce and changes in their employment... characteristics of the nation's science and engineering population. The 2013 NSCG will provide necessary input... of data on scientific and engineering resources, and to provide a source of information for policy...

  7. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  8. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    NASA Astrophysics Data System (ADS)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of the Sacramento River Valley.

  9. Introduction to China’s Aeronautical Engineering Institutions of Higher Learning -- Student Enrollment in 1981 in Higher Aeronautical Colleges and Schools Administered by the Third Ministry of Machine Building

    DTIC Science & Technology

    1981-10-13

    FTD-ID(RS )T-1029-81 Si FOREIGN TECHNOLOGY DIVISION INTRODUCTION TO CHINA’S AERONAUTICAL ENGINEERING INSTITUTIONS OF HIGHER LEARNING -- STUDENT...TRODUCTION TO JWINA’ S PRONAUTICAL ,NGINEERING 7’ S- NSTITUTIONS OF •IGHER LEARNING -- 4TUDENT I-ENROLLMENT IN 1951 IN ITGHER AERONAUTICAL OLLEGES AND...BYs ADVOCATEDOR IMPLIED ARE THOSE Ot THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION OR OPINION OF THE FOREIGN TECHNOLOGY

  10. Production of Diesel Engine Turbocharger Turbine from Low Cost Titanium Powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, T. R.; Mayer, R.

    2012-05-04

    Turbochargers in commercial turbo-diesel engines are multi-material systems where usually the compressor rotor is made of aluminum or titanium based material and the turbine rotor is made of either a nickel based superalloy or titanium, designed to operate under the harsh exhaust gas conditions. The use of cast titanium in the turbine section has been used by Cummins Turbo Technologies since 1997. Having the benefit of a lower mass than the superalloy based turbines; higher turbine speeds in a more compact design can be achieved with titanium. In an effort to improve the cost model, and develop an industrial supplymore » of titanium componentry that is more stable than the traditional aerospace based supply chain, the Contractor has developed component manufacturing schemes that use economical Armstrong titanium and titanium alloy powders and MgR-HDH powders. Those manufacturing schemes can be applied to compressor and turbine rotor components for diesel engine applications with the potential of providing a reliable supply of titanium componentry with a cost and performance advantage over cast titanium.« less

  11. Emergy analysis of a farm biogas project in China: A biophysical perspective of agricultural ecological engineering

    NASA Astrophysics Data System (ADS)

    Zhou, S. Y.; Zhang, B.; Cai, Z. F.

    2010-05-01

    This paper aims to present a biophysical understanding of the agricultural ecological engineering by emergy analysis for a farm biogas project in China as a representative case. Accounting for the resource inputs into and accumulation within the project, as well as the outputs to the social system, emergy analysis provides an empirical study in the biophysical dimension of the agricultural ecological engineering. Economic benefits and ecological economic benefits of the farm biogas project indicated by market value and emergy monetary value are discussed, respectively. Relative emergy-based indices such as renewability (R%), emergy yield ratio (EYR), environmental load ratio (ELR) and environmental sustainability index (ESI) are calculated to evaluate the environmental load and local sustainability of the concerned biogas project. The results show that the farm biogas project has more reliance on the local renewable resources input, less environmental pressure and higher sustainability compared with other typical agricultural systems. In addition, holistic evaluation and its policy implications for better operation and management of the biogas project are presented.

  12. Gas Engine-Driven Heat Pump with Desiccant Dehumidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abu-Heiba, Ahmad

    About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less

  13. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  14. Similarity spectra analysis of high-performance jet aircraft noise.

    PubMed

    Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M

    2013-04-01

    Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation.

  15. Biophysical stimulation for in vitro engineering of functional cardiac tissues.

    PubMed

    Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica

    2017-07-01

    Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Advanced Light-Duty SI Engine Fuels Research: Multiple Optical Diagnostics of Well-mixed and Stratified Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Ever tighter fuel economy standards and concerns about energy security motivate efforts to improve engine efficiency and to develop alternative fuels. This project contributes to the science base needed by industry to develop highly efficient direct injection spark ignition (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, the focus is on techniques that can overcome these challenges. Specifically, fuel stratification is usedmore » to ensure ignition and completeness of combustion but this technique has soot and NOx emissions challenges. For ultra-lean well-mixed operation, turbulent deflagration can be combined with controlled end-gas autoignition to render mixed-mode combustion for sufficiently fast heat release. However, such mixed-mode combustion requires very stable inflammation, motivating studies on the effects of near-spark flow and turbulence, and the use of small amounts of fuel stratification near the spark plug.« less

  17. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    PubMed

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A New Approach to A Science Magnet School - Classroom and Museum Integration

    NASA Astrophysics Data System (ADS)

    Franklin, Samuel

    2009-03-01

    The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.

  19. Engineered microbes and methods for microbial oil production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis andmore » storage properties.« less

  20. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits.

    PubMed

    Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.

  1. A comparative analysis of user preference-based and existing knowledge management systems attributes in the aerospace industry

    NASA Astrophysics Data System (ADS)

    Varghese, Nishad G.

    Knowledge management (KM) exists in various forms throughout organizations. Process documentation, training courses, and experience sharing are examples of KM activities performed daily. The goal of KM systems (KMS) is to provide a tool set which serves to standardize the creation, sharing, and acquisition of business critical information. Existing literature provides numerous examples of targeted evaluations of KMS, focusing on specific system attributes. This research serves to bridge the targeted evaluations with an industry-specific, holistic approach. The user preferences of aerospace employees in engineering and engineering-related fields were compared to profiles of existing aerospace KMS based on three attribute categories: technical features, system administration, and user experience. The results indicated there is a statistically significant difference between aerospace user preferences and existing profiles in the user experience attribute category, but no statistically significant difference in the technical features and system administration attribute categories. Additional analysis indicated in-house developed systems exhibit higher technical features and user experience ratings than commercial-off-the-self (COTS) systems.

  2. Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia

    2006-01-01

    The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.

  3. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.

    2012-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.

  4. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44.

    PubMed

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-06-16

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process.

  5. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  6. Engineering Emergency: African Americans and Hispanics Lack Pathways to Engineering. Vital Signs: Reports on the Condition of STEM Learning in the U.S.

    ERIC Educational Resources Information Center

    Change the Equation, 2014

    2014-01-01

    A quality education that leads to good jobs offers a reliable pathway to economic security, yet the first step on that pathway remains inaccessible to far too many Americans, especially Americans of color. Nowhere is this inequity more apparent than in engineering. On average, people with engineering bachelor's degrees earn higher salaries than…

  7. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section... flight. (b) In the case of turbine engine installations, a means of stopping rotation need be provided...

  8. A Software Engine to Justify the Conclusions of an Expert System for Detecting Renal Obstruction on 99mTc-MAG3 Scans

    PubMed Central

    Garcia, Ernest V.; Taylor, Andrew; Manatunga, Daya; Folks, Russell

    2013-01-01

    The purposes of this study were to describe and evaluate a software engine to justify the conclusions reached by a renal expert system (RENEX) for assessing patients with suspected renal obstruction and to obtain from this evaluation new knowledge that can be incorporated into RENEX to attempt to improve diagnostic performance. Methods RENEX consists of 60 heuristic rules extracted from the rules used by a domain expert to generate the knowledge base and a forward-chaining inference engine to determine obstruction. The justification engine keeps track of the sequence of the rules that are instantiated to reach a conclusion. The interpreter can then request justification by clicking on the specific conclusion. The justification process then reports the English translation of all concatenated rules instantiated to reach that conclusion. The justification engine was evaluated with a prospective group of 60 patients (117 kidneys). After reviewing the standard renal mercaptoacetyltriglycine (MAG3) scans obtained before and after the administration of furosemide, a masked expert determined whether each kidney was obstructed, whether the results were equivocal, or whether the kidney was not obstructed and identified and ranked the main variables associated with each interpretation. Two parameters were then tabulated: the frequency with which the main variables associated with obstruction by the expert were also justified by RENEX and the frequency with which the justification rules provided by RENEX were deemed to be correct by the expert. Only when RENEX and the domain expert agreed on the diagnosis (87 kidneys) were the results used to test the justification. Results RENEX agreed with 91% (184/203) of the rules supplied by the expert for justifying the diagnosis. RENEX provided 103 additional rules justifying the diagnosis; the expert agreed that 102 (99%) were correct, although the rules were considered to be of secondary importance. Conclusion We have described and evaluated a software engine to justify the conclusions of RENEX for detecting renal obstruction with MAG3 renal scans obtained before and after the administration of furosemide. This tool is expected to increase physician confidence in the interpretations provided by RENEX and to assist physicians and trainees in gaining a higher level of expertise. PMID:17332625

  9. A software engine to justify the conclusions of an expert system for detecting renal obstruction on 99mTc-MAG3 scans.

    PubMed

    Garcia, Ernest V; Taylor, Andrew; Manatunga, Daya; Folks, Russell

    2007-03-01

    The purposes of this study were to describe and evaluate a software engine to justify the conclusions reached by a renal expert system (RENEX) for assessing patients with suspected renal obstruction and to obtain from this evaluation new knowledge that can be incorporated into RENEX to attempt to improve diagnostic performance. RENEX consists of 60 heuristic rules extracted from the rules used by a domain expert to generate the knowledge base and a forward-chaining inference engine to determine obstruction. The justification engine keeps track of the sequence of the rules that are instantiated to reach a conclusion. The interpreter can then request justification by clicking on the specific conclusion. The justification process then reports the English translation of all concatenated rules instantiated to reach that conclusion. The justification engine was evaluated with a prospective group of 60 patients (117 kidneys). After reviewing the standard renal mercaptoacetyltriglycine (MAG3) scans obtained before and after the administration of furosemide, a masked expert determined whether each kidney was obstructed, whether the results were equivocal, or whether the kidney was not obstructed and identified and ranked the main variables associated with each interpretation. Two parameters were then tabulated: the frequency with which the main variables associated with obstruction by the expert were also justified by RENEX and the frequency with which the justification rules provided by RENEX were deemed to be correct by the expert. Only when RENEX and the domain expert agreed on the diagnosis (87 kidneys) were the results used to test the justification. RENEX agreed with 91% (184/203) of the rules supplied by the expert for justifying the diagnosis. RENEX provided 103 additional rules justifying the diagnosis; the expert agreed that 102 (99%) were correct, although the rules were considered to be of secondary importance. We have described and evaluated a software engine to justify the conclusions of RENEX for detecting renal obstruction with MAG3 renal scans obtained before and after the administration of furosemide. This tool is expected to increase physician confidence in the interpretations provided by RENEX and to assist physicians and trainees in gaining a higher level of expertise.

  10. Primary VOC emissions from Commercial Aircraft Jet Engines

    NASA Astrophysics Data System (ADS)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign. References 1."Annual Review 2013", International Air Transport Association (IATA) 2014, Page 8, available on: http://www.iata.org/about/Documents/iata-annual-review-2013-en.pdf. 2."Summary for Policymakers: IPCC Special Report Aviation and the Global Atmosphere", 1999, pp. 5-10. 3."Hydrocarbon emissions from in-use commercial aircraft during airport operations", Herndon S.C., Rogers T., Dunlea E.J., Jayne J.T., Miake-Lye R., Knighton B., Environ Sci. Technol. 2006 Jul 15;40(14):4406-13.

  11. Space flight requirements for fiber optic components: qualification testing and lessons learned

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2006-04-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  12. Space Flight Requirements for Fiber Optic Components; Qualification Testing and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard; Friedberg, Patricia; Malenab, Mary; Matuszeski, Adam

    2007-01-01

    "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.

  13. Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction.

    PubMed

    Lee, Jae Seong; Ha, Tae Kwang; Park, Jin Hyoung; Lee, Gyun Min

    2013-08-01

    Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti-apoptosis engineering. Recently, autophagy has received attention as a new anti-cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti-apoptosis and pro-autophagy in CHO cells (DG44) was attempted by co-overexpressing an anti-apoptotic protein, Bcl-2, and a key regulator of autophagy pathway, Beclin-1, respectively. Co-overexpression of Bcl-2 and Beclin-1 exhibited a longer culture period as well as higher viability during serum-free suspension culture, compared with the control (without co-overexpression of Bcl-2 and Beclin-1) and Bcl-2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl-2 overexpression, Beclin-1 overexpression successfully induced the increase in the autophagic marker protein, LC3-II, and autophagosome formation with the decrease in mTOR activity. Co-immunoprecipitation and qRT-PCR experiments revealed that the enforced expression of Beclin-1 increased Ulk1 expression and level of free-Beclin-1 that did not bind to the Bcl-2 despite the Bcl-2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co-overexpression of Bcl-2 and Beclin-1 also protected the cells from cell death more efficiently than Bcl-2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro-autophagy engineering together with anti-apoptosis engineering yields a synergistic effect and successfully enhances the anti-cell death engineering of CHO cells. Copyright © 2013 Wiley Periodicals, Inc.

  14. Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Lyon, Elliott; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2017-03-01

    We report on a study into multi-location laser ignition (LI) with a Spatial Light Modulator (SLM), to improve the performance of a single cylinder automotive gasoline engine. Three questions are addressed: i/ How to deliver a multi-beam diffracted pattern into an engine cylinder, through a small opening, while avoiding clipping? ii/ How much incident energy can a SLM handle (optical damage threshold) and how many simultaneous beam foci could thus be created? ; iii/ Would the multi-location sparks created be sufficiently intense and stable to ignite an engine and, if so, what would be their effect on engine performance compared to single-location LI? Answers to these questions were determined as follows. Multi-beam diffracted patterns were created by applying computer generated holograms (CGHs) to the SLM. An optical system for the SLM was developed via modelling in ZEMAX, to cleanly deliver the multi-beam patterns into the combustion chamber without clipping. Optical damage experiments were carried out on Liquid Crystal on Silicon (LCoS) samples provided by the SLM manufacturer and the maximum safe pulse energy to avoid SLM damage found to be 60 mJ. Working within this limit, analysis of the multi-location laser induced sparks showed that diffracting into three identical beams gave slightly insufficient energy to guarantee 100% sparking, so subsequent engine experiments used 2 equal energy beams laterally spaced by 4 mm. The results showed that dual-location LI gave more stable combustion and higher engine power output than single-location LI, for increasingly lean air-fuel mixtures. The paper concludes by a discussion of how these results may be exploited.

  15. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The propulsion performance, acoustic, structural, and systems changes to a 727-200 airplane retrofitted with a refan modification of the JT8D turbofan engine are evaluated. Model tests, design of certifiable airplane retrofit kit hardware, manufacture of test hardware, ground test of a current production JT8D engine, followed by test of the same engine modified to the refan configuration, detailed analyses of the retrofit impact on airplane airworthiness, performance, and noise, and a preliminary analysis of retrofit costs are included. Results indicate that the refan retrofit of the 727-200 would be certifiable and would result in a 6-to 8 EPNdb reduction in effective perceived noise level (EPNL) at the FAR 36 measuring points and an annoyance-weighted footprint area reduction of 68% to 83%. The installed refan engine is estimated to provide 14% greater takeoff thrust at zero velocity and 10% greater thrust at 100 kn (51.4 m/s). There would be an approximate 0.6% increase in cruise specific fuel consumption (SFC). The refan engine performance in conjunction with the increase in stalled weight results in a range reduction of approximately 15% over the unmodified airplane at the same brake release gross weight (BRGW), with a block fuel increase of 1.5% to 3%. With the particular model 727 that was studied, however, it is possible to operate the airplane (with minor structural modifications) at a higher BRGW and increase the range up to approximately 15% relative to the nonrefanned airplane (with equal or slightly increased noise levels). The JT8D refan engine also improves the limited-field range of the airplane.

  16. Thrust Vector Control for Nuclear Thermal Rockets

    NASA Technical Reports Server (NTRS)

    Ensworth, Clinton B. F.

    2013-01-01

    Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

  17. Mammalian designer cells: Engineering principles and biomedical applications.

    PubMed

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Engineered LINE-1 retrotransposition in nondividing human neurons

    PubMed Central

    Macia, Angela; Widmann, Thomas J.; Heras, Sara R.; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R.; Goodier, John L.; Garcia-Perez, Jose L.

    2017-01-01

    Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80–100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. PMID:27965292

  19. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  20. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NASA Astrophysics Data System (ADS)

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2013-11-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL literature as important in facilitating learning processes and student supervision are present in current DBL engineering practices. Sample: The sample (N=16) consisted of teachers and supervisors in two engineering study programs at a university of technology: mechanical and electrical engineering. We selected randomly teachers from freshman and second-year bachelor DBL projects responsible for student supervision and assessment. Design and method: Interviews with teachers, and interviews and observations of supervisors were used to examine how supervision and facilitation actions are applied according to the DBL framework. Results: Major findings indicate that formulating questions is the most common practice seen in facilitating learning in open-ended engineering design environments. Furthermore, other DBL actions we expected to see based upon the literature were seldom observed in the coaching practices within these two programs. Conclusions: Professionalization of teachers in supervising students need to include methods to scaffold learning by supporting students in reflecting and in providing formative feedback.

Top