Sample records for engine rotating group

  1. Tissue Engineering for Rotator Cuff Repair: An Evidence-Based Systematic Review

    PubMed Central

    Maffulli, Nicola; Longo, Umile Giuseppe; Loppini, Mattia; Berton, Alessandra; Spiezia, Filippo; Denaro, Vincenzo

    2012-01-01

    The purpose of this systematic review was to address the treatment of rotator cuff tears by applying tissue engineering approaches to improve tendon healing, specifically platelet rich plasma (PRP) augmentation, stem cells, and scaffolds. Our systematic search was performed using the combination of the following terms: “rotator cuff”, “shoulder”, “PRP”, “platelet rich plasma”, “stemcells”, “scaffold”, “growth factors”, and “tissue engineering”. No level I or II studies were found on the use of scaffolds and stem cells for rotator cuff repair. Three studies compared rotator cuff repair with or without PRP augmentation. All authors performed arthroscopic rotator cuff repair with different techniques of suture anchor fixation and different PRP augmentation. The three studies found no difference in clinical rating scales and functional outcomes between PRP and control groups. Only one study showed clinical statistically significant difference between the two groups at the 3-month follow up. Any statistically significant difference in the rates of tendon rerupture between the control group and the PRP group was found using the magnetic resonance imaging. The current literature on tissue engineering application for rotator cuff repair is scanty. Comparative studies included in this review suggest that PRP augmented repair of a rotator cuff does not yield improved functional and clinical outcome compared with non-augmented repair at a medium and long-term followup. PMID:25098365

  2. The effect of shift rotation on variations of cortisol, fatigue and sleep in sound engineers.

    PubMed

    Vangelova, Katia

    2008-10-01

    The aim was to study the effect of rotation direction on the time-of-day variations of cortisol, fatigue and sleep in sound engineers broadcasting in a life show. The salivary cortisol and ratings of stress, sleepiness and fatigue were followed at three hour intervals in 25 sound engineers: 13 working very fast forward-rotating shifts and 12 working very fast backward-rotating shifts. Cortisol was assessed with radioimmunological kits. The participants reported for stress symptoms and filled sleep diary. Cortisol retained the typical diurnal pattern. The rotation direction interacted with the shift significantly and as a result higher cortisol values during the morning and night shifts in the backward rotating group were found as well as worse quality of sleep. Higher salivary cortisol during morning and night shifts and worse quality of sleep in engineers working very fast backward-rotating shifts may be an indication for insufficient recovery.

  3. Stress and fatigue in sound engineers: the effect of broadcasting in a life show and shift work.

    PubMed

    Vangelova, Katia K

    2008-06-01

    The aim was to study the time-of-day variations of cortisol, fatigue and sleep disturbances in sound engineers in relation to job task and shift work. The concentration of saliva cortisol and feeling of stress, sleepiness and fatigue were followed at three hour intervals in 21 sound engineers: 13 sound engineers, aged 45.1 +/- 7.3 years, broadcasting in a life show during fast forward rotating shifts and 8 sound engineers, aged 47.1 +/- 9.8 years, making records in a studio during fast rotating day shifts. Cortisol concentration was assessed in saliva with radioimmunological kits. The participants reported for stress symptoms during the shifts and filled sleep diary. The data were analyzed by tests of between-subjects effects (SPSS). A trend for higher cortisol was found with the group broadcasting in a life show. The sound engineers broadcasting in a life show reported higher scores of stress, sleepiness and fatigue, but no significant differences concerning the sleep disturbances between the groups were found. In conclusion our data show moderate level of stress and fatigue with the studied sound engineers, higher with the subjects broadcasting in a life show. The quality of sleep showed no significant differences between the studied groups, an indication that the sound engineers were able to tolerate the fast forward rotating shifts.

  4. Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching.

    PubMed

    Moore, Amanda M; Dameron, Arrelaine A; Mantooth, Brent A; Smith, Rachel K; Fuchs, Daniel J; Ciszek, Jacob W; Maya, Francisco; Yao, Yuxing; Tour, James M; Weiss, Paul S

    2006-02-15

    Six customized phenylene-ethynylene-based oligomers have been studied for their electronic properties using scanning tunneling microscopy to test hypothesized mechanisms of stochastic conductance switching. Previously suggested mechanisms include functional group reduction, functional group rotation, backbone ring rotation, neighboring molecule interactions, bond fluctuations, and hybridization changes. Here, we test these hypotheses experimentally by varying the molecular designs of the switches; the ability of the molecules to switch via each hypothetical mechanism is selectively engineered into or out of each molecule. We conclude that hybridization changes at the molecule-surface interface are responsible for the switching we observe.

  5. Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine

    DTIC Science & Technology

    2013-03-01

    Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that

  6. Evaluation of different rotary devices on bone repair in rabbits.

    PubMed

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I--pneumatic low-speed rotation engine, II--pneumatic high-speed rotation engine, and III--electric low-speed rotation engine. The anatomic pieces were surgically obtained after 2, 7 and 30 days and submitted to histological and morphometric analysis. The morphometric results were expressed as the total area of bone remodeling matrix using an image analysis system. Increases in the bone remodeling matrix were noticed with time along the course of the experiment. No statistically significant differences (p>0.05) were observed among the groups at the three sacrificing time points considering the total area of bone mineralized matrix, although the histological analysis showed a slightly advanced bone repair in group III compared to the other two groups. The findings of the present study suggest that the type of rotary device used in oral and maxillofacial surgery does not interfere with the bone repair process.

  7. 14 CFR 33.74 - Continued rotation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.74 Continued rotation. If any of the engine main rotating systems continue to rotate after the engine is shutdown for any reason...

  8. 14 CFR 33.74 - Continued rotation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.74 Continued rotation. If any of the engine main rotating systems continue to rotate after the engine is shutdown for any reason...

  9. Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air

    DTIC Science & Technology

    2011-06-01

    Naval Research Laboratory PDE Pulsed detonation engine RDE Rotating detonation engine TDW Transverse detonation wave Symbols [SI units...primarily been on pulsed detonation engines ( PDEs ). Recently, however, detonation research has begun to also focus on rotating , or continuous... rotating detonation engines have been studied, however, more progress was initially made regarding PDEs . Recently, though, there has been a renewed

  10. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  11. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  12. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section... flight. (b) In the case of turbine engine installations, a means of stopping rotation need be provided...

  13. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  14. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  15. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  16. 14 CFR 125.177 - Control of engine rotation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  17. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  18. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  19. Rotating Detonation Engine Operation (Preprint)

    DTIC Science & Technology

    2012-01-01

    MdotH2 = mass flow of hydrogen MdotAir = mass flow of air PCB = Piezoelectric Pressure Sensor PDE = Pulsed Detonation Engine RDE = Rotating ...and unsteady thrust output of PDEs . One of the new designs was the Rotating Detonation Engine (RDE). An RDE operates by exhausting an initial...AFRL-RZ-WP-TP-2012-0003 ROTATING DETONATION ENGINE OPERATION (PREPRINT) James A. Suchocki and Sheng-Tao John Yu The Ohio State

  20. Design and Testing of an H2/O2 Predetonator for a Simulated Rotating Detonation Engine Channel

    DTIC Science & Technology

    2013-03-01

    Diameter PDE Pulse Detonation Engines RDE Rotating Detonation Engine WPAFB Wright Patterson Air Force Base ZND Zeldovich, von Neumann and Doring xv...DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL THESIS Stephen J. Miller, 2Lt, USAF AFIT-ENY-13-M-23...RELEASE; DISTRIBUTION UNLIMITED AFIT-ENY-13-M-23 DESIGN AND TESTING OF AN H2/O2 PREDETONATOR FOR A SIMULATED ROTATING DETONATION ENGINE CHANNEL Stephen

  1. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model.

    PubMed

    Harada, Yoshifumi; Mifune, Yutaka; Inui, Atsuyuki; Sakata, Ryosuke; Muto, Tomoyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kokubu, Takeshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2017-02-01

    To achieve biological regeneration of tendon-bone junctions, cell sheets of human rotator-cuff derived cells were used in a rat rotator cuff injury model. Human rotator-cuff derived cells were isolated, and cell sheets were made using temperature-responsive culture plates. Infraspinatus tendons in immunodeficient rats were resected bilaterally at the enthesis. In right shoulders, infraspinatus tendons were repaired by the transosseous method and covered with the cell sheet (sheet group), whereas the left infraspinatus tendons were repaired in the same way without the cell sheet (control group). Histological examinations (safranin-O and fast green staining, isolectin B4, type II collagen, and human-specific CD31) and mRNA expression (vascular endothelial growth factor; VEGF, type II collagen; Col2, and tenomodulin; TeM) were analyzed 4 weeks after surgery. Biomechanical tests were performed at 8 weeks. In the sheet group, proteoglycan at the enthesis with more type II collagen and isolectin B4 positive cells were seen compared with in the control group. Human specific CD31-positive cells were detected only in the sheet group. VEGF and Col2 gene expressions were higher and TeM gene expression was lower in the sheet group than in the control group. In mechanical testing, the sheet group showed a significantly higher ultimate failure load than the control group at 8 weeks. Our results indicated that the rotator-cuff derived cell sheet could promote cartilage regeneration and angiogenesis at the enthesis, with superior mechanical strength compared with the control. Treatment for rotator cuff injury using cell sheets could be a promising strategy for enthesis of tendon tissue engineering. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:289-296, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Idling speed control system of an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Ishii, M.; Kako, H.

    1986-09-16

    This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less

  3. Rotational Seismology: AGU Session, Working Group, and Website

    USGS Publications Warehouse

    Lee, William H.K.; Igel, Heiner; Todorovska, Maria I.; Evans, John R.

    2007-01-01

    Introduction Although effects of rotational motions due to earthquakes have long been observed (e. g., Mallet, 1862), nevertheless Richter (1958, p. 213) stated that: 'Perfectly general motion would also involve rotations about three perpendicular axes, and three more instruments for these. Theory indicates, and observation confirms, that such rotations are negligible.' However, Richter provided no references for this claim. Seismology is based primarily on the observation and modeling of three-component translational ground motions. Nevertheless, theoretical seismologists (e.g., Aki and Richards, 1980, 2002) have argued for decades that the rotational part of ground motions should also be recorded. It is well known that standard seismometers are quite sensitive to rotations and therefore subject to rotation-induced errors. The paucity of observations of rotational motions is mainly the result of a lack, until recently, of affordable rotational sensors of sufficient resolution. Nevertheless, in the past decade, a number of authors have reported direct observations of rotational motions and rotations inferred from rigid-body rotations in short baseline accelerometer arrays, creating a burgeoning library of rotational data. For example, ring laser gyros in Germany and New Zealand have led to the first significant and consistent observations of rotational motions from distant earthquakes (Igel et al., 2005, 2007). A monograph on Earthquake Source Asymmetry, Structural Media and Rotation Effects was published recently as well by Teisseyre et al. (2006). Measurement of rotational motions has implications for: (1) recovering the complete ground-displacement history from seismometer recordings; (2) further constraining earthquake rupture properties; (3) extracting information about subsurface properties; and (4) providing additional ground motion information to earthquake engineers for seismic design. A special session on Rotational Motions in Seismology was convened by H. Igel, W.H.K. Lee, and M. Todorovska during the 2006 AGU Fall Meeting. The goal of this session was to discuss rotational sensors, observations, modeling, theoretical aspects, and potential applications of rotational ground motions. The session was accompanied by the inauguration of an International Working Group on Rotational Seismology (IWGoRS) which aims to promote investigations of all aspects of rotational motions in seismology and their implications for related fields such as earthquake engineering, geodesy, strong-motion seismology, and tectonics, as well as to share experience, data, software, and results in an open Web-based environment. The primary goal of this article is to make the Earth Science Community aware of the emergence of the field of rotational seismology.

  4. 14 CFR 121.279 - Control of engine rotation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Control of engine rotation. 121.279 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.279 Control... case of turbine engine installations, a means of stopping the rotation need be provided only if the...

  5. A Comparative Histological Study of Bone Healing in Rat Calvarial Defect Using the Erbium-Doped Yttrium Aluminum Garnet Laser and Rotary Instruments

    NASA Astrophysics Data System (ADS)

    Jung, Mi-Kyung; Kim, Su-Gwan; Oh, Ji-Su; Jin, Seung-Chan; Lee, Sook-Young; Jang, Eun-Sook; Piao, Zheng-Gang; Lim, Sung-Chul; Jeong, Mi-Ae

    2012-01-01

    Erbium-doped yttrium aluminum garnet (Er:YAG) lasers have been used in dentistry for cutting bone and removal of caries. The purpose of this study was to evaluate the bone healing in a skull defect prepared in rats using various instruments including Er:YAG laser. The 7 mm calvarial defects were created in 45 rats and 45 rats were divided into three groups (n = 15): a high-speed rotation engine with carbide round bur (2-mm diameter), a low-speed rotation engine with carbide round bur (2-mm diameter), and an Er:YAG laser. Specimens obtained after 3 days or 4 or 8 weeks were submitted for histological analysis. Three days after surgery, no bone formation had occurred in any of the groups. Four weeks after surgery, 90 ±8.16% new bone formation was observed in the high-speed group, and 8 weeks after surgery, 100 ±0% new bone formation was observed in the low- and high-speed groups. There were significant differences among the periods after surgery, but no significant differences were observed among final results with in different device groups.

  6. Pressure Characteristics of a Diffuser in a Ram RDE Propulsive Device

    DTIC Science & Technology

    2017-07-21

    Continuous detonation Rotating-detonation- engine Ethylene-air Diffuser Pressure feedback Modeling and simulation Office of Naval Research 875 N. Randolph...RDE PROPULSIVE DEVICE INTRODUCTION This report focuses on the diffuser of a ram Rotating Detonation Engine (RDE) device. A ram RDE is a ramjet with...the constant pressure combustion chamber replaced with a Rotating Detonation Engine combustor to accomplish pressure gain combustion. A ram engine

  7. The effects of computer-aided design software on engineering students' spatial visualisation skills

    NASA Astrophysics Data System (ADS)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  8. Rotation, Reflection, and Frame Changes; Orthogonal tensors in computational engineering mechanics

    NASA Astrophysics Data System (ADS)

    Brannon, R. M.

    2018-04-01

    Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-contained comprehensive review that covers both elementary and advanced concepts in a manner comprehensible to engineers is rare. Rotation, Reflection, and Frame Changes surveys a refreshingly broad range of rotation-related research that is routinely needed in engineering practice. By illustrating key concepts in computer source code, this book stands out as an unusually accessible guide for engineers and scientists in engineering mechanics.

  9. Artificial Dipolar Molecular Rotors

    NASA Astrophysics Data System (ADS)

    Horansky, R. D.; Magnera, T. F.; Price, J. C.; Michl, J.

    Rotors are present in almost every macroscopic machine, converting rotational motion into energy of other forms, or converting other forms of energy into rotation. Rotation may be transmitted via belts or gears, converted into linear motion by various linkages, or used to drive propellers to produce fluid motion. Examples of macroscopic rotors include engines which couple to combustible energy sources, windmills which couple to air flows, and most generators of electricity. A key feature of these objects is the presence of a part with rotational freedom relative to a stationary frame. In this chapter we discuss the miniaturization of rotary machines all the way to the molecular scale, where chemical groups form the rotary and stationary parts. For a recent review of molecules with rotary and stationary parts see [1].

  10. Engine balance apparatus and accessory drive device

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons such as those engines used in automobiles, aircrafts, boats, piston-driven compressors, piston-driven slider crank mechanisms, etc. The present balancing mechanism may comprise a first balance mass non-rotatably affixed to the crankshaft and a second balance mass rotatably supported on the crankshaft. A driver assembly is affixed to crankshaft to cause the second balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components.

  11. Does an Injection of Adipose-Derived Mesenchymal Stem Cells Loaded in Fibrin Glue Influence Rotator Cuff Repair Outcomes? A Clinical and Magnetic Resonance Imaging Study.

    PubMed

    Kim, Yong Sang; Sung, Chang Hun; Chung, Sung Hoon; Kwak, Sang Joon; Koh, Yong Gon

    2017-07-01

    The mesenchymal stem cell (MSC)-based tissue engineering approach has been developed to improve the treatment of rotator cuff tears. Hypothesis/Purpose: The purpose was to determine the effect of an injection of adipose-derived MSCs loaded in fibrin glue during arthroscopic rotator cuff repair on clinical outcomes and to evaluate its effect on structural integrity using magnetic resonance imaging (MRI). The hypothesis was that the application of adipose-derived MSCs would improve outcomes after the surgical repair of a rotator cuff tear. Cohort study; Level of evidence, 3. Among 182 patients treated with arthroscopic surgery for a rotator cuff tear, 35 patients treated with arthroscopic rotator cuff repair alone (conventional group) were matched with 35 patients who underwent arthroscopic rotator cuff repair with an injection of adipose-derived MSCs loaded in fibrin glue (injection group) based on sex, age, and lesion size. Outcomes were assessed with respect to the visual analog scale (VAS) for pain, range of motion (ROM) (including forward flexion, external rotation at the side, and internal rotation at the back), and functional measures of the Constant score and University of California, Los Angeles (UCLA) shoulder rating scale. Repaired tendon structural integrity was assessed by using MRI at a minimum of 12 months after surgery, and the mean clinical follow-up was 28.8 ± 4.2 months in the conventional group and 28.3 ± 3.8 months in the injection group. The mean VAS score at rest and during motion improved significantly in both groups after surgery. However, there were no significant differences between the groups at the final follow-up ( P = .256 and .776, respectively). Compared with preoperative measurements, forward flexion and external rotation at the side significantly improved at the final follow-up in both groups (all P < .05). However, no significant improvements in internal rotation at the back were observed in either group ( P = .625 and .834 for the conventional and injection groups, respectively). There were also no significant differences between the groups at the final follow-up for any of the 3 ROM positions (all P > .05). The mean Constant score and UCLA score improved significantly in both groups after surgery, but there were no significant differences between the groups at the final follow-up ( P = .634 and .302, respectively). MRI indicated a retear rate of 28.5% in the conventional group and 14.3% in the injection group ( P < .001). This study revealed that an injection of adipose-derived MSCs loaded in fibrin glue during rotator cuff repair could significantly improve structural outcomes in terms of the retear rate. There were, however, no clinical differences in the 28-month period of follow-up. Although still in the early stages of application, MSC augmentation of surgical rotator cuff repair appears useful for providing an adequate biological environment around the repair site.

  12. Dual-Actuator Active Vibration-Control System

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Kiraly, Louis J.; Montague, Gerald T.; Palazzolo, Alan B.; Manchala, Daniel

    1994-01-01

    Dual-actuator active vibration-control (DAAVC) system is developmental system of type described in "Active Vibration Dampers for Rotating Machinery" (LEW-15427). System features sensors and actuators positioned and oriented at bearings to measure and counteract vibrations of shaft along either of two axes perpendicular to axis of rotation. Effective in damping vibrations of helicopter-engine test stand, making it safer to operate engine at speeds near and above first resonance of engine/test-stand system. Opens new opportunities for engine designers to draw more power from engine, and concept applicable to other rotating machines.

  13. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement.

    PubMed

    De-Deus, G; Moreira, E J L; Lopes, H P; Elias, C N

    2010-12-01

    To evaluate the cyclic fatigue fracture resistance of engine-driven F2 ProTaper instruments under reciprocating movement. A sample of 30 NiTi ProTaper F2 instruments was used. An artificial canal was made from a stainless steel tube, allowing the instruments to rotate freely. During mechanical testing, different movement kinematics and speeds were used, which resulted in three experimental groups (n = 10). The instruments from the first group (G1) were rotated at a nominal speed of 250 rpm until fracture, whilst the instruments from the second group (G2) were rotated at 400 rpm. In the third instrument group (G3), the files were driven under reciprocating movement. The time of fracture for each instrument was measured, and statistical analysis was performed using parametric methods. Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.05). Moreover, operating rpm was a significant factor affecting cyclic fatigue life (P < 0.05); instruments used at a rotational speed of 400 rpm (approximately 95 s) failed more rapidly than those used at 250 rpm (approximately 25 s). Movement kinematics is amongst the factors determining the resistance of rotary NiTi instruments to cyclic fracture. Moreover, the reciprocating movement promoted an extended cyclic fatigue life of the F2 ProTaper instrument in comparison with conventional rotation.

  14. 14 CFR 33.74 - Continued rotation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Continued rotation. 33.74 Section 33.74 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.74 Continued rotation. If...

  15. 14 CFR 33.74 - Continued rotation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Continued rotation. 33.74 Section 33.74 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.74 Continued rotation. If...

  16. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  17. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  18. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  19. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  20. 46 CFR 111.01-15 - Temperature ratings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...

  1. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    DOE PAGES

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; ...

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less

  2. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K,more » we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. Furthermore, the ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.« less

  3. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications

    PubMed Central

    Jaroszewicz, Leszek R.; Kurzych, Anna; Krajewski, Zbigniew; Marć, Paweł; Kowalski, Jerzy K.; Bobra, Piotr; Zembaty, Zbigniew; Sakowicz, Bartosz; Jankowski, Robert

    2016-01-01

    Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s. PMID:27999299

  4. Diesel emission reduction using internal exhaust gas recirculation

    DOEpatents

    He, Xin [Denver, CO; Durrett, Russell P [Bloomfield Hills, MI

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  5. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the originalmore » proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,« less

  6. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990-2007 in the US alone [1]. As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a non-rotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various nonrotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the pre-stress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a suitable manner. This paper describes the various non-rotating concepts analyzed, and demonstrates the effect believed to be gyroscopic in nature on the results.

  7. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in a suitable manner. This paper describes the various non-rotating concepts analyzed, and demonstrates the effect believed to be gyroscopic in nature on the results

  8. Investigation of Rotating Stall Phenomena in Axial Flow Compressors. Volume I. Basic Studies of Rotating Stall

    DTIC Science & Technology

    1976-06-01

    rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers

  9. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion.

    PubMed

    Gambarini, G; Gergi, R; Naaman, A; Osta, N; Al Sudani, D

    2012-09-01

    To evaluate the cyclic fatigue fracture resistance of engine-driven twisted file (TF) instruments under reciprocating movement. A sample of 30 size 25, 0.08 taper NiTi TF instruments was tested in a simulated canal with 60˚ angle of curvature and a 3 mm radius. During mechanical testing, different movement kinematics were used at a constant speed, which resulted in three experimental groups (each group n = 10). The instruments from the first group (G1) were rotated until fracture occurred. The instruments in the second (G2) and third group (G3) were driven under reciprocating movement with different angles of reciprocation. The time of fracture for each instrument was measured, and statistical analysis was performed using one-way analysis of variance followed by Tukey's Honestly Significant Different test. Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.0001) when compared with continuous rotation. No difference was found between reciprocation 150° clockwise/30° counterclockwise (CW/CCW) and 30° CW/150° CCW. The reciprocating movement was associated with an extended cyclic fatigue life of the TF size 0.25, 0.08 taper instruments in comparison with conventional rotation. © 2012 International Endodontic Journal.

  10. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  11. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  12. Orbital Transfer Rocket Engine Technology High Velocity Ratio Diffusing Crossover

    DTIC Science & Technology

    1992-12-01

    The rotor was segmented into 10 weight groups and 25 finite elements. The bearings were represented as translational springs to ground ( rigid casing...personnel: Advanced Rotating Machinery: Mr. Robert Sutton Mr. Tim Irvin Mr. Hal Buddenbohm Mr. A] Uttle Fluid Dynamics : Dr. Eugene Jackson Mr. Anthony...1 7 Dynamic Soft Wear Ring Seals ................................... #,.................so

  13. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  14. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  15. Characterization of Rotating Detonation Engine Exhaust Through Nozzle Guide Vanes

    DTIC Science & Technology

    2013-03-21

    THROUGH NOZZLE GUIDE VANES THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air...the first Nozzle Guide Vane (NGV) section from a T63 gas turbine engine to a 6 inch diameter RDE was designed and built for this study. Pressure...CHARACTERIZATION OF ROTATING DETONATION ENGINE EXHAUST THROUGH NOZZLE GUIDE VANES THESIS Nick D. DeBarmore, Second Lieutenant, USAF AFIT/GAE/ENY/13

  16. Investigation of Exoskeletal Engine Propulsion System Concept

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Palac, Donald T.; Hunter, James E.; Myers, David E.; Snyder, Christopher A.; Kosareo, Daniel N.; McCurdy, David R.; Dougherty, Kevin T.

    2005-01-01

    An innovative approach to gas turbine design involves mounting compressor and turbine blades to an outer rotating shell. Designated the exoskeletal engine, compression (preferable to tension for high-temperature ceramic materials, generally) becomes the dominant blade force. Exoskeletal engine feasibility lies in the structural and mechanical design (as opposed to cycle or aerothermodynamic design), so this study focused on the development and assessment of a structural-mechanical exoskeletal concept using the Rolls-Royce AE3007 regional airliner all-axial turbofan as a baseline. The effort was further limited to the definition of an exoskeletal high-pressure spool concept, where the major structural and thermal challenges are represented. The mass of the high-pressure spool was calculated and compared with the mass of AE3007 engine components. It was found that the exoskeletal engine rotating components can be significantly lighter than the rotating components of a conventional engine. However, bearing technology development is required, since the mass of existing bearing systems would exceed rotating machinery mass savings. It is recommended that once bearing technology is sufficiently advanced, a "clean sheet" preliminary design of an exoskeletal system be accomplished to better quantify the potential for the exoskeletal concept to deliver benefits in mass, structural efficiency, and cycle design flexibility.

  17. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  18. Biomechanical comparison of a novel engine-driven ridge spreader and conventional ridge splitting techniques.

    PubMed

    Jung, Gyu-Un; Kim, Jun Hwan; Lim, Nam Hun; Yoon, Gil Ho; Han, Ji-Young

    2017-06-01

    Ridge splitting techniques are used for horizontal ridge augmentation in implant dentistry. Recently, a novel engine-driven ridge splitting technique was introduced. This study compared the mechanical forces produced by conventional and engine-driven ridge splitting techniques in porcine mandibles. In 33 pigs, mandibular premolar areas were selected for the ridge splitting procedures, designed as a randomized split-mouth study. The conventional group underwent a chisel-and-mallet procedure (control group, n = 20), and percussive impulse (Newton second, Ns) was measured using a sensor attached to the mallet. In the engine-driven ridge spreader group (test group, n = 23), a load cell was used to measure torque values (Newton centimeter, Ncm). Horizontal acceleration generated during procedures (control group, n = 10 and test group, n = 10) was compared between the groups. After ridge splitting, the alveolar crest width was significantly increased both in the control (1.23 ± 0.45 mm) and test (0.98 ± 0.41 mm) groups with no significant differences between the groups. The average impulse of the control group was 4.74 ± 1.05 Ns. Torque generated by rotation in the test group was 9.07 ± 2.15 Ncm. Horizontal acceleration was significantly less in the test group (0.82 ± 1.05 g) than the control group (64.07 ± 42.62 g) (P < 0.001). Narrow edentulous ridges can be expanded by novel engine-driven ridge spreaders. Within the limits of this study, the results suggested that an engine-driven ridge splitting technique may be less traumatic and less invasive than a conventional ridge splitting technique. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

    NASA Technical Reports Server (NTRS)

    Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

    2014-01-01

    A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

  20. Vibrational and Rotational CARS Measurements of Nitrogen in Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2012-01-01

    in a variety of different ignition regimes, including pulsed detonation engines ( PDEs ) and automobile engines, with experiments demonstrating TPI to...Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures This article...DATE 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Vibrational and rotational CARS measurements of

  1. Dynamic Imbalance Would Counter Offcenter Thrust

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason

    1994-01-01

    Dynamic imbalance generated by offcenter thrust on rotating body eliminated by shifting some of mass of body to generate opposing dynamic imbalance. Technique proposed originally for spacecraft including massive crew module connected via long, lightweight intermediate structure to massive engine module, such that artificial gravitation in crew module generated by rotating spacecraft around axis parallel to thrust generated by engine. Also applicable to dynamic balancing of rotating terrestrial equipment to which offcenter forces applied.

  2. Gas Turbine Engine Carbon Oil Seals Computerized Assembly

    NASA Technical Reports Server (NTRS)

    Lee, Robert

    2006-01-01

    In a bearing compartment there are a series of parts when assembled determine the location of the bearing and seal as related to the centerline of rotation. We see part datums that do not establish A coincident path from the bearing to the seal. High engine vibration can cause severe oil leakage. The inability of the seal to respond fast enough to the rotating element Radial Seal: Sensitive to housing air pressure Sensitive to seal runout ? Axial Seal: Very sensitive to seal perpendicularity to shaft. Goals include: 1) Repeatable assembly process; 2) Accurate assembly process; 3) Minimize seal runout; 4) Design to engine centerline of rotation, i.e. bearings.

  3. Modeling the Effects of Turbulence in Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Smith, Katherine; Hamlington, Peter; van Schoor, Marthinus; TESLa Team; Midé Team

    2014-03-01

    Propulsion systems based on detonation waves, such as rotating and pulsed detonation engines, have the potential to substantially improve the efficiency and power density of gas turbine engines. Numerous technical challenges remain to be solved in such systems, however, including obtaining more efficient injection and mixing of air and fuels, more reliable detonation initiation, and better understanding of the flow in the ejection nozzle. These challenges can be addressed using numerical simulations. Such simulations are enormously challenging, however, since accurate descriptions of highly unsteady turbulent flow fields are required in the presence of combustion, shock waves, fluid-structure interactions, and other complex physical processes. In this study, we performed high-fidelity three dimensional simulations of a rotating detonation engine and examined turbulent flow effects on the operation, performance, and efficiency of the engine. Along with experimental data, these simulations were used to test the accuracy of commonly-used Reynolds averaged and subgrid-scale turbulence models when applied to detonation engines. The authors gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).

  4. Observations on Rotating Cavitation and Cavitation Surge from the Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.

    2000-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.

  5. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  6. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    NASA Astrophysics Data System (ADS)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  7. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  8. Space Software for Automotive Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    John Thousand of Wolverine Western Corp. put his aerospace group to work on an unfamiliar job, designing a brake drum using computer design techniques. Computer design involves creation of a mathematical model of a product and analyzing its effectiveness in simulated operation. Technique enables study of performance and structural behavior of a number of different designs before settling on a final configuration. Wolverine employees attacked a traditional brake drum problem, the sudden buildup of heat during fast and repeated braking. Part of brake drum not confined tends to change its shape under combination of heat, physical pressure and rotational forces, a condition known as bellmouthing. Since bellmouthing is a major factor in braking effectiveness, a solution of problem would be a major advance in automotive engineering. A former NASA employee, now a Wolverine employee, knew of a series of NASA computer programs ideally suited to confronting bellmouthing. Originally developed as aids to rocket engine nozzle design, it's capable of analyzing problems generated in a rocket engine or automotive brake drum by heat, expansion, pressure and rotational forces. Use of these computer programs led to new brake drum concept featuring a more durable axle, and heat transfer ribs, or fins, on hub of drum.

  9. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As a result of the recommendations from President Nixon's Space Task Group, Marshall Space Flight Center engineers studied various ways to enhance commonality and integration in the American space program. This artist's concept from 1969 shows a possible spacecraft configuration for a marned Mars mission. In this mode, two planetary vehicles, each powered by a Nuclear Shuttle, are joined together during the flight and rotated to provide artificial gravity for crew members.

  10. A Tissue-Engineered Muscle Repair Construct for Functional Restoration of an Irrecoverable Muscle Injury in a Murine Model

    DTIC Science & Technology

    2011-07-28

    the muscle through rotation of the micrometer head. Peak isometric con- tractile force was measured at optimal length with a 1200 ms train of 0.2 ms...LD muscle was 150.8– 4.8 mN/mm2, which was similar to that reported previously by our group.31 Maximal specific isometric force for the NR group one...99.2– 17.7 mN/mm2 at 2 months, with the latter being 66% of the native LD muscle isometric specific force. Isometric specific force of the R-S group

  11. Natural Gas Propulsion Options for Short Sea Shipping Routes

    DTIC Science & Technology

    2010-08-01

    that are involved with gas and the relevant systems, along with personal protection issues that come into effect when handling both compressed and...a compressed air system for engine starting, which is stored in compressed air storage cylinders . The system leads compressed air through a valve...directly into the cylinder heads at 30bar to begin the rotation of the engine. After this rotation occurs, the engine is supplied with diesel fuel

  12. A solar engine using the thermal expansion of metals.

    NASA Technical Reports Server (NTRS)

    Beam, R.; Jedlicka, J.

    1973-01-01

    A thermal engine which uses solid metal as the single-phase working substance to convert solar energy into small amounts of mechanical energy is described. Test data are given for an engine whose working substance was annealed 304-type steel welded into a thin-walled tube that was mounted in a bearing at each end (making it free to rotate about its axis) with a flywheel mass at its midpoint. When heated on its upper surface, the tube rotates producing steady power. The theory of the engine is outlined.

  13. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) prop-fan engines for single-rotation prop-fans, the conceptual design of the entire propulsion system, and an aircraft evaluation of the resultant designs are discussed. Four engine configurations were examined. A two-spool engine with all axial compressors and a three-spool engine with axial/centrifugal compressors were selected. Integrated propulsion systems were designed in conjunction with airframe manufacturers. The design efforts resulted in 12,000 shaft horsepower engines installed in over the installations with in-line and offset gearboxes. The prop-fan powered aircraft used 21 percent less fuel and cost 10 percent less to operate than a similar aircraft powered by turbofan engines with comparable technology.

  14. Turbofan compressor dynamics during afterburner transients

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.

    1975-01-01

    The effects of afterburner light-off and shut-down transients on compressor stability were investigated. Experimental results are based on detailed high-response pressure and temperature measurements on the Tf30-p-3 turbofan engine. The tests were performed in an altitude test chamber simulating high-altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan-bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient, the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.

  15. Performance of a shaft seal system for the LE-7 rocket engine oxidizer turbopump

    NASA Astrophysics Data System (ADS)

    Oike, Mamoru; Nosaka, Masataka; Kikuchi, Masataka; Watanabe, Yoshiaki

    An experimental study on a rotating-shaft seal system for a high-pressure liquid oxygen (LOX) turbopump has been conducted to develop the LE-7 engine for the Japanese H-II launch vehicle. The LOX turbopump rotating-shaft seal system, which prevents LOX (4.9 MPa) and the high-pressure turbine-drive gas (16.6 MPa, 970 K) from mixing during high-speed operations (18,000 to 20,000 rpm), consists of the following seals: an LOX seal comprising a floating-ring and a wear-ring, a turbine gas seal comprising two floating-rings, and a helium purge seal comprising two segmented circumferential seal-rings. This report describes experimental and observational results concerning the rotating-shaft seal system obtained in the LOX turbopump operations and the seal tests. Based on comparisons between the measurements and the analytical results, sealing characteristics of the seal system are discussed. Inspections of the sealing surfaces after the engine firing tests demonstrated that the LOX turbopump rotating-shaft seal system has sufficient durability for use in the LE-7 engine for the H-II launch vehicle.

  16. Resistance to flexural fatigue of Reciproc R25 files under continuous rotation and reciprocating movement.

    PubMed

    Gavini, Giulio; Caldeira, Celso Luiz; Akisue, Eduardo; Candeiro, George Táccio de Miranda; Kawakami, Dirce Akemi Sacaguti

    2012-05-01

    The aim of the present work was to evaluate the resistance to flexural fatigue of Reciproc R25 nickel-titanium files, 25 mm, used in continuous rotation motion or reciprocation motion, in dynamic assays device. Thirty-six Reciproc R25 files were divided into 2 groups (n = 18) according to kinematics applied, continuous rotary (group CR) and reciprocation motion (group RM). The files were submitted to dynamic assays device moved by an electric engine with 300 rpm of speed that permitted the reproduction of pecking motion. The files run on a ring's groove of temperate steel, simulating instrumentation of a curved root canal with 40° and 5 mm of curvature radius. The fracture of file was detected by sensor of device, and the time was marked. The data were analyzed statistically by Student's t test, with level of significance of 95%. The instruments moved by reciprocating movement reached significantly higher numbers of cycles before fracture (mean, 1787.78 cycles) when compared with instruments moved by continuous rotary (mean, 816.39 cycles). The results showed that the reciprocation motion improves flexural fatigue resistance in nickel-titanium instrument Reciproc R25 when compared with continuous rotation movement. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less

  18. Variations of cortisol, fatigue and sleep disturbances in sound engineers: effect of job task and fast backward-rotating shifts.

    PubMed

    Vangelova, Katia K

    2008-01-01

    The aim was to study the effect of job task and fast backward-rotating shifts on the time-of-day variations of cortisol, fatigue, and sleep disturbances in broadcasting sound engineers. The concentration of saliva cortisol and ratings of stress, sleepiness, and fatigue were followed at 3-hour intervals during the fast backward-rotating shifts in 26 sound engineers: 14 subjects from control rooms, aged 45.1 +/- 7.3 years, and 12 subjects working in direct transmissions, aged 51.7 +/- 6.0 years. Saliva cortisol was assessed using an radioimmunology kit. The participants reported for stress symptoms after the shifts and filled a sleep diary. The effects of job task, shift, and time-of-day were analyzed by tests of between-subjects effects (SPSS). Cortisol retained the typical diurnal pattern with a highly significant effect of the shift. The job task and the shift interacted significantly. Higher cortisol values during the morning and night shifts in engineers working in direct transmissions were found. Their stress ratings were also higher, as well as the ratings of sleepiness and fatigue. The quality of sleep was worse in engineers working in direct transmissions. In conclusion, our data indicate that stress and fast backward-rotating shifts in sound engineers working in direct transmissions affect physiological stress markers such as cortisol and increase sleepiness, fatigue, and sleep problems.

  19. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.

  20. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    NASA Astrophysics Data System (ADS)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  1. Computer-Assisted Instruction in Engineering Dynamics. CAI-Systems Memo Number 18.

    ERIC Educational Resources Information Center

    Sheldon, John W.

    A 90-minute computer-assisted instruction (CAI) unit course supplemented by a 1-hour lecture on the dynamic nature of three-dimensional rotations and Euler angles was given to 29 undergraduate engineering students. The area of Euler angles was selected because it is essential to problem-working in three-dimensional rotations of a rigid body, yet…

  2. Observations on Rotating Cavitation and Cavitation Surge From The Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.; Turner, James E. (Technical Monitor)

    2000-01-01

    The effects of rotating cavitation and cavitation surges on the Fastrac Engine Turbopump are described in a viewgraph presentation format. The bent inducer blade dilemma and observations of unsteady data and oscillation components are discussed. The pump-feed system stability modeling assessment is outlined. Recommendations are made urging further investigation.

  3. Analysis of automobile engine cylinder pressure and rotation speed from engine body vibration signal

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Cheng, Xiang; Tan, Haishu

    2016-01-01

    In order to improve the engine vibration signal process method for the engine cylinder pressure and engine revolution speed measurement instrument, the engine cylinder pressure varying with the engine working cycle process has been regarded as the main exciting force for the engine block forced vibration. The forced vibration caused by the engine cylinder pressure presents as a low frequency waveform which varies with the cylinder pressure synchronously and steadily in time domain and presents as low frequency high energy discrete humorous spectrum lines in frequency domain. The engine cylinder pressure and the rotation speed can been extract form the measured engine block vibration signal by low-pass filtering analysis in time domain or by FFT analysis in frequency domain, the low-pass filtering analysis in time domain is not only suitable for the engine in uniform revolution condition but also suitable for the engine in uneven revolution condition. That provides a practical and convenient way to design motor revolution rate and cylinder pressure measurement instrument.

  4. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons.

    PubMed

    Triantafillopoulos, Ioannis K; Banes, Albert J; Bowman, Karl F; Maloney, Melissa; Garrett, William E; Karas, Spero G

    2004-06-01

    To date, no studies document the effect of anabolic steroids on rotator cuff tendons. Controlled laboratory study. Anabolic steroids enhance remodeling and improve the biomechanical properties of bioartificially engineered human supraspinatus tendons. Bioartificial tendons were treated with either nandrolone decanoate (nonload, steroid, n = 18), loading (load, nonsteroid, n = 18), or both (load, steroid, n = 18). A control group received no treatment (nonload, nonsteroid [NLNS], n = 18). Bioartificial tendons' remodeling was assessed by daily scanning, cytoskeletal organization by staining, matrix metalloproteinase-3 levels by ELISA assay, and biomechanical properties by load-to-failure testing. The load, steroid group showed the greatest remodeling and the best organized actin cytoskeleton. Matrix metallo-proteinase-3 levels in the load, steroid group were greater than those of the nonload, nonsteroid group (P <.05). Ultimate stress and ultimate strain in the load, steroid group were greater than those of the nonload, nonsteroid and nonload, steroid groups (P <.05). The strain energy density in the load, steroid group was greater when compared to other groups (P <.05). Nandrolone decanoate and load acted synergistically to increase matrix remodeling and biomechanical properties of bioartificial tendons. Data suggest anabolic steroids may enhance production of bioartificial tendons and rotator cuff tendon healing in vitro. More research is necessary before such clinical use is recommended.

  5. Double acting stirling engine phase control

    DOEpatents

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  6. A numerical strategy for modelling rotating stall in core compressors

    NASA Astrophysics Data System (ADS)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary conditions downstream. Such an approach is representative of modelling an engine.Using a 3D viscous time-accurate flow representation, the front bladerows of a core compressor were modelled in a whole-annulus fashion whereas the rest of bladerows are modelled in a single-passage fashion. The rotating stall behaviour at two different compressor operating points was studied by considering two different variable-vane scheduling conditions for which experimental data were available. Using a model with nine whole-assembly models, the unsteady-flow calculations were conducted on 32-CPUs of a parallel cluster, typical run times being around 3-4 weeks for a grid with about 60 million points. The simulations were conducted over several engine rotations. As observed on the actual development engine, there was no rotating stall for the first scheduling condition while mal-scheduling of the stator vanes created a 12-band rotating stall which excited the 1st flap mode.

  7. Engine balance apparatus and accessory drive device

    NASA Technical Reports Server (NTRS)

    Egleston, Robert W. (Inventor)

    2002-01-01

    A balancing mechanism for an engine that has a rotating crankshaft and reciprocating pistons. The balancing mechanism comprises a primary balance mass assembly non-rotatably and removably affixed to the crankshaft. The primary mass assembly comprises a primary mass affixed to a primary hub portion and a primary cap portion removably affixed to the primary hub portion to clamp a portion of the crankshaft therebetween. A secondary balance mass assembly may be rotatably and removably supported on the crankshaft. A driver assembly is affixed to the crankshaft to cause the secondary balance mass to rotate in a direction that is opposite to the direction in which the crank shaft is rotating. The driver assembly may include auxiliary gears configured to transport rotary power to auxiliary components. The gears are readily detachable from the apparatus to facilitate inspection and repair operations.

  8. 76 FR 6323 - Airworthiness Directives; General Electric Company CF6-45 and CF6-50 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... reports received of additional causes of HPT rotor imbalance not addressed in AD 2010-12-10, and two additional LPT rotor stage 3 disk events. We are issuing this AD to prevent critical life-limited rotating... issued. We issued those ADs to prevent critical life-limited rotating engine part failure, which could...

  9. Advanced Propfan Engine Technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design

    NASA Technical Reports Server (NTRS)

    Anderson, R. D.

    1985-01-01

    Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.

  10. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... range of rotational speeds and power/thrust, without inducing excessive stress in any engine part...

  11. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... range of rotational speeds and power/thrust, without inducing excessive stress in any engine part...

  12. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  13. Effect of environment on low-cycle fatigue of a nickel-titanium instrument.

    PubMed

    Cheung, Gary S P; Shen, Ya; Darvell, Brian W

    2007-12-01

    This study examined the low-cycle fatigue (LCF) behavior of a nickel-titanium (NiTi) engine-file under various environmental conditions. One brand of NiTi instrument was subjected to rotational-bending fatigue in air, deionized water, sodium hypochlorite, or silicone oil. The curvature of each instrument, diameter of the fracture cross-section, and the number of rotations to failure were determined. The strain-life relationship in the LCF region was examined by using one-way analysis of variance, and the number of crack origins with chi2, for differences between groups. The results showed a linear relationship, on logarithmic scales, between the LCF life and the surface strain amplitude; regression line slopes were significantly different between noncorrosive (air, silicone oil) and corrosive (water, hypochlorite) environments (P < .05), as well as number of crack origins (P < .05). Hypochlorite was more detrimental to fatigue life than water. In conclusion, environmental conditions significantly affect the LCF behavior of NiTi rotary instruments. Fatigue testing of NiTi engine-files should be in a service-like environment.

  14. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  15. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  16. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  17. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  18. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...

  19. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...

  20. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...

  1. 46 CFR 121.620 - Propulsion engine control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  2. Swirling midframe flow for gas turbine engine having advanced transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.

    A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configuredmore » to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.« less

  3. Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3

    DOE PAGES

    Gao, Ran; Dong, Yongqi; Xu, Han; ...

    2016-05-24

    We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less

  4. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears.

    PubMed

    Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker

    2017-08-01

    The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.

  5. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  6. A Comparison of Student Spatial Abilities Across STEM Fields

    NASA Astrophysics Data System (ADS)

    Loftis, Thad; Cid, Xiimena; Lopez, Ramon

    2011-10-01

    It has been shown that STEM (Science, Technology, Engineering, and Mathematics) students have higher spatial abilities than students in the liberal arts or humanities. In order to track the change in spatial abilities within a group, studies in physics have examined topics in kinematics, chemistry has examined topics on molecular diagrams, mathematics has examined topics related to geometry, and engineering has developed courses specifically targeting students' spatial abilities. It is understood that students in STEM fields improve their spatial abilities while taking STEM courses, but very few studies have done comparisons amongst the different STEM fields. I will be presenting data comparing different STEM students' spatial ability, assessed using the Mental Rotation Test.

  7. Airfoil seal system for gas turbine engine

    DOEpatents

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  8. New Representation of Bearings in LS-DYNA

    NASA Technical Reports Server (NTRS)

    Carney, Kelly S.; Howard, Samuel A.; Miller, Brad A.; Benson, David J.

    2014-01-01

    Non-linear, dynamic, finite element analysis is used in various engineering disciplines to evaluate high-speed, dynamic impact and vibration events. Some of these applications require connecting rotating to stationary components. For example, bird impacts on rotating aircraft engine fan blades are a common analysis performed using this type of analysis tool. Traditionally, rotating machines utilize some type of bearing to allow rotation in one degree of freedom while offering constraints in the other degrees of freedom. Most times, bearings are modeled simply as linear springs with rotation. This is a simplification that is not necessarily accurate under the conditions of high-velocity, high-energy, dynamic events such as impact problems. For this reason, it is desirable to utilize a more realistic non-linear force-deflection characteristic of real bearings to model the interaction between rotating and non-rotating components during dynamic events. The present work describes a rolling element bearing model developed for use in non-linear, dynamic finite element analysis. This rolling element bearing model has been implemented in LS-DYNA as a new element, *ELEMENT_BEARING.

  9. Detonation Jet Engine. Part 2--Construction Features

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  10. Rotational coherent anti-stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements.

    PubMed

    Black, J D; Long, C A

    1992-07-20

    In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig.

  11. From Tesla to Tetris: Mental Rotation, Vocation, and Gifted Education

    ERIC Educational Resources Information Center

    von Károlyi, Catya

    2013-01-01

    Mental rotation ability is important for success in a number of academic and career fields, especially the science, technology, engineering, and mathematics (STEM) domains. Individual differences in intelligence, spatial ability, strategy selection biases, and gender are all associated with proficiency in mental rotation. Interventions and…

  12. Analysis of Porous Media as Inlet Concept for Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Grogan, Kevin; Ihme, Matthias; Department of Mechanical Engineering Team

    2016-11-01

    Rotating detonation engines combust reactive gas mixtures with a high-speed, annularly-propagating detonation wave, which provides many advantages including a stagnation pressure gain and a compact, lightweight design. However, the optimal design of the inlet to the combustion chamber inlet is a moot topic since improper design can significantly reduce detonability and increase pressure losses. The highly diffusive properties of porous media could make it an ideal material to prevent the flashback of the detonation wave and therefore, allow the inlet gas to be premixed. Motivated by this potential, this work employs simulation to evaluate the application of porous media to the inlet of a rotating detonation engine as a novel means to stabilize a detonation wave while reducing the pressure losses incurred by non-ideal mixing strategies. Department of the Air Force.

  13. Apparatus and method for producing an artificial gravitational field

    NASA Technical Reports Server (NTRS)

    Mccanna, Jason (Inventor)

    1993-01-01

    An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.

  14. An autonomous single-piston engine with a quantum rotor

    NASA Astrophysics Data System (ADS)

    Roulet, Alexandre; Nimmrichter, Stefan; Taylor, Jacob M.

    2018-07-01

    Pistons are elementary components of a wide variety of thermal engines, allowing to convert input fuel into rotational motion. Here, we propose a single-piston engine where the rotational degree of freedom is effectively realized by the flux of a Josephson loop—a quantum rotor—while the working volume corresponds to the effective length of a superconducting resonator. Our autonomous design implements a Carnot cycle, relies solely on standard thermal baths and can be implemented with circuit quantum electrodynamics. We demonstrate how the engine is able to extract a net positive work via its built-in synchronicity using a filter cavity as an effective valve, eliminating the need for external control.

  15. Journal of Engineering Thermophysics (Selected Articles),

    DTIC Science & Technology

    1983-05-20

    A SURGE TEST OF A TWIN-SHAFT TURBOJET ENGINE ON GROUND TEST BED* Chiang Feng (Shengyang Aeroengine Company) ABSTRACT Instrument technique for...oscillogram for the static pressure behind the two compressors. This noise was analyzed and believed to have arisen from the vibrations of the rotating blades...booms are heard. The vibrational energy of the surge is enormous, especially in the range of 85-90% of rotational speed. One can feel the vibrations

  16. Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair.

    PubMed

    Chainani, Abby; Little, Dianne

    2016-06-01

    Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.

  17. Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair

    PubMed Central

    Chainani, Abby; Little, Dianne

    2015-01-01

    Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation. PMID:27346922

  18. Rotary internal combustion engine with integrated supercharged fuel-air induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southard, A.A.

    This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less

  19. Improving Data Collection and Analysis Interface for the Data Acquisition Software of the Spin Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.

    2011-01-01

    In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported

  20. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...

  1. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...

  2. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...

  3. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...

  4. Synchronizing Photography For High-Speed-Engine Research

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1989-01-01

    Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.

  5. An Efficient Crankshaft Dynamic Analysis Using Substructuring with Ritz Vectors

    NASA Astrophysics Data System (ADS)

    MOURELATOS, Z. P.

    2000-11-01

    A structural analysis using dynamic substructuring with Ritz vectors is presented for predicting the dynamic response of an engine crankshaft, based on the finite-element method. A two-level dynamic substructuring is performed using a set of load-dependent Ritz vectors. The rotating crankshaft is properly coupled with the non-rotating, compliant engine block. The block compliance is represented by a distributed linear elastic foundation at each main bearing location. The stiffness of the elastic foundation can be different in the vertical and horizontal planes, thereby considering the anisotropy of the engine block compliance with respect to the crankshaft rotation. The analysis accounts for the kinematic non-linearity resulting from the crankangle-dependent circumferential contact location between each journal and the corresponding bore of the engine block. Crankshaft “bent” and block “misboring” effects due to manufacturing imperfections are considered in the analysis. The superior accuracy and reduced computational effort of the present method as compared with the equivalent superelement analysis in MSC/NASTRAN, are demonstrated using the free and forced vibrations of a slender cylindrical beam and free vibrations of a four-cylinder engine crankshaft. Subsequently, the accuracy of the present method in calculating the dynamic response of engine crankshafts is shown through comparisons between the analytical predictions and experimental results for the torsional vibrations of an in-line five cylinder engine and the bending vibrations of the crankshaft-flywheel assembly of a V6 engine.

  6. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  7. A Case for Basic Rotating Detonation Engine Research

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2016-01-01

    A brief review is provided covering the benefits to air breathing and chemical rocket propulsion found from pressure gain combustion in general, and rotating detonation in particular. Challenges are also identified.

  8. Enhancement of matrix production and cell proliferation in human annulus cells under bioreactor culture.

    PubMed

    Yang, Xinlin; Wang, Daidong; Hao, Jianrong; Gong, Meiqing; Arlet, Vincent; Balian, Gary; Shen, Francis H; Li, Xudong Joshua

    2011-06-01

    Tissue engineering is a promising approach for treatment of disc degeneration. Herein, we evaluated effects of rotating bioreactor culture on the extracellular matrix production and proliferation of human annulus fibrosus (AF) cells. AF cells were embedded into alginate beads, and then cultured up to 3 weeks in a rotating wall vessel bioreactor or a static vessel. By real-time reverse transcription-polymerase chain reaction, expression of aggrecan, collagen type I and type II, and collagen prolyl 4-hydroxylase II was remarkably elevated, whereas expression of matrix metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin motifs 5 was significantly decreased under bioreactor. Biochemical analysis revealed that the levels of the whole cell-associated proteoglycan and collagen were approximately five- and twofolds in rotating bioreactor, respectively, compared to those in static culture. Moreover, AF cell proliferation was augmented in rotating bioreactor. DNA contents were threefolds higher in rotating bioreactor than that in static culture. Expression of the proliferating cell nuclear antigen was robustly enhanced in rotating bioreactor as early as 1 week. Our findings suggested that rotating bioreactor culture would be an effective technique for expansion of human annulus cells for tissue engineering driven treatment of disc degeneration.

  9. Pictorial Visual Rotation Ability of Engineering Design Graphics Students

    ERIC Educational Resources Information Center

    Ernst, Jeremy Vaughn; Lane, Diarmaid; Clark, Aaron C.

    2015-01-01

    The ability to rotate visual mental images is a complex cognitive skill. It requires the building of graphical libraries of information through short or long term memory systems and the subsequent retrieval and manipulation of these towards a specified goal. The development of mental rotation skill is of critical importance within engineering…

  10. Does rotational strain at screw tightening affect the attainment or maintenance of osseointegration?

    PubMed

    Moriya, Katsunori; Maruo, Yukinori; Minagi, Shogo

    2006-08-01

    This study investigated whether rotational strain affects osseointegration. A total of 135 male rats were divided into five groups: 2-w rotation, 4-w rotation, 8-w rotation, 12-w rotation and control. Two hundred and seventy implants were inserted in rat tibia. The control group received no strain, while the 2-w, 4-w, 8-w and 12-w rotation groups received rotational strain at 2, 4, 8 and 12 weeks after implant placement, respectively. Removal torque (N cm) was measured in vivo. Bone contact rate (%) was calculated histomorphologically. Immunostaining for osteonectin (ON), osteopontin (OPN) and osteocalcin (OCN) was performed. The removal torque and bone contact rate were analyzed using one-way analyses of variance and the Scheffé method. At 4 weeks, the torque was significantly higher in the 2-w rotation group (1.30+/-0.44 N cm) than in the control group (0.79+/-0.67 N cm). From 8 to 16 weeks, the strained groups showed no significant differences from the control group. From the bone contact rates, bone formation was larger in the 4-week rotation group (62.9+/-10.7%) than in the control group (42.1+/-17.9%) at 8 weeks. The 4-week rotation group showed higher bone contact rate (61.1+/-11.3%) compared with the other strained groups and maintained this higher value until 16 weeks, showing no significant difference from the control group (72+/-5.2%). At the implant-bone interface, OPN was widely distributed and OCN was detected at a low level; however, ON could not be observed in any group. The bone contact rate changed when rotational strain was exerted at different periods after implant placement. However, the removal torque and distribution of extracellular matrix proteins were not adversely affected by the rotational strain.

  11. Alternating air-medium exposure in rotating bioreactors optimizes cell metabolism in 3D novel tubular scaffold polyurethane foams.

    PubMed

    Tresoldi, Claudia; Stefani, Ilaria; Ferracci, Gaia; Bertoldi, Serena; Pellegata, Alessandro F; Farè, Silvia; Mantero, Sara

    2017-04-26

    In vitro dynamic culture conditions play a pivotal role in developing engineered tissue grafts, where the supply of oxygen and nutrients, and waste removal must be permitted within construct thickness. For tubular scaffolds, mass transfer is enhanced by introducing a convective flow through rotating bioreactors with positive effects on cell proliferation, scaffold colonization and extracellular matrix deposition. We characterized a novel polyurethane-based tubular scaffold and investigated the impact of 3 different culture configurations over cell behavior: dynamic (i) single-phase (medium) rotation and (ii) double-phase exposure (medium-air) rotation; static (iii) single-phase static culture as control. A new mixture of polyol was tested to create polyurethane foams (PUFs) as 3D scaffold for tissue engineering. The structure obtained was morphologically and mechanically analyzed tested. Murine fibroblasts were externally seeded on the novel porous PUF scaffold, and cultured under different dynamic conditions. Viability assay, DNA quantification, SEM and histological analyses were performed at different time points. The PUF scaffold presented interesting mechanical properties and morphology adequate to promote cell adhesion, highlighting its potential for tissue engineering purposes. Results showed that constructs under dynamic conditions contain enhanced viability and cell number, exponentially increased for double-phase rotation; under this last configuration, cells uniformly covered both the external surface and the lumen. The developed 3D structure combined with the alternated exposure to air and medium provided the optimal in vitro biochemical conditioning with adequate nutrient supply for cells. The results highlight a valuable combination of material and dynamic culture for tissue engineering applications.

  12. Independently variable phase and stroke control for a double acting Stirling engine

    DOEpatents

    Berchowitz, David M.

    1983-01-01

    A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.

  13. Progress of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting Radial Growth on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.

    2015-01-01

    The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.

  14. Exo-Skeletal Engine: Novel Engine Concept

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Blankson, Isaiah M.

    2004-01-01

    The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.

  15. 76 FR 54143 - Airworthiness Directives; Turbomeca Arriel 1B Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... & Propeller Directorate, 12 New England Executive Park, Burlington, MA 01803; phone: 781-238-7772; fax: 781... rotor; and (2) The free rotation of the gas generator rotor; and (3) No grinding noise during the... Engineer, Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England Executive Park...

  16. Noninvasive acceleration measurements to characterize knee arthritis and chondromalacia.

    PubMed

    Reddy, N P; Rothschild, B M; Mandal, M; Gupta, V; Suryanarayanan, S

    1995-01-01

    Devising techniques and instrumentation for early detection of knee arthritis and chondromalacia presents a challenge in the domain of biomedical engineering. The purpose of the present investigation was to characterize normal knees and knees affected by osteoarthritis, rheumatoid arthritis, and chondromalacia using a set of noninvasive acceleration measurements. Ultraminiature accelerometers were placed on the skin over the patella in four groups of subjects, and acceleration measurements were obtained during leg rotation. Acceleration measurements were significantly different in the four groups of subjects in the time and frequency domains. Power spectral analysis revealed that the average power was significantly different for these groups over a 100-500 Hz range. Noninvasive acceleration measurements can characterize the normal, arthritis, and chondromalacia knees. However, a study on a larger group of subjects is indicated.

  17. Engine having multiple pumps driven by a single shaft

    DOEpatents

    Blass, James R.

    2001-01-01

    An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.

  18. Evaluation of Rotating Biological Contactor Technology for Civil Works Recreational Areas.

    DTIC Science & Technology

    1982-04-01

    Engineers, Midland District Centre, United Kingdom , November 1972). This study investigated the diurnal variations in flow and their effect on RBC... Industrial Waste Conference (1975), p 675. With a six-stage bench-top RBC unit and a synthetic apple waste contain- ing approximately 900 mg/L of BOD, the...AO-AI16 759 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 13/2 EVALUATION OF ROTATING BIOLOGICAL CONTACTOR TECHNOLOGY FOR CIVI-ETC(U

  19. Propulsion Health Monitoring of a Turbine Engine Disk Using Spin Test Data

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj; Matthews, Bryan; Baaklini, George Y.

    2010-01-01

    This paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center s Rotordynamics Laboratory are evaluated using multiple data-driven anomaly detection techniques to identify abnormalities in the disk. Further, this study presents a select evaluation of an online health monitoring scheme of a rotating disk using high caliber sensors and test the capability of the in-house spin system.

  20. Vibration reduction in a tilting rotor using centrifugal pendulum vibration absorbers

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Shaw, Steven W.; Parker, Robert G.

    2016-12-01

    This paper investigates vibration reduction in a rigid rotor with tilting, rotational, and translational motions using centrifugal pendulum vibration absorbers (CPVAs). A linearized vibration model is derived for the system consisting of the rotor and multiple sets of absorbers tuned to different orders. Each group of absorbers lies in a given plane perpendicular to the rotor rotation axis. Gyroscopic system modal analysis is applied to derive the steady-state response of the absorbers and the rotor to external, rotor-order, periodic forces and torques with frequency mΩ, where Ω is the mean rotor speed and m is the engine order (rotor-order). It is found that an absorber group with tuning order m is effective at reducing the rotor translational, tilting, and rotational vibrations, provided certain conditions are met. When the periodic force and torque are caused by N substructures that are equally spaced around the rotor, the rotor translational and tilting vibrations at order j are addressed by two absorber groups with tuning orders jN±1. In this case, the rotor rotational vibration at order j can be attenuated by an absorber group with tuning order jN. The results show how the response depends on the load amplitudes and order, the rotor speed, and design parameters associated with the sets of absorbers, most importantly, their tuning, mass, and plane of placement. In the ideal case with zero damping and exact tuning of the absorber sets, the vibrations can be eliminated for a range of loads over which the linearized model holds. The response for systems with detuned absorbers is also determined, which is relevant to applications where small detuning is employed due to robustness issues, and to allow for a larger range of operating loads over which the absorbers are effective. The system also exhibits undesirable resonances very close to these tuning conditions, an issue that is difficult to resolve and deserves further investigation.

  1. Duct Mode Measurements on the TFE731-60 Full Scale Engine

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Konno, Kevin E.; Heidelberg, Laurence J.

    2002-01-01

    A continuously rotating rake with radial microphones was developed to measure the inlet and exhaust duct modes on a TFE731-60 turbofan engine. This was the first time the rotating rake technology was used on a production engine. The modal signature for the first three fan harmonics was obtained in the inlet and exhaust. Rotor-stator and rotor-strut interaction modes were measured. Total harmonic power was calculated over a range of fan speeds. Above sonic tip speed, the rotor locked mode was not strong enough to be identified, but the 'buzz-saw' noise at fan sub-harmonics was identified.

  2. Turbofan Engine Post-Instability Behavior - Computer Simulations, Test Validation, and Application of Simulations,

    DTIC Science & Technology

    COMPRESSORS, *AIR FLOW, TURBOFAN ENGINES , TRANSIENTS, SURGES, STABILITY, COMPUTERIZED SIMULATION, EXPERIMENTAL DATA, VALIDATION, DIGITAL SIMULATION, INLET GUIDE VANES , ROTATION, STALLING, RECOVERY, HYSTERESIS

  3. Method and apparatus for controlling the solenoid current of a solenoid valve which controls the amount of suction of air in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiuchi, T.; Sakurai, H.

    1988-09-20

    This patent describes an apparatus for controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine. The apparatus consists of: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term (Ifb(n)) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) first determiningmore » and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover means.« less

  4. Method and apparatus for controlling the solenoid current of a solenoid valve which controls the amount of suction of air in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiuchi, T.; Yasuoka, A.

    1988-09-13

    This patent describes apparatus for controlling the solenoid current of a selenoid valve which controls the amount of suction air in an internal combustion engine, the apparatus comprising: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term Ifb(n) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) firstmore » determining and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover.« less

  5. ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ROTATING STALL PHENOMENA IN TURBINE ENGINE COMPRESSORS.

    DTIC Science & Technology

    AXIAL FLOW COMPRESSORS, STALLING), TURBOJET ENGINES , AXIAL FLOW COMPRESSOR BLADES , LIFT, HYSTERESIS, TURBULENCE, INLET GUIDE VANES , RINGS, STABILITY, THREE DIMENSIONAL FLOW, VISCOSITY, VORTICES, FLUIDICS.

  6. A sublimation heat engine

    PubMed Central

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  7. A sublimation heat engine.

    PubMed

    Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-03-03

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  8. Numerical Investigation of Force-Free Magnetophoresis of Nonspherical Microparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wang, Cheng

    2017-11-01

    Our group recently demonstrated novel force-free magnetophoresis to separate nonspherical particles by shape. In this approach, a uniform magnetic field is used to generate a magnetic torque, which breaks the rotational symmetry of the particles and leads to shape-dependent lateral migration of the particles. We use direct numerical simulations to gain a better understanding of this magnetophoresis mechanism by focusing on ellipsoidal microparticles - a representative type of nonspherical particles encountered in biomedical engineering. We study key effects that influence the rotational and translational behaviors, including particle-wall separation distance, direction and strength of the magnetic field, particle aspect ratio and size. The numerical results show that the lateral migration is negligible in the absence of the magnetic field. When the magnetic field is applied, the particles migrate laterally. The migration direction depends on the direction of external magnetic fields, which controls the symmetry property of the particle rotation. These findings agree well with experiments. Our numerical simulations yield a comprehensive understanding of particle migration mechanism, and provide useful guidelines on design of separating devices for non-spherical micro-particles.

  9. Subunit rotation of ATP synthase embedded in membranes: a or β subunit rotation relative to the c subunit ring

    PubMed Central

    Nishio, Kazuaki; Iwamoto-Kihara, Atsuko; Yamamoto, Akitsugu; Wada, Yoh; Futai, Masamitsu

    2002-01-01

    ATP synthase FoF1 (α3β3γδɛab2c10–14) couples an electrochemical proton gradient and a chemical reaction through the rotation of its subunit assembly. In this study, we engineered FoF1 to examine the rotation of the catalytic F1 β or membrane sector Fo a subunit when the Fo c subunit ring was immobilized; a biotin-tag was introduced onto the β or a subunit, and a His-tag onto the c subunit ring. Membrane fragments were obtained from Escherichia coli cells carrying the recombinant plasmid for the engineered FoF1 and were immobilized on a glass surface. An actin filament connected to the β or a subunit rotated counterclockwise on the addition of ATP, and generated essentially the same torque as one connected to the c ring of FoF1 immobilized through a His-tag linked to the α or β subunit. These results established that the γɛc10–14 and α3β3δab2 complexes are mechanical units of the membrane-embedded enzyme involved in rotational catalysis. PMID:12357031

  10. SU-F-P-18: Development of the Technical Training System for Patient Set-Up Considering Rotational Correction in the Virtual Environment Using Three-Dimensional Computer Graphic Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, K; Fujibuchi, T; Hirata, H

    Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less

  11. Multilayered Electrospun Scaffolds for Tendon Tissue Engineering

    PubMed Central

    Chainani, Abby; Hippensteel, Kirk J.; Kishan, Alysha; Garrigues, N. William; Ruch, David S.; Guilak, Farshid

    2013-01-01

    Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain increased with time in culture. Histology demonstrated cell infiltration through the full thickness of all scaffolds and immunofluorescence demonstrated greater expression of type I, but not type III collagen through the full thickness of the scaffold in TDM-scaffolds compared to other treatment groups. Together, these data suggest that nonaligned multilayered electrospun scaffolds permit tenogenic differentiation by hASCs and that TDM may promote some aspects of this differentiation. PMID:23808760

  12. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...

  13. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...

  14. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...

  15. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... section, be sealed to prevent contamination of the engine oil system and the accessory system. (b... engine is hazardous when malfunctioning occurs, a means to prevent rotation without interfering with the... Controls and Accessories § 23.1163 Powerplant accessories. (a) Each engine mounted accessory must— (1) Be...

  16. ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS

    EPA Science Inventory

    Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...

  17. Illustrating Thermodynamic Concepts Using a Hero's Engine

    NASA Astrophysics Data System (ADS)

    Muiño, Pedro L.; Hodgson, James R.

    2000-05-01

    A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. The engine is a boiler made of Pyrex with two off-center nozzles. Upon boiling, the vapor exits the nozzles, creating two opposite, off-center forces that result in a circular motion by the engine around the vertical axis. The engine is suspended from a horizontal bar by means of two parallel threads. The rotation of the engine results in the twisting of the threads, with two important effects: the engine is raised vertically, and potential energy is stored in the coiling of the threads. When the engine is raised, it is removed from the heating source. This stops the boiling. The stored potential energy is then released into kinetic energy; that is, the threads uncoil, and the engine rotates in the opposite direction. This lowers the engine into the flame, so the water resumes boiling and the engine can be raised again. This cycle continues until all the liquid water is vaporized. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion (Joule-Thompson experiment), conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.

  18. A study of the relationship between learning styles and cognitive abilities in engineering students

    NASA Astrophysics Data System (ADS)

    Hames, E.; Baker, M.

    2015-03-01

    Learning preferences have been indirectly linked to student success in engineering programmes, without a significant body of research to connect learning preferences with cognitive abilities. A better understanding of the relationship between learning styles and cognitive abilities will allow educators to optimise the classroom experience for students. The goal of this study was to determine whether relationships exist between student learning styles, as determined by the Felder-Soloman Inventory of Learning Styles (FSILS), and their cognitive performance. Three tests were used to assess student's cognitive abilities: a matrix reasoning task, a Tower of London task, and a mental rotation task. Statistical t-tests and correlation coefficients were used to quantify the results. Results indicated that the global-sequential, active-referential, and visual-verbal FSILS learning styles scales are related to performance on cognitive tasks. Most of these relationships were found in response times, not accuracy. Differences in task performance between gender groups (male and female) were more notable than differences between learning styles groups.

  19. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W

    2014-09-30

    A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  20. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks

    NASA Astrophysics Data System (ADS)

    Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G.; Famulok, Michael

    2018-06-01

    Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

  1. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks.

    PubMed

    Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G; Famulok, Michael

    2018-06-01

    Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

  2. Differences between two subgroups of low back pain patients in lumbopelvic rotation and symmetry in the erector spinae and hamstring muscles during trunk flexion when standing.

    PubMed

    Kim, Min-hee; Yoo, Won-gyu; Choi, Bo-ram

    2013-04-01

    The present study was performed to examine lumbopelvic rotation and to identify asymmetry of the erector spinae and hamstring muscles in people with and without low back pain (LBP). The control group included 16 healthy subjects, the lumbar-flexion-rotation syndrome LBP group included 17 subjects, and the lumbar-extension-rotation syndrome LBP group included 14 subjects. Kinematic parameters were recorded using a 3D motion-capture system, and electromyography parameters were measured using a Noraxon TeleMyo 2400T. The two LBP subgroups showed significantly more lumbopelvic rotation during trunk flexion in standing than did the control group. The muscle activity and flexion-relaxation ratio asymmetries of the erector spinae muscles in the lumbar-flexion-rotation syndrome LBP group were significantly greater than those in the control group, and the muscle activity and flexion-relaxation ratio asymmetry of the hamstring muscles in the lumbar-extension-rotation syndrome LBP group were significantly greater than those in the control group. Imbalance or asymmetry of passive tissue could lead to asymmetry of muscular activation. Muscle imbalance can cause asymmetrical alignment or movements such as unexpected rotation. The results showed a greater increase in lumbopelvic rotation during trunk flexion in standing among the lumbar-flexion-rotation syndrome and lumbar-extension-rotation syndrome LBP groups compared with the control group. The differences between the two LBP subgroups may be a result of imbalance and asymmetry in erector spinae and hamstring muscle properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  4. Effect of a rough surface on the aerodynamic characteristics of a two-bladed wind-powered engine with cylindrical blades

    NASA Astrophysics Data System (ADS)

    Tanasheva, N. K.; Kunakbaev, T. O.; Dyusembaeva, A. N.; Shuyushbayeva, N. N.; Damekova, S. K.

    2017-11-01

    We have reported the results of experiments on determining the drag coefficient and the thrust coefficient of a two-bladed wind-powered engine based on the Magnus effect with rotating rough cylinders in the range of air flow velocity of 4-10 m/s (Re = 26800-90000) for a constant rotation number of a cylindrical blade about its own axis. The results show that an increase in the Reynolds number reduces the drag coefficient and the thrust coefficient. The extent of the influence of the relative roughness on the aerodynamic characteristics of the two-bladed wind-powered engine has been experimentally established.

  5. The Effects of Spatial Visualization Skill Training on Gender and Retention in Engineering.

    ERIC Educational Resources Information Center

    Devon, Richard; Engel, Renata; Turner, Geoffrey

    1998-01-01

    Engineering students were given a mental rotation test at the beginning and end of their first-year engineering course and again several years later to assess the relationship between spatial visualization skill and retention in engineering. No relationship was found between task scores and retention; however, a course in design and graphics…

  6. Rotational seismology

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  7. Aircraft and Engine Development Testing

    DTIC Science & Technology

    1986-09-01

    Control in Flight * Integrated Inlet- engine * Power/weight Exceeds Unity F-lll * Advanced Engines * Augmented Turbofan * High Turbine Temperature...residence times). Also, fabrication of a small scale "hot" engine with rotating components such as compressors and turbines with cooled blades , is...capabil- ities are essential to meet the needs of current and projected aircraft and engine programs. The required free jet nozzles should be capable of

  8. Nonlinear resonance of the rotating circular plate under static loads in magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Yuda; Wang, Tong

    2015-11-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  9. The Immediate Effects of Upper Thoracic Translatoric Spinal Manipulation on Cervical Pain and Range of Motion: A Randomized Clinical Trial

    PubMed Central

    Krauss, John; Creighton, Doug; Ely, Jonathan D.; Podlewska-Ely, Joanna

    2008-01-01

    This study examined the effect of translatoric spinal manipulation (TSM) on cervical pain and cervical active motion restriction when applied to upper thoracic (T1-T4) segments. Active cervical rotation range of motion was measured re- and post-intervention with a cervical inclinometer (CROM), and cervical pain status was monitored before and after manipulation with a Faces Pain Scale. Study participants included a sample of convenience that included 32 patients referred to physical therapy with complaints of pain in the mid-cervical region and restricted active cervical rotation. Twenty-two patients were randomly assigned to the experimental group and ten were assigned to the control group. Pre- and post-intervention cervical range of motion and pain scale measurements were taken by a physical therapist assistant who was blinded to group assignment. The experimental group received TSM to hypomobile upper thoracic segments. The control group received no intervention. Paired t-tests were used to analyze within-group changes in cervical rotation and pain, and a 2-way repeated-measure ANOVA was used to analyze between-group differences in cervical rotation and pain. Significance was accepted at p = 0.05. Significant changes that exceeded the MDC95 were detected for cervical rotation both within group and between groups with the TSM group demonstrating increased mean (SD) in right rotation of 8.23° (7.41°) and left rotation of 7.09° (5.83°). Pain levels perceived during post-intervention cervical rotation showed significant improvement during right rotation for patients experiencing pain during bilateral rotation only (p=.05). This study supports the hypothesis that spinal manipulation applied to the upper thoracic spine (T1-T4 motion segments) significantly increases cervical rotation ROM and may reduce cervical pain at end range rotation for patients experiencing pain during bilateral cervical rotation. PMID:19119394

  10. Rotational Seismology Workshop of February 2006

    USGS Publications Warehouse

    Evans, John R.; Cochard, A.; Graizer, Vladimir; Huang, Bor-Shouh; Hudnut, Kenneth W.; Hutt, Charles R.; Igel, H.; Lee, William H.K.; Liu, Chun-Chi; Majewski, Eugeniusz; Nigbor, Robert; Safak, Erdal; Savage, William U.; Schreiber, U.; Teisseyre, Roman; Trifunac, Mihailo; Wassermann, J.; Wu, Chien-Fu

    2007-01-01

    Introduction A successful workshop titled 'Measuring the Rotation Effects of Strong Ground Motion' was held simultaneously in Menlo Park and Pasadena via video conference on 16 February 2006. The purpose of the Workshop and this Report are to summarize existing data and theory and to explore future challenges for rotational seismology, including free-field strong motion, structural strong motion, and teleseismic motions. We also forged a consensus on the plan of work to be pursued by this international group in the near term. At this first workshop were 16 participants in Menlo Park, 13 in Pasadena, and a few on the telephone. It was organized by William H. K. Lee and John R. Evans and chaired by William U. Savage in Menlo Park and by Kenneth W. Hudnut in Pasadena. Its agenda is given in the Appendix. This workshop and efforts in Europe led to the creation of the International Working Group on Rotational Seismology (IWGoRS), an international volunteer group providing forums for exchange of ideas and data as well as hosting a series of Workshops and Special Sessions. IWGoRS created a Web site, backed by an FTP site, for distribution of materials related to rotational seismology. At present, the FTP site contains the 2006 Workshop agenda (also given in the Appendix below) and its PowerPoint presentations, as well as many papers (reasonable-only basis with permission of their authors), a comprehensive citations list, and related information. Eventually, the Web site will become the sole authoritative source for IWGoRS and shared information: http://www.rotational-seismology.org ftp://ehzftp.wr.usgs.gov/jrevans/IWGoRS_FTPsite/ With contributions from various authors during and after the 2006 Workshop, this Report proceeds from the theoretical bases for making rotational measurements (Graizer, Safak, Trifunac) through the available observations (Huang, Lee, Liu, Nigbor), proposed suites of measurements (Hudnut), a discussion of broadband teleseismic rotational seismology (Cochard, Igel, Schreiber, Teisseyre, Wassermann, Majewski), sensor-calibration issues (Evans, Hutt), and finally the summary and conclusions (Savage). As a direct result of the 2006 Workshop and the formation of IWGoRS, we held a special session at the Fall 2006 AGU meeting (convened by H. Igel, W.H.K. Lee, and M.I. Todorovska). Currently, the first formal Workshop of the IWGoRS is being organized by W.H.K. Lee, M. Celebi, and M. I. Todorovska with sponsorship by the USGS and assistance from many others; this First International Workshop on Rotational Seismology and Engineering Applications will be held in September 2007 at Menlo Park, California (http://pubs.usgs.gov/of/2007/1144/). The following summarizes presentations and discussions during and shortly after the informal Workshop of February 2006.

  11. Effects of rotating flows on combustion and jet noise.

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1972-01-01

    Experimental investigations of combustion in rotating (swirling) flow have shown that the mixing and combustion processes were accelerated, flame length and noise levels significantly decreased, and flame stability increased relative to that obtained without rotation. Unsteady burning accompanied by a pulsating flame, violent fluctuating jet, and intense noise present in straight flow burning were not present in rotating flow burning. Correlations between theory and experiment show good agreement. Such effects due to rotating flows could lead to suppressing jet noise, improving combustion, reducing pollution, and decreasing aircraft engine size. Quantitative analysis of the aero-acoustic relationship and noise source characteristics are needed.-

  12. Directing collagen fibers using counter-rotating cone extrusion.

    PubMed

    Hoogenkamp, Henk R; Bakker, Gert-Jan; Wolf, Louis; Suurs, Patricia; Dunnewind, Bertus; Barbut, Shai; Friedl, Peter; van Kuppevelt, Toin H; Daamen, Willeke F

    2015-01-01

    The bio-inspired engineering of tissue equivalents should take into account anisotropic morphology and the mechanical properties of the extracellular matrix. This especially applies to collagen fibrils, which have various, but highly defined, orientations throughout tissues and organs. There are several methods available to control the alignment of soluble collagen monomers, but the options to direct native insoluble collagen fibers are limited. Here we apply a controlled counter-rotating cone extrusion technology to engineer tubular collagen constructs with defined anisotropy. Driven by diverging inner and outer cone rotation speeds, collagen fibrils from bovine skin were extruded and precipitated onto mandrels as tubes with oriented fibers and bundles, as examined by second harmonic generation microscopy and quantitative image analysis. A clear correlation was found whereby the direction and extent of collagen fiber alignment during extrusion were a function of the shear forces caused by a combination of the cone rotation and flow direction. A gradual change in the fiber direction, spanning +50 to -40°, was observed throughout the sections of the sample, with an average decrease ranging from 2.3 to 2.6° every 10μm. By varying the cone speeds, the collagen constructs showed differences in elasticity and toughness, spanning 900-2000kPa and 19-35mJ, respectively. Rotational extrusion presents an enabling technology to create and control the (an)isotropic architecture of collagen constructs for application in tissue engineering and regenerative medicine. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Propulsion health monitoring of a turbine engine disk using spin test data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study is expected to present a select evaluation of online health monitoring of a rotating disk using these high caliber sensors and test the capability of the in-house spin system.

  14. PRODUCTION ENGINEERING AND MARKETING ANALYSIS OF THE ROTATING DISK EVAPORATOR

    EPA Science Inventory

    Recent EPA-funded research into the onsite, mechanical evaporation of wastewater from single family homes revealed that a rotating disk evaporator (RDE) could function in a nondischarging mode. Such a device has potential use where site limitations preclude conventional methods o...

  15. Altitude-Limiting Airbrake System for Small to Medium Scale Rockets

    NASA Technical Reports Server (NTRS)

    Aaron, Robert F., III

    2013-01-01

    The goal of the overall internship opportunity this semester was to learn and practice the elements of engineering design through direct exposure to real engineering problems. The primary exposure was to design and manufacture an airbrake device for use with small-medium scale rocket applications. The idea was to take the presented concept of a solution and transform said concept into a reliable fully-functioning and reusable mechanism. The mechanism was to be designed as an insurance feature so that the overall altitude of a rocket with relatively undetermined engine capabilities does not unexpectedly exceed the imposed 10,000 foot ceiling, per range requirements. The airbrake concept was introduced to the Prototype Development Lab as a rotation-driven four tiered offset track pin mechanism, i.e. the airbrake was deployed by rotating a central shaft attached directly to the bottom plate. The individual airbrake fins were subsequently deployed using multiple plates with tracks of offset curvature. The fins were created with guide pins to follow the tracks in each of the offset plates, thus allowing the simultaneous rotational deployment of all fins by only rotating one plate. The concept of this solution was great; though it did not function in application. The rotating plates alone brought up problems like the entire back half of the rocket rotating according to the motion of the aforementioned base plate. Subsequently, the solution currently under development became a static linear actuator-driven spring-loaded fin release system. This solution is almost instantaneously triggered electronically when the avionics detect that the rocket has reached the calculated altitude of deceleration. This altitude will allow enough time remaining to the overall ceiling to adequately decelerate the rocket prior to reaching the ceiling.

  16. Biomimetic fetal rotation bioreactor for engineering bone tissues-Effect of cyclic strains on upregulation of osteogenic gene expression.

    PubMed

    Ravichandran, Akhilandeshwari; Wen, Feng; Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry K Y; Teoh, Swee-Hin

    2018-04-01

    Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-β-tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes-static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 α1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Remotely detected vehicle mass from engine torque-induced frame twisting

    NASA Astrophysics Data System (ADS)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  18. Trunk rotational strength asymmetry in adolescents with idiopathic scoliosis: an observational study

    PubMed Central

    McIntire, Kevin L; Asher, Marc A; Burton, Douglas C; Liu, Wen

    2007-01-01

    Background Recent reports have suggested a rotational strength weakness in rotations to the concave side in patients with idiopathic scoliosis. There have been no studies presenting normative values of female adolescent trunk rotational strength to which a comparison of female adolescents with idiopathic scoliosis could be made. The purpose of this study was to determine trunk rotational strength asymmetry in a group of female adolescents with AIS and a comparison group of healthy female adolescents without scoliosis. Methods Twenty-six healthy adolescent females served as the healthy group (HG) (average age 14 years) and fourteen otherwise healthy adolescent females with idiopathic scoliosis served as the idiopathic scoliosis group (ISG) (average age 13.5 years, average Cobb 28°). Participant's isometric trunk rotational strength was measured in five randomly ordered trunk positions: neutral, 18° and 36° of right and left pre-rotation. Rotational strength asymmetry was compared within each group and between the two groups using several different measures. Results The HG showed strength asymmetry in the 36° pre-rotated trunk positions when rotating towards the midline (p < 0.05). The ISG showed strength asymmetry when rotating towards the concavity of their primary curve from the neutral position (p < 0.05) and when rotating towards the concavity from the 18° (p < 0.05) and 36° (p < 0.05) concave pre-rotated positions. The ISG is significantly weaker than the HG when rotating away from the midline toward the concave (ISG)-left (HG) side from the concave/left pre-rotated 18° (p < 0.05) and 36° (p < 0.05) positions. Conclusion The AIS females were found to be significantly weaker when contracting toward their main curve concavity in the neutral and concave pre-rotated positions compared to contractions toward the convexity. These weaknesses were also demonstrated when compared to the group of healthy female adolescent controls. Possible mechanisms for the strength asymmetry in ISG are discussed. PMID:17620141

  19. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  20. Managing ergonomics in the development of rotation between workstations in the automotive industry. A balance between health and traceability of tasks.

    PubMed

    Filus, Rodrigo; Partel, Luciana

    2012-01-01

    Abstract When the subject rotation between workstations (job rotation) is inside the organizations it's seemed that technically there are lots of restrictions to the development of an adequate system of rotation. We went from the need for an advanced ergonomic study and even possible restrictions of versatility and training of employees. The implementation of the ideal system of rotation passes through stages of development and research ergonomic study of the level of employee versatility, awareness and discussion with employees, implementation of the proposed system, feedback and audits for maintenance of the ideal sequence and time of rotation. For the success of the project there is a need for multidisciplinary involvement in the areas of manufacturing engineering, industrial engineering, human resources, medical services and manufacturing. Rotation between the tasks may mean that a worker should conduct two or more different activities in different parts of the day (ie. change between activity A and activity B "between 1 hours and 2 hours interval). An important consideration is to ensure that different activities do not present the same ergonomic risk for the same body part. The tracing of the execution of the activity is an important factor for production processes. Thus it is possible to conduct appropriate levels of training for employees and ensure safe and sustainable processes in terms of workers' health, productivity and quality.

  1. Close-up of SSME

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A close-up view of a Space Shuttle Main Engine during a test at the John C. Stennis Space Center shows how the engine is gimballed, or rotated, to evaluate the performance of its components under simulated flight conditions.

  2. Stirling engine control mechanism and method

    DOEpatents

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  3. Association between rotation-related impairments and activity type in people with and without low back pain

    PubMed Central

    Weyrauch, Stephanie A.; Bohall, Sara C.; Sorensen, Christopher J.; Van Dillen, Linda R.

    2015-01-01

    Objective To determine if people with low back pain (LBP) who regularly participated in a rotation-related activity displayed more rotation-related impairments than people without LBP who did and did not participate in the activity. Design Secondary analysis of data from a case-control study. Setting Musculoskeletal analysis laboratory at an academic medical center. Participants A convenience sample of 55 participants with LBP who participated in a rotation-related sport, 26 back healthy controls who participated in a rotation-related sport (BHC+RRS) and 42 back healthy controls who did not participate in a rotation-related sport (BHC-RRS). Participants were matched based on age, gender, and activity level. Interventions Not applicable. Main Outcome Measures The total number of rotation-related impairments and asymmetric rotation-related impairments identified during a standardized clinical examination. Results Compared to the BHC-RRS group, both the LBP and BHC+RRS groups displayed significantly more (1) rotation-related impairments (LBP: p<.001; BHC+RRS: p=.015) (2) asymmetric rotation-related impairments (LBP: p=.006; BHC+RRS: p=.020) and (3) rotation-related impairments with trunk movement tests (LBP: p=.002; BHC+RRS: p<.001). The LBP group had significantly more rotation-related impairments with extremity movement tests than both of the back healthy groups (BHC+RRS: p=.011; BHC-RRS: p<.001). Conclusions LBP and BHC+RRS groups demonstrated a similar number of total rotation-related impairments and asymmetric rotation-related impairments, and these numbers were greater than those of the BHC-RRS group. Compared to people without LBP, people with LBP displayed more rotation-related impairments when moving an extremity. These findings suggest that impairments associated with extremity movements may be associated with having a LBP condition. PMID:25933914

  4. Web-based Interactive Simulator for Rotating Machinery.

    ERIC Educational Resources Information Center

    Sirohi, Vijayalaxmi

    1999-01-01

    Baroma (Balance of Rotating Machinery), the Web-based educational engineering interactive software for teaching/learning combines didactical and software ergonomical approaches. The software in tutorial form simulates a problem using Visual Interactive Simulation in graphic display, and animation is brought about through graphical user interface…

  5. Rotating rake design for unique measurement of fan-generated spinning acoustic modes

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Hausmann, Clifford R.

    1993-01-01

    In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.

  6. Research of rotating machinery vibration parameters - Shaft speed relationship

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.

    2017-08-01

    The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.

  7. Rotating Beam Fatigue Testing and Hybrid Ceramic Bearings.

    DTIC Science & Technology

    1994-07-01

    Runout and Fast Fracture ......... 20 FIG.7 Stress-life Plots of Rotating Beam Fatigue Testing ............. 23 FIG.8 Fractograph of Rotating Beam...Chand-Kare Engineering Ceramics, Worcester, MA. Diamond wheels of 600 grits were used with longitudinal grinding applied for the final finishing of...stress in the range of 600-850 MPa. Three test completion modes were encountered, i.e. fast fracture at setup, fatigue fracture and runout (no failure

  8. [Effectiveness of rotator cuff repair with manipulation release and arthroscopic debridement for rotator cuff tear with shoulder stiffness].

    PubMed

    Tang, Xin; Huang, Fuguo; Chen, Gang; Li, Qi; Fu, Weili; Li, Jian

    2018-01-01

    To investigate effectiveness of rotator cuff repair with manipulation release and arthroscopic debridement for rotator cuff tear with shoulder stiffness. A retrospectively study was performed on the data of 15 patients with rotator cuff tear combined with shoulder stiffness (stiff group) and 24 patients without stiffness (non-stiff group) between January 2014 and December 2015. The patients in the stiff group underwent arthroscopic rotator cuff repair with manipulation release and arthroscopic debridement while the patients in the non-stiff group only received arthroscopic rotator cuff repair. The patients in the stiff group were older than the patients in the non-stiff group, showing significant difference ( P <0.05). There was no significant difference in gender, type of rotator cuff tear, side of rotator cuff tear, and combined with diabetes between 2 groups ( P >0.05). The visual analogue scale (VAS) score, University of California Los Angeles (UCLA) score, American Shoulder and Elbow Surgeons (ASES) score, and range of motion (ROM) were used to evaluate the effectiveness after operation. All incisions healed by first intention without any complication after operation. The patients were followed up 13-31 months in the stiff group (mean, 19.2 months) and 13-23 months in the non-stiff group (mean, 20.3 months). There was no significant difference in follow- up time between 2 groups ( t =-0.573, P =0.570). The VAS score in the stiff group was higher than that in the non-stiff group before operation ( t =-2.166, P =0.037); there was no significant difference between 2 groups at 3, 6, 12 months and last follow-up ( P >0.05). The forward flexion and external rotation were significantly lower in the stiff group than those in the non-stiff group before operation and at 3 months after operation ( P <0.05); there was no significant difference between 2 groups at 6, 12 months and last follow-up ( P >0.05). At last follow-up, the internal rotation was beyond L 3 level in 2 groups. The preoperative UCLA score was significant lower in the stiff group than that in the non-stiff group ( P =0.037); but there was no significant difference in UCLA score at last follow-up between 2 groups ( P =0.786). There was no significant difference in pre- and post-operative ASES scores between 2 groups ( P >0.05). Satisfactory effectiveness can be achieved in the patients with rotator cuff tear combined with shoulder stiffness after rotator cuff repair with manipulation release and arthroscopic debridement, although the patients with shoulder stiffness had slower postoperative recovery of ROM until 6 months after operation.

  9. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing.

    PubMed

    Jansen-Park, So-Hyun; Hsu, Po-Lin; Müller, Indra; Steinseifer, Ulrich; Abel, Dirk; Autschbach, Rüdiger; Rossaint, Rolf; Schmitz-Rode, Thomas

    2017-04-01

    Mock heart circulation loops (MHCLs) serve as in-vitro platforms to investigate the physiological interaction between circulatory systems and cardiovascular devices. A mock heart (MH) engineered with silicone walls and helical aramid fibers, to mimic the complex contraction of a natural heart, has been developed to advance the MHCL previously developed in our group. A mock aorta with an anatomical shape enables the evaluation of a cannulation method for ventricular assist devices (VADs) and investigation of the usage of clinical measurement systems like pressure-volume catheters. Ventricle and aorta molds were produced based on MRI data and cast with silicone. Aramid fibers were layered in the silicone ventricle to reproduce ventricle torsion. A rotating hollow shaft was connected to the apex enabling the rotation of the MH and the connection of a VAD. Silicone wall thickness, aramid fiber angle and fiber pitch were varied to generate different MH models. All MH models were placed in a tank filled with variable amounts of water and air simulating the compliance. In this work, physiological ventricular torsion angles (15°-26°) and physiological pressure-volume loops were achieved. This MHCL can serve as a comprehensive testing platform for cardiovascular devices, such as artificial heart valves and cannulation of VADs.

  10. Hip Rotation Range of Motion in People With and Without Low Back Pain Who Participate in Rotation-Related Sports

    PubMed Central

    Van Dillen, Linda R.; Bloom, Nancy J.; Gombatto, Sara P.; Susco, Thomas M.

    2008-01-01

    Objective To examine whether passive hip rotation motion was different between people with and without low back pain (LBP) who regularly participate in sports that require repeated rotation of the trunk and hips. We hypothesized that people with LBP would have less total hip rotation motion and more asymmetry of motion between sides than people without LBP. Design Two group, case-control. Setting University-based musculoskeletal analysis laboratory. Participants Forty-eight subjects (35 males, 13 females; mean age: 26.56±7.44 years) who reported regular participation in a rotation-related sport participated. Two groups were compared; people with LBP (N=24) and people without LBP (N=24; NoLBP). Main outcome measures Data were collected on participant-related, LBP-related, sport-related and activity-related variables. Measures of passive hip rotation range of motion were obtained. The differences between the LBP and NoLBP groups were examined. Results People with and without a history of LBP were the same with regard to all participant-related, sport-related and activity-related variables. The LBP group had significantly less total rotation (P=.035) and more asymmetry of total rotation, right hip versus left hip, (P=.022) than the NoLBP group. Left total hip rotation was more limited than right total hip rotation in the LBP group (P=.004). There were no significant differences in left and right total hip rotation for the NoLBP group (P=.323). Conclusions Among people who participate in rotation-related sports, those with LBP had less overall passive hip rotation motion and more asymmetry of rotation between sides than people without LBP. These findings suggest that the specific directional demands imposed on the hip and trunk during regularly performed activities may be an important consideration in deciding which impairments may be most relevant to test and to consider in prevention and intervention strategies. PMID:19081817

  11. Optical Strain and Crack-Detection Measurements on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle; Fralick, Gustave

    2013-01-01

    The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011-2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques.

  12. Optical Strain and Crack-Detection Measurements on a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle M.; Fralick, Gustave

    2013-01-01

    The development of techniques for the in-situ measurement and structural health monitoring of the rotating components in gas turbine engines is of major interest to NASA. As part of this on-going effort, several experiments have been undertaken to develop methods for detecting cracks and measuring strain on rotating turbine engine like disks. Previous methods investigated have included the use of blade tip clearance sensors to detect the presence of cracks by monitoring the change in measured blade tip clearance and analyzing the combined disk-rotor system's vibration response. More recently, an experiment utilizing a novel optical Moiré based concept has been conducted on a subscale turbine engine disk to demonstrate a potential strain measurement and crack detection technique. Moiré patterns result from the overlap of two repetitive patterns with slightly different spacing. When this technique is applied to a rotating disk, it has the potential to allow for the detection of very small changes in spacing and radial growth in a rotating disk due to a flaw such as a crack. This investigation was a continuation of previous efforts undertaken in 2011 to 2012 to validate this optical concept. The initial demonstration attempted on a subscale turbine engine disk was inconclusive due to the minimal radial growth experienced by the disk during operation. For the present experiment a new subscale Aluminum disk was fabricated and improvements were made to the experimental setup to better demonstrate the technique. A circular reference pattern was laser etched onto a subscale engine disk and the disk was operated at speeds up to 12 000 rpm as a means of optically monitoring the Moiré created by the shift in patterns created by the radial growth due the presence of the simulated crack. Testing was first accomplished on a clean defect free disk as a means of acquiring baseline reference data. A notch was then machined in to the disk to simulate a crack and testing was repeated for the purposes of demonstrating the concept. Displacement data was acquired using external blade tip clearance and shaft displacement sensors as a means of confirming the optical data and for validating other sensor based crack detection techniques.

  13. Day Time Gimballing A-1 Test Stand

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A close-up view of a Space Shuttle Main Engine during a daytime test at Stennis Space Center shows how the engine is gimbaled, or rotated, to evaluate the performance of its components under simulated flight conditions.

  14. The Diesel as a Vehicle Engine

    NASA Technical Reports Server (NTRS)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  15. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  16. Effect of classification-specific treatment on lumbopelvic motion during hip rotation in people with low back pain

    PubMed Central

    Hoffman, Shannon L; Johnson, Molly B; Zou, Dequan; Harris-Hayes, Marcie; Van Dillen, Linda R

    2010-01-01

    Increased and early lumbopelvic motion during trunk and limb movements is thought to contribute to low back pain (LBP). Therefore, reducing lumbopelvic motion could be an important component of physical therapy treatment. Our purpose was to examine the effects of classification-specific physical therapy treatment (Specific) based on the Movement System Impairment (MSI) model and non-specific treatment (Non-Specific) on lumbopelvic movement patterns during hip rotation in people with chronic LBP. We hypothesized that following treatment people in the Specific group would display decreased lumbopelvic rotation and achieve more hip rotation before lumbopelvic rotation began. We hypothesized that people in the Non-Specific group would display no change in these variables. Kinematic data collected before and after treatment for hip lateral and medial rotation in prone were analyzed. The Specific group (N=16) demonstrated significantly decreased lumbopelvic rotation and achieved greater hip rotation before the onset of lumbopelvic rotation after treatment with both hip lateral and medial rotation. The Non-Specific group (N=16) demonstrated significantly increased lumbopelvic rotation and no change in hip rotation achieved before the onset of lumbopelvic rotation. People who received treatment specific to their MSI LBP classification displayed decreased and later lumbopelvic motion with hip rotation, whereas people who received generalized non-specific treatment did not. PMID:21256073

  17. Gender difference of shoulder-pelvic kinematic integration for trunk rotation directions in healthy older adults.

    PubMed

    Sung, Paul S; Danial, Pamela

    2017-12-01

    The trunk coordination pattern has been extensively studied, and there is a higher pain prevalence and asymmetry in female older adults. However, there is a lack of investigation of different directions of trunk rotation and asymmetrical compensatory strategies of motor control between genders. The purpose of this study was to investigate shoulder and pelvic ranges of motion (ROM) as well as relative phases (RP) for the different directions of trunk rotation between genders in healthy older adults. There were 62 right hand dominant older adults in this study (31 female subjects (68.4 [5.62]years) and 31 male subjects (68.7 [5.68]years)). The participants performed trunk axial rotation from the left to the right direction (RP1) and then returned to the left side (RP2), three times repeatedly in standing. The measurements included shoulder and pelvic ROM, RP1, and RP2. The RP was defined as the average absolute relative phase, which was the difference between the phase angle of the shoulder and the phase angle of the pelvis during trunk rotation. The female group demonstrated significantly greater pelvic rotation compared to the male group (98.64 [24.67] vs. 86.96 [18.97]; t=2.09, p=0.04) during trunk rotation. The pelvic ROM demonstrated a significant positive correlation with shoulder ROM in both genders; however, the RP was negatively correlated with the pelvis. For pelvic rotation, the male group demonstrated a negative correlation with RP1 (r=-0.68, p<0.01) and RP2 (r=-0.60, p<0.01) while the female group demonstrated a negative correlation with RP2 (r=-0.53, p<0.01). The ageing factor demonstrated negative correlations with ROM for the shoulder and pelvis in both genders. Although no gender difference was indicated on the direction of RP, the pelvic ROM was significantly lesser in the male group. The male group demonstrated lesser pelvic rotation in both directions of rotation; however, the female group showed lesser pelvic rotation in RP2. The male group demonstrated stiffened pelvic rotation and greater shoulder rotation in both directions while the female group demonstrated pelvic stiffness only in the direction from right to left rotation. Clinicians need to consider this directional asymmetry of trunk rotation to enhance integrated shoulder-pelvic coordination in female older adults. A coordinative pattern of different directions of trunk rotation was investigated in healthy older adults. The pelvic range of motion was lesser in the male group compared with the female group. The female group demonstrated pelvic stiffness only in the direction from right to left rotation, while the male group demonstrated pelvic stiffness in both directions. Clinicians need to understand the gender difference of directional coordination as integrated coordination in female older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  19. Wind-Tunnel Investigation of Effects of Unsymmetrical Horizontal-Tail Arrangements on Power-on Static Longitudinal Stability of a Single-Engine Airplane Model

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Spear, Margaret F.

    1947-01-01

    A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.

  20. A CAD/CAE analysis of photographic and engineering data

    NASA Technical Reports Server (NTRS)

    Goza, S. Michael; Peterson, Wayne L.

    1987-01-01

    In the investigation of the STS 51L accident, NASA engineers were given the task of visual analysis of photographic data extracted from the tracking cameras located at the launch pad. An analysis of the rotations associated with the right Solid Rocket Booster (SRB) was also performed. The visual analysis involved pinpointing coordinates of specific areas on the photographs. The objective of the analysis on the right SRB was to duplicate the rotations provided by the SRB rate gyros and to determine the effects of the rotations on the launch configuration. To accomplish the objectives, computer aided design and engineering was employed. The solid modeler, GEOMOD, inside the Structural Dynamics Research Corp. I-DEAS package, proved invaluable. The problem areas that were encountered and the corresponding solutions that were obtained are discussed. A brief description detailing the construction of the computer generated solid model of the STS launch configuration is given. A discussion of the coordinate systems used in the analysis is provided for the purpose of positioning the model in coordinate space. The techniques and theory used in the model analysis are described.

  1. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  2. Some current research in rotating-disc systems.

    PubMed

    Owen, J M; Wilson, M

    2001-05-01

    Rotating-disc systems are used to model the flow and heat transfer that occurs inside the cooling-air systems of gas-turbine engines. In this paper, recent computational and experimental research in three systems is discussed: rotor-stator systems, rotating cavities with superposed flow and buoyancy-induced flow in a rotating cavity. Discussion of the first two systems concentrates respectively on pre-swirl systems and rotating cavities with a peripheral inflow and outflow of cooling air. Buoyancy-induced flow in a rotating cavity is one of the most difficult problems facing computationalists and experimentalists, and there are similarities between the circulation in the Earth's atmosphere and the flow inside gas-turbine rotors. For this case, results are presented for heat transfer in sealed annuli and in rotating cavities with an axial throughflow of cooling air.

  3. Humeral retroversion and shoulder rotational mobility in young handball practitioners

    PubMed Central

    Quadros, Gustavo Aguiar; Döhnert, Marcelo Baptista

    2015-01-01

    ABSTRACT OBJECTIVE : To evaluate the prevalence of humeral retroversion and rotational mobility (RHH) in young handball practitioners and non-practitioners. METHODS : This is a cross-sectional study performed with two groups: the handball group, with 14 female students practicing handball and the control group, with 13 young participants non-practicing pitch sports. RESULTS : The handball group presented full rotational movement (FRM) hi-gher than the control group in both the dominant shoulder (p=0.001) and the non-dominant shoulder (p=0.0001). The mobility of active and passive internal rotation was significantly higher in handball players in both shoulders. The handball group presented lower internal rotation range of motion for the dominant shoulder as compared to the non-dominant shoul-der (p=0.001). CONCLUSION : Young handball practitioners, des-pite skeletally immature, showed a higher MRT than the control group. The handball group showed loss of internal rotation (medial) on the dominant shoulder as compared to the non--dominant shoulder. Level of Evidence II, Prospective Study. PMID:27057141

  4. Humeral retroversion and shoulder rotational mobility in young handball practitioners.

    PubMed

    Quadros, Gustavo Aguiar; Döhnert, Marcelo Baptista

    2015-01-01

    : To evaluate the prevalence of humeral retroversion and rotational mobility (RHH) in young handball practitioners and non-practitioners. : This is a cross-sectional study performed with two groups: the handball group, with 14 female students practicing handball and the control group, with 13 young participants non-practicing pitch sports. : The handball group presented full rotational movement (FRM) hi-gher than the control group in both the dominant shoulder (p=0.001) and the non-dominant shoulder (p=0.0001). The mobility of active and passive internal rotation was significantly higher in handball players in both shoulders. The handball group presented lower internal rotation range of motion for the dominant shoulder as compared to the non-dominant shoul-der (p=0.001). : Young handball practitioners, des-pite skeletally immature, showed a higher MRT than the control group. The handball group showed loss of internal rotation (medial) on the dominant shoulder as compared to the non--dominant shoulder. Level of Evidence II, Prospective Study.

  5. Solid medium thermal engine

    NASA Technical Reports Server (NTRS)

    Jedlicka, J. R.; Guist, L. R.; Beam, R. M. (Inventor)

    1974-01-01

    A device is described which uses a single phase metallic working substance to convert thermal energy directly into mechanical energy. The device consists of a cylindrical metal tube which is free to rotate about its axis while being subjected to continuous bending moment stresses along the longitudinal axis of rotation. The stressing causes portions of the tube to be under compression while other parts are under tension which in turn causes the tube to rotate and provide mechanical energy.

  6. Rotational movements of mandibular two-implant overdentures.

    PubMed

    Kimoto, Suguru; Pan, Shaoxia; Drolet, Nicolas; Feine, Jocelyne S

    2009-08-01

    Clinicians have reported that their patients complain that their mandibular two-implant overdentures (IOD) rotate. Therefore, we studied the frequency and severity of rotation of IODs with two-ball attachments, how rotation may influence perceived satisfaction ratings of chewing ability, and the factors that are involved in the rotation of IODs. Seventy-nine participants were recruited and asked to rate their general satisfaction of their IODs, as well as their ability to chew foods, the existence of any mandibular denture rotation, and to what degree denture rotation bothered them. Data on participant sociodemographic, anatomical, and prosthesis characteristics were also collected. Student's t-test and logistic regression analyses were performed to analyze the differences between participants who did (R group) and did not report (NR group) denture rotation. Thirty-seven of 79 participants were aware of rotational movement in their IODs. These patients were significantly less satisfied with their chewing ability than those who felt no rotation (69.1 mm R group vs. 82.9 mm), and discomfort caused by the rotation bothered them moderately (39/100 mm). The multivariate logistic regression analysis revealed that the arrangement of the anterior teeth and the length of the denture are significantly associated with awareness of denture rotation. Thirty-eight percent in the R group and 31% in the NR group had non-scheduled visits. Rotational movement with a mandibular two-IOD has a negative effect on perceived chewing ability and is associated with anterior tooth arrangement and denture length.

  7. Noninvasive evaluation of tissue-engineered cartilage with time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Kutsuna, Toshiharu; Sato, Masato; Ishihara, Miya; Furukawa, Katsuko S; Nagai, Toshihiro; Kikuchi, Makoto; Ushida, Takashi; Mochida, Joji

    2010-06-01

    Regenerative medicine requires noninvasive evaluation. Our objective is to investigate the application of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) using a nano-second-pulsed laser for evaluation of tissue-engineered cartilage (TEC). To prepare scaffold-free TEC, articular chondrocytes from 4-week-old Japanese white rabbits were harvested, and were inoculated at a high density in a mold. Cells were cultured for 5 weeks by rotating culture (RC) or static culture (SC). The RC group and SC group at each week (n = 5), as well as normal articular cartilage and purified collagen type II (as controls), were analyzed by TR-LIFS. The peak wavelength was compared with those of type II collagen immunostaining and type II collagen quantification by enzyme-linked immunosorbent assay and tensile testing. The fluorescence peak wavelength of the TEC analyzed by this method shifted significantly in the RC group at 3 weeks, and in the SC group at 5 weeks (p < 0.01). These results correlated with changes in type II collagen (enzyme-linked immunosorbent assay) and changes in Young's modulus on tensile testing. The results were also supported by immunohistologic findings (type II collagen staining). Our findings show that TR-LIFS is useful for evaluating TEC.

  8. 78 FR 2198 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... high GG speed (NG) rating vibration check. (f) Definition Level 3 maintenance on the GG rotating... performing a high gas generator speed (NG) rating vibration check. This AD was prompted by several reports of... bearing failures have occurred following ``Level 3'' maintenance actions on the GG rotating assembly. Some...

  9. ATP synthase--a marvellous rotary engine of the cell.

    PubMed

    Yoshida, M; Muneyuki, E; Hisabori, T

    2001-09-01

    ATP synthase can be thought of as a complex of two motors--the ATP-driven F1 motor and the proton-driven Fo motor--that rotate in opposite directions. The mechanisms by which rotation and catalysis are coupled in the working enzyme are now being unravelled on a molecular scale.

  10. The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue.

    PubMed

    Zinelis, Spiros; Darabara, Myrsini; Takase, Toshiyuki; Ogane, Kaoru; Papadimitriou, George D

    2007-06-01

    The purpose of this study was to determine the effect of various thermal treatments on the fatigue resistance of a nickel-titanium (NiTi) engine-driven endodontic file. Fifteen groups of 5 files each of ISO 30 and taper .04 were tested in this study. The cutting tip (5 mm from the end) of files from 14 groups were heat treated for 30 minutes in temperatures 250 degrees C, 300 degrees C, 350 degrees C, 375 degrees C, 400 degrees C, 410 degrees C, 420 degrees C, 425 degrees C, 430 degrees C, 440 degrees C, 450 degrees C, 475 degrees C, 500 degrees C, and 550 degrees C, respectively, while 1 group was used as reference. The files were placed in a device that allowed the instruments to be tested for rotating bending fatigue inside an artificial root canal. The number of rotations to breakage was recorded for each file. The mean values of all groups were statistically analyzed using 1-way analysis of variance and Student Newman Keuls multiple comparison test at alpha = .05. The 430 degrees C and 440 degrees C groups showed the highest values, with fatigue resistance decreasing for thermal treatment at lower and higher temperatures. This may be the result of metallurgical changes during annealing. Within the limitations of the low sample size and the specific instrument size tested, it appears that the appropriate thermal treatment may significantly increase the fatigue resistance of the NiTi file tested.

  11. Rotary balance data for a single-engine trainer design for an angle-of-attack range of 8 deg to 90 deg. [conducted in langely spin tunnel

    NASA Technical Reports Server (NTRS)

    Pantason, P.; Dickens, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine trainer airplane model. The configurations tested included the basic airplane, various wing leading edge devices, elevator, aileron and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations.

  12. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.

  13. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model A

    NASA Technical Reports Server (NTRS)

    Mulcay, W.; Rose, R.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5-scale, single-engine, high-wing, general aviation airplane model. The configurations tested included various tail designs and fuselage shapes. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations covering an Omega b/2 v range from 0 to 0.85.

  14. The effect of engine spin direction on the dynamics of powered two wheelers

    NASA Astrophysics Data System (ADS)

    Massaro, Matteo; Marconi, Edoardo

    2018-04-01

    The effect of engine spin direction on the dynamics of powered two wheelers is investigated in terms of steady-state points (equilibria), vibration modes (stability), manoeuvre time (performance/manoeuvrability) and handling. The goal is to assess and quantify the advantage sometimes claimed for the 'counter-rotating' engine configuration, where the engine spins in the opposite direction with respect to wheels, against the 'conventional' configuration, where the engine spins in the same direction of wheels.

  15. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE PAGES

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; ...

    2017-06-08

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  16. Remotely detected vehicle mass from engine torque-induced frame twisting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This paper presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle’s engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle’s engine can be calculated from its torque and angular velocity. This model relates remotely observed,more » engine torque-induced frame twist to engine torque output using the vehicle’s suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle’s linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. Finally, this method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.« less

  17. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    NASA Technical Reports Server (NTRS)

    Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  18. The selection of flying roller as an effort to increase the power of scooter-matic as the main power of centrifugal pump for fire fighter motor cycle

    NASA Astrophysics Data System (ADS)

    Hadi Sutrisno, Himawan

    2018-03-01

    In densely populated settlements, fires often occur and cause losses. In some instances, the process of the occurrence of fires takes place so quickly that to reduce and avoid the occurrence of a fire disaster effort is required in accordance with the existing environmental condition. Fire fighter motorcycle by using motorcycle scooter-matic is considered suitable as one alternative to combating fire hazard in densely populated residential settlements. The use of motorcycle engines as the driving force of the pump often leads to unstable and not optimum power. Thus, the water spray on the centrifugal pump also becomes not maximum. To increase the engine power at scooter-matic engine idle rotation (700-2000 rpm), then the flying roller replacement with certain mass weight becomes an option. By selecting a 10 to 14 gram flying roller mass, the power analysis using a dynotest engine produces several variations. Of the calculation, the mass of a 14 gram flying roller provides a significant increase in motor power on the upper rotation. Meanwhile, on the lower power rotation using a flying roller with a mass of 10 grams provides an increase in power compared to a standard flying roller on a scooter matic motor engine. As a reference to the use of scooter-matic motor power as the pump power, the result of use of the flying roller with a mass of 10 grams becomes the best option.

  19. Navier-Stokes analysis of a liquid rocket engine disk cavity

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.; Mcconnaughey, Paul K.

    1991-01-01

    This paper presents a Navier-Stokes analysis of hydrodynamic phenomena occurring in the aft disk cavity of a liquid rocket engine turbine. The cavity analyzed in the Space Shuttle Main Engine Alternate Turbopump currently being developed by NASA and Pratt and Whitney. Comparison of results obtained from the Navier-Stokes code for two rotating disk datasets available in the literature are presented as benchmark validations. The benchmark results obtained using the code show good agreement relative to experimental data, and the turbine disk cavity was analyzed with comparable grid resolution, dissipation levels, and turbulence models. Predicted temperatures in the cavity show that little mixing of hot and cold fluid occurs in the cavity and the flow is dominated by swirl and pumping up the rotating disk.

  20. Numerical Study of the Propulsive Performance of the Hollow Rotating Detonation Engine with a Laval Nozzle

    NASA Astrophysics Data System (ADS)

    Yao, Songbai; Tang, Xinmeng; Wang, Jianping

    2017-04-01

    The aim of the present paper is to investigate the propulsive performance of the hollow rotating detonation engine (RDE) with a Laval nozzle. Three-dimensional simulations are carried out with a one-step Arrhenius chemistry model. The Laval nozzle is found to improve the propulsive performance of hollow RDE in all respects. The thrust and fuel-based specific impulse are increased up to 12.60 kN and 7484.40 s, respectively, from 6.46 kN and 6720.48 s. Meanwhile, the total mass flow rate increases from 3.63 kg/s to 6.68 kg/s. Overall, the Laval nozzle significantly improves the propulsive performance of the hollow RDE and makes it a promising model among detonation engines.

  1. Counter rotating fans — An aircraft propulsion for the future?

    NASA Astrophysics Data System (ADS)

    Schimming, Peter

    2003-05-01

    In the mid seventies a new propulsor for aircraft was designed and investigated - the so-called PROPFAN. With regard to the total pressure increase, it ranges between a conventional propeller and a turbofan with very high bypass ratio. This new propulsion system promised a reduction in fuel consumption of 15 to 25% compared to engines at that time. A lot of propfans (Hamilton Standard, USA) with different numbers of blades and blade shapes have been designed and tested in wind tunnels in order to find an optimum in efficiency, Fig.1. Parallel to this development GE, USA, made a design of a counter rotating unducted propfan, the so-called UDF, Fig.2. A prototype engine was manufactured and investigated on an in-flight test bed mounted at the MD82 and the B727. Since that time there has not been any further development of propfans (except AN 70 with NK 90-engine, Ukraine, which is more or less a propeller design) due to relatively low fuel prices and technical obstacles. Only technical programs in different countries are still going on in order to prepare a data base for designing counter rotating fans in terms of aeroacoustics, aerodynamics and aeroelasticities. In DLR, Germany, a lot of experimental and numerical work has been undertaken to understand the physical behaviour of the unsteady flow in a counter rotating fan.

  2. Comparison of epidemiology and outcomes of arthroscopic rotator cuff repair for anterosuperior and posterosuperior rotator cuff tears.

    PubMed

    Teratani, Takeshi

    2017-12-01

    The purpose of this study was to investigate the prevalence, epidemiology, and outcomes of anterosuperior (A group) rotator cuff tears (RCTs) and posterosuperior (P group) RCTs treated by arthroscopic rotator cuff repair (ARCR). A total of 67 A group patients and 14 P group patients were included in the study. The prevalence of the A group (82.3%) was significantly higher than that of the P group (17.7%). The outcomes in both groups were good, even though the A group had a higher rate of injury to the LHB than the P group. Level III, case-control Study, treatment study.

  3. Impact of bracket displacement or rotation during bonding and time of removal of excess adhesive on the bracket-enamel bond strength.

    PubMed

    Oliveira, Adauê S; Barwaldt, Caroline K; Bublitz, Luana S; Moraes, Rafael R

    2014-06-01

    This study investigated the the influence of bracket displacement or rotation during fixation and the time of excess adhesive removal from around the bracket on bond strength to enamel. Stainless steel brackets were bonded to the buccal faces of bovine incisors using Transbond XT® adhesive resin. The teeth were divided into five groups (n = 20). In the control group, no displacement or rotation of the bracket was carried out. In the Displac-A group, excess adhesive was removed after the bracket was displaced 2 mm incisally. In the B-Displac group, excess adhesive was removed before the bracket was displaced incisally. In the Rotat-A group, excess adhesive was removed after the bracket was rotated 45°. In the B-Rotat group, excess adhesive was removed before the bracket was rotated. Photoactivation was carried out on the lateral sides of the bracket. A shear test was conducted 10 min after fixation using a knife-edged chisel. Bond strength data were analysed using ANOVA and Fisher's test (5%). The adhesive remnant index (ARI) was scored under magnification. ARI data were analysed using the Kruskal-Wallis test (5%). No significant differences were detected among the Control, Displac-A, Rotat-A and B-Rotat groups. The B-Displac group showed lower bond strength than all of the other groups, except Displac-A. No significant differences were observed in ARI scores across groups. Displacements of the brackets during fixation did not seem to affect the enamel bond strength when excess adhesive is removed after the final positioning of the bracket. © 2014 British Orthodontic Society.

  4. Group iterative methods for the solution of two-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Balasim, Alla Tareq; Ali, Norhashidah Hj. Mohd.

    2016-06-01

    Variety of problems in science and engineering may be described by fractional partial differential equations (FPDE) in relation to space and/or time fractional derivatives. The difference between time fractional diffusion equations and standard diffusion equations lies primarily in the time derivative. Over the last few years, iterative schemes derived from the rotated finite difference approximation have been proven to work well in solving standard diffusion equations. However, its application on time fractional diffusion counterpart is still yet to be investigated. In this paper, we will present a preliminary study on the formulation and analysis of new explicit group iterative methods in solving a two-dimensional time fractional diffusion equation. These methods were derived from the standard and rotated Crank-Nicolson difference approximation formula. Several numerical experiments were conducted to show the efficiency of the developed schemes in terms of CPU time and iteration number. At the request of all authors of the paper an updated version of this article was published on 7 July 2016. The original version supplied to AIP Publishing contained an error in Table 1 and References 15 and 16 were incomplete. These errors have been corrected in the updated and republished article.

  5. Novel engineered tendon-fibrocartilage-bone composite with cyclic tension for rotator cuff repair.

    PubMed

    Liu, Qian; Hatta, Taku; Qi, Jun; Liu, Haoyu; Thoreson, Andrew R; Amadio, Peter C; Moran, Steven L; Steinmann, Scott P; Gingery, Anne; Zhao, Chunfeng

    2018-05-15

    Surgical repair of rotator cuff tears presents a significant clinical challenge with high failure rates and inferior functional outcomes. Graft augmentation improves repair outcomes, however currently available grafting materials have limitations. While cell-seeded decellularized tendon slices may facilitate cell infiltration, promote tendon incorporation and preserve original mechanical strength, the unique fibrocartilage zone is yet to be successfully reestablished. In this study, we investigated the biological and mechanical properties of an engineered tendon-fibrocartilage-bone composite (TFBC) with cyclic tension (3% strain, 0.2 Hz). Decellularized TFBCs seeded with bone marrow-derived mesenchymal stem cell (BMSCs) sheets and subjected to mechanical stimulation for up to 7 days, were characterized by histology, immunohistochemistry, scanning electron microscopy, mechanical testing, and transcriptional regulation. The decellularized TFBC maintained native enthesis structure and properties. Mechanically stimulated TFBC-BMSC constructs displayed increased cell migration after 7 days of culture compared to static groups. The seeded cell sheet not only integrated well with tendon scaffold but also distributed homogeneously and aligned to the direction of stretch under dynamic culture. Developmental genes were regulated including, scleraxis which was significantly upregulated with mechanical stimulation. The Young's modulus of the cell-seeded constructs was significantly higher compared to the non-cell-seeded controls. In conclusion, the results of this study reveal that the TFBC-BMSC composite provides an ideal multilayer construct for cell seeding and growth, with mechanical preconditioning further enhances cell penetration and differentiation. The BMSC cell sheet revitalized TFBC in conjunction with mechanical stimulation could serve as a novel and primed biological patch to improve rotator cuff repair. This article is protected by copyright. All rights reserved.

  6. Applicability of the Hypersonic Similarity Rule to Pressure Distributions which Include the Effects of Rotation for Bodies of Revolution at Zero Angle of Attack

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J

    1951-01-01

    The analysis of Technical Note 2250, 1950, is extended to include the effects of flow rotation. It is found that the theoretical pressure distributions over drive cylinders can be related by the hypersonic similarity rule with sufficient accuracy for most engineering purposes. The error introduced into pressure distributions and drag effective cylinders by ignoring the rotation term in the characteristic equations is investigated.

  7. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  8. Rotational glenohumeral adaptations are associated with shoulder pathology in professional male handball players.

    PubMed

    Lubiatowski, Przemyslaw; Kaczmarek, Piotr; Cisowski, Pawel; Breborowicz, Ewa; Grygorowicz, Monika; Dzianach, Marcin; Krupecki, Tomasz; Laver, Lior; Romanowski, Leszek

    2018-01-01

    Glenohumeral range of motion adaptations may affect throwing athletes and contribute to shoulder injury. The purpose of this study was to evaluate shoulder rotation deficits among elite professional handball players and its correlation to the presence of shoulder pain and morphological changes. Eighty-seven elite professional handball players and 41 healthy non-athlete volunteers participated in the study. Evaluations included measurement of range of internal and external rotation, total arch of motion, identification of shoulder pain and ultrasound scan for diagnosis of rotator cuff tears and internal impingement. Glenohumeral rotational deficits (>20-25°) were found among 11 players group (13%). The throwing shoulders in the players group showed a decrease in internal rotation and an increase in external rotation with significantly larger ranges among players compared to the non-athlete group. Internal rotation deficit >20° was associated with higher incidence of shoulder pain among players. Both internal rotation deficits (>25°) and total arch of motion deficit (>20°) co-existed with higher incidence of internal impingement. Shoulder pain was common (36/97-41%) and was associated with decreased external rotation and total arch of motion. Internal impingement (found in 13/87-15%) correlated with decreased rotation ranges and a greater deficit in total arch of motion, whereas higher gain in external rotation correlated with a partial rotator cuff tear (found in 12/87-14%). Shoulder pathologies and problems commonly affected the group of handball players. Greater glenohumeral rotational deficits in throwing shoulders of handball players correlate with shoulder pain and internal impingement, while increased external rotation with partial rotator cuff tears. Such deficits affect 13% of the athlete population. Major clinical relevance of the study is to monitor handball players' shoulders both clinically and by proper imaging. Evaluation of range of rotation seems to identify shoulders at risk of the pathology. Cross-Sectional study with control group, Level II.

  9. Measurement of the rotational misfit and implant-abutment gap of all-ceramic abutments.

    PubMed

    Garine, Wael N; Funkenbusch, Paul D; Ercoli, Carlo; Wodenscheck, Joseph; Murphy, William C

    2007-01-01

    The specific aims of this study were to measure the implant and abutment hexagonal dimensions, to measure the rotational misfit between implant and abutments, and to correlate the dimension of the gap present between the abutment and implant hexagons with the rotational misfit of 5 abutment-implant combinations from 2 manufacturers. Twenty new externally hexed implants (n = 10 for Nobel Biocare; n = 10 for Biomet/3i) and 50 new abutments were used (n = 10; Procera Zirconia; Procera Alumina; Esthetic Ceramic Abutment; ZiReal; and GingiHue post ZR Zero Rotation abutments). The mating surfaces of all implants and abutments were imaged with a scanning electron microscope before and after rotational misfit measurements. The distances between the corners and center of the implant and abutment hexagon were calculated by entering their x and y coordinates, measured on a measuring microscope, into Pythagoras' theorem. The dimensional difference between abutment and implant hexagons was calculated and correlated with the rotational misfit, which was recorded using a precision optical encoder. Each abutment was rotated (3 times/session) clockwise and counterclockwise until binding. Analysis of variance and Student-Newman-Keuls tests were used to compare rotational misfit among groups (alpha = .05). With respect to rotational misfit, the abutment groups were significantly different from one another (P < .001), with the exception of the Procera Zirconia and Esthetic Ceramic groups (P = .4). The mean rotational misfits in degrees were 4.13 +/- 0.68 for the Procera Zirconia group, 3.92 +/- 0.62 for the Procera Alumina group, 4.10 +/- 0.67 for the Esthetic Ceramic group, 3.48 +/- 0.40 for the ZiReal group, and 1.61 +/- 0.24 for the GingiHue post ZR group. There was no correlation between the mean implant-abutment gap and rotational misfit. Within the limits of this study, machining inconsistencies of the hexagons were found for all implants and abutments tested. The GingiHue Post showed the smallest rotational misfit. All-ceramic abutments without a metal collar showed a greater rotational misfit than those with a metal collar.

  10. Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation.

    PubMed

    Doyle, Matthew G; Crawford, Sean A; Osman, Elrasheed; Eisenberg, Naomi; Tse, Leonard W; Amon, Cristina H; Forbes, Thomas L

    2018-04-01

    A complication of fenestrated endovascular aneurysm repair is the potential for stent graft rotation during deployment causing fenestration misalignment and branch artery occlusion. The objective of this study is to demonstrate that this rotation is caused by a buildup of rotational energy as the device is delivered through the iliac arteries and to quantify iliac artery geometric properties associated with device rotation. A retrospective clinical study was undertaken in which iliac artery geometric properties were assessed from preoperative imaging for 42 cases divided into 2 groups: 27 in the nonrotation group and 15 in the rotation group. Preoperative computed tomography scans were segmented, and the iliac artery centerlines were determined. Iliac artery tortuosity, curvature, torsion, and diameter were calculated from the centerline and the segmented vessel geometry. The total iliac artery net torsion was found to be higher in the rotation group compared to the nonrotation group (23.5 ± 14.7 vs 14.6 ± 12.8 mm -1 ; P = .05). No statistically significant differences were found for the mean values of tortuosity, curvature, torsion, or diameter between the 2 groups. Stent graft rotation occurred in 36% of the cases considered in this study. Cases with high iliac artery total net torsion were found to be more likely to have stent graft rotation upon deployment. This retrospective study provides a framework for prospectively studying the influence of iliac artery geometric properties on fenestrated stent graft rotation.

  11. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  12. Guidance Document for PMF Applications with the Multilinear Engine

    EPA Science Inventory

    This document serves as a guide for users of the Multilinear Engine version 2 (ME-2) for source apportionment applications utilizing positive matrix factorization (PMF). It aims to educate experienced source apportionment analysts on available ME rotational tools and provides gui...

  13. Revision versus primary arthroscopic rotator cuff repair: a 2-year analysis of outcomes in 360 patients.

    PubMed

    Shamsudin, Aminudin; Lam, Patrick H; Peters, Karin; Rubenis, Imants; Hackett, Lisa; Murrell, George A C

    2015-03-01

    Symptomatic rotator cuff tears are often treated surgically. However, there is a paucity of information regarding the outcomes of revision arthroscopic rotator cuff repairs. To evaluate the outcome of revision arthroscopic rotator cuff surgery when compared with primary arthroscopic rotator cuff surgery in a large cohort of patients. Cohort study; Level of evidence, 3. A consecutive series of 50 revision arthroscopic rotator cuff repairs performed by a single surgeon, with minimum 2-year follow-up, were retrospectively reviewed using prospectively collected data. As a comparison, 3 primary arthroscopic rotator cuff repair cases (primary group; n = 310) were chosen immediately before each revision case, and 3 were chosen after. Standardized patient-ranked outcomes, examiner-determined assessments, and ultrasound-determined rotator cuff integrity were assessed preoperatively at 6 months and at a minimum of 2 years after surgery. The revision group was older (mean age, 63 years; range, 43-80 years) compared with the primary group (mean age, 60 years; range, 18-88 years) (P < .05) and had larger tear size (mean ± SEM) (4.1 ± 0.5 cm(2)) compared with the primary group (3.0 ± 0.2 cm(2)) (P < .05). Two years after surgery, the primary group reported less pain at rest (P < .02), during sleep (P < .05), and with overhead activity (P < .01) compared with the revision group. The primary group had better passive forward flexion (+13°; P < .05), abduction (+18°; P < .01), internal rotation (+2 vertebral levels; P < .001) and also significantly greater supraspinatus strength (+15 N; P < .001), lift-off strength (+9.3 N; P < .05), and adduction strength (+20 N; P < .01) compared with the revision group at 2 years. When compared with the primary group, the revision group was more satisfied with the overall shoulder function before surgery but was less satisfied with their shoulder function than the primary group at 2 years (P < .005). The retear rate for primary rotator cuff repair was 16% at 6 months and 21% at 2 years, while the retear rate for revision rotator cuff repair was 28% at 6 months and deteriorated to 40% at 2 years (P < .05). The short-term clinical outcomes of patients undergoing revision rotator cuff repair were similar to those after primary rotator cuff repair. However, these results did not persist, and by 2 years patients who had revision rotator cuff repair were twice as likely to have retorn compared with those undergoing primary repair. The increase in retear rate in the revision group at 2 years was associated with increased pain, impaired overhead function, less passive motion, weaker strength, and less overall satisfaction with shoulder function. © 2014 The Author(s).

  14. Arthroscopic versus mini-open rotator cuff repair: a prospective, randomized study with 24-month follow-up.

    PubMed

    Zhang, Zhenxiang; Gu, Beibei; Zhu, Wei; Zhu, Lixian; Li, Qingsong

    2014-08-01

    This prospective, randomized study was performed to evaluate the results of mini-open and arthroscopic rotator cuff repair in a comparative case series of patients followed for 24 months. A total of 125 patients were randomized to mini-open (Group I) or arthroscopic (Group II) rotator cuff repair at the time of surgical intervention. The University of California Los Angeles (UCLA) score, the American Shoulder and Elbow Surgeons (ASES) index, and muscle strength were measured to evaluate the clinical results, while magnetic resonance arthrography was used at 24-month follow-up to investigate the postoperative rotator cuff integrity. Fifty-three patients in Group I and 55 patients in Group II were available for evaluation at 24-month follow-up. At 24-month follow-up, the UCLA score, the ASES index, and muscle strength were statistically significantly increased in both groups postoperatively, while no significant difference was detected between the 2 groups. Intact rotator cuffs were investigated in 42 patients in Group I and 35 in Group II, and there was a significant difference in postoperative structural integrity between the two groups (P < 0.05). When analysis was limited to the patients with full-thickness tear, the muscle strength of the shoulder was significantly better in Group II, and the retearing rate was significantly higher in Group II. Based on the results obtained from this study, it can be indicated that arthroscopic and mini-open rotator cuff repair displayed substantially equal outcomes, except for higher retearing rate in the arthroscopic repair group. While for patients with full-thickness tear, arthroscopic rotator cuff repair displayed better shoulder strength and significantly higher retearing rate as compared to mini-open rotator cuff repair at 24-month follow-up.

  15. The effect of pre-cure bracket movement on shear bond strength during placement of orthodontic brackets, an in vitro study.

    PubMed

    Tam, Byron; Bollu, Prashanti; Chaudhry, Kishore; Subramani, Karthikeyan

    2017-10-01

    The purpose of this study was to determine the influence of linear and rotational pre-cure bracket displacement during the bonding procedure on shear bond strength (SBS) of orthodontic brackets. Stainless steel orthodontic premolar brackets were bonded to the buccal surfaces of 50 human pre-molars with a conventional two-step bonding protocol. Extracted human pre-molars were divided into 5 groups (n=10/group). In the Control Group, the brackets were bonded with no pre-cure bracket displacement or rotation. The Rotation Group was bonded with 45 degrees of pre-cure rotation. The Displacement Group was bonded with 2mm pre-cure linear displacement. The Rotation-Displacement Group was bonded with pre-cure movements of 45º counter-clockwise rotation and 2mm displacement. The Slippage Group was bonded with 2mm each of mesial and distal pre-cure linear displacement. Photo-activation was carried out on the lateral sides of the bracket. Shear debonding force was measured, 24 hours after initial bonding, with an Instron universal testing machine using a knife-edged chisel. Data was analyzed using one-way ANOVA test. Adhesive Remnant Index (ARI) was scored under 15x magnification. The ARI data was analyzed using the Chi-square test ( p -value < 0.05). No statistically significant differences were detected among the control and experimental groups ( p = 0.331). The rotation and displacement group showed the highest mean SBS than all other groups. Mean SBS for all groups were above the clinically acceptable range. No statistically significant differences were detected in ARI scores among groups ( p = 0.071). Linear and rotational pre-cure bracket displacements do not appear to effect the shear bond strength of orthodontic brackets. Key words: Shear bond strength, orthodontic bracket, displacement, rotation, adhesive remnant index, pre-cure movement.

  16. Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles: Effects of Terminal Visual Feedback

    PubMed Central

    Rand, Miya K.; Rentsch, Sebastian

    2016-01-01

    This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task under the use of terminal visual feedback. Young adults made reaching movements to targets on a digitizer while looking at targets on a monitor where the rotated feedback (a cursor) of hand movements appeared after each movement. Three rotation angles (30°, 75° and 150°) were examined in three groups in order to vary the task difficulty. The results showed that the 30° group gradually reduced direction errors of reaching with practice and adapted well to the visuomotor rotation. The 75° group made large direction errors of reaching, and the 150° group applied a 180° reversal shift from early practice. The 75°and 150° groups, however, overcompensated the respective rotations at the end of practice. Despite these group differences in adaptive changes of reaching, all groups gradually adapted gaze directions prior to reaching from the target area to the areas related to the final positions of reaching during the course of practice. The adaptive changes of both hand and eye movements in all groups mainly reflected adjustments of movement directions based on explicit knowledge of the applied rotation acquired through practice. Only the 30° group showed small implicit adaptation in both effectors. The results suggest that by adapting gaze directions from the target to the final position of reaching based on explicit knowledge of the visuomotor rotation, the oculomotor system supports the limb-motor system to make precise preplanned adjustments of reaching directions during learning of visuomotor rotation under terminal visual feedback. PMID:27812093

  17. Parametric Study of a Mach 2.4 Transport Engine with Supersonic Through-Flow Rotor and Supersonic Counter-Rotating Diffuser (SSTR/SSCRD)

    NASA Technical Reports Server (NTRS)

    Tran, Donald H.

    2004-01-01

    A parametric study is conducted to evaluate a mixed-flow turbofan equipped with a supersonic through-flow rotor and a supersonic counter-rotating diffuser (SSTR/SSCRD) for a Mach 2.4 civil transport. Engine cycle, weight, and mission analyses are performed to obtain a minimum takeoff gross weight aircraft. With the presence of SSTR/SSCRD, the inlet can be shortened to provide better pressure recovery. For the same engine airflow, the inlet, nacelle, and pylon weights are estimated to be 73 percent lighter than those of a conventional inlet. The fan weight is 31 percent heavier, but overall the installed engine pod weight is 11 percent lighter than the current high-speed civil transport baseline conventional mixed-flow turbofan. The installed specific fuel consumption of the supersonic fan engine is 2 percent higher than that of the baseline turbofan at supersonic cruise. Finally, the optimum SSTR/SSCRD airplane meets the FAR36 Stage 3 noise limit and is within 7 percent of the baseline turbofan airplane takeoff gross weight over a 5000-n mi mission.

  18. Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine

    NASA Astrophysics Data System (ADS)

    Izumida, Yuki

    2018-03-01

    The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.

  19. A Review of Research on Bird Impacting on Jet Engines

    NASA Astrophysics Data System (ADS)

    Jin, Yuecheng

    2018-03-01

    Bird strikes can lead to permanent deformations, sudden decrease of thrust, even engine failure during the flight. Bird strikes on rotating blades can also cause slices of birds hitting other parts which may lead to greater damages. Bird strikes cannot be completely avoided. However, reduction of bird impacting on jet engines can be achieved by suitable design and manufacturing, through the mathematical modelling, simulation analysis and practical experiment of jet engines.

  20. Effect of structural flexibility on the design of vibration-isolating mounts for aircraft engines

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1984-01-01

    Previous analyses of the design of vibration-isolating mounts for a rear-mounted engine to decouple linear and rotational oscillations are extended to take into account flexibility of the engine-mount structure. Equations and curves are presented to allow the design of mount systems and to illustrate the results for a range of design conditions.

  1. Optimization of a Low Heat Load Turbine Nozzle Guide Vane

    DTIC Science & Technology

    2006-03-01

    HEAT LOAD TURBINE NOZZLE GUIDE VANE THESIS Presented to the Faculty Department of Aeronautical and Astronautical Engineering ...a function of turbine inlet temperature. .................... 2 Figure 2 Traditional turbofan engine and stator vane location (from Ref [1...the non-rotating stator vanes within a cross-section of a classical two-spool turbofan engine which has an inlet, 4 compressor, combustor, turbine

  2. Detailed heat/mass transfer distributions in a rotating two pass coolant channel with engine-near cross section and smooth walls.

    PubMed

    Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R

    2001-05-01

    This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.

  3. Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application.

    PubMed

    Tong, Shi Yun; Wang, Zuyong; Lim, Poon Nian; Wang, Wilson; Thian, Eng San

    2017-01-01

    Regeneration of injuries at tendon-to-bone interface (TBI) remains a challenging issue due to the complex tissue composition involving both soft tendon tissues and relatively hard bone tissues. Tissue engineering using polymeric/ceramic composites has been of great interest to generate scaffolds for tissue's healing at TBI. Herein, we presented a novel method to blend polymers and bioceramics for tendon tissue engineering application. A homogeneous composite comprising of nanohydroxyapatite (nHA) particles in poly(ε-caprolactone) (PCL) matrix was obtained using a combination of solvent and mechanical blending process. X-ray diffraction analysis showed that the as-fabricated PCL/nHA composite film retained phase-pure apatite and semi-crystalline properties of PCL. Infrared spectroscopy spectra confirmed that the PCL/nHA composite film exhibited the characteristics functional groups of PCL and nHA, without alteration to the chemical properties of the composite. The incorporation of nHA resulted in PCL/nHA composite film with improved mechanical properties such as Young's Modulus and ultimate tensile stress, which were comparable to that of the native human rotator tendon. Seeding with human tenocytes, cells attached on the PCL/nHA composite film, and after 14days of culturing, these cells could acquire elongated morphology without induced cytotoxicity. PCL/nHA composite film could also result in increased cell metabolism with prolonged culturing, which was comparable to that of the PCL group and higher than that of the nHA group. All these results demonstrated that the developed technique of combining solvent and mechanical blending could be applied to fabricate composite films with potential for tendon tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. ON THE ROTATION OF SUNSPOTS AND THEIR MAGNETIC POLARITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming

    2016-07-20

    The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory . We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency ofmore » the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr{sup 1}. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr{sup 1}. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.« less

  5. Regenerative Medicine in Rotator Cuff Injuries

    PubMed Central

    Randelli, Pietro; Ragone, Vincenza; Menon, Alessandra; Cabitza, Paolo; Banfi, Giuseppe

    2014-01-01

    Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP) is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs). Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research. PMID:25184132

  6. Feasibility of rotating fluidized bed reactor for rocket propulsion

    NASA Technical Reports Server (NTRS)

    Ludewig, H.; Manning, A. J.; Raseman, C. J.

    1974-01-01

    The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.

  7. Dynamics of Rotating Multi-component Turbomachinery Systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1993-01-01

    The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.

  8. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than immobilization in internal rotation. Additionally, this review suggests that there is minimal difference in patients' perceptions of their health-related quality of life after immobilization in internal versus external rotation. © 2015 The Author(s).

  9. Creative Practice : Design and Manufacturing of ‘CD Crusher’

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Senda, Shinkoh; Fukumori, Tsutom; Sato, Kazuo

    A practice program for graduate students in mechanical engineering has been developed. The task of this training is to design and manufacture an original ‘CD crusher’ , a machine to mechanically destroy compact disks after use. This is a competition among groups of students creating their original CD crusher which fulfills the regulation. The regulation is that the crusher has to use rotational blades cutting the CDs. Same sized blades are supplied to the students groups. They are fabricated from a steel bar through cutting, annealing and quenching processes by the presence of students. Technical staffs are ready to help students on the whole way of the practice. However, they encourage initiative by the students from planning to manufacturing. Students satisfied at the practice according to the comments after competition.

  10. Studying Turbulence Using Numerical Simulation Databases. 5: Proceedings of the 1994 Summer Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct numerical simulation databases were used to study turbulence physics and modeling issues at the fifth Summer Program of the Center for Turbulence Research. The largest group, comprising more than half of the participants, was the Turbulent Reacting Flows and Combustion group. The remaining participants were in three groups: Fundamentals, Modeling & LES, and Rotating Turbulence. For the first time in the CTR Summer Programs, participants included engineers from the U.S. aerospace industry. They were exposed to a variety of problems involving turbulence, and were able to incorporate the models developed at CTR in their company codes. They were exposed to new ideas on turbulence prediction, methods which already appear to have had an impact on their capabilities at their laboratories. Such interactions among the practitioners in the government, academia, and industry are the most meaningful way of transferring technology.

  11. Left ventricular rotation and torsion in patients with perimembranous ventricular septal defect.

    PubMed

    Zhuang, Yan; Yong, Yong-hong; Yao, Jing; Ji, Ling; Xu, Di

    2014-03-01

    Assessment of left ventricular (LV) rotation has become an important approach for quantifying LV function. In this study, we sought to analyze LV rotation and twist using speckle tracking imaging (STI) in adult patients with isolated ventricular septal defects. Using STI, the peak rotation and time to peak rotation of 6 segments in basal and apical short-axis were measured, respectively, in 32 patients with ventricular septal defect and 30 healthy subjects as controls. The global rotation of the 6 segments in basal and apical and LV twist versus time profile were drawn, the peak rotation and twist of LV were calculated. All the time to peak rotation/twist were expressed as a percentage of end-systole (end-systole = 100%). Left ventricular ejection fraction was measured by biplane Simpson method. In patients group, the peak rotation of posterior, inferior, and postsept wall in basal was higher(P ≤ 0.05) and LV twist was also higher (P ≤ 0.05) than healthy controls. There were no significant differences between 2 groups in the peak rotation of the other 9 segments and left ventricular ejection fraction. Different from the control group, the time to peak rotation of the 6 segments in basal were delayed and the global rotation of the base was delayed (P ≤ 0.05) in ventricular septal defect group. Left ventricular volume overload due to ventricular septal defect has significant effect on LV rotation and twist, and LV rotation and twist may be a new index predicting LV systolic function. © 2013, Wiley Periodicals, Inc.

  12. THE ENGINES BEHIND SUPERNOVAE AND GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FRYER, CHRISTOPHER LEE

    2007-01-23

    The authors review the different engines behind supernova (SNe) and gamma-ray bursts (GRBs), focusing on those engines driving explosions in massive stars: core-collapse SNe and long-duration GRBs. Convection and rotation play important roles in the engines of both these explosions. They outline the basic physics and discuss the wide variety of ways scientists have proposed that this physics can affect the supernova explosion mechanism, concluding with a review of the current status in these fields.

  13. Rotating Space Elevators: Classical and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Knudsen, Steven

    We investigate a novel and unique dynamical system, the Rotating Space Elevator (RSE). The RSE is a multiply rotating system of strings reaching beyond the Earth geo-synchronous satellite orbit. Objects sliding along the RSE string ("climbers") do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. The RSE is a double rotating floppy string. The RSE can be made in various shapes that are stabilized by an approximate equilibrium between the gravitational and inertial forces acting in the double rotating frame. The RSE exhibits a variety of interesting dynamical phenomena studied in this thesis.

  14. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  15. Suggested notation conventions for rotational seismology

    USGS Publications Warehouse

    Evans, J.R.

    2009-01-01

    We note substantial inconsistency among authors discussing rotational motions observed with inertial seismic sensors (and much more so in the broader topic of rotational phenomena). Working from physics and other precedents, we propose standard terminology and a preferred reference frame for inertial sensors (Fig. 1) that may be consistently used in discussions of both finite and infinitesimal observed rotational and translational motions in seismology and earthquake engineering. The scope of this article is limited to observations because there are significant differences in the analysis of finite and infinitesimal rotations, though such discussions should remain compatible with those presented here where possible. We recommend the general use of the notation conventions presented in this tutorial, and we recommend that any deviations or alternatives be explicitly defined.

  16. Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step.

    PubMed

    Cengiz, Ibrahim Fatih; Oliveira, Joaquim Miguel; Reis, Rui L

    2017-08-01

    Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.

  17. A Leidenfrost Engine

    NASA Astrophysics Data System (ADS)

    Wells, Gary; Ledesma-Aguillar, Ridrigo; McHale, Glen; Sefiane, Khellil

    2015-11-01

    The Leidenfrost effect, the sustained levitation of evaporating liquid droplets by a cushion of their on vapour on very hot surfaces, has received increased attention over the past few years. On patterned surfaces, rectification of the vapour layer flow can lead to rich dynamics of evaporating drops or sublimating blocks of dry ice, including self-propulsion, orbiting and conjoint rotation. In this paper we show that the Leidenfrost effect can be exploited to drive the rotation of rigid objects, such as solid hydrophilic plates coupled to water droplets and blocks of dry ice, by using turbine-like substrates. Using a hydrodynamic model, we show that drag-based rotation is achieved at low-Reynolds number by a rectification mechanism of the flow in the vapour layer caused by the underlying turbine-like geometry. Our theoretical model determines the maximum weight of Leidenfrost rotors and the net torque driving their motion in terms of operational parameters, showing an excellent agreement with experiments using dry-ice blocks. We generalise the concept of rotation into a new concept for a heat engine capable of harvesting thermal energy using either thin-film boiling or sublimation as a phase-change mechanism. As a proof principle, we implement the new sublimation engine in the lab to create a simple electromagnetic generator. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.

  18. Effects of propeller rotation direction on airplane interior noise levels

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.; Daniels, E. F.

    1985-01-01

    Interior noise measurements for upsweeping and downsweeping movement of the propeller blade tips past the fuselage were made on a twin-engine airplane and on two simplified fuselage models. Changes in interior noise levels of as much as 8 dB reversal of propeller rotation direction were measured for some configurations and test conditions.

  19. Microstrucutral Modeling of Hot Spot and Failure Mechanisms in RDX Energetic Aggregates

    DTIC Science & Technology

    2014-01-01

    with applications to disposable blood pressure cuffs . He graduated cum laude with a Bachelors of Science degree in Mechanical Engineering in May of...35 Figure 4.2. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d...39 Figure 4.6. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d) Accumulated plastic shear

  20. B13+ : a photodriven molecular Wankel engine.

    PubMed

    Zhang, Jin; Sergeeva, Alina P; Sparta, Manuel; Alexandrova, Anastassia N

    2012-08-20

    Revved-up rotary: A molecular Wankel motor, the dual-ring structure B(13)(+), is driven by circularly-polarized infrared electromagnetic radiation. Calculations show that this illumination leads to a guided unidirectional rotation of the outer ring, which is achieved with rotational frequency of the order of 300 GHz. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Life prediction systems for critical rotating components

    NASA Technical Reports Server (NTRS)

    Cunningham, Susan E.

    1993-01-01

    With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.

  2. Hyd-Mech FB7 short rotation hardwood feller-buncher test

    Treesearch

    Dennis Curtin; Bryce Stokes; Doug Fredericks

    1985-01-01

    The FB7 is a first-generation prototype continuous feller-buncher manufactured by Hyd-Mech Engineering, Ltd. of Woodstock, Ontario. It was developed and funded by the National Research Council of Canada to harvest short-rotational bioenergy plantations of hybrid poplar. The development specifications were for stumps with diameters of up to eight inches and with a...

  3. Relation Between Subacromial Bursitis on Ultrasonography and Efficacy of Subacromial Corticosteroid Injection in Rotator Cuff Disease: A Prospective Comparison Study.

    PubMed

    Lee, Doo-Hyung; Hong, Ji Yeon; Lee, Michael Young; Kwack, Kyu-Sung; Yoon, Seung-Hyun

    2017-05-01

    To evaluate the correlations between subacromial bursitis (bursal thickening and effusion) on ultrasonography and its response to subacromial corticosteroid injection in patients with rotator cuff disease. Prospective, longitudinal comparison study. University-affiliated tertiary care hospital. Patients with rotator cuff disease (N=69) were classified into 3 groups based on ultrasonographic findings; (1) normative bursa group (group 1, n=23): bursa and effusion thickness <1mm; (2) bursa thickening group (group 2, n=22): bursa thickness >2mm and effusion thickness <1mm; and (3) bursa effusion group (group 3, n=24): bursa thickness <1mm and effusion thickness >2mm. A single subacromial injection with 20mg of triamcinolone acetonide. Visual analog scale (VAS) of shoulder pain, Shoulder Disability Questionnaire (SDQ), angles of active shoulder range of motion (flexion, abduction, external rotation, and internal rotation), and bursa and effusion thickness at pre- and posttreatment at week 8. There were no significant differences between the 3 groups in demographic characteristics pretreatment. Groups 2 and 3 showed a significant difference compared with group 1 in changes on the VAS and abduction; group 3 showed a significant difference compared with group 1 in changes of the SDQ, internal rotation, and external rotation; and all groups showed significant differences when compared with each other (groups 1 and 3, 2 and 3, and 1 and 2) in changes of thickness. A patient with ultrasonographic observation of subacromial bursitis, instead of normative bursa, can expect better outcome with subacromial corticosteroid injection. Therefore, we recommend a careful selection of patients using ultrasonography prior to injection. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  5. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  6. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  7. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  8. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  9. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 23.905 Section 23.905...

  10. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 23.905 Section 23.905...

  11. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 23.905 Section 23.905...

  12. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 23.905 Section 23.905...

  13. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 23.905 Section 23.905...

  14. Apical vertebral derotation in the posterior treatment of adolescent idiopathic scoliosis: myth or reality?

    PubMed

    Di Silvestre, Mario; Lolli, Francesco; Bakaloudis, Georgios; Maredi, Elena; Vommaro, Francesco; Pastorelli, Francesca

    2013-02-01

    Direct apical vertebral rotation represents an important goal of posterior surgery for thoracic adolescent idiopathic scoliosis (AIS), so as to obtain a better cosmetic effect and to avoid posterior thoracoplasty. However, the real effectiveness in correction of vertebral rotation, using posterior only procedures, is still open to debate. The aim of the present study is to compare the correction of axial apical rotation obtained with direct rotation procedure versus simple concave rod rotation, in patients treated by posterior fusion for thoracic AIS using pedicle screw-only construct. A retrospective review was performed on a total of 62 consecutive patients (one single institution, three different surgeons) affected by AIS, who had undergone a posterior spinal fusion with pedicle screw-only instrumentation between January 2005 and April 2008 at the reference center. All cases presented a main thoracic curve (Lenke type 1 and 2). The angle of rotation (RAsag) of the apical vertebra was measured from the preoperative and last follow-up axial CT. According to the derotation procedure, two groups were identified: a direct vertebral rotation group (DR group; n = 32 patients) and a simple concave rod rotation group (No-DR group; n = 30 patients). There were no statistical differences between the two groups, in terms of age, Risser's sign, curve patterns, Cobb main thoracic (MT) curve magnitude and flexibility, extension of fusion, offset measurements on the coronal plane and sagittal preoperative contour. All 62 patients were reviewed at an average follow-up of 3.7 years (range 2.5-4.2 years). The DR group compared to the No-DR group showed a significantly better final correction of apical vertebral rotation (DR 63.4 % vs. No-DR 14.8 %; p < 0.05) and a greater final correction (61.3 vs. 52.4 %; p < 0.05) with better maintenance of the initial correction (-1.7° vs. -1.9°; ns) of the main thoracic curve. Concerning the coronal balance, there was the same aforementioned trend of better results in the DR group, with less final apical MT vertebra translation (DR 2.2 cm vs. No-DR 4.1 cm), greater overall change (preop-final) of lower instrumented vertebra (LIV) coronal tilt (-14.9° vs. -11.1°; p < 0.05); the final global coronal balance (C7-S1) resulted quite better in DR group, but without a significant difference. The T5-T12 kyphosis angle was quite similar in both group before surgery (DR 16.8° vs. No-DR 17.5°) and was little lower at final follow-up evaluation in direct vertebral rotation group (14.5° vs. 16.5°). The T10-L2 sagittal alignment angle was similar in each group before surgery (12.5° in DR vs. 11.8° in No-DR), and at the latest follow-up averaged 5.3° versus 8.2°, respectively. Lumbar lordosis was similar in each group before surgery (DR -42° vs. No-DR -44.1°) and at the final follow-up evaluation (-45.9° vs. -43.2°). At the latest follow-up, SRS-30 and SF-36 findings were similar between the two groups. The complication rate was higher in the simple concave rod rotation group (13.3 vs. 9.3 %), related in two cases to thoracoplasty, which was never utilized in direct rotation patients. The direct vertebral rotation obtained significantly better final results, when compared to simple concave rod rotation, both concerning correction of apical vertebral rotation and magnitude of MT curve. On the other hand, the DR group presented a little reduction in T5-T12 kyphosis at follow-up, in comparison with concave rod rotation procedure. Both procedures were found to be satisfying from patients' perspective. Nevertheless overall complication rate was higher in the simple concave rod rotation group, related mainly to thoracoplasty (2 cases), which was never necessary in direct rotation patients.

  15. Weight-bearing computed tomography findings in varus ankle osteoarthritis: abnormal internal rotation of the talus in the axial plane.

    PubMed

    Kim, Ji-Beom; Yi, Young; Kim, Jae-Young; Cho, Jae-Ho; Kwon, Min-Soo; Choi, Seung-Hyuk; Lee, Woo-Chun

    2017-08-01

    To assess the incidence of abnormal internal rotation of the talus in the axial plane in patients with varus ankle osteoarthritis, and to determine whether this incidence differs from the severity of varus ankle osteoarthritis (moderate versus severe). We retrospectively evaluated weight-bearing computed tomography (CT) and plain radiographs of 52 ankles with no abnormalities (control group) and 96 ankles with varus osteoarthritis (varus-OA group), which were further stratified into a moderate-OA subgroup (50 ankles) and a severe-OA subgroup (46 ankles). A new radiographic parameter on weight-bearing CT, the talus rotation ratio, was used to assess the rotation of the talus in the axial plane. The normal range of the talus rotation ratio was defined as the 95% prediction interval for talus rotation ratio values in the control group. Abnormal internal rotation of the talus was defined for talus rotation ratio values above the normal range. We determined the incidence of abnormal internal rotation of the talus in the varus-OA group, moderate-OA subgroup, and severe-OA subgroup. In the varus-OA group, the incidence of abnormal internal rotation of the talus was 45% (43 ankles), which corresponded to an incidence of 32% (16 ankles) in the moderate-OA subgroup and 59% (27 ankles) in the severe-OA subgroup (p = 0.013). Our study demonstrates that abnormal internal rotation of the talus occurs in patients with varus ankle osteoarthritis, and is more frequently noted in severe than in moderate varus ankle osteoarthritis.

  16. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Dizio, P.

    1998-01-01

    We evaluated the combined effects on reaching movements of the transient, movement-dependent Coriolis forces and the static centrifugal forces generated in a rotating environment. Specifically, we assessed the effects of comparable Coriolis force perturbations in different static force backgrounds. Two groups of subjects made reaching movements toward a just-extinguished visual target before rotation began, during 10 rpm counterclockwise rotation, and after rotation ceased. One group was seated on the axis of rotation, the other 2.23 m away. The resultant of gravity and centrifugal force on the hand was 1.0 g for the on-center group during 10 rpm rotation, and 1.031 g for the off-center group because of the 0.25 g centrifugal force present. For both groups, rightward Coriolis forces, approximately 0.2 g peak, were generated during voluntary arm movements. The endpoints and paths of the initial per-rotation movements were deviated rightward for both groups by comparable amounts. Within 10 subsequent reaches, the on-center group regained baseline accuracy and straight-line paths; however, even after 40 movements the off-center group had not resumed baseline endpoint accuracy. Mirror-image aftereffects occurred when rotation stopped. These findings demonstrate that manual control is disrupted by transient Coriolis force perturbations and that adaptation can occur even in the absence of visual feedback. An increase, even a small one, in background force level above normal gravity does not affect the size of the reaching errors induced by Coriolis forces nor does it affect the rate of reacquiring straight reaching paths; however, it does hinder restoration of reaching accuracy.

  17. Symptomatic rotator cuff tears show higher radioisotope uptake on bone scintigraphy compared with asymptomatic tears.

    PubMed

    Koike, Yoichi; Sano, Hirotaka; Kita, Atushi; Itoi, Eiji

    2013-09-01

    Some patients with rotator cuff tears complain of pain, whereas others are asymptomatic. Previous studies have pointed out the presence of active bone metabolism in the painful shoulder, identified with increased radioisotope uptake during bone scintigraphy. Shoulders with symptomatic rotator cuff tears will demonstrate higher radioisotope uptake than shoulders with asymptomatic tears with bone scintigraphy, reflecting active bone metabolism in symptomatic tears. Cross-sectional study; Level of evidence, 3. The study consisted of 3 groups: patients with symptomatic tears (symptomatic group), patients with asymptomatic tears (asymptomatic group), and controls (no tear group). The symptomatic group consisted of 28 shoulders from 28 patients with symptomatic rotator cuff tears (pain score ≤4 on the University of California, Los Angeles [UCLA] shoulder evaluation form) who underwent bone scintigraphy followed by rotator cuff repair. Of 70 volunteers who had previously undergone bone scintigraphy for diseases unrelated to their shoulder, 34 were selected for the asymptomatic group (pain score ≥8 on the UCLA shoulder form), and 32 were selected for the no tear group. The mean radioisotope uptake in the symptomatic group was significantly higher than that in the asymptomatic group (P = .02) and the no tear group (P = .02). Ten of 28 shoulders (36%) in the symptomatic group showed increased radioisotope uptake exceeding 2 standard deviations from the mean of the no tear group. This percentage was significantly higher when compared with the asymptomatic group (0%) (P < .01). Shoulders with a symptomatic rotator cuff tear showed higher radioisotope uptake on bone scintigraphy than those with an asymptomatic tear. The radioisotope uptake in shoulders with an asymptomatic tear was comparable with that in shoulders without a tear. Positive radioisotope uptake may be associated with pain in a subgroup of patients with rotator cuff tears.

  18. Transperineal ultrasonography in stress urinary incontinence: The significance of urethral rotation angles.

    PubMed

    Al-Saadi, Wasan Ismail

    2016-03-01

    To assess, using transperineal ultrasonography (TPUS), the numerical value of the rotation of the bladder neck [represented by the difference in the anterior (α angle) and posterior urethral angles (β angle)] at rest and straining, in continent women and women with stress urinary incontinence (SUI), to ascertain if there are significant differences in the angles of rotation (Rα and Rβ) between the groups. In all, 30 women with SUI (SUI group) and 30 continent women (control group) were included. TPUS was performed at rest and straining (Valsalva manoeuver), and the threshold value for the urethral angles (α and β angles) for each group were estimated. The degree of rotation for each angle was calculated and was considered as the angle of rotation. Both the α and β angles were significantly different between the groups at rest and straining, and there was a significant difference in the mean increment in the value of each angle. Higher values of increment (higher rotation angles) were reported in the SUI group for both the α and β angles compared with those of the control group [mean (SD) Rα SUI group 19.43 (12.76) vs controls 10.53 (2.98) °; Rβ SUI group 28.30 (12.96) vs controls 16.33 (10.8) °; P < 0.001]. Urethral rotation angles may assist in the assessment and diagnosis of patients with SUI, which may in turn reduce the need for more sophisticated urodynamic studies.

  19. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  20. Materials for Advanced Turbine Engines. Volume 1; Power Metallurgy Rene 95 Rotating Turbine Engine Parts

    NASA Technical Reports Server (NTRS)

    Pfouts, W. R.; Shamblen, C. E.; Mosier, J. S.; Peebles, R. E.; Gorsler, R. W.

    1979-01-01

    An attempt was made to improve methods for producing powder metallurgy aircraft gas turbine engine parts from the nickel base superalloy known as Rene 95. The parts produced were the high pressure turbine aft shaft for the CF6-50 engine and the stages 5 through 9 compressor disk forgings for the CFM56/F101 engines. A 50% cost reduction was achieved as compared to conventional cast and wrought processing practices. An integrated effort involving several powder producers and a major forging source were included.

  1. [HEALING MODEL RESEARCH OF ROTATOR CUFF INJURY IN CANINE].

    PubMed

    Ye, Wei; Bao, Nirong; Zhaq, Jianning

    2016-04-01

    To compare the difference of rotator cuff healing between different types of injury andbetween different repair methods, and to explore the animal model to accurately simulate the restorative process afterrepair of rotator cuff injury. Twelve adult male beagle dogs (weighing, 10-15 kg) were divided into 3 groups (n = 4) according to different processing methods: acute rotator cuff injury+Mason-Allen suture repair (group A), huge rotator cuff injury+Mason-Allen suture repair (group B), and huge rotator cuff injury+Mason-Allen combined with autogenous semitendinosus expansion suture repair (group C). The external fixation was used for immobilization after repair. After operation, the general situation of the animals was observed, and the infraspinatus tendon was harvested for gross observation at 6 weeks after operation. The biomechanical test of limit load and histological observation of tendon fibers were carried out. All the animals survived to the end of the experiment. All incisions healed well and no infection occurred. Gross observation showed more scar tissues at the end of infraspinatus muscle tendon than normal tendon in group A; no obvious tendon tissue was observed at the end of infraspinatus muscle tendon in group B; the infraspinatus muscle tendon was covered with some white scar tissue, but the tendon and the general direction could be observed in group C. The limit load of groups A, B, and C were (223.75 ± 24.28), (159.25 ± 34.87), and (233.25 ± 14.24) N respectively, group B was significantly lower than groups A and C (P < 0.05), and no significant differnce was found between group A and group C (P > 0.05). Histological observation showed normal arrangement of tendon fibers in group A; tendon fibers arranged disorderly in group B and tendon cells were significantly less than those of group A; tendon fibers arranged in neat in group C and tendon cells were more than those of group B. Canine autologous semitendinosus expansion repair of massive rotator cuff injury immobilization model can better simulate the clinical rotator cuff injury healing process, so it can be used as an ideal animal model for related research.

  2. Three-Dimensional Mapping of Microenvironmental Control of Methyl Rotational Barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hembree, William I; Baudry, Jerome Y

    2011-01-01

    Sterical (van der Waals-induced) rotational barriers of methyl groups are investigated theoretically, using ab initio and empirical force field calculations, for various three-dimensional microenvironmental conditions around the methyl group rotator of a model neopentane molecule. The destabilization (reducing methyl rotational barriers) or stabilization (increasing methyl rotational barriers) of the staggered conformation of the methyl rotator depends on a combination of microenvironmental contributions from (i) the number of atoms around the rotator, (ii) the distance between the rotator and the microenvironmental atoms, and (iii) the dihedral angle between the stator, rotator, and molecular environment around the rotator. These geometrical criteria combinemore » their respective effects in a linearly additive fashion, with no apparent cooperative effects, and their combination in space around a rotator may increase, decrease, or leave the rotator s rotational barrier unmodified. This is exemplified in a geometrical analysis of the alanine dipeptide crystal where microenvironmental effects on methyl rotators barrier of rotation fit the geometrical mapping described in the neopentane model.« less

  3. The prevalence of rotator cuff tears: is the contralateral shoulder at risk?

    PubMed

    Liem, Dennis; Buschmann, Vera Elisa; Schmidt, Carolin; Gosheger, Georg; Vogler, Tim; Schulte, Tobias L; Balke, Maurice

    2014-04-01

    Rotator cuff tears are a common cause of pain and disability of the shoulder. Information on the prevalence and identification of potential risk factors could help in early detection of rotator cuff tears and improve treatment outcome. Patients treated for a symptomatic rotator cuff tear on one side have a higher prevalence of rotator cuff tears and decreased shoulder function on the contralateral side compared with an age- and sex-matched group of healthy individuals. Case control study; Level of evidence, 3. One group consisted of 55 patients who had been arthroscopically treated on one shoulder for rotator cuff tear (tear group). In this group, the nonoperated contralateral shoulder was examined. For comparison, the matching shoulder in a control group consisting of 55 subjectively healthy individuals matched by age (±1 year) and sex to the tear group was included. Diagnosis of a rotator cuff tear was made by ultrasound. Outcomes were measured using the Constant score. The prevalence of supraspinatus tears was significantly higher (P < .0001) in the tear group (67.3%) compared with the control group (11.0%). The Constant score for the activities of daily living subscale, however, was significantly lower (18.4) in the tear group compared with the control group (19.9; P = .012). No other subcategory score nor the overall score showed a significant difference. There was a significantly higher tear prevalence in the tear group of patients aged between 50 and 59 years (P < .001) and 60 and 69 years (P = .004). No tear was diagnosed in the control group in individuals younger than 60 years. Patients treated for partial and full-thickness rotator cuff tears have a significantly higher risk of having a tear on the contralateral side and have noticeable deficits in their shoulder function regarding activities of daily living even if the tear is otherwise asymptomatic.

  4. Statistics of indicated pressure in combustion engine.

    NASA Astrophysics Data System (ADS)

    Sitnik, L. J.; Andrych-Zalewska, M.

    2016-09-01

    The paper presents the classic form of pressure waveforms in burn chamber of diesel engine but based on strict analytical basis for amending the displacement volume. The pressure measurement results are obtained in the engine running on an engine dynamometer stand. The study was conducted by a 13-phase ESC test (European Stationary Cycle). In each test phase are archived 90 waveforms of pressure. As a result of extensive statistical analysis was found that while the engine is idling distribution of 90 value of pressure at any value of the angle of rotation of the crankshaft can be described uniform distribution. In the each point of characteristic of the engine corresponding to the individual phases of the ESC test, 90 of the pressure for any value of the angle of rotation of the crankshaft can be described as normal distribution. These relationships are verified using tests: Shapiro-Wilk, Jarque-Bera, Lilliefors, Anderson-Darling. In the following part, with each value of the crank angle, are obtain values of descriptive statistics for the pressure data. In its essence, are obtained a new way to approach the issue of pressure waveform analysis in the burn chamber of engine. The new method can be used to further analysis, especially the combustion process in the engine. It was found, e.g. a very large variances of pressure near the transition from compression to expansion stroke. This lack of stationarity of the process can be important both because of the emissions of exhaust gases and fuel consumption of the engine.

  5. The effect of a rotator cuff tear and its size on three-dimensional shoulder motion.

    PubMed

    Kolk, Arjen; Henseler, Jan Ferdinand; de Witte, Pieter Bas; van Zwet, Erik W; van der Zwaal, Peer; Visser, Cornelis P J; Nagels, Jochem; Nelissen, Rob G H H; de Groot, Jurriaan H

    2017-06-01

    Rotator cuff-disease is associated with changes in kinematics, but the effect of a rotator cuff-tear and its size on shoulder kinematics is still unknown in-vivo. In this cross-sectional study, glenohumeral and scapulothoracic kinematics of the affected shoulder were evaluated using electromagnetic motion analysis in 109 patients with 1) subacromial pain syndrome (n=34), 2) an isolated supraspinatus tear (n=21), and 3) a massive rotator cuff tear involving the supraspinatus and infraspinatus (n=54). Mixed models were applied for the comparisons of shoulder kinematics between the three groups during abduction and forward flexion. In the massive rotator cuff-tear group, we found reduced glenohumeral elevation compared to the subacromial pain syndrome (16°, 95% CI [10.5, 21.2], p<0.001) and the isolated supraspinatus tear group (10°, 95% CI [4.0, 16.7], p=0.002) at 110° abduction. Reduced glenohumeral elevation in massive rotator cuff tears coincides with an increase in scapulothoracic lateral rotation compared to subacromial pain syndrome (11°, 95% CI [6.5, 15.2], p<0.001) and supraspinatus tears (7°, 95% CI [1.8, 12.1], p=0.012). Comparable differences were observed for forward flexion. No differences in glenohumeral elevation were found between the subacromial pain syndrome and isolated supraspinatus tear group during arm elevation. The massive posterosuperior rotator cuff-tear group had substantially less glenohumeral elevation and more scapulothoracic lateral rotation compared to the other groups. These observations suggest that the infraspinatus is essential to preserve glenohumeral elevation in the presence of a supraspinatus tear. Shoulder kinematics are associated with rotator cuff-tear size and may have diagnostic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation.

    PubMed

    Parratte, Sébastien; Blanc, Guillaume; Boussemart, Thomas; Ollivier, Matthieu; Le Corroller, Thomas; Argenson, Jean-Noël

    2013-10-01

    It was our hypothesis that patient-specific instrumentation (PSI) can improve the accuracy of the rotational alignment in TKA based on the concept of the system and on the potential to clearly identify pre-operatively during planning the classical anatomical landmarks that serve as references to set-up the rotation both for the femur and tibia. In this prospective comparative randomized study, 40 patients (20 in each group) operated in our institution between September 2012 and January 2013 by the 2 senior authors were included. Randomization of patients into one of the two groups was done by the Hospital Informatics Department with the use of a systematic sampling method. All patients received the same cemented high-flex mobile bearing TKA. In the PSI group, implant position was compared to the planed position using previously validated dedicated software. The position of the implants (frontal and sagittal) was compared in the 2 groups on standard X-rays, and the rotational position was analysed on post-operative CT-scan. 90 % of the patients add <2° or mm of difference between the planned position of the implants and the obtained position, except for the tibial rotation where the variations were much higher. Mean HKA was 179° (171-185) in the PSI group with 4 outliers (2 varus: 171° and 172°:184° and 185°) and 178.3° with 2 outliers (171° and 176°) in the control group. No difference was observed between the two groups concerning the frontal and sagittal position of the implants on the ML and AP X-rays. No significant difference of femoral rotation was observed between the two groups with a mean of 0.4° in the PSI group and 0.2° in the control group (p: n.s). Mean tibial rotation was 8° of internal rotation in the PSI group and 15° of internal rotation in the standard group (p: n.s). Based on our results, we were unable to confirm our hypothesis as PSI cannot improve rotation in TKA. More work needs to be done to more clearly define the place of PSI in TKA, to keep on improving the accuracy of the system and to better define the individual targets in TKA in terms of frontal, sagittal and rotational positioning of the implant for each patient. Prospective comparative randomized study, Level II.

  7. Cyclic fatigue resistance of two nickel-titanium rotary instruments in interrupted rotation.

    PubMed

    Pedullà, E; Lizio, A; Scibilia, M; Grande, N M; Plotino, G; Boninelli, S; Rapisarda, E; Lo Giudice, G

    2017-02-01

    To investigate the influence of interrupted rotation on cyclic fatigue of two nickel-titanium rotary instruments. Cyclic fatigue of 300 new ProTaper Next size X1; X2 and Mtwo size 10, .04 taper; size 15, .05 taper; size 20, .06 taper and size 25, .06 taper instruments was tested in continuous or interrupted rotation. Fifty files of the same brand and size were randomly assigned to five groups (n = 10). Group 1 instruments were tested in continuous rotation; groups 2 and 3 in paused rotation for 1 s every 10 or 20 s, respectively; groups 4 and 5 in interrupted rotation for 5 s every 10 or 20 s, respectively. Cyclic fatigue was expressed in time to fracture (TtF) in an artificial canal with 60° angle and 5 mm radius of curvature. The fracture surface was examined with a scanning electron microscope (SEM). Data were evaluated by two-way analysis of variance. Cyclic fatigue of groups 2 and 4 of ProTaper Next X2 and Mtwo size 25, .06 taper was significantly lower than that of group 1 of the same instruments (P < 0.01). ProTaper Next X2 had significantly reduced cyclic fatigue in groups 3 and 5 (P < 0.05). No differences were found by interrupting the rotation for 1 or 5 s in all instruments (P > 0.05). Fatigue of other instruments was not affected by interrupted rotation (P > 0.05). Interrupted rotation reduced cyclic fatigue resistance of ProTaper Next X2 and Mtwo size 25, .06 taper, especially when a higher number of interruptions was performed. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Practising Mental Rotation Using Interactive Desktop Mental Rotation Trainer (iDeMRT)

    ERIC Educational Resources Information Center

    Rafi, Ahmad; Samsudin, Khairulanuar

    2009-01-01

    An experimental study involving 30 undergraduates (mean age = 20.5 years) in mental rotation (MR) training was conducted in an interactive Desktop Mental Rotation Trainer (iDeMRT). Stratified random sampling assigned students into one experimental group and one control group. The former trained in iDeMRT and the latter trained in conventional…

  9. Prospective randomized study of arthroscopic rotator cuff repair using an early versus delayed postoperative physical therapy protocol.

    PubMed

    Cuff, Derek J; Pupello, Derek R

    2012-11-01

    This study evaluated patient outcomes and rotator cuff healing after arthroscopic rotator cuff repair using a postoperative physical therapy protocol with early passive motion compared with a delayed protocol that limited early passive motion. The study enrolled 68 patients (average age, 63.2 years) who met inclusion criteria. All patients had a full-thickness crescent-shaped tear of the supraspinatus that was repaired using a transosseous equivalent suture-bridge technique along with subacromial decompression. In the early group, 33 patients were randomized to passive elevation and rotation that began at postoperative day 2. In the delayed group, 35 patients began the same protocol at 6 weeks. Patients were monitored clinically for a minimum of 12 months, and rotator cuff healing was assessed using ultrasound imaging. Both groups had similar improvements in preoperative to postoperative American Shoulder and Elbow Surgeons scores (early group: 43.9 to 91.9, P < .0001; delayed group: 41.0 to 92.8, P < .0001) and Simple Shoulder Test scores (early group: 5.5 to 11.1, P < .0001; delayed group: 5.1 to 11.1, P < .0001). There were no significant differences in patient satisfaction, rotator cuff healing, or range of motion between the early and delayed groups. Patients in the early group and delayed group both demonstrated very similar outcomes and range of motion at 1 year. There was a slightly higher rotator cuff healing rate in the delayed passive range of motion group compared with the early passive range of motion group (91% vs 85%). Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  10. Partial repair in irreparable rotator cuff tear: our experience in long-term follow-up.

    PubMed

    Di Benedetto, E D; Di Benedetto, Paolo; Fiocchi, Andrea; Beltrame, Alessandro; Causero, Araldo

    2017-10-18

    Massive rotator cuff tears are a common source of shoulder pain and dysfunction, especially in middle age patient; these lesions represent about 20% of all rotator cuff tears and 80% of recurrent tears. Some lesions are not repairable or should not be repaired: in this case, a rotator cuff partial repair should be recommended. The aim of the study is to evaluate the outcome of rotator cuff partial repair in irreparable rotator cuff massive tear at medium and long-term follow-up. We have evaluated 74 consecutive patients treated with functional repair of rotator cuff by the same surgeon between 2006 and 2014. We divided patients into 2 groups, obtaining 2 average follow-up: at about 6,5 (group A) and 3 years (group B). In December 2015, we evaluated in every patient ROM and Constant Score. We analyzed difference between pre-operatory data and the 2 groups.  Results: We found statistical significant difference in ROM and in Constant Score between pre-operatory data and group A and group B. Between group A and group B there is relevant difference in Constant Score but not in ROM. Partial repair can give good results in a medium follow-up, in terms of pain relief and improvement of ROM, as well as in quality of life. Difference in ROM and Constant Score between group A and group B may indicate the begin of partial repair failure; according to our data, 6-7 years may be the time limit for this surgery technique.

  11. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments.

    PubMed

    Haïkel, Y; Serfaty, R; Bateman, G; Senger, B; Allemann, C

    1999-06-01

    The absence of adequate testing standards for engine-driven nickel-titanium (NiTi) instruments necessitates further study of these instruments in all areas. This study examined three groups of engine-driven rotary NiTi endodontic instruments (Profile, Hero, and Quantec) and assessed the times for dynamic fracture in relation to the radius of curvature to which the instruments were subjected during preparation, with the instrument diameter determined by size and taper and the mode by which the fracture occurred. Ten instruments were randomly selected representing each size and taper for each group and for each radius of curvature: 600 in total. The instruments were rotated at 350 rpm and introduced into a tempered steel curve that simulated a canal. Two radii of curvature of canals were used: 5 and 10 mm. Time at fracture was noted for all files, and the fracture faces of each file were analyzed with scanning electron microscopy. Radius of curvature was found to be the most significant factor in determining the fatigue resistance of the files. As radius of curvature decreased, fracture time decreased. Taper of files was found to be significant in determining fracture time. As diameter increased, fracture time decreased. In all cases, fracture was found to be of a ductile nature, thus implicating cyclic fatigue as a major cause of failure and necessitating further analyses and setting of standards in this area.

  12. Is computed tomography an accurate and reliable method for measuring total knee arthroplasty component rotation?

    PubMed

    Figueroa, José; Guarachi, Juan Pablo; Matas, José; Arnander, Magnus; Orrego, Mario

    2016-04-01

    Computed tomography (CT) is widely used to assess component rotation in patients with poor results after total knee arthroplasty (TKA). The purpose of this study was to simultaneously determine the accuracy and reliability of CT in measuring TKA component rotation. TKA components were implanted in dry-bone models and assigned to two groups. The first group (n = 7) had variable femoral component rotations, and the second group (n = 6) had variable tibial tray rotations. CT images were then used to assess component rotation. Accuracy of CT rotational assessment was determined by mean difference, in degrees, between implanted component rotation and CT-measured rotation. Intraclass correlation coefficient (ICC) was applied to determine intra-observer and inter-observer reliability. Femoral component accuracy showed a mean difference of 2.5° and the tibial tray a mean difference of 3.2°. There was good intra- and inter-observer reliability for both components, with a femoral ICC of 0.8 and 0.76, and tibial ICC of 0.68 and 0.65, respectively. CT rotational assessment accuracy can differ from true component rotation by approximately 3° for each component. It does, however, have good inter- and intra-observer reliability.

  13. Experimental Study of Propulsion Performance by Single-Pulse Rotating Detonation with Gaseous Fuels-Oxygen Mixtures

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Hara, Kosei; Mikajiri, Shuuto; Takiguchi, Naoki

    2016-12-01

    A rotating detonation engine (RDE) is one of candidates of aerospace engines for supersonic cruse, which is better for propulsion system than a pulse detonation engine (PDE) from the view of continuous thrust and simple structure. The propulsion performance of a proto-type RDE and a PDE by single pulse explosion with methane-oxygen is investigated. Furthermore, the performance of the RDE with acetylene-oxygen gas mixtures is investigated. Its impulse is estimated through ballistic pendulum method with maximum displacement and damping ratio. The comparison of specific impulses of the mixture gases at atmospheric pressure is shown. The specific impulses of the RDE and the PDE are almost same with methane-oxygen gas. Furthermore, the fuel-base specific impulse of the RDE with acetylene-oxygen gas is about over twice as large as one of methane-oxygen, and its maximum specific impulse is 1100 seconds.

  14. Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.

    PubMed

    Faragher, J; Ooi, A

    2001-05-01

    A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.

  15. A dynamic analysis of rotary combustion engine seals

    NASA Technical Reports Server (NTRS)

    Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.

    1984-01-01

    Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.

  16. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  17. Proceedingsof the International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (3rd) ICIDES-III Held in Washington, DC 23-25 October 1991

    DTIC Science & Technology

    1991-09-01

    jet engine (even rocket engine ) rotating components. Examples have been presented for compressor and turbine profile designs. Both methods are...used for experimental studies on plasmatrons and gasdynamic stands in which the gas jets are created by special aviation and rocket engines . Similar... Aviation Institute, Bd. Pacli 220, 77538 Bucharest, ROMANIA 45 --’, Inverse Airfoil Design Procedure .Uging a Mliitigrid Navier-Stokes ,Method) J.B

  18. Role of structural noise in aircraft pressure cockpit from vibration action of new-generation engines

    NASA Astrophysics Data System (ADS)

    Baklanov, V. S.

    2016-07-01

    The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4-6 to an increased ratio of 8-12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.

  19. 18. INTERIOR VIEW OF BALTIMORE FAN HOUSE ENGINE ROOM LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW OF BALTIMORE FAN HOUSE ENGINE ROOM LOOKING EAST The flywheel of the 1908 Allis-Chalmers Corliss steam engine and flywheel are in the foreground. The engine is a horizontal slide valve type with a 24 inch bore and 48 inch stroke. It was direct connected to the Dickson Guibal fan which rotated at 69 revolutions per minute. - Dorrance Colliery Fan Complex, South side of Susquehanna River at Route 115 & Riechard Street, Wilkes-Barre, Luzerne County, PA

  20. Comparison of Clinical and Radiological Results in the Arthroscopic Repair of Full-Thickness Rotator Cuff Tears With and Without the Anterior Attachment of the Rotator Cable.

    PubMed

    Cho, Nam Su; Moon, Seong Cheol; Hong, Se Jung; Bae, Seong Hae; Rhee, Yong Girl

    2017-09-01

    The anterior rotator cable is critical in force transmission of the rotator cuff. However, few clinical studies have examined the correlation between the integrity of the anterior supraspinatus tendon and surgical outcomes in patients with rotator cuff tears. To compare the clinical and structural outcomes of the arthroscopic repair of full-thickness rotator cuff tears with and without anterior disruption of the supraspinatus tendon. Cohort study; Level of evidence, 3. One hundred eighty-one shoulders available for magnetic resonance imaging (MRI) at least 6 months after arthroscopic rotator cuff repair, with a minimum 1-year follow-up, were enrolled. The anterior attachment of the rotator cable was disrupted in 113 shoulders (group A) and intact in 68 shoulders (group B). The mean age at the time of surgery in groups A and B was 59.6 and 59.2 years, respectively, and the mean follow-up period was 24.2 and 25.1 months, respectively. There were statistically significant differences in the preoperative tear size and pattern and muscle fatty degeneration between the 2 groups ( P = .004, P = .008, and P < .001, respectively). At final follow-up, the mean visual analog scale (VAS) for pain score during motion was 1.31 ± 0.98 and 1.24 ± 0.90 in groups A and B, respectively ( P = .587). The mean Constant score was 77.5 ± 11.2 and 78.0 ± 11.9 points in groups A and B, respectively ( P = .875). The mean University of California, Los Angeles score was 30.5 ± 4.1 and 31.0 ± 3.0 points in groups A and B, respectively ( P = .652). In assessing the repair integrity on postoperative MRI, the retear rate was 23.9% and 14.7% in groups A and B, respectively ( P = .029). Irrespective of involvement in the anterior attachment of the rotator cable, the mean 24-month follow-up demonstrated excellent pain relief and improvement in the ability to perform activities of daily living after arthroscopic rotator cuff repair. However, tears with anterior disruption of the rotator cable showed a significantly larger and more complex tear pattern and more advanced fatty degeneration. Additionally, the retear rate was significantly higher in patients with a tear involving the anterior attachment of the rotator cable.

  1. Gas turbine engine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. S. (Inventor)

    1973-01-01

    A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.

  2. Build Up and Operation of an Axial Turbine Driven by a Rotary Detonation Engine

    DTIC Science & Technology

    2012-03-01

    RDEs) offer advantages over pulsed detonation engines ( PDEs ) due to a steadier exhaust and fewer total system losses. All previous research on...turbine integration with detonation combustors has focused on utilizing PDEs to drive axial and centrifugal turbines. The objective of this thesis was... detonation engine ............................................. 5 Figure 4. Schematic of the rotating detonation wave structure for an unwrapped view of an

  3. The General Electric F404 - Engine of the RAAF’s New Fighter.

    DTIC Science & Technology

    1985-07-01

    turbine stages, high pressure and low pressure, stationary and rotating, are cooled, as well as rotors, cooling plates, blade and vane platforms and...such engine components as turbine rotor blading . disks and seals. This has led to the development of design methods that enable extended usage to...Scientific Adviser RAN Aircraft Maintenance and Flight Trials Unit Directorate of Naval Aircraft Engineering Directorate of Naval Aviation Policy

  4. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  5. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  6. Performance of engine-driven rotary endodontic instruments with a superimposed bending deflection: V. Gates Glidden and Peeso drills.

    PubMed

    Brantley, W A; Luebke, N H; Luebke, F L; Mitchell, J C

    1994-05-01

    A laboratory study was performed on Gates Glidden and Peeso drills to determine the incidence of shaft fracture when a bending deflection was superimposed on the rotating drills. Samples of sizes #1 to #6 stainless steel Gates Glidden drills, sizes #1 to #6 stainless steel and carbon steel-type P Peeso drills, and sizes #009 to #023 carbon steel-type B-1 Peeso drills from each of two manufacturers were evaluated with a unique apparatus that applied a 2-mm bending deflection while rotating the instruments. The apparatus did not restrict movement of the bur head during rotation. The test drills were rotated at 2500, 4000, and 7000 revolutions per minute, and the number of revolutions at failure was recorded. Scanning electron microscopic observations established that the stainless steel Gates Glidden and Peeso drills failed by ductile fracture, whereas the carbon steel Peeso drills failed by brittle fracture. Instrument fracture was always near the handpiece shank with this test, and the length of the fractured drills was measured from the working tip. It is recommended that this additional test be adopted to determine fatigue properties of engine-driven rotary endodontic instruments in establishing international performance standards.

  7. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.

  8. Cargos Rotate at Microtubule Intersections during Intracellular Trafficking.

    PubMed

    Gao, Yuan; Anthony, Stephen M; Yu, Yanqi; Yi, Yi; Yu, Yan

    2018-06-19

    Intracellular cargos are transported by molecular motors along actin and microtubules, but how their dynamics depends on the complex structure of the cytoskeletal network remains unclear. In this study, we investigated this longstanding question by measuring simultaneously the rotational and translational dynamics of cargos at microtubule intersections in living cells. We engineered two-faced particles that are fluorescent on one hemisphere and opaque on the other and used their optical anisotropy to report the rotation of cargos. We show that cargos undergo brief episodes of unidirectional and rapid rotation while pausing at microtubule intersections. Probability and amplitude of the cargo rotation depend on the geometry of the intersecting filaments. The cargo rotation is not random motion due to detachment from microtubules, as revealed by statistical analyses of the translational and rotational dynamics. Instead, it is an active rotation driven by motor proteins. Although cargos are known to pause at microtubule intersections, this study reveals a different dimension of dynamics at this seemingly static state and, more importantly, provides direct evidence showing the correlation between cargo rotation and the geometry of underlying microtubule intersections. Copyright © 2018 Biophysical Society. All rights reserved.

  9. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players.

    PubMed

    Pietsch, Stefanie; Jansen, Petra

    2018-01-01

    This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group.

  10. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players

    PubMed Central

    Pietsch, Stefanie; Jansen, Petra

    2018-01-01

    This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group. PMID:29535665

  11. Mechanical Perturbations of the Walking Surface Reveal Unaltered Axial Trunk Stiffness in Chronic Low Back Pain Patients

    PubMed Central

    Meijer, Onno G.

    2016-01-01

    Introduction Patients with chronic low back pain (CLBP) often demonstrate altered timing of thorax rotations in the transverse plane during gait. Increased axial trunk stiffness has been claimed to cause this movement pattern. Objectives The objective of this study was to assess whether axial trunk stiffness is increased in gait in CLBP patients. Methods 15 CLBP patients and 15 healthy controls walked on a treadmill that imposed rotational perturbations in the transverse plane. The effect of these perturbations on transverse pelvis, thorax and trunk (thorax relative to pelvis) rotations was evaluated in terms of residual rotations, i.e., the deviation of these movements from the unperturbed patterns. In view of the heterogeneity of the CLBP group, we additionally performed a subgroup comparison between seven patients and seven controls with maximal between-group contrast for timing of thorax rotations. Results Rotations of the walking surface had a clear effect on transverse pelvis, thorax and trunk rotations in all groups. No significant between-group differences on residual transverse pelvis, thorax and trunk rotations were observed. Conclusion Axial trunk stiffness in gait does not appear to be increased in CLBP. Altered timing of thorax rotations in CLBP does not seem to be a result of increased axial trunk stiffness. PMID:27310528

  12. Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A.; Efremov, A.

    2017-01-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.

  13. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    NASA Technical Reports Server (NTRS)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  14. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Low-wing model B

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.

  15. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: High-wing model B

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in a spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, high wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an omega b/2V range from 0 to 0.85.

  16. Comparative Analysis of Three-Dimensional Nasal Shape of Casts from Patients With Unilateral Cleft Lip and Palate Treated at Two Institutions Following Rotation Advancement Only (Iowa) or Nasoalveolar Molding and Rotation Advancement in Conjunction With Primary Rhinoplasty (New York).

    PubMed

    Hosseinian, Banafsheh; Rubin, Marcie S; Clouston, Sean A P; Almaidhan, Asma; Shetye, Pradip R; Cutting, Court B; Grayson, Barry H

    2018-01-01

    To compare 3-dimensional nasal symmetry in patients with UCLP who had either rotation advancement alone or nasoalveolar molding (NAM) followed by rotation advancement in conjunction with primary nasal repair. Pilot retrospective cohort study. Nasal casts of 23 patients with UCLP from 2 institutions were analyzed; 12 in the rotation advancement only group (Iowa) and 11 in the NAM, rotation advancement with primary nasal repair group (New York). Casts from patients aged 6 to 18 years were scanned using the 3Shape scanner and 3-dimensional analysis of nasal symmetry performed using 3dMD Vultus software, Version 2507, 3dMD, Atlanta, GA. Cleft and noncleft side columellar height, nasal dome height, alar base width, and nasal projection were linearly measured. Inter- and intragroup analyses were performed using t tests and paired t tests as appropriate. A statistically significant difference in mean-scaled 3-dimensional asymmetry index was found between groups with group 1 having a larger measure of asymmetry (4.69 cm 3 ) than group 2 (2.56 cm 3 ; P = .02). Intergroup analysis performed on the most sensitive linear measure, alar base width, revealed significantly less asymmetry on average in group 2 than in group 1 ( P = .013). This study suggests the NAM followed by rotation advancement in conjunction with primary nasal repair approach may result in less nasal asymmetry compared to rotation advancement alone.

  17. Modeling and simulation of a counter-rotating turbine system for underwater vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Xinping; Dang, Jianjun

    2016-12-01

    The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk after the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The experimental simulation of the lubricating oil loop, fuel loop, and seawater loop are completed right before the technology scheme of the counter-rotating turbine system is proposed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.

  18. Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents

    PubMed Central

    Rodán, Antonio; Contreras, María José; Elosúa, M. Rosa; Gimeno, Patricia

    2016-01-01

    Given the importance of visuospatial processing in areas related to the STEM (Science, Technology, Engineering, and Mathematics) disciplines, where there is still a considerable gap in the area of sex differences, the interest in the effects of visuospatial skills training continues to grow. Therefore, we have evaluated the visuospatial improvement of adolescents after performing a computerized mental rotation training program, as well as the relationship of this visuospatial ability with other cognitive, emotional factors and those factors based on the experience with videogames. The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24). Furthermore, no significant sex differences were obtained for spatial ability or for any of the other tasks evaluated, either before or after training. Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample. These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes. PMID:27462290

  19. Experimental But Not Sex Differences of a Mental Rotation Training Program on Adolescents.

    PubMed

    Rodán, Antonio; Contreras, María José; Elosúa, M Rosa; Gimeno, Patricia

    2016-01-01

    Given the importance of visuospatial processing in areas related to the STEM (Science, Technology, Engineering, and Mathematics) disciplines, where there is still a considerable gap in the area of sex differences, the interest in the effects of visuospatial skills training continues to grow. Therefore, we have evaluated the visuospatial improvement of adolescents after performing a computerized mental rotation training program, as well as the relationship of this visuospatial ability with other cognitive, emotional factors and those factors based on the experience with videogames. The study, which was performed on students aged 14 and 15 years old, showed a significant improvement in this visuospatial skill for a training group (n = 21) compared to a control group (n = 24). Furthermore, no significant sex differences were obtained for spatial ability or for any of the other tasks evaluated, either before or after training. Regarding the relationship between skills, a significant correlation between experience with video games and spatial ability was found, as well as between mathematical reasoning and intelligence and with spatial ability in the initial phase for the total sample. These findings are discussed from a cognitive point of view and within the current sociocultural context, where the equal use of new technologies could help reduce the visuospatial gap between sexes.

  20. The Effect of Shoulder Plyometric Training on Amortization Time and Upper-Extremity Kinematics.

    PubMed

    Swanik, Kathleen A; Thomas, Stephen J; Struminger, Aaron H; Bliven, Kellie C Huxel; Kelly, John D; Swanik, Charles B

    2016-12-01

    Plyometric training is credited with providing benefits in performance and dynamic restraint. However, limited prospective data exist quantifying kinematic adaptations such as amortization time, glenohumeral rotation, and scapulothoracic position, which may underlie the efficacy of plyometric training for upper-extremity rehabilitation or performance enhancement. To measure upper-extremity kinematics and plyometric phase times before and after an 8-wk upper-extremity strength- and plyometric-training program. Randomized pretest-posttest design. Research laboratory. 40 recreationally active men (plyometric group, age 20.43 ± 1.40 y, height 180.00 ± 8.80 cm, weight 73.07 ± 7.21 kg; strength group, age 21.95 ± 3.40 y, height 173.98 ± 11.91 cm, weight 74.79 ± 13.55 kg). Participants were randomly assigned to either a strength-training group or a strength- and plyometric-training group. Each participant performed the assigned training for 8 wk. Dynamic and static glenohumeral and scapular-rotation measurements were taken before and after the training programs. Dynamic measurement of scapular rotation and time spent in each plyometric phase (concentric, eccentric, and amortization) during a ball-toss exercise were recorded while the subjects were fitted with an electromagnetic tracking system. Static measures included scapular upward rotation at 3 different glenohumeral-abduction angles, glenohumeral internal rotation, and glenohumeral external rotation. Posttesting showed that both groups significantly decreased the time spent in the amortization, concentric, and eccentric phases of a ball-toss exercise (P < .01). Both groups also exhibited significantly decreased static external rotation and increased dynamic scapular upward rotation after the training period (P < .01). The only difference between the training protocols was that the plyometric-training group exhibited an increase in internal rotation that was not present in the strength-training group (P < .01). These findings support the use of both upper-extremity plyometrics and strength training for reducing commonly identified upper-extremity-injury risk factors and improving upper-extremity performance.

  1. Apparatus for controlling air/fuel ratio for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Mizuno, T.

    1986-07-08

    This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less

  2. Isometric strength ratios of the hip musculature in females with patellofemoral pain: a comparison to pain-free controls.

    PubMed

    Magalhães, Eduardo; Silva, Ana Paula M C C; Sacramento, Sylvio N; Martin, RobRoy L; Fukuda, Thiago Y

    2013-08-01

    The purpose of the study was to compare hip agonist-antagonist isometric strength ratios between females with patellofemoral pain (PFP) syndrome and pain-free control group. One hundred and twenty females between 15 and 40 years of age (control group: n = 60; PFP group: n = 60) participated in the study. Hip adductor, abductor, medial rotator, lateral rotator, flexor, and extensor isometric strength were measured using a hand-held dynamometer. Comparisons in the hip adductor/abductor and medial/lateral rotator and flexor/extensor strength ratios were made between groups using independent t-tests. Group comparisons also were made between the anteromedial hip complex (adductor, medial rotator, and flexor musculature) and posterolateral hip complex (abductor, lateral rotator, and extensor musculature). On average, the hip adductor/abductor isometric strength ratio in the PFP group was 23% higher when compared with the control group (p = 0.01). The anteromedial/posterolateral complex ratio also was significantly higher in the PFP group (average 8%; p = 0.04). No significant group differences were found for the medial/lateral rotator ratio and flexor/extensor strength ratios. The results of this study demonstrate that females with PFP have altered hip strength ratios when compared with asymptomatic controls. These strength imbalances may explain the tendency of females with PFP to demonstrate kinematic tendencies that increase loading on the patellofemoral joint (i.e., dynamic knee valgus).

  3. Volumetric evaluation of the rotator cuff musculature in massive rotator cuff tears with pseudoparalysis.

    PubMed

    Rhee, Yong Girl; Cho, Nam Su; Song, Jong Hoon; Park, Jung Gwan; Kim, Tae Yong

    2017-09-01

    If the balance of the rotator cuff force couple is disrupted, pseudoparalysis may occur, but the exact mechanism remains unknown. This study investigated the effect of rotator cuff force couple disruption on active range of motion in massive rotator cuff tear (mRCT) by rotator cuff muscle volume analysis. The study included 53 patients with irreparable mRCT: 22 in the nonpseudoparalysis group and 31 in the pseudoparalysis group. The volumes of the subscapularis (SBS), infraspinatus (ISP), and teres minor (TM) muscles were measured using magnetic resonance imaging (MRI), and the ratios of each muscle volume to the anatomic external rotator (aER) volume were calculated. A control group of 25 individuals with normal rotator cuffs was included. Anterior-to-posterior cuff muscle volume ratio (SBS/ISP + TM) was imbalanced in both mRCT groups (1.383 nonpseudoparalysis and 1.302 pseudoparalysis). Between the 2 groups, the ISP/aER ratio (0.277 vs. 0.249) and the inferior SBS/aER ratio (0.426 vs. 0.390) were significantly decreased in the pseudoparalysis group (P= .022 and P= .040, respectively). However, neither the TM/aER ratio (0.357 vs. 0.376) nor the superior SBS/aER ratio (0.452 vs. 0.424) showed a significant difference between the two groups (P= .749 and P= .068, respectively). If the inferior SBS was torn, a high frequency of pseudoparalysis was noted (81.0%, P= .010). The disruption of transverse force couple was noted in both irreparable mRCT groups, although no significant difference was found between the nonpseudoparalysis and pseudoparalysis groups. ISP and inferior SBS muscle volumes showed a significant decrease in pseudoparalysis group and, therefore, were considered to greatly influence the loss of active motion in mRCT. The TM did not exert significant effect on the incidence of pseudoparalysis. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-01

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH 5+ ) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In conclusion, we show that the prototypical, extremely floppy molecule CH 5+ represents a new class of molecules, where customary group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed.

  5. Three-dimensional image orientation through only one rotation applied to image processing in engineering.

    PubMed

    Rodríguez, Jaime; Martín, María T; Herráez, José; Arias, Pedro

    2008-12-10

    Photogrammetry is a science with many fields of application in civil engineering where image processing is used for different purposes. In most cases, the use of multiple images simultaneously for the reconstruction of 3D scenes is commonly used. However, the use of isolated images is becoming more and more frequent, for which it is necessary to calculate the orientation of the image with respect to the object space (exterior orientation), which is usually made through three rotations through known points in the object space (Euler angles). We describe the resolution of this problem by means of a single rotation through the vanishing line of the image space and completely external to the object, to be more precise, without any contact with it. The results obtained appear to be optimal, and the procedure is simple and of great utility, since no points over the object are required, which is very useful in situations where access is difficult.

  6. Cyclic fatigue of ProFile rotary instruments after prolonged clinical use.

    PubMed

    Gambarini, G

    2001-07-01

    The purpose of the present study was to evaluate resistance to cyclic fatigue of new and used ProFile Ni-Ti rotary instruments. Used instruments were operated in 10 clinical cases using passive instrumentation and a crown-down preparation technique. Cyclic fatigue testing of new and used engine-driven instruments was then performed with a specific device which allowed the instruments to rotate freely inside a stainless steel artificial canal, whilst maintaining conditions close to the clinical situation. Instruments were rotated until fracture occurred and time to fracture was visually recorded with a chronometer. A significant reduction of rotation time to breakage (life span) was noted between new and used instruments. In all sizes new instruments were significantly more resistant than used ones (two-sample t-test, P < 0.01). No instrument underwent intracanal failure during clinical use. Prolonged clinical use of Ni-Ti engine-driven instruments significantly reduced their cyclic fatigue resistance. Nevertheless, each rotary instrument was successfully operated in up to 10 clinical cases without any intracanal failure.

  7. 78 FR 33768 - Airworthiness Directives; Agusta S.p.A. (Type Certificate Currently Held by AgustaWestland S.p.A...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... slider group of the T/R rotating controls. Proposed AD Requirements This proposed AD would require... and slider group of the T/R rotating controls. Within 25 hours TIS from the initial inspection, and... controls. Within 100 hours TIS, removing and reassembling the housing and slider group of the T/R rotating...

  8. Use of magnetic compression to support turbine engine rotors

    NASA Technical Reports Server (NTRS)

    Pomfret, Chris J.

    1994-01-01

    Ever since the advent of gas turbine engines, their rotating disks have been designed with sufficient size and weight to withstand the centrifugal forces generated when the engine is operating. Unfortunately, this requirement has always been a life and performance limiting feature of gas turbine engines and, as manufacturers strive to meet operator demands for more performance without increasing weight, the need for innovative technology has become more important. This has prompted engineers to consider a fundamental and radical breakaway from the traditional design of turbine and compressor disks which have been in use since the first jet engine was flown 50 years ago. Magnetic compression aims to counteract, by direct opposition rather than restraint, the centrifugal forces generated within the engine. A magnetic coupling is created between a rotating disk and a stationary superconducting coil to create a massive inwardly-directed magnetic force. With the centrifugal forces opposed by an equal and opposite magnetic force, the large heavy disks could be dispensed with and replaced with a torque tube to hold the blades. The proof of this concept has been demonstrated and the thermal management of such a system studied in detail; this aspect, especially in the hot end of a gas turbine engine, remains a stiff but not impossible challenge. The potential payoffs in both military and commercial aviation and in the power generation industry are sufficient to warrant further serious studies for its application and optimization.

  9. Rotational spectroscopy of antipyretics: Conformation, structure, and internal dynamics of phenazone

    NASA Astrophysics Data System (ADS)

    Écija, Patricia; Cocinero, Emilio J.; Lesarri, Alberto; Fernández, José A.; Caminati, Walther; Castaño, Fernando

    2013-03-01

    The conformational and structural preferences of phenazone (antipyrine), the prototype of non-opioid pyrazolone antipyretics, have been probed in a supersonic jet expansion using rotational spectroscopy. The conformational landscape of the two-ring assembly was first explored computationally, but only a single conformer was predicted, with the N-phenyl and N-methyl groups on opposite sides of the pyrazolone ring. Consistently, the microwave spectrum evidenced a rotational signature arising from a single molecular structure. The spectrum exhibited very complicated fine and hyperfine patterns (not resolvable with any other spectroscopic technique) originated by the simultaneous coupling of the methyl group internal rotation and the spins of the two 14N nuclei with the overall rotation. The internal rotation tunnelling was ascribed to the C-CH3 group and the barrier height established experimentally (7.13(10) kJ mol-1). The internal rotation of the N-CH3 group has a lower limit of 9.4 kJ mol-1. The structure of the molecule was determined from the rotational parameters, with the phenyl group elevated ca. 25° with respect to the average plane of the pyrazolic moiety and a phenyl torsion of ca. 52°. The origin of the conformational preferences is discussed in terms of the competition between intramolecular C-H⋯N and C-H⋯O weak hydrogen bonds.

  10. Extracorporeal shock wave therapy is not useful after arthroscopic rotator cuff repair.

    PubMed

    Kim, Jae Yoon; Lee, Jae Sung; Park, Chi Woo

    2012-12-01

    Extracorporeal shock wave therapy (ESWT) is known to accelerate the healing of musculoskeletal tissue. The purpose of this study was to test the hypothesis that ESWT stimulates rotator cuff healing after arthroscopic repair. Seventy-one consecutive patients with a small- to large-sized rotator cuff tear underwent arthroscopic rotator cuff repair. The patients were randomized into two groups: 35 patients underwent ESWT at 6 weeks after surgery (ESWT group) and 36 patients did not (control group). Cuff integrity was evaluated with computed tomographic arthrography at 6 months after surgery. Constant and UCLA scores were measurable outcomes. All patients were available for a minimum one-year follow-up. The mean age of the ESWT and control groups was 59.4 (SD: 7.7) and 58.6 years (SD: 7.8) (n.s.). There were no significant differences in tear size and repair method between the two groups (n.s.). The mean Constant and UCLA scores, respectively, increased from 54.6 to 90.6 (P < 0.001) and from 18.5 to 27.4 (P < 0.001) in the ESWT group, and from 58.9 to 89.3 (P < 0.001) and 18.5 to 27.4 in the control group. Computed tomographic arthrography was performed in 26 patients from the ESWT group and 24 from the control group, and cuff integrity was maintained in 46 out of 50 patients. Definite re-tear was observed in two patients of the ESWT group and four of the controls. There were no complications associated with ESWT. This study failed to prove that ESWT stimulates rotator cuff healing after arthroscopic rotator cuff repair. Additional ESWT after rotator cuff repair could theoretically be advantageous, and it was proven to be safe in this study. II.

  11. Influences on Visual Spatial Rotation: Science, Technology, Engineering, and Mathematics (STEM) Experiences, Age, and Gender

    ERIC Educational Resources Information Center

    Perry, Paula Christine

    2013-01-01

    Science, Technology, Engineering, and Mathematics (STEM) education curriculum is designed to strengthen students' science and math achievement through project based learning activities. As part of a STEM initiative, SeaPerch was developed at Massachusetts Institute of Technology. SeaPerch is an innovative underwater robotics program that instructs…

  12. Non-synchronous rotating damping effects in gyroscopic rotating systems

    NASA Astrophysics Data System (ADS)

    Brusa, Eugenio; Zolfini, Giacomo

    2005-03-01

    The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a speed different from that of the main rotor, on the dynamic behaviour of the latter have been already studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating systems. A planar model, namely the Jeffcott's rotor, was used. The present study is aimed at investigating, through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect. The parameters of the system affecting the dynamic stability are identified and the threshold of instability is then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile range of instability for forward and backward whirling motions. An experimental validation on a simple test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy currents.

  13. A prospective, randomized evaluation of the effects of epidural needle rotation on the distribution of epidural block.

    PubMed

    Borghi, Battista; Agnoletti, Vanni; Ricci, Alessandro; van Oven, Hanna; Montone, Nicoletta; Casati, Andrea

    2004-05-01

    We evaluated the effects of turning the tip of the Tuohy needle 45 degrees toward the operative side before threading the epidural catheter (45 degrees -rotation group, n = 24) as compared to a conventional insertion technique with the tip of the Tuohy needle oriented at 90 degrees cephalad (control group, n = 24) on the distribution of 10 mL of 0.75% ropivacaine with 10 microg sufentanil in 48 patients undergoing total hip replacement. The catheter was introduced 3 to 4 cm beyond the tip of the Tuohy needle. A blinded observer recorded sensory and motor blocks on both sides, quality of analgesia, and volumes of local anesthetic used during the first 48 h of patient-controlled epidural analgesia. Readiness to surgery required 21 +/- 6 min in the control group and 17 +/- 7 min in the 45 degree-rotation group (P > 0.50). The maximum sensory level reached on the operative side was T10 (T10-7) in the control group and T9 (T10-6) in the 45 degree-rotation group (P > 0.50); whereas the maximum sensory level reached on the nonoperative side was T10 (T12-9) in the control group and L3 (L5-T12) in the 45 degree-rotation group (P = 0.0005). Complete motor blockade of the operative limb was achieved earlier in the 45 degree-rotation than in the control group, and motor block of the nonoperative side was more intense in patients in the control group. Two-segment regression of sensory level on the surgical side was similar in the two groups, but occurred earlier on the nonoperative side in the 45 degree-rotation group (94 +/- 70 min) than in the control group (178 +/- 40 min) (P = 0.0005). Postoperative analgesia was similar in the 2 groups, but the 45 degree-rotation group consumed less local anesthetic (242 +/- 35 mL) than the control group (297 +/- 60 mL) (P = 0.0005). We conclude that the rotation of the Tuohy introducer needle 45 degrees toward the operative side before threading the epidural catheter provides a preferential distribution of sensory and motor block toward the operative side, reducing the volume of local anesthetic solution required to maintain postoperative analgesia. Turning the Tuohy introducer needle 45 degrees toward the operative side before threading the epidural catheter is a simple maneuver that produces a preferential distribution of epidural anesthesia and analgesia toward the operative side, minimizing the volume of local anesthetic required to provide adequate pain relief after total hip arthroplasty.

  14. Prospective Randomized Trial Comparing Embryo Transfers of Cases with and without Catheter Rotation during Its Withdrawal.

    PubMed

    Yayla Abide, Cigdem; Ozkaya, Enis; Sanverdi, Ilhan; Bostancı Ergen, Evrim; Kurek Eken, Meryem; Devranoglu, Belgin; Bilgiç, Bulent Emre; Kilicci, Cetin; Kayatas Eser, Semra

    2018-05-14

    To compare embryo transfer (ET) technique based on catheter rotation during its withdrawal in cases with unexplained infertility in a prospective, randomized trial (NCT03097042). Two hundred intracytoplasmic sperm injection (ICSI) patients undergoing ET with cleaving or blastocyst-stage fresh embryos were randomized into 2 groups: cases with (n = 100), and without (n = 100) catheter rotation during its withdrawal. Groups were matched for age and some clinical parameters. A soft catheter was used to transfer a single embryo with catheter rotation during its withdrawal in the study group and without rotation in the control. The use of a stiff catheter or tenaculum was not needed in any case. Groups were compared in terms of cycle characteristics and clinical pregnancy rates. Pregnancy rate was significantly higher in the study group (41 vs. 26%, p = 0.04). Clinical pregnancy rate was also significantly higher in the study group (39 vs. 25%, OR 1.9 [1.1-3.5], p = 0.05). On the other hand, the ongoing pregnancy rate was similar between the 2 groups (33 vs. 23%, p = 0.2). Catheter rotation during its withdrawal may be associated with increased pregnancy and clinical pregnancy rates; however, the difference in ongoing pregnancy rates did not reach statistical significance. © 2018 S. Karger AG, Basel.

  15. Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.

    2011-01-01

    NASA's Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft (Refs. 1 and 2). The open rotor concept (also referred to as the Unducted Fan or advanced turboprop) may allow the achievement of this objective by reducing engine emissions and fuel consumption. To evaluate its potential impact, an open rotor cycle modeling capability is needed. This paper presents the initial development of an open rotor cycle model in the Numerical Propulsion System Simulation (NPSS) computer program which can then be used to evaluate the potential benefit of this engine. The development of this open rotor model necessitated addressing two modeling needs within NPSS. First, a method for evaluating the performance of counter-rotating propellers was needed. Therefore, a new counter-rotating propeller NPSS component was created. This component uses propeller performance maps developed from historic counter-rotating propeller experiments to determine the thrust delivered and power required. Second, several methods for modeling a counter-rotating power turbine within NPSS were explored. These techniques used several combinations of turbine components within NPSS to provide the necessary power to the propellers. Ultimately, a single turbine component with a conventional turbine map was selected. Using these modeling enhancements, an open rotor cycle model was developed in NPSS using a multi-design point approach. The multi-design point (MDP) approach improves the engine cycle analysis process by making it easier to properly size the engine to meet a variety of thrust targets throughout the flight envelope. A number of design points are considered including an aerodynamic design point, sea-level static, takeoff and top of climb. The development of this MDP model was also enabled by the selection of a simple power management scheme which schedules propeller blade angles with the freestream Mach number. Finally, sample open rotor performance results and areas for further model improvements are presented.

  16. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  17. Comparison of Clinical and Structural Outcomes by Subscapularis Tendon Status in Massive Rotator Cuff Tear.

    PubMed

    Lee, Sung Hyun; Nam, Dae Jin; Kim, Se Jin; Kim, Jeong Woo

    2017-09-01

    The subscapularis tendon is essential in maintaining normal glenohumeral biomechanics. However, few studies have addressed the outcomes of tears extending to the subscapularis tendon in massive rotator cuff tears. To assess the clinical and structural outcomes of arthroscopic repair of massive rotator cuff tears involving the subscapularis. Cohort study; Level of evidence, 3. Between January 2010 and January 2014, 122 consecutive patients with massive rotator cuff tear underwent arthroscopic rotator cuff repair. Overall, 122 patients were enrolled (mean age, 66 years; mean follow-up period, 39.5 months). Patients were categorized into 3 groups based on subscapularis tendon status: intact subscapularis tendon (I group; n = 45), tear involving less than the superior one-third (P group; n = 35), and tear involving more than one-third of the subscapularis tendon (C group; n = 42). All rotator cuff tears were repaired; however, subscapularis tendon tears involving less than the superior one-third in P group were only debrided. Pain visual analog scale, Constant, and American Shoulder and Elbow Surgeons scores and passive range of motion were measured preoperatively and at the final follow-up. Rotator cuff integrity, global fatty degeneration index, and occupation ratio were determined via magnetic resonance imaging preoperatively and 6 months postoperatively. We identified 37 retears (31.1%) based on postoperative magnetic resonance imaging evaluation. Retear rate in patients in the C group (47.6%) was higher than that in the I group (22.9%) or P group (20.0%) ( P = .011). Retear subclassification based on the involved tendons showed that subsequent subscapularis tendon retears were noted in only the C group. The improvement in clinical scores after repair was statistically significant in all groups but not different among the groups. Between-group comparison showed significant differences in preoperative external rotation ( P = .021). However, no statistically significant difference was found in any shoulder range of motion measurements after surgery. Arthroscopic repair of massive tears results in substantial improvements in shoulder function, despite the presence of combined subscapularis tears. However, this study showed a high failure rate of massive posterosuperior rotator cuff tear repair extending more than one-third of the subscapularis tendon. When combined subscapularis tendon tear was less than the superior one-third of the subscapularis tendon, arthroscopic debridement was a reasonable treatment method where comparable clinical and anatomic outcomes could be expected.

  18. Embedding patient simulation in a pediatric cardiology rotation: a unique opportunity for improving resident education.

    PubMed

    Mohan, Shaun; Follansbee, Christopher; Nwankwo, Ugonna; Hofkosh, Dena; Sherman, Frederick S; Hamilton, Melinda F

    2015-01-01

    High-fidelity patient simulation (HFPS) has been used in medical education to bridge gaps in medical knowledge and clinical skills. Few studies have analyzed the impact of HFPS in subspecialty rotations for pediatric residents. We hypothesized that pediatric residents exposed to HFPS with a structured content curriculum would perform better on a case quiz than residents without exposure to HFPS. Prospective randomized controlled Tertiary-care free standing children's hospital During a cardiology rotation, senior pediatric residents completed an online pediatric cardiology curriculum and a cardiology quiz. After randomization into two groups, the study group participated in a fully debriefed HFPS session. The control group had no HFPS. Both groups completed a case quiz. Confidence surveys pre- and postsimulation were completed. From October 2010 through March 2013, 55 residents who rotated through the pediatric cardiology rotation were used in the final analysis (30 control, 25 in the study group). There was no significant difference between groups on the initial cardiology quiz. The study group scored higher on the case quiz compared with the control group (P = .024). Based on pre- and postsimulation questionnaires, residents' confidence in approaching a pediatric cardiology patient improved from an average Likert score of 5.1 to 7.5 (on scale of 0-10) (P < .001). Incorporation of HFPS into a preexisting pediatric cardiology rotation was feasible and well received. Our study suggests that simulation promotes increased confidence and may modestly improve clinical reasoning compared to traditional educational techniques. Targeted simulation sessions may readily be incorporated into pediatric subspecialty rotations. © 2014 Wiley Periodicals, Inc.

  19. Are Gender Differences in Spatial Ability Real or an Artifact? Evaluation of Measurement Invariance on the Revised PSVT:R

    ERIC Educational Resources Information Center

    Maeda, Yukiko; Yoon, So Yoon

    2016-01-01

    We investigated the extent to which the observed gender differences in mental rotation ability among the 2,468 freshmen studying engineering at a Midwest public university attributed to the gender bias of a test. The Revised Purdue Spatial Visualization Tests: Visualization of Rotations (Revised PSVT:R) is a spatial test frequently used to measure…

  20. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  1. Dynamic Torsional and Cyclic Fracture Behavior of ProFile Rotary Instruments at Continuous or Reciprocating Rotation as Visualized with High-speed Digital Video Imaging.

    PubMed

    Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi

    2017-08-01

    This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P < .05). The scanning electron microscopic images showed a severely deformed surface in the TR group. The dynamic fracture behavior of NiTi rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Arthroscopic undersurface rotator cuff repair versus conventional arthroscopic double-row rotator cuff repair - Comparable results at 2-year follow-up.

    PubMed

    Ang, Benjamin Fu Hong; Chen, Jerry Yongqiang; Yeo, William; Lie, Denny Tijauw Tjoen; Chang, Paul Chee Cheng

    2018-01-01

    The aim of our study is to compare the improvement in clinical outcomes after conventional arthroscopic double-row rotator cuff repair and arthroscopic undersurface rotator cuff repair. A consecutive series of 120 patients who underwent arthroscopic rotator cuff repair was analysed. Sixty-one patients underwent conventional double-row rotator cuff repair and 59 patients underwent undersurface rotator cuff repair. Several clinical outcomes, including numerical pain rating scale (NPRS), constant shoulder score (CSS), Oxford shoulder score (OSS) and University of California Los Angeles shoulder score (UCLASS), were prospectively recorded by a trained healthcare professional preoperatively and at 3, 6, 12 and 24 months after surgery. Comparing both groups, there were no differences in age, gender and preoperative NPRS, CSS, OSS and UCLASS. However, the tear size was 0.7 ± 0.2 (95% confidence interval (CI) 0.3-1.1) cm larger in the conventional group ( p = 0.002). There was no difference in the improvement of NPRS, CSS, OSS and UCLASS at all time points of follow-up, that is, at 3, 6, 12 and 24 months after surgery. The duration of operation was shorter by 35 ± 3 (95% CI 28-42) min in the undersurface group ( p < 0.001). Both arthroscopic undersurface rotator cuff repair and conventional arthroscopic double-row rotator cuff repair showed marked improvements in clinical scores when compared preoperatively, and there was no difference in improvements between both groups. Arthroscopic undersurface rotator cuff repair is a faster technique compared to the conventional arthroscopic double-row rotator cuff repair.

  3. A randomized controlled comparison of stretching procedures for posterior shoulder tightness.

    PubMed

    McClure, Philip; Balaicuis, Jenna; Heiland, David; Broersma, Mary Ellen; Thorndike, Cheryl K; Wood, April

    2007-03-01

    Randomized controlled trial, To compare changes in shoulder internal rotation range of motion (ROM), for 2 stretching exercises, the "cross-body stretch" and the "sleeper stretch," in individuals with posterior shoulder tightness. Recently, some authors have expressed the belief that the sleeper stretch is better than the cross-body stretch to address glenohumeral posterior tightness because the scapula is stabilized. Fifty-four asymptomatic subjects (20 males, 34 females) participated in the study. The control group (n=24) consisted of subjects with a between-shoulder difference in internal rotation ROM of less than 10 degrees, whereas those subjects with more than a 10 degrees difference were randomly assigned to 1 of 2 intervention groups, the sleeper stretch group (n=15) or the cross-body stretch group (n=15). Shoulder internal rotation ROM, with the arm abducted to 90 degrees and scapula motion prevented, was measured before and after a 4-week intervention period. Subjects in the control group were asked not to engage in any new stretching activities, while subjects in the 2 stretching groups were asked to perform stretching exercises on the more limited side only, once daily for 5 repetitions, holding each stretch for 30 seconds. The improvements in internal rotation ROM for the subjects in the cross-body stretch group (mean +/- SD, 20.0 degrees +/- 12.9 degrees) were significantly greater than for the subjects in the control group (5.9 degrees +/- 9.4 degrees, P = .009). The gains in the sleeper stretch group (12.4 degrees +/- 10.4 degrees) were not significant compared to those of the control group (P = .586) and those of the cross-body stretch group (P = .148). The cross-body stretch in individuals with limited shoulder internal rotation ROM appears to be more effective than no stretching in controls without internal rotation asymmetry to improve shoulder internal rotation ROM. While the improvement in internal rotation from the cross-body stretch was greater than for the sleeper stretch and of a magnitude that could be clinically significant, the small sample size likely precluded statistical significance between groups.

  4. Virtual reality as a tool for improving spatial rotation among deaf and hard-of-hearing children.

    PubMed

    Passig, D; Eden, S

    2001-12-01

    The aim of this study was to investigate whether the practice of rotating Virtual Reality (VR) three-dimensional (3D) objects will enhance the spatial rotation thinking of deaf and hard-of-hearing children compared to the practice of rotating two-dimensional (2D) objects. Two groups were involved in this study: an experimental group, which included 21 deaf and hardof-hearing children, who played a VR 3D game, and a control group of 23 deaf and hard-of-hearing children, who played a similar 2D (not VR) game. The results clearly indicate that practicing with VR 3D spatial rotations significantly improved the children's performance of spatial rotation, which enhanced their ability to perform better in other intellectual skills as well as in their sign language skills.

  5. A COMPARATIVE STUDY OF PASSIVE SHOULDER ROTATION RANGE OF MOTION, ISOMETRIC ROTATION STRENGTH AND SERVE SPEED BETWEEN ELITE TENNIS PLAYERS WITH AND WITHOUT HISTORY OF SHOULDER PAIN

    PubMed Central

    Moreno-Pérez, V.; Elvira, JLL.; Fernandez-Fernandez, J.; Vera-Garcia, FJ.

    2018-01-01

    Background Glenohumeral internal rotation deficit and external rotation strength have been associated with the development of shoulder pain in overhead athletes. Objective To examine the bilateral passive shoulder rotational range of motion (ROM), the isometric rotational strength and unilateral serve speed in elite tennis players with and without shoulder pain history (PH and NPH, respectively) and compare between dominant and non-dominant limbs and between groups. Study Design Cohort study. Methods Fifty-eight elite tennis players were distributed into the PH group (n = 20) and the NPH group (n = 38). Serve velocity, dominant and non-dominant passive shoulder external and internal rotation (ER and IR) ROM, total arc of motion (TAM: the sum of IR and ER ROM), ER and IR isometric strength, bilateral deficits and ER/IR strength ratio were measured in both groups. Questionnaires were administered in order to classify characteristics of shoulder pain. Results The dominant shoulder showed significantly reduced IR ROM and TAM, and increased ER ROM compared to the non-dominant shoulder in both groups. Isometric ER strength and ER/IR strength ratio were significantly lower in the dominant shoulder in the PH group when compared with the NPH group. No significant differences between groups were found for serve speed. Conclusion These data show specific adaptations in the IR, TAM and ER ROM in the dominant shoulder in both groups. Isometric ER muscle weakness and ER/IR strength ratio deficit appear to be associated with history of shoulder injuries in elite tennis players. It would be advisable for clinicians to use the present information to design injury prevention programs. Level of evidence 2 PMID:29484240

  6. A COMPARATIVE STUDY OF PASSIVE SHOULDER ROTATION RANGE OF MOTION, ISOMETRIC ROTATION STRENGTH AND SERVE SPEED BETWEEN ELITE TENNIS PLAYERS WITH AND WITHOUT HISTORY OF SHOULDER PAIN.

    PubMed

    Moreno-Pérez, V; Elvira, Jll; Fernandez-Fernandez, J; Vera-Garcia, F J

    2018-02-01

    Glenohumeral internal rotation deficit and external rotation strength have been associated with the development of shoulder pain in overhead athletes. To examine the bilateral passive shoulder rotational range of motion (ROM), the isometric rotational strength and unilateral serve speed in elite tennis players with and without shoulder pain history (PH and NPH, respectively) and compare between dominant and non-dominant limbs and between groups. Cohort study. Fifty-eight elite tennis players were distributed into the PH group (n = 20) and the NPH group (n = 38). Serve velocity, dominant and non-dominant passive shoulder external and internal rotation (ER and IR) ROM, total arc of motion (TAM: the sum of IR and ER ROM), ER and IR isometric strength, bilateral deficits and ER/IR strength ratio were measured in both groups. Questionnaires were administered in order to classify characteristics of shoulder pain. The dominant shoulder showed significantly reduced IR ROM and TAM, and increased ER ROM compared to the non-dominant shoulder in both groups. Isometric ER strength and ER/IR strength ratio were significantly lower in the dominant shoulder in the PH group when compared with the NPH group. No significant differences between groups were found for serve speed. These data show specific adaptations in the IR, TAM and ER ROM in the dominant shoulder in both groups. Isometric ER muscle weakness and ER/IR strength ratio deficit appear to be associated with history of shoulder injuries in elite tennis players. It would be advisable for clinicians to use the present information to design injury prevention programs. 2.

  7. A novel optimal configuration form redundant MEMS inertial sensors based on the orthogonal rotation method.

    PubMed

    Cheng, Jianhua; Dong, Jinlu; Landry, Rene; Chen, Daidai

    2014-07-29

    In order to improve the accuracy and reliability of micro-electro mechanical systems (MEMS) navigation systems, an orthogonal rotation method-based nine-gyro redundant MEMS configuration is presented. By analyzing the accuracy and reliability characteristics of an inertial navigation system (INS), criteria for redundant configuration design are introduced. Then the orthogonal rotation configuration is formed through a two-rotation of a set of orthogonal inertial sensors around a space vector. A feasible installation method is given for the real engineering realization of this proposed configuration. The performances of the novel configuration and another six configurations are comprehensively compared and analyzed. Simulation and experimentation are also conducted, and the results show that the orthogonal rotation configuration has the best reliability, accuracy and fault detection and isolation (FDI) performance when the number of gyros is nine.

  8. Failed healing of rotator cuff repair correlates with altered collagenase and gelatinase in supraspinatus and subscapularis tendons.

    PubMed

    Robertson, Catherine M; Chen, Christopher T; Shindle, Michael K; Cordasco, Frank A; Rodeo, Scott A; Warren, Russell F

    2012-09-01

    Despite improvements in arthroscopic rotator cuff repair technique and technology, a significant rate of failed tendon healing persists. Improving the biology of rotator cuff repairs may be an important focus to decrease this failure rate. The objective of this study was to determine the mRNA biomarkers and histological characteristics of repaired rotator cuffs that healed or developed persistent defects as determined by postoperative ultrasound. Increased synovial inflammation and tendon degeneration at the time of surgery are correlated with the failed healing of rotator cuff tendons. Case-control study; Level of evidence, 3. Biopsy specimens from the subscapularis tendon, supraspinatus tendon, glenohumeral synovium, and subacromial bursa of 35 patients undergoing arthroscopic rotator cuff repair were taken at the time of surgery. Expression of proinflammatory cytokines, tissue remodeling genes, and angiogenesis factors was evaluated by quantitative real-time polymerase chain reaction. Histological characteristics of the affected tissue were also assessed. Postoperative (>6 months) ultrasound was used to evaluate the healing of the rotator cuff. General linear modeling with selected mRNA biomarkers was used to predict rotator cuff healing. Thirty patients completed all analyses, of which 7 patients (23%) had failed healing of the rotator cuff. No differences in demographic data were found between the defect and healed groups. American Shoulder and Elbow Surgeons shoulder scores collected at baseline and follow-up showed improvement in both groups, but there was no significant difference between groups. Increased expression of matrix metalloproteinase 1 (MMP-1) and MMP-9 was found in the supraspinatus tendon in the defect group versus the healed group (P = .006 and .02, respectively). Similar upregulation of MMP-9 was also found in the subscapularis tendon of the defect group (P = .001), which was consistent with the loss of collagen organization as determined by histological examination. From a general linear model, the upregulation of MMP-1 and MMP-9 was highly correlated with failed healing of the rotator cuff (R(2) = .656). The upregulation of tissue remodeling genes in the torn rotator cuff at the time of surgery provides a snapshot of the biological environment surrounding the torn rotator cuff that is closely related to the healing of repaired rotator cuffs.

  9. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  10. An additional reference axis improves femoral rotation alignment in image-free computer navigation assisted total knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi

    2013-05-01

    Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. [Impacts of rotating or lifting-thrusting manipulation on distant vision of naked eye in patients of juvenile myopia: a randomized controlled trial].

    PubMed

    Tao, Xiao-Yan; Zhao, Bai-Yiao; Han, Xiao; Dong, Xiao-Yu; Yan, An; Ren, Xu-Ru; Liu, Yan-Wen; Qu, Chang; Xia, Shu-Fen; Yang, Jia-Le

    2014-05-01

    To compare the differences in the efficacy on distant version of naked eye in the patients of juvenile myopia between rotating manipulation and lifting-thrusting manipulation of acupuncture. One hundred and twenty cases (240 eyes) were randomized into a rotating manipulation group and a lifting-thrusting manipulation group, 60 cases (120 eyes) in each group. Additionally, a corrective lenses group, 60 cases (120 eyes), was set up as the control. In both manipulation groups, Cuanzhu (BL 2),Yuyao (EX-HN 4), Sizhukong (TE 23), Taiyang (EX-HN 5), Fengchi (GB 20), Zusanli (ST 36), Guangming (GB 37) and Sanyinjiao (SP 6) were punctured, but stimulated with rotating manipulation and lifting-thrusting manipulation respectively three times per week, 10 times as a treatment session and totally one session was required. In the corrective lenses group, the glasses were applied at daytime. The clinical efficacy and the changes in distant vision of naked eye before and after treatment were compared among the three groups. The total effective rate was 87.5% (105/120) in the rotating manipulation group, which was better than 69.2% (83/120) in the lifting-thrusting manipulation group (P < 0.05). The distant vision of naked eye was improved apparently in the rotating manipulation group and the lifting-thrusting manipulation group after treatment (both P < 0.05). But it was not improved in the corrective lenses group (P > 0.05). The distant vision of naked eye was improved more apparently after treatment in the rotating manipulation group as compared with that in the lifting-thrusting manipulation group (0.75 +/- 0.23 vs 0.68 +/- 0.24, P < 0.05). For 96 cases (192 eyes) with acupuncture treatment, in 3-month follow-up, 87.0% (167/192) of the cases maintained the stable vision as the original level and 13.0% (25/192) of them were reduced in the vision In the acupuncture groups, it was found that the improvement of distant vision of naked eye was more obvious after treatment with younger age, better basic vision and shorter duration of sickness (all P < 0.05). Acupuncture achieves the positive and sustainable clinical effect on juvenile myopia, and the results of rotating manipulation are superior to that of lifting-thrusting manipulation. Age, basic vision and duration of sickness impact the clinical efficacy.

  12. Long-lived nuclear spin states in rapidly rotating CH2D groups

    NASA Astrophysics Data System (ADS)

    Elliott, Stuart J.; Brown, Lynda J.; Dumez, Jean-Nicolas; Levitt, Malcolm H.

    2016-11-01

    Although monodeuterated methyl groups support proton long-lived states, hindering of the methyl rotation limits the singlet relaxation time. We demonstrate an experimental case in which the rapid rotation of the CH2D group extends the singlet lifetime but does not quench the chemical shift difference between the CH2D protons, induced by the chiral environment. Proton singlet order is accessed using Spin-Lock Induced Crossing (SLIC) experiments, showing that the singlet relaxation time TS is over 2 min, exceeding the longitudinal relaxation time T1 by a factor of more than 10. This result shows that proton singlet states may be accessible and long-lived in rapidly rotating CH2D groups.

  13. [Rotator cuff tear athropathy prevalence].

    PubMed

    Guerra-Soriano, F; Encalada-Díaz, M I; Ruiz-Suárez, M; Valero-González, F S

    2017-01-01

    Glenohumeral arthritis secondary to massive rotator cuff tear presents with a superior displacement and femoralization of the humeral head with coracoacromial arch acetabularization. The purpose of this study was to establish prevalence of rotator cuff tear artropathy (CTA) at our institution. Four hundred electronic records were reviewed from which we identified 136 patients with rotator cuff tears. A second group was composed with patients with massive cuff tears that were analized and staged by the Seebauer cuff tear arthropathy classification. Thirty four patients with massive rotator cuff tears were identified, 8 male and 26 female (age 60.1 ± 10.26 years). Massive rotator cuff tear prevalence was 25%. CTA prevalence found in the rotator cuff group was 19 and 76% in the massive cuff tears group. Patients were staged according to the classification with 32% in stage 1a, 11% 1b, 32% 2a and 0% 2b. CTA prevalence in patients with rotator cuff tears and massive cuff tears is higher than the one reported in American population. We consider that a revision of the Seebauer classification to be appropriate to determine its reliability.

  14. Experimental thermodynamics of single molecular motor.

    PubMed

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  15. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  16. Three-Dimensional Transgenic Cell Models to Quantify Space Genotoxic Effects

    NASA Technical Reports Server (NTRS)

    Gonda, S.; Wu, H.; Pingerelli, P.; Glickman, B.

    2000-01-01

    In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of mUltiple copies of defined target genes for genotoxic assessment. The Rat 2(lambda) fibroblasts (Stratagene, Inc.) were genetically engineered to contain high-density target genes for mutagenesis. Stable three-dimensional, multicellular spheroids were formed when human mammary epithelial cells and Rat 2(lambda) fibroblasts were cocultured on Cytodex 3 Beads in a rotating wall bioreactor. The utility of this spheroidal model for genotoxic assessment was indicated by a linear dose response curve and by results of gene sequence analysis of mutant clones from 400micron diameter spheroids following low-dose, high-energy, neon radiation exposure

  17. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 degrees to 35 degrees, 3. Effect of wing leading-edge modifications, model A

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.; Mulcay, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.

  18. Comparison of Numerically Simulated and Experimentally Measured Performance of a Rotating Detonation Engine

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Fotia, Matthew L.; Hoke, John; Schauer, Fred

    2015-01-01

    A quasi-two-dimensional, computational fluid dynamic (CFD) simulation of a rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction and other simplifications yield rapidly converging, steady solutions. Viscous effects, and heat transfer effects are modeled using source terms. The effects of potential inlet flow reversals are modeled using boundary conditions. Results from the simulation are compared to measured data from an experimental RDE rig with a converging-diverging nozzle added. The comparison is favorable for the two operating points examined. The utility of the code as a performance optimization tool and a diagnostic tool are discussed.

  19. Is adapted measured resection superior to gap-balancing in determining femoral component rotation in total knee replacement?

    PubMed

    Luyckx, T; Peeters, T; Vandenneucker, H; Victor, J; Bellemans, J

    2012-09-01

    Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an 'adapted' measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan. Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (SD 2.5) in the gap-balancing group and 1.7° (SD 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our 'adapted' measured resection technique was much lower than reported in the literature.

  20. Mental rotation training: transfer and maintenance effects on spatial abilities.

    PubMed

    Meneghetti, Chiara; Borella, Erika; Pazzaglia, Francesca

    2016-01-01

    One of the aims of research in spatial cognition is to examine whether spatial skills can be enhanced. The goal of the present study was thus to assess the benefit and maintenance effects of mental rotation training in young adults. Forty-eight females took part in the study: 16 were randomly assigned to receive the mental rotation training (based on comparing pairs of 2D or 3D objects and rotation games), 16 served as active controls (performing parallel non-spatial activities), and 16 as passive controls. Transfer effects to both untrained spatial tasks (testing both object rotation and perspective taking) and visual and verbal tasks were examined. Across the training sessions, the group given mental rotation training revealed benefits in the time it took to make judgments when comparing 3D and 2D objects, but their mental rotation speed did not improve. When compared with the other groups, the mental rotation training group did show transfer effects, however, in tasks other than those practiced (i.e., in object rotation and perspective-taking tasks), and these benefits persisted after 1 month. The training had no effect on visual or verbal tasks. These findings are discussed from the spatial cognition standpoint and with reference to the (rotation) training literature.

  1. Low Barrier Methyl Rotation in 3-PENTYN-1-OL as Observed by Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Eibl, Konrad; Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Kleiner, Isabelle

    2016-06-01

    It is known that the barrier to internal rotation of the methyl groups in ethane (1) is about 1000 wn. If a C-C-triple bond is inserted between the methyl groups as a spacer (2), the torsional barrier is assumed to be dramatically lower, which is a common feature of ethinyl groups in general. To study this effect of almost free internal rotation, we measured the rotational spectrum of 3-pentyn-1-ol (3) by pulsed jet Fourier transform microwave spectroscopy in the frequency range from 2 to 26.5 GHz. Quantum chemical calculations at the MP2/6-311++G(d,p) level of theory yielded five stable conformers on the potential energy surface. The most stable conformer, which possesses C1 symmetry, was assigned and fitted using two theoretical approaches treating internal rotations, the rho axis method (BELGI-C1) and the combined axis method (XIAM). The molecular parameters as well as the internal rotation parameters were determined. A very low barrier to internal rotation of the methyl group of only 9.4545(95) wn was observed. R. M. Pitzer, Acc. Chem. Res., 1983, 16, 207-210

  2. Long-Term Impact of Improving Visualization Abilities of Minority Engineering and Technology Students: Preliminary Results

    ERIC Educational Resources Information Center

    Study, Nancy E.

    2011-01-01

    Previous studies found that students enrolled in introductory engineering graphics courses at a historically black university (HBCU) had significantly lower than average test scores on the Purdue Spatial Visualization Test: Visualization of Rotations (PSVT) when it was administered during the first week of class. Since the ability to visualize is…

  3. Programs at Wright-patterson Air Force Base

    NASA Technical Reports Server (NTRS)

    Dayton, Ron

    1991-01-01

    The Lubrication Branch has two active programs that are developing gas turbine engine mainshaft air/oil seals. Both of these programs, one of which is with General Electric Aircraft Engines and the other with Pratt & Whitney Aircraft, are addressing counter-rotating intershaft applications which involve very high rubbing velocities. The objectives and requirements of these efforts are briefly addressed.

  4. Experimental study of icing accretion on a rotating conical spinner

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Ji, Honghu; Hu, Yaping; Wang, Jian; Cao, Guangzhou

    2015-12-01

    A reduced scale experiment has been conducted to investigate the icing accretion procedure on a rotating spinner of 60° cone angle. The experiment was carried out in a small scale ice wind tunnel with three different rotating speeds of the spinner. The experimental conditions were determined from the actual icing condition of the spinner of a turbofan engine by using the similarity theory, which considers the rotating effects. The ice thickness on the spinner was got from the image taken by the high speed camera, by image processing. The results of this investigation show that under the experimental condition, ice on the spinner's tip of three different rotating speeds are all glaze ice and about the same thick. However, on the downstream surface of the spinner, ice shape on the rotating spinner is different from that on the stationary spinner. It is uneven glaze ice on the stationary spinner while it is `particle ice' when the rotating speed is 8240 rpm and it is `needle ice' when the rotating speed is 15,200 rpm. The experiment also reveals that when the rotating speed is higher, the ice layer is thicker.

  5. Investigation of the asymptotic state of rotating turbulence using large-eddy simulation

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude

    1993-01-01

    Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.

  6. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  7. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  8. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    PubMed

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P < 0.01). We concluded that combined CT-based and image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  9. Difference in vascular patterns between transosseous-equivalent and transosseous rotator cuff repair.

    PubMed

    Urita, Atsushi; Funakoshi, Tadanao; Horie, Tatsunori; Nishida, Mutsumi; Iwasaki, Norimasa

    2017-01-01

    Vascularity is the important factor of biologic healing of the repaired tissue. The purpose of this study was to clarify sequential vascular patterns of repaired rotator cuff by suture techniques. We randomized 21 shoulders in 20 patients undergoing arthroscopic rotator cuff repair into 2 groups: transosseous-equivalent repair (TOE group, n = 10) and transosseous repair (TO group, n = 11). Blood flow in 4 regions inside the cuff (lateral articular, lateral bursal, medial articular, and medial bursal), in the knotless suture anchor in the TOE group, and in the bone tunnel in the TO group was measured using contrast-enhanced ultrasound at 1 month, 2 months, 3 months, and 6 months postoperatively. The sequential vascular pattern inside the repaired rotator cuff was different between groups. The blood flow in the lateral articular area at 1 month, 2 months, and 3 months (P = .002, .005, and .025) and that in the lateral bursal area at 2 months (P = .031) in the TO group were significantly greater than those in the TOE group postoperatively. Blood flow was significantly greater for the bone tunnels in the TO group than for the knotless suture anchor in the TOE group at 1 month and 2 months postoperatively (P = .041 and .009). This study clarified that the sequential vascular pattern inside the repaired rotator cuff depends on the suture technique used. Bone tunnels through the footprint may contribute to biologic healing by increasing blood flow in the repaired rotator cuff. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Surge-Inception Study in a Two-Spool Turbojet Engine. Revised

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E.; Lubick, Robert J.; Saari, Martin J.

    1957-01-01

    A two-spool turbojet engine was operated in the Lewis altitude wind tunnel to study the inception of compressor surge. In addition to the usual steady-state pressure and temperature measurements, the compressors were extensively instrumented with fast-response interstage pressure transducers. Thus it was possible to obtain maps for both compressors, pressure oscillations during rotating stall, effects of stall on efficiency, and stage-loading curves. In addition, with the transient measurements, it was possible to record interstage pressures and then compute stage performance during accelerations to the stall limit. Rotating stall was found to exist at low speeds in the outer spool. Although the stall arose from poor flow conditions at the inlet-stage blade tips, the low-energy air moved through the machine from the tip at the inlet to the outer spool to the hub at the inlet to the inner spool. This tip stall ultimately resulted in compressor surge in the mid-speed region, and necessitated inter-compressor air bleed. Interstage pressure measurements during acceleration to the compressor stall limit indicated that rotating stall was not a necessary condition for compressor surge and that, at the critical stall point, the circumferential interstage pressure distribution was uniform. The exit-stage group of the inner spool was first t o stall; then, the stages upstream stalled in succession until the inlet stage of the outer spool was stalled. With a sufficiently high fuel rate, the process repeated with a cycle time of about 0.1 second. It was possible to construct reproducible stage stall lines as a function of compressor speed from the stage stall points of several such compressor surges. This transient stall line was checked by computing the stall line from a steady-state stage-loading curve. Good agreement between the stage stall lines was obtained by these two methods.

  11. Dynamic Torque and Vertical Force Analysis during Nickel-titanium Rotary Root Canal Preparation with Different Modes of Reciprocal Rotation.

    PubMed

    Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi

    2017-10-01

    The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P < .05). The maximum torque values in clockwise and counterclockwise directions in groups TqR and TmR were significantly smaller than those in group CR (P < .05). Under the present experimental conditions using TF Adaptive instruments, both torque-sensitive and time-dependent reciprocal rotation generated significantly lower maximum torque and may have advantages in reducing stress generation caused by screw-in forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Navigation-based femorotibial rotation pattern correlated with flexion angle after total knee arthroplasty.

    PubMed

    Ishida, Kazunari; Shibanuma, Nao; Matsumoto, Tomoyuki; Sasaki, Hiroshi; Takayama, Koji; Matsuzaki, Tokio; Tei, Katsumasa; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-01-01

    To investigate whether intraoperative kinematics obtained by navigation systems can be divided into several kinematic patterns and to assess the correlation between the intraoperative kinematics with maximum flexion angles before and after total knee arthroplasty (TKA). Fifty-four posterior-stabilised (PS) TKA implanted using an image-free navigation system were evaluated. At registration and after implantation, tibial internal rotation angles at maximum extension, 30°, 45°, 60°, 90°, and maximum flexion were collected. The rotational patterns were divided into four groups and were examined the correlation with maximum flexion before and after operation. Tibial internal rotation from 90° of flexion to maximum flexion at registration was correlated with maximum flexion angles pre- and postoperatively. The four groups showed statistically different kinematic patterns. The group with tibial external rotation up to 90° of flexion, following tibial internal rotation at registration, achieved better flexion angles, compared to those of another groups (126.7° ± 12.0°, p < 0.05). The group with tibial external rotation showed the worst flexion angles (80.0° ± 40.4°, p < 0.05). Furthermore, the group with limited extension showed worse flexion angles (111.6° ± 8.9°, p < 0.05). Navigation-based kinematic patterns found at registration predict postoperative maximum flexion angle in PS TKA. Navigation-based kinematics can be useful information during TKA surgery. Diagnostic studies, development of diagnostic criteria in a consecutive series of patients and a universally applied "gold" standard, Level II.

  13. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L.

    1995-01-01

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk.

  14. Unsteady Force Calculations in Turbomachinery

    DTIC Science & Technology

    1991-07-01

    Engineering for Gas Turbines and Power, Vol. 107, pp. 945-952, October 1985. Lefcort, M. P., "An Investigation into Unsteady Blade Forces in...generated unsteady flow around a rotating turbine blade row .. ..... 43 7 The rotating coordinate system with skew, 0, and rake, zr, defined at midchord...while Kerrebrock and Mikolajczak [19701 5 proved it experimentally. For a turbine blade passage, the wake fluid moves from the pressure 3 surface to the

  15. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  16. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  17. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  18. Physics of spinning gases and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyko, Vasily I.

    Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improvingmore » the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactions on the compressibility and heat capacity is predicted.« less

  19. Symmetry Beyond Perturbation Theory: Floppy Molecules and Rotation-Vibration States

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-06-01

    In the customary approach to the theoretical description of the nuclear motion in molecules, the molecule is seen as a near-static structure rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in fluxional molecules, where all vibrational motions are large compared to the linear extension of the molecule. An example is protonated methane (CH_5^+). For this molecule, customary theory fails to simulate reliably even the low-energy spectrum. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group. In the present contribution we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are subgroups of the special orthogonal group in three dimensions SO(3) This leads to a group theoretical foundation of the technique of equivalent rotations. The MS group of protonated methane (G240) represents, to the best of our knowledge, the first example of an MS group which is not a subgroup of SO(3) (nor of O(3) nor of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We want to discuss the consequences of this. In conclusion, we show that the prototypical floppy molecule CH_5^+ represents a new class of molecules, where usual group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed. P. Kumar and D. Marx, Physical Chemistry Chemical Physics 8, 573 (2006) Z. Jin, B. J. Braams, and J. M. Bowman, The Journal of Physical Chemistry A 110, 1569 (2006) A. S. Petit, J. E. Ford, and A. B. McCoy, The Journal of Physical Chemistry A 118, 7206 (2014). P.R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, Canada, 1988 Being precise, we must include O(3) and SU(2), but our theory can be easily extended to these two groups. H. Longuet-Higgins, Molecular Physics 6, 445 (1963).

  20. Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization

    PubMed Central

    Yu, Xiaojun; Botchwey, Edward A.; Levine, Elliot M.; Pollack, Solomon R.; Laurencin, Cato T.

    2004-01-01

    An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by mixing lighter-than-water (density, <1g/ml) and heavier-than-water (density, >1g/ml) microspheres of 85:15 poly(lactide-co-glycolide). We quantified the rate of 3D flow through the scaffolds by using a particle-tracking system, and the results suggest that motion trajectories and, therefore, the flow velocity around and through scaffolds in rotating bioreactors can be manipulated by varying the ratio of heavier-than-water to lighter-than-water microspheres. When rat primary calvarial cells were cultured on the scaffolds in bioreactors for 7 days, the 3D dynamic flow environment affected bone cell distribution and enhanced cell phenotypic expression and mineralized matrix synthesis within tissue-engineered constructs compared with static conditions. These studies provide a foundation for exploring the effects of dynamic flow on osteoblast function and provide important insight into the design and optimization of 3D scaffolds suitable in bioreactors for in vitro tissue engineering of bone. PMID:15277663

  1. Does autologous leukocyte-platelet-rich plasma improve tendon healing in arthroscopic repair of large or massive rotator cuff tears?

    PubMed

    Charousset, Christophe; Zaoui, Amine; Bellaïche, Laurence; Piterman, Michel

    2014-04-01

    To evaluate the clinical and magnetic resonance imaging (MRI) outcome of arthroscopic rotator cuff repair with the use of leukocyte-platelet-rich plasma (L-PRP) in patients with large or massive rotator cuff tears. A comparative cohort of patients with large or massive rotator cuff tears undergoing arthroscopic repair was studied. Two consecutive groups of patients were included: rotator cuff repairs with L-PRP injection (group 1, n = 35) and rotator cuff repairs without L-PRP injection (group 2, n = 35). A double-row cross-suture cuff repair was performed by a single surgeon with the same rehabilitation protocol. Patients were clinically evaluated with the Constant score; Simple Shoulder Test score; University of California, Los Angeles (UCLA) score; and strength measurements by use of a handheld dynamometer. Rotator cuff healing was evaluated by postoperative MRI using the Sugaya classification (type 1 to type 5). We prospectively evaluated the 2 groups at a minimum 2-year follow-up. The results did not show differences in cuff healing between the 2 groups (P = .16). The size of recurrent tears (type 4 v type 5), however, was significantly smaller in group 1 (P = .008). There was no statistically significant difference in the recurrent tear rate (types 4 and 5) between the 2 groups (P = .65). There was no significant difference between group 1 and group 2 in terms of University of California, Los Angeles score (29.1 and 30.3, respectively; P = .90); Simple Shoulder Test score (9.9 and 10.2, respectively; P = .94); Constant score (77.3 and 78.1, respectively; P = .82); and strength (7.5 and 7.0, respectively; P = .51). In our study the use of autologous L-PRP did not improve the quality of tendon healing in patients undergoing arthroscopic repair of large or massive rotator cuff tears based on postoperative MRI evaluation. The only significant advantage was that the L-PRP patients had smaller iterative tears. However, the functional outcome was similar in the 2 groups of patients. Level III, case-control study. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Icariin Promotes Tendon-Bone Healing during Repair of Rotator Cuff Tears: A Biomechanical and Histological Study.

    PubMed

    Ye, Chenyi; Zhang, Wei; Wang, Shengdong; Jiang, Shuai; Yu, Yuanbin; Chen, Erman; Xue, Deting; Chen, Jianzhong; He, Rongxin

    2016-10-25

    To investigate whether the systematic administration of icariin (ICA) promotes tendon-bone healing after rotator cuff reconstruction in vivo, a total of 64 male Sprague Dawley rats were used in a rotator cuff injury model and underwent rotator cuff reconstruction (bone tunnel suture fixation). Rats from the ICA group ( n = 32) were gavage-fed daily with ICA at 0.125 mg/g, while rats in the control group ( n = 32) received saline only. Micro-computed tomography, biomechanical tests, serum ELISA (calcium; Ca, alkaline phosphatase; AP, osteocalcin; OCN) and histological examinations (Safranin O and Fast Green staining, type I, II and III collagen (Col1, Col2, and Col3), CD31, and vascular endothelial growth factor (VEGF)) were analyzed two and four weeks after surgery. In the ICA group, the serum levels of AP and OCN were higher than in the control group. More Col1-, Col2-, CD31-, and VEGF-positive cells, together with a greater degree of osteogenesis, were detected in the ICA group compared with the control group. During mechanical testing, the ICA group showed a significantly higher ultimate failure load than the control group at both two and four weeks. Our results indicate that the systematic administration of ICA could promote angiogenesis and tendon-bone healing after rotator cuff reconstruction, with superior mechanical strength compared with the controls. Treatment for rotator cuff injury using systematically-administered ICA could be a promising strategy.

  3. Pelvic Rotation in Femoroacetabular Impingement Is Decreased Compared to Other Symptomatic Hip Conditions.

    PubMed

    Azevedo, Daniel Camara; Paiva, Edson Barreto; Lopes, Alexia Moura Abuhid; Santos, Henrique de Oliveira; Carneiro, Ricardo Luiz; Rodrigues, André Soares; de Andrade, Marco Antonio Percope; Novais, Eduardo N; Van Dillen, Linda R

    2016-11-01

    Study Design Cross-sectional, case-control design. Background Pelvic movement has been considered a possible discriminating parameter associated with femoroacetabular impingement (FAI) symptom onset. Decreased pelvic rotation has been found during squatting in people with FAI when compared to people with healthy hips. However, it is possible that changes in pelvic movement may occur in other hip conditions because of pain and may not be specific to FAI. Objectives To compare sagittal pelvic rotation during hip flexion and in sitting between people with FAI and people with other symptomatic hip conditions. Methods Thirty people with symptomatic FAI, 30 people with other symptomatic hip conditions, and 20 people with healthy hips participated in the study. Sagittal pelvic rotation was calculated based on measures of pelvic alignment in standing, hip flexion to 45° and 90°, and sitting. Results There were significant differences in sagittal pelvic rotation among the 3 groups in all conditions (P<.05). Post hoc analyses revealed that participants in the symptomatic FAI group had less pelvic rotation during hip flexion to 45° and 90° compared to participants in the other symptomatic hip conditions group and the hip-healthy group (mean difference, 1.2°-1.9°). In sitting, participants in the other symptomatic hip conditions group had less posterior pelvic rotation compared to those in the hip-healthy group (mean difference, 3.9°). Conclusion People with symptomatic FAI have less posterior pelvic rotation during hip flexion when compared to people with other symptomatic hip conditions and those with healthy hips. Level of Evidence Diagnosis, level 4. J Orthop Sports Phys Ther 2016;46(11):957-964. Epub 29 Sep 2016. doi:10.2519/jospt.2016.6713.

  4. Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology: An ultrasonographic and electromyographic study with age-matched controls.

    PubMed

    Rathi, Sangeeta; Taylor, Nicholas F; Soo, Brendan; Green, Rodney A

    2018-03-02

    To determine whether patients with symptomatic rotator cuff pathology had more glenohumeral joint translation and different patterns of rotator cuff muscle activity compared to controls. Repeated measurements of glenohumeral translation and muscle activity in two positions and six testing conditions in two groups. Twenty participants with a symptomatic and diagnosed rotator cuff tear and 20 age, and gender matched controls were included. Neuromuscular activity was tested by inserting intramuscular electrodes in the rotator cuff muscles. Anterior and posterior glenohumeral translations were measured using real time ultrasound in testing conditions (with and without translation force, with and without isometric internal and external rotation), in two positions (shoulder neutral, 90° of abduction) and two force directions (anterior, posterior). Symptomatic pathology group demonstrated increased passive glenohumeral translation with posterior translation force (p<0.05). Overall, rotator cuff muscle contraction in the pathology group limited joint translation in a similar manner to the control group, but they did not show the normal direction specific pattern in the neutral posterior position (p<0.03). The pathology group demonstrated reduced EMG activity in the upper infraspinatus muscle relative to the reference position (p<0.02) with anterior translation force and in the supraspinatus (p<0.05) muscle with anterior and posterior translation force in the abducted position. Symptomatic pathology resulted in increased passive glenohumeral joint translation. Although there were some reductions in muscle activity with injury, their rotator cuff still controlled glenohumeral translation. These results highlight the need to consider joint translation in the assessment and management of patients with rotator cuff injury. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures

    NASA Technical Reports Server (NTRS)

    Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.

    2015-01-01

    FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.

  6. The Impact of Complex Forcing on the Viscous Torsional Vibration Damper's Work in the Crankshaft of the Rotating Combustion Engine

    NASA Astrophysics Data System (ADS)

    Jagiełowicz-Ryznar, C.

    2016-12-01

    The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.

  7. Work production of quantum rotor engines

    NASA Astrophysics Data System (ADS)

    Seah, Stella; Nimmrichter, Stefan; Scarani, Valerio

    2018-04-01

    We study the mechanical performance of quantum rotor heat engines in terms of common notions of work using two prototypical models: a mill driven by the heat flow from a hot to a cold mode, and a piston driven by the alternate heating and cooling of a single working mode. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation, and we compare them to the energy output for the case of an external dissipative load and for externally driven engine cycles. Our results connect work definitions from both physical and information-theoretical perspectives. In particular, we find that apart from signatures of angular momentum quantization, the ergotropy is consistent with the intuitive notion of work in the form of net directed motion. It also agrees with the energy output to an external load or agent under optimal conditions. This sets forth a consistent thermodynamical description of rotating quantum motors, flywheels, and clocks.

  8. Two Populations of Sunspots: Differential Rotation

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Pevtsov, A. A.; Osipova, A. A.

    2018-03-01

    To investigate the differential rotation of sunspot groups using the Greenwich data, we propose an approach based on a statistical analysis of the histograms of particular longitudinal velocities in different latitude intervals. The general statistical velocity distributions for all such intervals are shown to be described by two rather than one normal distribution, so that two fundamental rotation modes exist simultaneously: fast and slow. The differentiality of rotation for the modes is the same: the coefficient at sin2 in Faye's law is 2.87-2.88 deg/day, while the equatorial rotation rates differ significantly, 0.27 deg/day. On the other hand, an analysis of the longitudinal velocities for the previously revealed two differing populations of sunspot groups has shown that small short-lived groups (SSGs) are associated with the fast rotation mode, while large long-lived groups (LLGs) are associated with both fast and slow modes. The results obtained not only suggest a real physical difference between the two populations of sunspots but also give new empirical data for the development of a dynamo theory, in particular, for the theory of a spatially distributed dynamo.

  9. Engine-driven preparation of curved root canals: measuring cyclic fatigue and other physical parameters.

    PubMed

    Peters, Ove A; Kappeler, Stefan; Bucher, Willi; Barbakow, Fred

    2002-04-01

    An increasing number of engine-driven rotary systems are marketed to shape root canals. Although these systems may improve the quality of canal preparations, the risk for instrument fracture is also increased. Unfortunately, the stresses generated in rotary instruments when shaping curved root canals have not been adequately studied. Consequently, the aim of an ongoing project was to develop a measurement platform that could more accurately detail physical parameters generated in a simulated clinical situation. Such a platform was constructed by fitting a torque-measuring device between the rotating endodontic instrument and the motor driving it. Apically directed force and instrument insertion depth were also recorded. Additional devices were constructed to assess cyclic fatigue and static fracture loads. The current pilot study evaluated GT rotary instruments during the shaping of curved canals in plastic blocks as well as "ISO 3630-1 torque to fracture" and number of rotations required for fatigue fracture. Results indicated that torques in excess of 40 Nmm were generated by rotary GT-Files, a significantly higher figure than static fracture loads (less than 13 Nmm for the size 20. 12 GT-File). Furthermore, the number of rotations needed to shape simulated canals with a 5 mm radius of curvature in plastic blocks was 10 times lower than the number of rotations needed to fracture instruments in a "cyclic fatigue test". Apical forces were always greater than 1 N, and in some specimens, scores of 8 N or more were recorded. Further studies are required using extracted natural teeth, with their wide anatomical variation, in order to reduce the incidence of fracture of rotary instruments. In this way, the clinical potential of engine-driven rotary instruments to safely prepare curved canals can be fully appreciated.

  10. Engine starting and stopping

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    Different starter systems for jet engines are discussed: electric, cartridge, iso-propyl-nitrate, air, gas turbine, and hydraulic. The fuel system, ignition system, air flow control system, and actual starting mechanism of an air starter motor system are considered. The variation of engine parameters throughout a typical starting sequence are described, with reference to examples for an RB211-535 engine. Physical constraints on engine starting are considered: rotating stall, light up, the window between hang and stall, hang, compressor stall, and the effects of ambient conditions. The following are also discussed: contractual and airworthiness requirements; windmilling; inflight relighting; afterburning light up; combustion stability; and broken shafts. Graphics illustrating the above are presented.

  11. [Case-control study on polymer polylactic acid absorbable medical film for preventing acromion adhesion after arthroscopic rotator cuff repair].

    PubMed

    Lin, Wei; Xu, Huan; Xing, Hai-Lin; Zheng, Rong-Zong; Ying, Jin-He

    2018-03-25

    To study effect of shoulder joint function after rotator cuff repair of polylactic acid absorbable membrane. From September 2015 to December 2016, 50 patients diagnosed with rotator cuff tear were selected and divided into treatment group and control group. There were 25 patients in control group, including 12 males and 13 females, with an average age of (48.7±3.5) years old, who received simple arthroscopic rotator cuff repair. There were 25 patients in treatment group, including 11 males and 14 females, with an average age of(49.2±4.1) years old, who performed arthroscopic rotator cuff repair with implanting polylactic acid absorbable membraneon shoulder of rotator cuff. Preoperative and postoperative VAS score, ASES score and UCLA score were recorded and compared between two groups. At 6 months after operation, preoperative VAS score in control group was 5.48±1.12, and decreased as 1.28±0.84 after operation; ASES score before operation was 52.24±4.64, and improved to 86.92±3.20 after operation;preoperative UCLA score improved from 14.36±1.89 before operation to 30.72±1.28 after operation. In treatment group, VAS score decreased from 5.36±1.32 before operation to 1.40±0.71 after operation;preoperative ASES score was 51.04±4.09, and improved to 88.96±2.79 after operation; UCLA score improved from 15.12±1.81 before operation to 32.12±1.33 after operation. There was no significant difference in VAS score between two groups, and ASES score, UCLA score in treatment group was obviously better than control group. Application of polylactic acid absorbable medical membrane could obviously improve shoulder function, and effectively prevent acromion adhesion after arthroscopic rotator cuff repair. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  12. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    NASA Astrophysics Data System (ADS)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  13. Rotation invariants of vector fields from orthogonal moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Kostková, Jitka; Flusser, Jan

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  14. Rotation invariants of vector fields from orthogonal moments

    DOE PAGES

    Yang, Bo; Kostková, Jitka; Flusser, Jan; ...

    2017-09-11

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  15. Dynamic change in left ventricular apical back rotation: a marker of diastolic suction with exercise.

    PubMed

    Hong, Sung-Jin; Shim, Chi Young; Kim, Darae; Cho, In-Jeong; Hong, Geu-Ru; Moon, Sun-Ha; Lee, Hyun-Jin; Lee, Jin-Kyung; Choi, Donghoon; Jang, Yangsoo; Ha, Jong-Won

    2018-01-01

    We hypothesized that the absence of a decrease in minimal left ventricular (LV) pressure during exercise would be associated with impaired LV apical back rotation during exercise. A total of 21 patients (59 ± 10 years) underwent invasive LV pressure measurements and simultaneous echocardiography at rest and during submaximal supine bicycle exercise. Patients were classified according to the changes in minimal LV pressure from rest to maximal exercise (Δminimal LVP); Group 1 (n = 8) had a decrease in minimal LV pressure with exercise, whereas Group 2 (n = 13) had an increase in minimal LV pressure. LV apical back-rotation parameters by speckle-tracking echocardiography at rest and during 50 W of exercise were compared. At rest, there were no differences in LV pressure and echocardiographic parameters between groups. However, at 50 W of exercise, Group 2 had higher LV early and end-diastolic pressures and a prolonged time constant of LV relaxation. In Group 2, e' velocity was lower and E/e' was higher. Apical back rotation at the mitral valve opening (MVO) was reduced and minimal apical back-rotation velocity was lower in Group 2. Δminimal LVP significantly correlated with apical back rotation at MVO (r = -0.77, P = 0.009) and minimal apical back-rotation velocity at 50 W (r = 0.69, P = 0.028). The lack of decrease in minimal LV pressure during exercise, a manifestation of impaired LV suction in early diastole, is linked closely with impaired LV apical back rotation during exercise. Dynamic changes in LV apical back rotation during exercise can be used as a non-invasive parameter of diastolic suction during exercise. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  16. Every Mass or Mass Group When Created Will have No Motion, Linear, Rotational or Vibratory Motion, Singly or in Some Combination, Which May Be Later Modified by External Forces--A Natural Law

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-03-01

    Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.

  17. Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006

    USGS Publications Warehouse

    Seidelmann, P.K.; Archinal, B.A.; A'Hearn, M.F.; Conrad, A.; Consolmagno, G.J.; Hestroffer, D.; Hilton, J.L.; Krasinsky, G.A.; Neumann, G.; Oberst, J.; Stooke, P.; Tedesco, E.F.; Tholen, D.J.; Thomas, P.C.; Williams, I.P.

    2007-01-01

    Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report introduces improved values for the pole and rotation rate of Pluto, Charon, and Phoebe, the pole of Jupiter, the sizes and shapes of Saturn satellites and Charon, and the poles, rotation rates, and sizes of some minor planets and comets. A high precision realization for the pole and rotation rate of the Moon is provided. The expression for the Sun's rotation has been changed to be consistent with the planets and to account for light travel time ?? 2007 Springer Science+Business Media B.V.

  18. Turbine Engine Disk Rotor Health Monitoring Assessment Using Spin Tests Data

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark; Baalini, George; Bodis, James R.

    2012-01-01

    Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center s Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.

  19. Turbine engine disk rotor health monitoring assessment using spin tests data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark; Baaklini, George; Bodis, James R.

    2012-04-01

    Detecting rotating engine component malfunctions and structural anomalies is increasingly becoming a crucial key feature that will help boost safety and lower maintenance cost. However, achievement of such technology, which can be referred to as a health monitoring remains somewhat challenging to implement. This is mostly due to presence of scattered loading conditions, crack sizes, component geometry and material properties that hinders the simplicity of imposing such application. Different approaches are being considered to assist in developing other means of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic events occur. These methods extend further to assess material discontinuities and other defects that have matured to the level where a failure is very likely. This paper is focused on presenting data obtained from spin test experiments of a turbine engine like rotor disk and their correlation to the development of a structural health monitoring and fault detection system. The data collected includes blade tip clearance, blade tip timing measurements and shaft displacements. The experimental results are collected at rotational speeds up to 10,000 Rpm and tests are conducted at the NASA Glenn Research Center's Rotordynamics Laboratory via a high precision spin system. Additionally, this study offers a closer glance at a selective online evaluation of a rotating disk using advanced capacitive, microwave and eddy current sensor technology.

  20. Dynamic Control of Aerodynamic Instabilities in Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Greitzer, E. M.; Epstein, A. H.; Guenette, G. R.; Gysling, D. L.; Haynes, J.; Hendricks, G. J.; Paduano, J.; Simon, J. S.; Valavani, L.

    1992-01-01

    This lecture discusses the use of closed loop control at the component level to enhance the performance of gas turbine engines. The general theme is the suppression of flow instabilities (rotating stall and surge) through use of feedback, either actively or by means of the aeromechanical coupling provided by tailored structures. The basic concepts that underlie active control of turbomachinery instability, and their experimental demonstration, are first described for a centrifugal compressor. It is shown that the mechanism for stabilization is associated with damping of unsteady perturbations in the compression system, and the steady-state performance can thus remain virtually unaltered. Control of instability using a tailored structure is then discussed, along with experimental results illustrating the flow range extension achievable using this technique. A considerably more complex problem is presented by active control or rotating stall where the multi-dimensional features mean that distributed sensing and actuation are required. In addition, there are basic questions concerning unsteady fluid mechanics; these imply the need to resolve issues connected with identification of suitable signals as well as with definition of appropriate wave launchers for implementing the feedback. These issues are discussed and the results of initial successful demonstrations of active control of rotating stall in a single-stage and a three-stage axial compressor are presented. The lecture concludes with suggestions for future research on dynamic control of gas turbine engines.

  1. Effect of forearm axially rotated posture on shoulder load and shoulder abduction / flexion angles in one-armed arrest of forward falls.

    PubMed

    Hsu, Hsiu-Hao; Chou, You-Li; Lou, Shu-Zon; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2011-03-01

    Falling onto the outstretched hand is the most common cause of upper extremity injury. This study develops an experimental model for evaluating the shoulder load during a simulated forward fall onto one hand with three different forearm axially rotated postures, and examines the shoulder abduction angle and shoulder flexion angle in each case. Fifteen healthy young male subjects with an average age of 23.7 years performed a series of one-armed arrests from a height of 5 cm onto a force plate. The kinematics and kinetics of the upper extremity were analyzed for three different forearm postures, namely 45° externally rotated, non-rotated, and 45° internally rotated. The shoulder joint load and shoulder abduction/flexion angles were significantly dependent on the rotational posture of the forearm. The shoulder medio-lateral shear forces in the externally rotated group were found to be 1.61 and 2.94 times higher than those in the non-rotated and internally rotated groups, respectively. The shoulder flexion angles in the externally rotated, non-rotated and internally rotated groups were 0.6°, 8.0° and 19.2°, respectively, while the corresponding shoulder abduction angles were 6.1°, 34.1° and 46.3°, respectively. In falls onto the outstretched hand, an externally rotated forearm posture should be avoided in order to reduce the medio-lateral shear force acting on the shoulder joint. In falls of this type, a 45° internally rotated forearm posture represents the most effective fall strategy in terms of minimizing the risk of upper extremity injuries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Relationship of ABO Blood Type on Rotator Cuff Tears.

    PubMed

    Lee, Doo-Hyung; Lee, Han-Dong; Yoon, Seung-Hyun

    2015-11-01

    ABO blood groups are associated with various diseases. A relationship between Achilles tendon ruptures and blood type O has been reported, although its pathogenesis was not clear. To the best of our knowledge, there is no published study describing the relationship between blood type and rotator cuff tendon tears. To determine whether patients with rotator cuff tear had a greater prevalence of blood type O than those without rotator cuff tear. A cross-sectional study. Research hospital outpatient evaluation. A total of 316 subjects with shoulder pain were included and divided into "tear" and "no-tear" groups according to ultrasonographic examination. ABO blood group, gender, dominant arm, smoking history, trauma history, and age were compared between the 2 groups and the odds ratios of these factors were evaluated by logistic regression. The tear group (38.6%) had more instances of blood type O than the healthy population (27.2%; P = .002). The adjusted odds ratio for rotator cuff tear for blood type O to non-O was 2.38 (95% confidence interval 1.28-4.42). The odds ratios for rotator cuff tears for smoking, major trauma history, minor trauma history, and age were 2.08, 3.11, 2.29, and 1.06, respectively. Patients with rotator cuff tears were more likely to have blood type O. The odds ratios of factors for rotator cuff tears were high in the following order: major trauma history, blood type O, minor trauma history, and age. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  4. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  5. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  6. Acromion Index in Korean Population and Its Relationship with Rotator Cuff Tears.

    PubMed

    Kum, Dong Ho; Kim, Jun Ho; Park, Keun Min; Lee, Eun Su; Park, Yong Bok; Yoo, Jae Chul

    2017-06-01

    Among the many causes of rotator cuff tears, scapular morphology is associated with the accelerating degenerative process of the rotator cuff. Acromion index (AI) was previously introduced and compared in two populations. We enrolled 100 Korean patients diagnosed with full-thickness rotator cuff tears by magnetic resonance imaging and intraoperative arthroscopic findings between January and December 2013. Another 100 Korean patients with an intact rotator cuff tendon identified on magnetic resonance imaging and other shoulder diseases, such as frozen shoulder and instability, were enrolled as controls. We retrospectively compared these 100 rotator cuff tear patients (mean age, 63 years) and 100 controls (mean age, 51 years) in this study. Two independent orthopedic surgeons assessed the AI on radiographs. We performed an interobserver reliability test of the AI assessment, and then compared the AI between two groups. The measurement of the AI showed excellent reliability (intraclass correlation coefficient, 0.82). The mean AI in the rotator cuff tear group was 0.68 and it was significantly different between groups ( p <0.001, 95% confidence interval). The AI was not related to tear size. Our study showed that the AI was an effective predictive factor for rotator cuff tears in a Korean population.

  7. The effect of different screw-rod design on the anti-rotational torque: a biomechanical comparison of three conventional screw-rod constructs.

    PubMed

    Huang, Zifang; Wang, Chongwen; Fan, Hengwei; Sui, Wenyuan; Li, Xueshi; Wang, Qifei; Yang, Junlin

    2017-07-28

    Screw-rod constructs have been widely used to correct spinal deformities, but the effects of different screw-rod systems on anti-rotational torque have not been determined. This study aimed to analyze the biomechanical effect of different rod-screw constructs on anti-rotational torque. Three conventional spinal screw-rod systems (Legacy, RF-F-10 and USSII) were used to test the anti-rotational torque in the material test machine. ANOVA was performed to evaluate the anti-rotational capacity of different pedicle screws-rod constructs. The anti-rotational torque of Legacy group, RF-F-10 group and USSII group were 12.3 ± 1.9 Nm, 6.8 ± 0.4 Nm, and 3.9 ± 0.8 Nm, with a P value lower than 0.05. This results indicated that the Legacy screws-rod construct could provide a highest anti-rotation capacity, which is 68% and 210% greater than RF-F-10 screw-rod construct and USSII screw-rod respectively. The anti-rotational torque may be mainly affected by screw cap and groove design. Our result showed the anti-rotational torque are: Legacy system > RF-F-10 system > USSII system, suggesting that appropriate rod-screw constructs selection in surgery may be vital for anti-rotational torque improvement and preventing derotation correction loss.

  8. A novel online didactic curriculum helps improve knowledge acquisition among non-emergency medicine rotating residents.

    PubMed

    Branzetti, Jeremy B; Aldeen, Amer Z; Foster, Andrew W; Courtney, D Mark

    2011-01-01

    Rotating residents represent a significant proportion of housestaff in academic emergency departments (EDs), yet they rarely receive targeted didactic education during their emergency medicine (EM) rotations. The goals of this study were: 1) to determine the effectiveness of an online didactic curriculum in improving EM knowledge among rotating residents and 2) to assess rotating resident satisfaction with this curriculum. The authors created an online lecture series of six EM subject areas targeted to rotating residents called the Northwestern University Rotating Resident Curriculum (NURRC). All rotating residents at the study site were eligible, written consent was obtained, and the study was approved by the institutional review board. Consenting participants were pretested with a 42-question multiple-choice examination and then randomized to two groups: one with access to the NURRC during the first 2 weeks of the rotation (experimental) and one without (control). Halfway through the rotation, all participants were post-tested with a different multiple-choice examination, and the controls were then granted NURRC access. The primary outcome was the difference between pretest and posttest scores (score delta). The t-test was used to compare mean scores, and a linear regression model was used to determine the association of NURRC access on score delta after adjustment for pretest type and resident type. A postintervention survey was administered at the end of the rotation to assess satisfaction with the NURRC and collect suggestions for improvement. Fifty-four rotating residents were enrolled: 29 in the experimental group and 25 in the control group. There was no significant difference in pretest scores between the two groups. Mean score delta was 17.3% in the experimental group and 1.6% in the control group, an absolute difference of 15.7% (95% confidence interval [CI]=10% to 22%). After adjustment for resident type and pretest type, the only variable positively associated with the primary outcome was NURRC access. Third-year and preliminary-year internal medicine (IM) residents demonstrated the greatest absolute improvement in score delta when granted NURRC access. Eighty percent of the participants responded to the satisfaction survey. Over 80% of the survey respondents approved of each component lecture and of the NURRC overall. After exposure to an online didactic curriculum, rotating residents demonstrated a significant increase in EM knowledge and reported a high level of satisfaction with the didactic program. © 2010 by the Society for Academic Emergency Medicine.

  9. Engineer. The Professional Bulletin of Army Engineers. Volume 39. January-April 2009

    DTIC Science & Technology

    2009-04-01

    rotation. You’ll reach tracer burnout , and it could get you or someone else hurt. Same theory applies back in the rear. You’ve got to have a wide...branches chosen by the ROTC cadets (“be like me” syndrome ). Colonel Dombi has requested feedback from this summit. Way Ahead Changing AR 600-3, The Army

  10. Arthroscopic evaluation of patellofemoral congruence with rotation of the knee joint and electrical stimulation of the quadriceps.

    PubMed

    Suganuma, Jun; Mochizuki, Ryuta; Inoue, Yutaka; Kitamura, Kazuya; Honda, Akio

    2014-02-01

    The aim of this study was to investigate the pathoanatomic features of patellar instability by arthroscopically comparing patellofemoral congruence with rotation of the knee joint and/or electrical stimulation of the quadriceps (ESQ) between knees with and without patellar instability. We retrospectively examined 83 knee joints in 83 patients. The joints were classified into 2 groups: group 1 comprised those without a history of patellar dislocation and included 59 patients (25 male and 34 female patients), and group 2 comprised those with a history of patellar dislocation and included 24 patients (9 male and 15 female patients). Evaluation of patellofemoral congruence at 30° of flexion of the knee joint was conducted based on an axial radiograph and arthroscopic findings. The congruence angle was measured on the radiograph. The position of the patellar central ridge (PPCR) on the trochlear groove during arthroscopy was measured using still video frames of knee joints with rotational stress and/or ESQ. Statistical differences in the measurements between the 2 groups were assessed with the unpaired t test and the area under the receiver operating characteristic curve of each measurement. There were significant differences (P < .0001) between the 2 groups in the congruence angle on radiographs and PPCR in knee joints with rotational stress and/or ESQ on arthroscopy. External and internal rotation of the knee joint caused lateral and medial patellar shift, respectively, in both groups, but the shift was significantly larger in group 2. ESQ in addition to rotation caused further patellar shift in group 2 but reduced patellar shift in group 1. Measurement of PPCR with external rotation of the knee and ESQ was the only method to show an area under the receiver operating characteristic curve of 1. There were significant differences in the effects of rotation of the knee joint and/or ESQ on patellofemoral congruence at 30° of flexion of the knee joint on arthroscopy between knees with and without patellar instability. Level III, diagnostic study of nonconsecutive patients. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Structural Life and Reliability Metrics: Benchmarking and Verification of Probabilistic Life Prediction Codes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Soditus, Sherry; Hendricks, Robert C.; Zaretsky, Erwin V.

    2002-01-01

    Over the past two decades there has been considerable effort by NASA Glenn and others to develop probabilistic codes to predict with reasonable engineering certainty the life and reliability of critical components in rotating machinery and, more specifically, in the rotating sections of airbreathing and rocket engines. These codes have, to a very limited extent, been verified with relatively small bench rig type specimens under uniaxial loading. Because of the small and very narrow database the acceptance of these codes within the aerospace community has been limited. An alternate approach to generating statistically significant data under complex loading and environments simulating aircraft and rocket engine conditions is to obtain, catalog and statistically analyze actual field data. End users of the engines, such as commercial airlines and the military, record and store operational and maintenance information. This presentation describes a cooperative program between the NASA GRC, United Airlines, USAF Wright Laboratory, U.S. Army Research Laboratory and Australian Aeronautical & Maritime Research Laboratory to obtain and analyze these airline data for selected components such as blades, disks and combustors. These airline data will be used to benchmark and compare existing life prediction codes.

  12. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: a randomized, prospective clinical trial.

    PubMed

    Verhaegen, Filip; Brys, Peter; Debeer, Philippe

    2016-02-01

    Arthroscopic needling of a rotator cuff calcification is a highly reliable operation in terms of pain relief and return of function. However, during the needling process, a cuff defect is created. Little is known about the evolution of this defect. We conducted a prospective, randomized controlled clinical trial to investigate the evolution of the aforementioned defect and the role of platelet-rich plasma (PRP) augmentation in this healing process. Patients were randomized to either group 1 (PRP, n = 20) or group 2 (no PRP [control group], n = 20). Patients in group 1 received a perioperative PRP infiltration at the rotator cuff defect, whereas the control group did not. Patients were assessed clinically preoperatively and postoperatively at 6 weeks, 3 and 6 months, and 1 year. The Constant score, Simple Shoulder Test, and QuickDASH (short version of Disabilities of the Arm, Shoulder and Hand questionnaire) were used as outcome measures. The evolution of the cuff defect was evaluated on sonography at 3 and 6 months and with magnetic resonance imaging after 1 year. All patients improved significantly after surgery (P < .05). There was no difference in clinical outcome or rotator cuff healing between groups. We observed a high rate of persistent rotator cuff defects after 1 year in both groups. The presence of residual cuff defects did not influence the clinical outcome. Arthroscopic needling is an operation with a predictive, good clinical outcome. We found a high rate of persistent rotator cuff defects after 1 year. This study could not identify any beneficial effect of the addition of PRP on rotator cuff healing. Level II; Randomized Controlled Trial; Treatment Study. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Glucocorticoids induce specific ion-channel-mediated toxicity in human rotator cuff tendon: a mechanism underpinning the ultimately deleterious effect of steroid injection in tendinopathy?

    PubMed

    Dean, Benjamin John Floyd; Franklin, Sarah Louise; Murphy, Richard J; Javaid, Muhammad K; Carr, Andrew Jonathan

    2014-12-01

    Glucocorticoid injection (GCI) and surgical rotator cuff repair are two widely used treatments for rotator cuff tendinopathy. Little is known about the way in which medical and surgical treatments affect the human rotator cuff tendon in vivo. We assessed the histological and immunohistochemical effects of these common treatments on the rotator cuff tendon. Controlled laboratory study. Supraspinatus tendon biopsies were taken before and after treatment from 12 patients undergoing GCI and 8 patients undergoing surgical rotator cuff repair. All patients were symptomatic and none of the patients undergoing local GCI had full thickness tears of the rotator cuff. The tendon tissue was then analysed using histological techniques and immunohistochemistry. There was a significant increase in nuclei count and vascularity after rotator cuff repair and not after GCI (both p=0.008). Hypoxia inducible factor 1α (HIF-1α) and cell proliferation were only increased after rotator cuff repair (both p=0.03) and not GCI. The ionotropic N-methyl-d-aspartate receptor 1 (NMDAR1) glutamate receptor was only increased after GCI and not rotator cuff repair (p=0.016). An increase in glutamate was seen in both groups following treatment (both p=0.04), while an increase in the receptor metabotropic glutamate receptor 7 (mGluR7) was only seen after rotator cuff repair (p=0.016). The increases in cell proliferation, vascularity and HIF-1α after surgical rotator cuff repair appear consistent with a proliferative healing response, and these features are not seen after GCI. The increase in the glutamate receptor NMDAR1 after GCI raises concerns about the potential excitotoxic tendon damage that may result from this common treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. The impact of direct vertebral rotation (DVR) on radiographic outcome in surgical correction of idiopathic scoliosis.

    PubMed

    Urbanski, Wiktor; Wolanczyk, Michal J; Jurasz, Wojciech; Kulej, Miroslaw; Morasiewicz, Piotr; Dragan, Szymon Lukasz; Sasiadek, Marek; Dragan, Szymon Feliks

    2017-07-01

    Recent developments of spinal instruments allow to address nearly all components of idiopathic scoliosis. Direct vertebral rotation (DVR) maneuver was introduced to correct apical axial vertebral rotation. It is however still not well established how efficiently DVR affects results of scoliosis correction. The object of the study was to evaluate en bloc apical vertebral rotation (DVR) and its impact on coronal and sagittal correction of the spine in patients undergoing surgical scoliosis treatment. Thirty-six consecutive patients who underwent posterior spinal fusion with pedicle screws only constructs for idiopathic scoliosis. Fifteen patients (20 curves) were corrected by rod derotation only and 21 patients (26 curves) had both rod derotation and DVR. Curve measurements were performed on x-rays obtained before and postoperatively-coronal curves, kyphosis (T2-T12, T5-T12). Spine flexibility was assessed on prone bending x-rays. Apical axial rotation was determined on CT scans obtained intraoperatively and postoperatively. Rotation angle (RAsag) was measured according to Aaro and Dahlborn. We observed reduction of RAsag in all patients; however, in DVR group, decrease was greater, by 31.8% comparing to non-DVR group, by 8.6% (p = 0.0003). Mean coronal correction in DVR group was 68.8% and in rod derotation group without DVR 55% (p = 0.002). No significant correlation was found between degree of derotation obtained and coronal correction. In DVR group T2-T12 kyphosis has increased in 28 (65%) patients whereas in non-DVR group in 31 (69%) cases. Mean value of T2-T12 kyphosis growth was 16.7% in DVR and 22.1% in non-DVR group. These differences however did not occur statistically significant. Direct vertebral rotation (DVR) maneuver reduces significantly apical rotation of the spine, enhances ability of coronal correction, and it does not reduce thoracic kyphosis.

  15. Intelligent Engine Systems: Bearing System

    NASA Technical Reports Server (NTRS)

    Singh, Arnant P.

    2008-01-01

    The overall requirements necessary for sensing bearing distress and the related criteria to select a particular rotating sensor were established during the phase I. The current phase II efforts performed studies to evaluate the Robustness and Durability Enhancement of the rotating sensors, and to design, and develop the Built-in Telemetry System concepts for an aircraft engine differential sump. A generic test vehicle that can test the proposed bearing diagnostic system was designed, developed, and built. The Timken Company, who also assisted with testing the GE concept of using rotating sensors for the differential bearing diagnostics during previous phase, was selected as a subcontractor to assist General Electric (GE) for the design, and procurement of the test vehicle. A purchase order was prepared to define the different sub-tasks, and deliverables for this task. The University of Akron was selected to provide the necessary support for installing, and integrating the test vehicle with their newly designed test facility capable of simulating the operating environment for the planned testing. The planned testing with good and damaged bearings will be on hold pending further continuation of this effort during next phase.

  16. Detection, discrimination, and real-time tracking of cracks in rotating disks

    NASA Astrophysics Data System (ADS)

    Haase, Wayne C.; Drumm, Michael J.

    2002-06-01

    The purpose of this effort was to develop a system* to detect, discriminate and track fatigue cracks in rotating disks. Aimed primarily at jet engines in flight applications, the system also has value for detecting cracks in a spin pit during low cycle fatigue testing, and for monitoring the health of steam turbines and land-based gas turbine engines for maintenance purposes. The results of this effort produced: a physics-based model that describes the change in the center of mass of a rotating disk using damping ratio, initial unbalance and crack size as parameters; the development of a data acquisition and analysis system that can detect and discriminate a crack using a single cycle of data; and initial validation of the model through testing in a spin pit. The development of the physics-based model also pointed to the most likely regimes for crack detection; identified specific powers of (omega) search for in specific regimes; dictated a particular type of data acquisition for crack discrimination; and demonstrated a need for a higher signal-to-noise ratio in the measurement of the basic vibration signal.

  17. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  18. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  19. Subscapularis slide correction of the shoulder internal rotation contracture after brachial plexus birth injury: technique and outcomes.

    PubMed

    Immerman, Igor; Valencia, Herbert; DiTaranto, Patricia; DelSole, Edward M; Glait, Sergio; Price, Andrew E; Grossman, John A I

    2013-03-01

    Internal rotation contracture is the most common shoulder deformity in patients with brachial plexus birth injury. The purpose of this investigation is to describe the indications, technique, and results of the subscapularis slide procedure. The technique involves the release of the subscapularis muscle origin off the scapula, with preservation of anterior shoulder structures. A standard postoperative protocol is used in all patients and includes a modified shoulder spica with the shoulder held in 60 degrees of external rotation and 30 degrees of abduction, aggressive occupational and physical therapy, and subsequent shoulder manipulation under anesthesia with botulinum toxin injections as needed. Seventy-one patients at 2 institutions treated with subscapularis slide between 1997 and 2010, with minimum follow-up of 39.2 months, were identified. Patients were divided into 5 groups based on the index procedure performed: subscapularis slide alone (group 1); subscapularis slide with a simultaneous microsurgical reconstruction (group 2); primary microsurgical brachial plexus reconstruction followed later by a subscapularis slide (group 3); primary microsurgical brachial plexus reconstruction followed later by a subscapularis slide combined with tendon transfers for shoulder external rotation (group 4); and subscapularis slide with simultaneous tendon transfers, with no prior brachial plexus surgery (group 5). Full passive external rotation equivalent to the contralateral side was achieved in the operating room in all cases. No cases resulted in anterior instability or internal rotation deficit. Internal rotation contracture of the shoulder after brachial plexus birth injury can be effectively managed with the technique of subscapularis slide.

  20. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1995-04-11

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk. 6 figures.

  1. Visualization of cavitation phenomena in a Diesel engine fuel injection nozzle by neutron radiography

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Kadowaki, T.; Kawabata, Y.; Lim, I. C.; Sim, C. M.

    2005-04-01

    Visualization of cavitation phenomena in a Diesel engine fuel injection nozzle was carried out by using neutron radiography system at KUR in Research Reactor Institute in Kyoto University and at HANARO in Korea Atomic Energy Research Institute. A neutron chopper was synchronized to the engine rotation for high shutter speed exposures. A multi-exposure method was applied to obtain a clear image as an ensemble average of the synchronized images. Some images were successfully obtained and suggested new understanding of the cavitation phenomena in a Diesel engine fuel injection nozzle.

  2. Modulation of high frequency noise by engine tones of small boats.

    PubMed

    Pollara, Alexander; Sutin, Alexander; Salloum, Hady

    2017-07-01

    The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.

  3. Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    NASA Technical Reports Server (NTRS)

    Wilbers, L. G.; Redden, T. K.

    1981-01-01

    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily.

  4. Musculoskeletal disorder risk as a function of vehicle rotation angle during assembly tasks.

    PubMed

    Ferguson, Sue A; Marras, Williams S; Gary Allread, W; Knapik, Gregory G; Vandlen, Kimberly A; Splittstoesser, Riley E; Yang, Gang

    2011-07-01

    Musculoskeletal disorders (MSD) are costly and common problem in automotive manufacturing. The research goal was to quantify MSD exposure as a function of vehicle rotation angle and region during assembly tasks. The study was conducted at the Center for Occupational Health in Automotive Manufacturing (COHAM) Laboratory. Twelve subjects participated in the study. The vehicle was divided into seven regions, (3 interior, 2 underbody and 2 engine regions) representative of work areas during assembly. Three vehicle rotation angles were examined for each region. The standard horizontal assembly condition (0° rotation) was the reference frame. Exposure was assessed on the spine loads and posture, shoulder posture and muscle activity, neck posture and muscle activity as well as wrist posture. In all regions, rotating the vehicle reduced musculoskeletal exposure. In five of the seven regions 45° of vehicle rotation represented the position that reduced MSD exposure most. Two of the seven regions indicated 90° of vehicle rotation had the greatest impact for reducing MSD exposure. This study demonstrated that vehicle rotation shows promise for reducing exposure to risk factors for MDS during automobile assembly tasks. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Tibial rotation under combined in vivo loading after single- and double-bundle anterior cruciate ligament reconstruction.

    PubMed

    Tsarouhas, Alexander; Iosifidis, Michael; Spyropoulos, Giannis; Kotzamitelos, Dimitrios; Tsatalas, Themistoklis; Giakas, Giannis

    2011-12-01

    To evaluate in vivo the differences in tibial rotation between single- and double-bundle anterior cruciate ligament (ACL)-reconstructed knees under combined loading conditions. An 8-camera optoelectronic system and a force plate were used to collect kinematic and kinetic data from 14 patients with double-bundle ACL reconstruction, 14 patients with single-bundle reconstruction, 12 ACL-deficient subjects, and 12 healthy control individuals while performing 2 tasks. The first included walking, 60° pivoting, and stair ascending, and the second included stair descending, 60° pivoting, and walking. The 2 variables evaluated were the maximum range of internal-external tibial rotation and the maximum knee rotational moment. Tibial rotation angles were not significantly different across the 4 groups (P = .331 and P = .851, respectively) or when side-to-side differences were compared within groups (P = .216 and P = .371, respectively) for the ascending and descending maneuvers, nor were rotational moments among the 4 groups (P = .418 and P = .290, respectively). Similarly, for the descending maneuver, the rotational moments were not significantly different between sides (P = .192). However, for the ascending maneuver, rotational moments of the affected sides were significantly lower by 20.5% and 18.7% compared with their intact counterparts in the single-bundle (P = .015) and double-bundle (P = .05) groups, respectively. High-intensity activities combining stair ascending or descending with pivoting produce similar tibial rotation in single- and double-bundle ACL-reconstructed patients. During such maneuvers, the reconstructed knee may be subjected to significantly lower rotational loads compared with the intact knee. Level III, retrospective comparative study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. [Randomized controlled trials of needle knife therapy combined with rotation traction manipulation for the treatment of cervical spondylotic radiculopathy].

    PubMed

    Zhou, Zhong-Liang; Su, Guo-Hong; Zheng, Bao-Zhu; Zuo, Yu-Zhu; Wei, Fu-Liang

    2016-09-25

    To compare the therapeutic effects between needle knife therapy combined with rotation traction manipulation and rotation traction manipulation for the treatment of cervical spondylotic radiculopathy. From November 2013 to June 2015, 80 patients with cervical spondylotic radiculopathy meeting the inclusion criteria were divided into two groups randomly:the control group in which 39 patients were treated with rotation traction manipulation, and the treatment group in which 41 patients were treated with needle knife combined with rotation traction manipulation. The patients in the control group were treated once dayly for 2 weeks, which was 1 course. The patients in the treatment group were treated with needle knife firstly once a week for 2 weeks, which was 1 course;then were treated with the same methods as the patients in the control group. The symptoms, signs score and the therapeutic effects of the two groups before and after treatment were observed. After treatment, symptoms and signs scores declined in both groups( P <0.05). The results of the treatment group were better than effects in the control group( P <0.05). In the treatment group, 19 patients got an excellent result, 16 good, 5 fair and 1 bad;while in the control group, 10 patients got an excellent result, 10 good, 16 fair and 3 bad;the results of the treatment group were better than the results of the control group( P <0.01). Needle knife combined with rotation traction manipulation is an effective method for the treatment of cervical spondylotic radiculopathy, which is better than using manipulation method simply. Needle knife therapy has follow advantages:improving local blood circulation, reducing local content of pain substance, increasing production of substances resisting pain, opening channels and collaterals, and make body reaching new static and dynamic balance on the new foundation.

  7. The Solar Rotation in the 1930s from the Sunspot and Flocculi Catalogs of the Ebro Observatory

    NASA Astrophysics Data System (ADS)

    de Paula, V.; Curto, J. J.; Casas, R.

    2016-10-01

    The tables of sunspot and flocculi heliographic positions included in the catalogs published by the Ebro Observatory in the 1930s have recently been recovered and converted into digital format by using optical character recognition (OCR) technology. We here analyzed these data by computing the angular velocity of several sunspot and flocculi groups. A difference was found in the rotational velocity for sunspots and flocculi groups at high latitudes, and we also detected an asymmetry between the northern and southern hemispheres, which is especially marked for the flocculi groups. The results were then fitted with a differential-rotation law [ω=a+b sin2 B] to compare the data obtained with the results published by other authors. A dependence on the latitude that is consistent with former studies was found. Finally, we studied the possible relationship between the sunspot/flocculi group areas and their corresponding angular velocity. There are strong indications that the rotational velocity of a sunspot/flocculi group is reduced (in relation to the differential rotation law) when its maximum area is larger.

  8. Experimental thermodynamics of single molecular motor

    PubMed Central

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor. PMID:27493546

  9. A quality evaluation of stabilization of rotation frequency of gas-diesel engines when using an adaptive automatic control system

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Efremov, A. A.

    2017-02-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on the condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of a gas-diesel engine may be reduced 25-30 times in case of optimal settings of the controller in the whole power range. The results of modelling showing a considerable quality improvement of transient processes in the investigated system during a sharp change of loading are presented in this article.

  10. Fuel savings potential of the NASA Advanced Turboprop Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1984-01-01

    The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less

  11. Delayed early passive motion is harmless to shoulder rotator cuff healing in a rabbit model.

    PubMed

    Zhang, Shurong; Li, Hong; Tao, Hongyue; Li, Hongyun; Cho, Samson; Hua, Yinghui; Chen, Jiwu; Chen, Shiyi; Li, Yunxia

    2013-08-01

    Postoperative passive motion is the most widely accepted rehabilitation protocol after rotator cuff repair; however, a rotator cuff retear remains a frequent surgical complication. Clinical outcomes indicate that early passive motion is harmless to rotator cuff healing, but no laboratory evidence supports this proposition. (1) Immediate postoperative immobilization improves rotator cuff healing in rabbits. (2) Early passive motion after short-term immobilization does not harm rotator cuff healing in rabbits. Controlled laboratory study. An injury to the supraspinatus tendon was created and repaired in 90 New Zealand White rabbits, after which they were randomly separated into 3 groups: (1) nonimmobilization (NI; n = 30), (2) continuous immobilization (IM; n = 30), and (3) immobilization with early passive motion (IP; n = 30). At 3, 6, and 12 weeks postoperatively, 5 rabbits from each group were sacrificed for histological evaluation, biomechanical testing, and magnetic resonance imaging. The histological study demonstrated better postoperative healing in the IM and IP groups, with clusters of chondrocytes accumulated at the tendon-bone junction. Magnetic resonance imaging illustrated that the tendon-bone junction was intact in the IM and IP groups. The magnetic resonance quantification analysis showed that the signal-to-noise quotient (SNQ) of the NI group was not significantly higher than that of the immobilization groups at 3 weeks (P = .232) or 6 weeks (P = .117), but it was significantly different at 12 weeks (NI vs IM, P = .006; NI vs IP, P = .009). At 12 weeks, the failure load was significantly higher in the IM and IP groups than in the NI group (NI vs IM, P = .002; NI vs IP, P = .002), but no difference was found between the IM and IP groups (P = .599). Immediate postoperative immobilization led to better tendon-bone healing than immediate postoperative mobilization, and under immobilization, early passive motion was harmless to tendon-bone healing in this study. The results have an implication in supporting the rehabilitation protocol of early passive motion after rotator cuff repair.

  12. Impact of Platelet-Rich Plasma on Arthroscopic Repair of Small- to Medium-Sized Rotator Cuff Tears: A Randomized Controlled Trial.

    PubMed

    Holtby, Richard; Christakis, Monique; Maman, Eran; MacDermid, Joy C; Dwyer, Tim; Athwal, George S; Faber, Kenneth; Theodoropoulos, John; Woodhouse, Linda J; Razmjou, Helen

    2016-09-01

    Increased interest in using platelet-rich plasma (PRP) as an augment to rotator cuff repair warrants further investigation, particularly in smaller rotator cuff tears. To examine the effectiveness of PRP application in improving perioperative pain and function and promoting healing at 6 months after arthroscopic repair of small- or medium-sized rotator cuff tears. Randomized controlled trial; Level of evidence, 1. This was a double-blinded randomized controlled trial of patients undergoing arthroscopic repair of partial- or full-thickness rotator cuff tears of up to 3 cm who were observed for 6 months. Patients were randomized to either repair and PRP application (study group) or repair only (control group) groups. The patient-oriented outcome measures utilized were the visual analog scale (VAS), the Short Western Ontario Rotator Cuff Index (ShortWORC), the American Shoulder and Elbow Surgeons (ASES) form, and the Constant-Murley Score (CMS). Range of motion (ROM) and inflammatory and coagulation markers were measured before and after surgery. Magnetic resonance imaging was used at 6 months to assess retear and fatty infiltration rate. Eighty-two patients (41 males) with a mean age of 59 ± 8 years were enrolled; 41 patients were included in each group. Both the PRP and control groups showed a significant improvement in their pain level based on the VAS within the first 30 days (P < .0001), with the PRP group reporting less pain than the control group (P = .012), which was clinically significantly different from days 8 through 11. The PRP group reported taking less painkillers (P = .026) than the control group within the first 30 days. All outcome measure scores and ROM improved significantly after surgery (P < .0001), with no between-group differences. No differences were observed between groups in inflammatory or coagulation marker test results (P > .05), retear (14% vs 18% full retear; P = .44), or fatty infiltration rate (P = .08). The PRP biological augmentation for repair of small- to medium-sized rotator cuff tears has a short-term effect on perioperative pain without any significant impact on patient-oriented outcome measures or structural integrity of the repair compared with control group.

  13. Analysis of experimental shaft seal data for high-performance turbomachines, as for Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.; Burcham, R. E.; Diamond, W. A.

    1985-01-01

    High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-steip and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.

  14. Analysis of experimental shaft seal data for high-performance turbomachines - As for Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.; Burcham, R. E.; Diamond, W. A.

    1987-01-01

    High-pressure, high-temperature seal flow (leakage) data for nonrotating and rotating Raleigh-step and convergent-tapered-bore seals were characterized in terms of a normalized flow coefficient. The data for normalized Rayleigh-step and nonrotating tapered-bore seals were in reasonable agreement with theory, but data for the rotating tapered-bore seals were not. The tapered-bore-seal operational clearances estimated from the flow data were significantly larger than calculated. Although clearances are influenced by wear from conical to cylindrical geometry and errors in clearance corrections, the problem was isolated to the shaft temperature - rotational speed clearance correction. The geometric changes support the use of some conical convergence in any seal. Under these conditions rotation reduced the normalized flow coefficiently by nearly 10 percent.

  15. Shaft flexibility effects on aeroelastic stability of a rotating bladed disk

    NASA Technical Reports Server (NTRS)

    Khader, Naim; Loewy, Robert

    1989-01-01

    A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.

  16. Sex differences on a computerized mental rotation task disappear with computer familiarization.

    PubMed

    Roberts, J E; Bell, M A

    2000-12-01

    The area of cognitive research that has produced the most consistent sex differences is spatial ability. Particularly, men consistently perform better on mental rotation tasks than do women. This study examined the effects of familiarization with a computer on performance of a computerized two-dimensional mental rotation task. Two groups of college students (N=44) performed the rotation task, with one group performing a color-matching task that allowed them to be familiarized with the computer prior to the rotation task. Among the participants who only performed the rotation task, the 11 men performed better than the 11 women. Among the participants who performed the computer familiarization task before the rotation task, how ever, there were no sex differences on the mental rotation task between the 10 men and 12 women. These data indicate that sex differences on this two-dimensional task may reflect familiarization with the computer, not the mental rotation component of the task. Further research with larger samples and increased range of task difficulty is encouraged.

  17. Dual output variable pitch turbofan actuation system

    NASA Technical Reports Server (NTRS)

    Griswold, R. H., Jr.; Broman, C. L. (Inventor)

    1976-01-01

    An improved actuating mechanism was provided for a gas turbine engine incorporating fan blades of the variable pitch variety, the actuator adapted to rotate the individual fan blades within apertures in an associated fan disc. The actuator included means such as a pair of synchronizing ring gears, one on each side of the blade shanks, and adapted to engage pinions disposed thereon. Means were provided to impart rotation to the ring gears in opposite directions to effect rotation of the blade shanks in response to a predetermined input signal. In the event of system failure, a run-away actuator was prevented by an improved braking device which arrests the mechanism.

  18. Rotational spectrum of 1,1-difluoroethane-argon: influence of the interaction with the Ar atom on the V 3 barrier to internal rotation of the methyl group

    NASA Astrophysics Data System (ADS)

    Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-01-01

    The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.

  19. The Evolution of Massive Close Binaries: Anomalous Relationship between Nitrogen Abundances and Rotational Velocities

    NASA Astrophysics Data System (ADS)

    Song, Hanfeng; Wang, Jiangtao; Song, Fen; Zhang, Ruiyu; Li, Zhi; Peng, Weiguo; Zhan, Qiong; Jing, Jianghong

    2018-05-01

    The combined effects of rotation and mass accretion on the evolution of binary systems are investigated in this work. Rotational binaries provide us with a promising channel that could explain the abnormal phenomenon of the nitrogen abundances in Groups 1 and 2 of the Galactic Hunter diagram. Group 1 contains fast-rotating but nitrogen-unenriched stars, whereas Group 2 includes apparently slowly rotating but nitrogen-enhanced stars. The donor star suffers from heavy mass loss that progressively exposes deep layers of nitrogen and corresponding angular momentum loss that can efficiently spin the star down. Rapid-rotation stars without nitrogen enrichment may be related to mass gainers that had accreted little matter from a close companion and then been spun up to rapid rotation. Nitrogen enrichment of mass gainers can be greatly suppressed by low accreting efficiency, which is induced by critical rotation, thermohaline mixing, and the gradient of mean molecular weight. Nitrogen enrichment due to mass accretion appears to be more efficient than that due to rotational mixing, because there exist thermohaline instabilities during Roche lobe overflow. The mixing in the enlarged convective core reduces carbon and nitrogen abundances but increases oxygen abundances in mass gainers. This process significantly triggers CNO cycling but does not support CN cycling. The orbital separation can be widened because of the nonconservative mass transfer, and this process gives rise to weak tidal torques. Therefore, invoking binaries has the potential to simultaneously explain the observed stars in Groups 1 and 2 of the Galactic Hunter diagram.

  20. Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009

    USGS Publications Warehouse

    Archinal, B.A.; A'Hearn, M.F.; Bowell, E.; Conrad, A.; Consolmagno, G.J.; Courtin, R.; Fukushima, T.; Hestroffer, D.; Hilton, J.L.; Krasinsky, G.A.; Neumann, G.; Oberst, J.; Seidelmann, P.K.; Stooke, P.; Tholen, D.J.; Thomas, P.C.; Williams, I.P.

    2010-01-01

    Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.

  1. Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009

    USGS Publications Warehouse

    Archinal, Brent A.; A’Hearn, Michael F.; Bowell, Edward; Conrad, Al; Consolmagno, Guy J.; Courtin, Regis; Fukushima, Toshio; Hestroffer, Daniel; Hilton, James L.; Krasinsky, Georgij A.; Neumann, Gregory; Oberst, Jurgen; Seidelmann, P. Kenneth; Stooke, Philip; Tholen, David J.; Thomas, Peter C.; Williams, Iwan P.

    2010-01-01

    Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.

  2. Effect of length of dental resident clinical rotations on patient behavior.

    PubMed

    Lau, Agnes

    2018-01-01

    The purpose of this retrospective chart review study was to determine if the length of residents' comprehensive dental care rotations in a general practice residency affected late cancellations, broken appointments, completion of treatment, timeliness of recall visits, emergency visits, and the need for redo of restorations and prostheses. Patients who presented for comprehensive care from 2010 to 2013, during which residents had 3- to 4-month dental clinic rotations, comprised Group 1, and patients who presented for comprehensive care from 2013 to 2016, during which residents had 11-month dental clinic rotations, comprised Group 2. Subjects were excluded if they only presented for emergency care, they had only one visit, or their care was delivered in both time periods. There were 105 patients in Group 1 and 55 patients in Group 2. The statistically significant results were that Group 1 patients had more late cancellations and broken appointments and failed to reach recall status more often than Group 2 patients, and that Group 1 patients had fewer emergency visits. Within the limitations of this retrospective study, the results suggest that short block rotations have an adverse effect on resident experience and outcomes of patient care in a hospital outpatient setting. © 2018 Special Care Dentistry Association and Wiley Periodicals, Inc.

  3. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  4. Flow and Heat Transfer in 180-Degree Turn Square Ducts: Effects of Turning Configuration and System Rotation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chyu, Ming-King

    1993-01-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

  5. Gender and the nocebo response following conditioning and expectancy.

    PubMed

    Klosterhalfen, Sibylle; Kellermann, Sandra; Braun, Silke; Kowalski, Axel; Schrauth, Markus; Zipfel, Stephan; Enck, Paul

    2009-04-01

    To investigate the role of Pavlovian conditioning and expectancy and of gender on the nocebo effects. Conditioning experiment: Forty-eight healthy male and female volunteers were investigated for 3 days using a standard rotation procedure. Subjects in the experimental group received a salient oral stimulus prior to rotation; subjects in the control group received the stimulus 12 h after rotations on Days 1 and 2; on Day 3, all subjects received the stimulus prior to rotation. Expectancy experiment: Another 48 healthy subjects were rotated 5 x 1 min once only. All subjects received the same oral stimulus immediately prior to rotation; subjects in the experimental group were told that the symptoms might worsen with the stimulus; controls did not receive additional information. In both experiments, symptom rating (SR) and rotation tolerance (RT) were determined. Conditioning significantly reduced RT (P=.015) and increased SR (P=.024). For both RT and SR, a significant "day x group x gender" effect was found (P=.044; SR: P=.011) indicating that conditioning was more effective in women. Expectancies lowered RT (P=.085) without affecting SR. There was a significant "rotation x gender" interaction on RT (P=.005) indicating that the expectancy was more effective in men. Women responded stronger to conditioning while men responded to expectancies, but to a lesser degree. It needs to be determined whether this is restricted to nausea-specific conditions or can be generalized across clinical and experimental conditions.

  6. Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Bruton, W. M.

    1974-01-01

    A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.

  7. Buffer thermal energy storage for an air Brayton solar engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  8. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  9. Demonstration, Testing and Qualification of a High Temperature, High Speed Magnetic Thrust Bearing

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth

    2005-01-01

    The gas turbine industry has a continued interest in improving engine performance and reducing net operating and maintenance costs. These goals are being realized because of advancements in aeroelasticity, materials, and computational tools such as CFD and engine simulations. These advancements aid in increasing engine thrust-to-weight ratios, specific fuel consumption, pressure ratios, and overall reliability through higher speed, higher temperature, and more efficient engine operation. Currently, rolling element bearing and squeeze film dampers are used to support rotors in gas turbine engines. Present ball bearing configurations are limited in speed (<2 million DN) and temperature (<5OO F) and require both cooling air and an elaborate lubrication system. Also, ball bearings require extensive preventative maintenance in order to assure their safe operation. Since these bearings are at their operational limits, new technologies must be found in order to take advantage of other advances. Magnetic bearings are well suited to operate at extreme temperatures and higher rotational speeds and are a promising solution to the problems that conventional rolling element bearings present. Magnetic bearing technology is being developed worldwide and is considered an enabling technology for new engine designs. Using magnetic bearings, turbine and compressor spools can be radically redesigned to be significantly larger and stiffer with better damping and higher rotational speeds. These advances, a direct result of magnetic bearing technology, will allow significant increases in engine power and efficiency. Also, magnetic bearings allow for real-time, in-situ health monitoring of the system, lower maintenance costs and down time.

  10. A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial Evaluating the Effectiveness of Daily Vibration After Arthroscopic Rotator Cuff Repair.

    PubMed

    Lam, Patrick H; Hansen, Kaitlyn; Keighley, Geffrey; Hackett, Lisa; Murrell, George A C

    2015-11-01

    Rotator cuff repair is a common method to treat rotator cuff tears; however, retear rates remain high. High-frequency, low-magnitude vibration has been demonstrated to promote new bone formation in both animal models and in humans. This type of mechanical stimulation applied postoperatively will enhance tendon-to-bone healing and reduce postoperative retear rates. Randomized controlled trial; Level of evidence, 1. A randomized, double-blinded, placebo-controlled clinical trial was conducted to investigate the effects of 5 minutes of 80-Hz vibration applied daily after arthroscopic rotator cuff repair for 6 months on postoperative rotator cuff healing. The primary outcome was ultrasound-assessed repair integrity at 6 months after repair. Recruited patients were randomized into 2 groups: one group received a vibration device that oscillated at 80 Hz, and the other group received a placebo device. The postoperative retear rates of both groups were similar (9.1% [5/55] in the vibration group, and 9.3% [5/54] in the placebo group) at 6 months as determined by ultrasound imaging. Vibration did provide acute pain relief at 6 weeks after surgery (visual analog scale [VAS] score, 2.24 ± 0.29 cm) compared with placebo (VAS score, 3.67 ± 0.48 cm) (P < .003). Six months after surgery, both groups had significant reductions in pain during overhead activities, at rest, and during sleep and overall shoulder pain compared with before surgery (P < .001). Both the vibration and placebo groups had significant increases in shoulder strength with abduction in the scapular plane, adduction, liftoff, internal rotation, and external rotation 6 months after surgery. Statistical analysis showed that vibration was not a contributing factor at improving these parameters in these periods. High-frequency, low-magnitude vibration did provide acute pain relief on application 6 weeks after arthroscopic rotator cuff repair surgery. However, vibration did not improve tendon-to-bone healing, shoulder range of motion, shoulder strength, or shoulder pain with activities, at rest, and at night when compared with placebo. © 2015 The Author(s).

  11. Arthroscopic Rotator Cuff Repair With Graft Augmentation of 3-Dimensional Biological Collagen for Moderate to Large Tears: A Randomized Controlled Study.

    PubMed

    Cai, You-Zhi; Zhang, Chi; Jin, Ri-Long; Shen, Tong; Gu, Peng-Cheng; Lin, Xiang-Jin; Chen, Jian-De

    2018-05-01

    Due to the highly organized tissue and avascular nature of the rotator cuff, rotator cuff tears have limited ability to heal after the tendon is reinserted directly on the greater tubercle of the humerus. Consequently, retears are among the most common complications after rotator cuff repair. Augmentation of rotator cuff repairs with patches has been an active area of research in recent years to reduce retear rate. Graft augmentation with 3D collagen could prevent retears of the repaired tendon and improve tendon-bone healing in moderate to large rotator cuff tears. Randomized controlled study; Level of evidence, 2. A prospective, randomized controlled study was performed in a consecutive series of 112 patients age 50 to 85 years who underwent rotator cuff repair with the suture-bridge technique (58 patients, control group) or the suture-bridge technique augmented with 3-dimensional (3D) collagen (54 patients, study group). All patients were followed for 28.2 months (range, 24-36 months). Visual analog scale score for pain, University of California Los Angeles (UCLA) shoulder score, and Constant score were determined. Magnetic resonance imaging was performed pre- and postoperatively (at a minimum of 24 months) to evaluate the integrity of the rotator cuff and the retear rate of the repaired tendon. Three patients in each group had biopsies at nearly 24 months after surgery with histological assessment and transmission electron microscopy. A total of 104 patients completed the final follow-up. At the 12-month follow-up, the UCLA shoulder score was 28.1 ± 1.9 in the study group, which was significantly better than that in the control group (26.9 ± 2.1, P = .002). The Constant score was also significantly better in the study group (87.1 ± 3.2) than in the control group (84.9 ± 4.2, P = .003). However, at the final follow-up, no significant differences were found in the UCLA shoulder scores (29.4 ± 1.9 in the control group and 30.0 ± 1.6 in the study group, P = .052) or Constant scores (89.9 ± 3.2 in the control group and 90.8 ± 3.5 in the study group, P = .18). In terms of structural integrity, more patients in the study group had a favorable type I retear grade (18/51) than in the control group (10/53) ( P = .06). The postoperative retear rate was 34.0% in the control group and 13.7% in the study group, thus indicating a significantly lower retear rate in the study group ( P = .02). Biopsy specimens of the tendon-bone interface in 6 patients revealed more bone formation and more aligned fibers with larger diameters in the study group than in the control group. No intraoperative or postoperative complications were noted in either group. 3D collagen augmentation could provide effective treatment of moderate to large rotator cuff tears, providing substantial functional improvement, and could reduce the retear rate. This technique could also promote new tendon-bone formation, thus exerting a prominent effect on tendon-bone healing.

  12. Usefulness of the "grand-piano sign" for determining femoral rotational alignment in total knee arthroplasty.

    PubMed

    Ohmori, Takaaki; Kabata, Tamon; Kajino, Yoshitomo; Taga, Tadashi; Inoue, Daisuke; Yamamoto, Takashi; Takagi, Tomoharu; Yoshitani, Junya; Ueno, Takuro; Tsuchiya, Hiroyuki

    2018-01-01

    The "grand-piano sign" is a well-known indicator of proper rotational femoral alignment. We investigated changes in the shape of the femoral anterior cutting plane by changing the rotational alignment, anterior portion depth, and cutting plane flexion angle. We simulated various cutting planes after cutting the anterior portion of the femur next to the distal femoral osteotomy in 50 patients with varus knee and also a femoral anterior osteotomy with four degree (S group) and seven degree (T group) flexion angles regarding the mechanical axis. We defined the final cutting plane as the farthest position that we could reach without making a notch and the precutting plane as two millimeters anterior from the final cutting plane. The simulated resection plane was rotated to produce external and internal rotation angles of 0°, three degrees, and five degrees relative to the surgical transepicondylar axis (SEA). We investigated medial and lateral portions of the femoral anterior cutting plane length ratio (M/L). When we cut parallel to SEA, M/L was 0.67±0.09 and 0.62±0.12 in the T and S groups, respectively. M/L was approximately 0.8 and 0.5 with five degree internal and external rotations, respectively (P<0.01). On comparing final cutting and precutting planes, there were no significant differences in M/L without five degree external rotation in the T group and no significant difference in any case in the S group (P>0.01). The ideal M/L of the femoral anterior cutting plane was 0.62-0.67. M/L did not change with a precutting plane in almost all rotational patterns. Copyright © 2017. Published by Elsevier B.V.

  13. Differences of RNA Expression in the Tendon According to Anatomic Outcomes in Rotator Cuff Repair.

    PubMed

    Ahn, Jin-Ok; Chung, Jin-Young; Kim, Do Hoon; Im, Wooseok; Kim, Sae Hoon

    2017-11-01

    Despite increased understanding of the pathophysiology of rotator cuff tears and the evolution of rotator cuff repair, healing failure remains a substantial problem. The critical roles played by biological factors have been emphasized, but little is known of the implications of gene expression profile differences at the time of repair. To document the relationship between the perioperative gene expression of healed and unhealed rotator cuffs by RNA microarray analysis. Case-control study; Level of evidence, 3. Superior (supraspinatus involvement) and posterosuperior (supraspinatus and infraspinatus involvement) tears were included in the study. Samples of rotator cuff tendons were prospectively collected during rotator cuff surgery. Three samples were harvested at the tendon ends of tears from the anterior, middle (apex), and posterior parts using an arthroscopic punch. Seven patients with an unhealed rotator cuff were matched one-to-one with patients with a healed rotator cuff by sex, age, tear size, and fatty degeneration of rotator cuff muscles. mRNA microarray analysis was used to identify genetic differences between healed and unhealed rotator cuff tendons. Gene ontology and gene association files were obtained from the Gene Ontology Consortium, and the Gene Ontology system in DAVID was used to identify enhanced biological processes. Microarray analyses identified 262 genes that were differentially expressed by at least 1.5-fold between the healed and unhealed groups. Overall, in the healed group, 103 genes were significantly downregulated, and 159 were significantly upregulated. DAVID Functional Annotation Cluster analysis showed that in the healed group, the genes most upregulated were related to the G protein-coupled receptor protein signaling pathway and to the neurological system. On the other hand, the genes most downregulated were related to immune and inflammatory responses. BMP5 was the gene most upregulated in the healed group, and the majority of downregulated genes were involved in the immune/inflammatory response. The downregulation of inflammatory response genes and the upregulation of cell differentiation genes in torn rotator cuffs at the time of surgery are related to rotator cuff healing. These results provide useful baseline information for future biological studies on rotator cuff healing.

  14. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  15. Method for evaluating the reliability of compressor impeller of turbocharger for vehicle application in plateau area

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Wang, Zengquan; Wang, A.-na; Zhuang, Li; Wang, Jinwei

    2016-10-01

    As turbocharging diesel engines for vehicle application are applied in plateau area, the environmental adaptability of engines has drawn more attention. For the environmental adaptability problem of turbocharging diesel engines for vehicle application, the present studies almost focus on the optimization of performance match between turbocharger and engine, and the reliability problem of turbocharger is almost ignored. The reliability problem of compressor impeller of turbocharger for vehicle application when diesel engines operate in plateau area is studied. Firstly, the rule that the rotational speed of turbocharger changes with the altitude height is presented, and the potential failure modes of compressor impeller are analyzed. Then, the failure behavior models of compressor impeller are built, and the reliability models of compressor impeller operating in plateau area are developed. Finally, the rule that the reliability of compressor impeller changes with the altitude height is studied, the measurements for improving the reliability of the compressor impellers of turbocharger operating in plateau area are given. The results indicate that when the operating speed of diesel engine is certain, the rotational speed of turbocharger increases with the increase of altitude height, and the failure risk of compressor impeller with the failure modes of hub fatigue and blade resonance increases. The reliability of compressor impeller decreases with the increase of altitude height, and it also decreases as the increase of number of the mission profile cycle of engine. The method proposed can not only be used to evaluating the reliability of compressor impeller when diesel engines operate in plateau area but also be applied to direct the structural optimization of compressor impeller.

  16. Methods Developed by the Tools for Engine Diagnostics Task to Monitor and Predict Rotor Damage in Real Time

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa

    2003-01-01

    Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.

  17. On spacecraft maneuvers control subject to propellant engine modes.

    PubMed

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Design type air engine Di Pietro

    NASA Astrophysics Data System (ADS)

    Zwierzchowski, Jaroslaw

    The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  19. Detonation Propagation Through Ducts in a Pulsed Detonation Engine

    DTIC Science & Technology

    2011-03-01

    PDE head. This convention is used based on the fill and purge flow directions, not the detonation direction. Figure 21. Adapter used to rotate ...presented for the development of a continuously operating pulsed detonation engine ( PDE ). A PDE without a high energy ignition system or a... detonation wave. Propagation is left to right in the bottom tube. ..... 19  Figure 15. Research PDE head

  20. Electronic Warfare and Radar Systems Engineering Handbook

    DTIC Science & Technology

    2012-06-01

    Airframe Missile, or Reliability, Availability, and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming...the Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that the radar can also be used to update the aircraft

  1. Electronic Warfare and Radar Systems Engineering Handbook. 4th Edition

    DTIC Science & Technology

    2013-10-01

    and Maintainability R&M Reliability and Maintainability RAT Ram Air Turbine RBOC Rapid Blooming Offboard Chaff RCP or RHCP Right-hand Circular...Doppler shifted return (see Figure 10). Reflections off rotating jet engine compressor blades, aircraft propellers, ram air turbine (RAT...Doppler techniques, in order to precisely predict aircraft ground speed and direction of motion. Wind influences are taken into account, such that

  2. AGARD Engine Disc Cooperative Test Programme, Addendum, (Rapport sur le Programme d’Essais Commun des DIsques Moteur (Supplement)

    DTIC Science & Technology

    1993-04-01

    In-, 0- Sensbtng D recteur Scieintiiquce des Stnictures Chief Enggineer for Snztrur 0I’EMA IBB, Flu~amEueFEZ 29 -me de ]a Diision Lcderc POSifad 801160...lives. industry to enhance the safe-life design of rotating engine components by including The SMP/SC.33 subcommittee appointed a damage tolerant lifing

  3. The role of rotational hand movements and general motor ability in children’s mental rotation performance

    PubMed Central

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0–8.3 and 9.0–10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability. PMID:26236262

  4. The role of rotational hand movements and general motor ability in children's mental rotation performance.

    PubMed

    Jansen, Petra; Kellner, Jan

    2015-01-01

    Mental rotation of visual images of body parts and abstract shapes can be influenced by simultaneous motor activity. Children in particular have a strong coupling between motor and cognitive processes. We investigated the influence of a rotational hand movement performed by rotating a knob on mental rotation performance in primary school-age children (N = 83; age range: 7.0-8.3 and 9.0-10.11 years). In addition, we assessed the role of motor ability in this relationship. Boys in the 7- to 8-year-old group were faster when mentally and manually rotating in the same direction than in the opposite direction. For girls and older children this effect was not found. A positive relationship was found between motor ability and accuracy on the mental rotation task: stronger motor ability related to improved mental rotation performance. In both age groups, children with more advanced motor abilities were more likely to adopt motor processes to solve mental rotation tasks if the mental rotation task was primed by a motor task. Our evidence supports the idea that an overlap between motor and visual cognitive processes in children is influenced by motor ability.

  5. Transient Wave Rotor Performance Investigated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center is investigating the wave rotor for use as a core gas generator in future gas turbine engines. The device, which uses gas-dynamic waves to transfer energy directly to and from the working fluid through which the waves travel, consists of a series of constant-area passages that rotate about an axis. Through rotation, the ends of the passages are periodically exposed to various circumferentially arranged ports that initiate the traveling waves within the passages.

  6. Wide Dynamic Range Array Detector for Absorbance and Rotation Spectrometry.

    DTIC Science & Technology

    1983-07-05

    target tube (SIT) is used. With the SIT, as with the PMT, the sensitivity and spectral response are dependent on the choice of photocathode material ...refer to the same material under the same conditions. Figure 3 is a block diagram of the optical setup as configured for measurement of optical rotation...21401 Research Triangle Park, N.C. 27709 1 Mr. John Boyle Mr. Vincent Schaper Materials Branch DTNSRDC Code 2803 Naval Ship Engineering Center Annapolis

  7. Doppler sonographic screening of the flow in the basilar artery during head rotation reduces the risk for sudden infant death.

    PubMed

    Deeg, K-H; Reisig, A

    2010-10-01

    Position-dependent hypoperfusion of the brain stem may be a risk factor of sudden infant death. From 1998 to 2009 we performed Doppler sonographic flow measurements in the basilar artery of 18 194 newborns, 9322 boys and 8872 girls, in five different positions: the neutral position with the head in the midline and during head rotation to the left and right in a supine or prone position. The peak systolic and the time average flow velocity were measured from the flow profile. The flow velocities during head rotation were converted to % of the flow in the neutral position. A decrease in the velocities during head rotation below 50 % was thought to be abnormal. Biphasic flow, flow oscillating around the zero line or retrograde flow during rotation was considered to be pathological. Head rotations, which had caused abnormal and pathological flow, were avoided. The incidence of SIDS in our study group was evaluated and compared with the incidence in a control group of 3 519 newborns. In 17 929 newborns (98.54 %) the blood flow in the basilar artery was independent of head rotation and body position. In 204 newborns (1.12 %) we found an abnormal decrease under 50 %. Pathological flow alterations could be found in 61 patients (0.33 %). The overall incidence rate of SIDS in the study group was 0.055 ‰ (1:18 194). The incidence rate of SIDS in the control group was 1.14 ‰ (4:3519). The comparison of both groups showed a statistically significant (p < 0.0030) lower incidence rate in the study group. Hypoperfusion of the brain stem may be a significant risk factor of SIDS. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Differences in Risk Factors for Rotator Cuff Tears between Elderly Patients and Young Patients.

    PubMed

    Watanabe, Akihisa; Ono, Qana; Nishigami, Tomohiko; Hirooka, Takahiko; Machida, Hirohisa

    2018-02-01

    It has been unclear whether the risk factors for rotator cuff tears are the same at all ages or differ between young and older populations. In this study, we examined the risk factors for rotator cuff tears using classification and regression tree analysis as methods of nonlinear regression analysis. There were 65 patients in the rotator cuff tears group and 45 patients in the intact rotator cuff group. Classification and regression tree analysis was performed to predict rotator cuff tears. The target factor was rotator cuff tears; explanatory variables were age, sex, trauma, and critical shoulder angle≥35°. In the results of classification and regression tree analysis, the tree was divided at age 64. For patients aged≥64, the tree was divided at trauma. For patients aged<64, the tree was divided at critical shoulder angle≥35°. The odds ratio for critical shoulder angle≥35° was significant for all ages (5.89), and for patients aged<64 (10.3) while trauma was only a significant factor for patients aged≥64 (5.13). Age, trauma, and critical shoulder angle≥35° were related to rotator cuff tears in this study. However, these risk factors showed different trends according to age group, not a linear relationship.

  9. Electronic spectra of 2- and 3-tolunitrile in the gas phase. I. A study of methyl group internal rotation via rovibronically resolved spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Santoyo, José Arturo; Álvarez-Valtierra, Leonardo, E-mail: leoav@fisica.ugto.mx; Wilke, Josefin

    2016-01-28

    Rotationally resolved fluorescence excitation spectra of the origin bands in the S{sub 1}←S{sub 0} transition of 2-tolunitrile (2TN) and 3-tolunitrile (3TN) have been recorded in the collision-free environment of a molecular beam. Analyses of these data provide the rotational constants of each molecule and the potential energy curves governing the internal rotation of the attached methyl groups in both electronic states. 2TN exhibits much larger barriers along this coordinate than 3TN. Interestingly, the electronic transition dipole moment in both molecules is markedly influenced by the position of the attached methyl group rather than the position of the cyano group; possiblemore » reasons for this intriguing behavior are discussed.« less

  10. Posterior Rotator Cuff Strengthening Using Theraband® in a Functional Diagonal Pattern in Collegiate Baseball Pitchers

    PubMed Central

    Page, Phillip A.; Lamberth, John; Abadie, Ben; Boling, Robert; Collins, Robert; Linton, Russell

    1993-01-01

    The deceleration phase of the pitching mechanism requires forceful eccentric contraction of the posterior rotator cuff. Because traditional isotonic strengthening may not be specific to this eccentric pattern, a more effective and functional means of strengthening the posterior rotator cuff is needed. Twelve collegiate baseball pitchers performed a moderate intensity isotonic dumbbell strengthening routine for 6 weeks. Six of the 12 subjects were randomly assigned to an experimental group and placed on a Theraband® Elastic Band strengthening routine in a functional-diagonal pattern to emphasize the eccentric contraction of the posterior rotator cuff, in addition to the isotonic routine. The control group (n = 6) performed only the isotonic exercises. Both groups were evaluated on a KIN-COM® isokinetic dynamometer in a functional diagonal pattern. Pretest and posttest average eccentric force production of the posterior rotator cuff was compared at two speeds, 60 and 180°/s. Data were analyzed with an analysis of covariance at the .05 level with significance at 60°/s. Values at 180°/s, however, were not significant. Eccentric force production at 60°/s increased more during training in the experimental group (+19.8%) than in the control group (-1.6%). There was no difference in the two groups at 180°/s; both decreased (8 to 15%). Theraband was effective at 60°/s in functional eccentric strengthening of the posterior rotator cuff in the pitching shoulder. ImagesFig 1. PMID:16558251

  11. Acetabular cartilage defects cause altered hip and knee joint coordination variability during gait.

    PubMed

    Samaan, Michael A; Teng, Hsiang-Ling; Kumar, Deepak; Lee, Sonia; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B

    2015-12-01

    Patients with acetabular cartilage defects reported increased pain and disability compared to those without acetabular cartilage defects. The specific effects of acetabular cartilage defects on lower extremity coordination patterns are unclear. The purpose of this study was to determine hip and knee joint coordination variability during gait in those with and without acetabular cartilage defects. A combined approach, consisting of a semi-quantitative MRI-based quantification method and vector coding, was used to assess hip and knee joint coordination variability during gait in those with and without acetabular cartilage lesions. The coordination variability of the hip flexion-extension/knee rotation, hip abduction-adduction/knee rotation, and hip rotation/knee rotation joint couplings were reduced in the acetabular lesion group compared to the control group during loading response of the gait cycle. The lesion group demonstrated increased variability in the hip flexion-extension/knee rotation and hip abduction-adduction/knee rotation joint couplings, compared to the control group, during the terminal stance/pre-swing phase of gait. Reduced variability during loading response in the lesion group may suggest reduced movement strategies and a possible compensation mechanism for lower extremity instability during this phase of the gait cycle. During terminal stance/pre-swing, a larger variability in the lesion group may suggest increased movement strategies and represent a compensation or pain avoidance mechanism caused by the load applied to the hip joint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluation of the Trends, Concomitant Procedures, and Complications With Open and Arthroscopic Rotator Cuff Repairs in the Medicare Population.

    PubMed

    Jensen, Andrew R; Cha, Peter S; Devana, Sai K; Ishmael, Chad; Di Pauli von Treuheim, Theo; D'Oro, Anthony; Wang, Jeffrey C; McAllister, David R; Petrigliano, Frank A

    2017-10-01

    Medicare insures the largest population of patients at risk for rotator cuff tears in the United States. To evaluate the trends in incidence, concomitant procedures, and complications with open and arthroscopic rotator cuff repairs in Medicare patients. Cohort study; Level of evidence, 3. All Medicare patients who had undergone open or arthroscopic rotator cuff repair from 2005 through 2011 were identified with a claims database. Annual incidence, concomitant procedures, and postoperative complications were compared between these 2 groups. In total, 372,109 rotator cuff repairs were analyzed. The incidence of open repairs decreased (from 6.0 to 4.3 per 10,000 patients, P < .001) while the incidence of arthroscopic repairs increased (from 4.5 to 7.8 per 10,000 patients, P < .001) during the study period. Patients in the arthroscopic group were more likely to have undergone concomitant subacromial decompression than those in the open group (87% vs 35%, P < .001), and the annual incidence of concomitant biceps tenodesis increased for both groups (from 3.8% to 11% for open and 2.2% to 16% for arthroscopic, P < .001). While postoperative complications were infrequent, patients in the open group were more likely to be diagnosed with infection within 6 months (0.86% vs 0.37%, P < .001) but no more likely to undergo operative debridement (0.43% vs 0.26%, P = .08). Additionally, patients in the open group were more likely to undergo intervention for shoulder stiffness within 1 year (1.4% vs 1.1%, P = .01). In the Medicare population, arthroscopic rotator cuff repairs have increased in incidence and now represent the majority of rotator cuff repair surgery. Among concomitant procedures, subacromial decompression was most commonly performed despite evidence suggesting a lack of efficacy. Infections and stiffness were rare complications that were slightly but significantly more frequent in open rotator cuff repairs.

  13. Evaluation of the Trends, Concomitant Procedures, and Complications With Open and Arthroscopic Rotator Cuff Repairs in the Medicare Population

    PubMed Central

    Jensen, Andrew R.; Cha, Peter S.; Devana, Sai K.; Ishmael, Chad; Di Pauli von Treuheim, Theo; D’Oro, Anthony; Wang, Jeffrey C.; McAllister, David R.; Petrigliano, Frank A.

    2017-01-01

    Background: Medicare insures the largest population of patients at risk for rotator cuff tears in the United States. Purpose: To evaluate the trends in incidence, concomitant procedures, and complications with open and arthroscopic rotator cuff repairs in Medicare patients. Study Design: Cohort study; Level of evidence, 3. Methods: All Medicare patients who had undergone open or arthroscopic rotator cuff repair from 2005 through 2011 were identified with a claims database. Annual incidence, concomitant procedures, and postoperative complications were compared between these 2 groups. Results: In total, 372,109 rotator cuff repairs were analyzed. The incidence of open repairs decreased (from 6.0 to 4.3 per 10,000 patients, P < .001) while the incidence of arthroscopic repairs increased (from 4.5 to 7.8 per 10,000 patients, P < .001) during the study period. Patients in the arthroscopic group were more likely to have undergone concomitant subacromial decompression than those in the open group (87% vs 35%, P < .001), and the annual incidence of concomitant biceps tenodesis increased for both groups (from 3.8% to 11% for open and 2.2% to 16% for arthroscopic, P < .001). While postoperative complications were infrequent, patients in the open group were more likely to be diagnosed with infection within 6 months (0.86% vs 0.37%, P < .001) but no more likely to undergo operative debridement (0.43% vs 0.26%, P = .08). Additionally, patients in the open group were more likely to undergo intervention for shoulder stiffness within 1 year (1.4% vs 1.1%, P = .01). Conclusion: In the Medicare population, arthroscopic rotator cuff repairs have increased in incidence and now represent the majority of rotator cuff repair surgery. Among concomitant procedures, subacromial decompression was most commonly performed despite evidence suggesting a lack of efficacy. Infections and stiffness were rare complications that were slightly but significantly more frequent in open rotator cuff repairs. PMID:29051905

  14. Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis.

    PubMed

    Souza, Richard B; Draper, Christie E; Fredericson, Michael; Powers, Christopher M

    2010-05-01

    Controlled laboratory study using a cross-sectional design. To compare patellofemoral joint kinematics, femoral rotation, and patella rotation between females with patellofemoral pain (PFP) and pain-free controls using weight-bearing kinematic magnetic resonance imaging. Recently, it has been recognized that patellofemoral malalignment may be the result of femoral motion as opposed to patella motion. Fifteen females with PFP and 15 pain-free females between the ages of 18 and 45 years participated in this study. Kinematic imaging of the patellofemoral joint was performed using a vertically open magnetic resonance imaging system. Axial-oblique images were obtained using a fast gradient-echo pulse sequence. Images were acquired at a rate of 1 image per second while subjects performed a single-limb squat. Measures of femur and patella rotation (relative to the image field of view), lateral patella tilt, and lateral patella displacement were made from images obtained at 45 degrees , 30 degrees , 15 degrees , and 0 degrees of knee flexion. Group differences were assessed using a mixed-model analysis of variance with repeated measures. When compared to the control group, females with PFP demonstrated significantly greater lateral patella displacement at all angles evaluated and significantly greater lateral patella tilt at 30 degrees , 15 degrees , and 0 degrees of knee flexion. Similarly, greater medial femoral rotation was observed in the PFP group at 45 degrees , 15 degrees , and 0 degrees of knee flexion when compared to the control group. No group differences in patella rotation were found. Altered patellofemoral joint kinematics in females with PFP appears to be related to excessive medial femoral rotation, as opposed to lateral patella rotation. Our results suggest that the control of femur rotation may be important in restoring normal patellofemoral joint kinematics. J Orthop Sports Phys Ther 2010;40(5):277-285, Epub 12 March 2010. doi:10.2519/jospt.2010.3215.

  15. Sleep Quality Associated With Different Work Schedules: A Longitudinal Study of Nursing Staff.

    PubMed

    Niu, Shu-Fen; Miao, Nae-Fang; Liao, Yuan-Mei; Chi, Mei-Ju; Chung, Min-Huey; Chou, Kuei-Ru

    2017-07-01

    To explore the differences in sleep parameters between nurses working a slow, forward rotating shift and those working a fixed day shift. A longitudinal parallel-group comparison design was used in this prospective study. Participants (female) were randomly assigned to a rotating shift or a fixed day shift group. Participants in the rotating shift group worked day shift for the first 4 weeks, followed by evening shift for the second and night shift the third. Those in the day shift group worked day shift for all 12 weeks. Each kept a sleep diary and wore an actigraph (actigraph data were used to calculate total sleep time [TST], sleep onset latency [SOL], wake after sleep onset [WASO], and sleep efficiency [SE]) for 12 days, from Workday 1-4 in each of Weeks 4, 8, and 12. TST in nurses working evening rotating shift was higher than that for those working the day or night rotating shift and fixed day shift. WASO was significantly longer on Day 2 for rotating shift participants working evening versus day shift. SOL and SE were significantly shorter and lower in rotating shift nurses working night versus both day and evening shifts. A comprehensive understanding of the sleep patterns and quality of nurses with different work shifts may lead to better management of work shifts that reduces the influence of shift work on sleep quality.

  16. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study.

    PubMed

    Gautam, Pawan; Valiathan, Ashima; Adhikari, Raviraj

    2007-07-01

    The purpose of this finite element study was to evaluate stress distribution along craniofacial sutures and displacement of various craniofacial structures with rapid maxillary expansion (RME) therapy. The analytic model for this study was developed from sequential computed tomography scan images taken at 2.5-mm intervals of a dry young human skull. Subsequently, a finite element method model was developed from computed tomography images by using AutoCAD software (2004 version, Autodesk, Inc, San Rafael, Calif) and ANSYS software (version 10, Belcan Engineering Group, Downers Grove, Ill). The maxilla moved anteriorly and downward and rotated clockwise in response to RME. The pterygoid plates were displaced laterally. The distant structures of the craniofacial skeleton--zygomatic bone, temporal bone, and frontal bone--were also affected by transverse orthopedic forces. The center of rotation of the maxilla in the X direction was somewhere between the lateral and the medial pterygoid plates. In the frontal plane, the center of rotation of the maxilla was approximately at the superior orbital fissure. The maximum von Mises stresses were found along the frontomaxillary, nasomaxillary, and frontonasal sutures. Both tensile and compressive stresses could be demonstrated along the same suture. RME facilitates expansion of the maxilla in both the molar and the canine regions. It also causes downward and forward displacement of the maxilla and thus can contribute to the correction of mild Class III malocclusion. The downward displacement and backward rotation of the maxilla could be a concern in patients with excessive lower anterior facial height. High stresses along the deep structures and the various sutures of the craniofacial skeleton signify the role of the circummaxillary sutural system in downward and forward displacement of the maxilla after RME.

  17. The brain-sex theory of occupational choice: a counterexample.

    PubMed

    Esgate, Anthony; Flynn, Maria

    2005-02-01

    The brain-sex theory of occupational choice suggests that males and females in male-typical careers show a male pattern of cognitive ability in terms of better spatial than verbal performance on cognitive tests with the reverse pattern for females and males in female-typical careers. These differences are thought to result from patterns of cerebral functional lateralisation. This study sought such occupationally related effects using synonym generation (verbal ability) and mental rotation (spatial ability) tasks used previously. It also used entrants to these careers as participants to examine whether patterns of cognitive abilities might predate explicit training and practice. Using a population of entrants to sex-differentiated university courses, a moderate occupational effect on the synonym generation task was found, along with a weak (p < .10) sex effect on the mental rotation task. Highest performance on the mental rotation task was by female students in fashion design, a female-dominated occupation which makes substantial visuospatial demands and attracts many students with literacy problems such as dyslexia. This group then appears to be a counterexample to the brain-sex theory. However, methodological issues surrounding previous studies are highlighted: the simple synonym task appears to show limited discrimination of the sexes, leading to questions concerning the legitimacy of inferences about lateralisation based on scores from that test. Moreover, the human figure-based mental rotation task appears to tap the wrong aspect of visuospatial skill, likely to be needed for male-typical courses such as engineering. Since the fashion-design career is also one that attracts disproportionately many male students whose sexual orientation is homosexual, data were examined for evidence of female-typical patterns of cognitive performance among that subgroup. This was not found. This study therefore provides no evidence for the claim that female-pattern cerebral functional lateralisation is likely in gay males.

  18. The greater tuberosity angle: a new predictor for rotator cuff tear.

    PubMed

    Cunningham, Gregory; Nicodème-Paulin, Emilie; Smith, Margaret M; Holzer, Nicolas; Cass, Benjamin; Young, Allan A

    2018-04-24

    The implication of scapular morphology in rotator cuff tears has been extensively studied. However, the role of the greater tuberosity (GT) should be of equal importance. The aim of this study was to propose a new radiographic marker, the GT angle (GTA), which measures the position of the GT in relation to the center of rotation of the humeral head. The hypothesis was that a higher angle value would be associated with a higher likelihood in detecting a rotator cuff tear. During 1 year, patients were prospectively recruited from a single institution specialized shoulder clinic in 2 different groups. The patient group consisted of individuals with a degenerative rotator cuff tear involving at least the supraspinatus. The control group consisted of individuals with no rotator cuff pathology. Individuals in both groups with congenital, post-traumatic, or degenerative alterations of the proximal humerus were excluded. The GTA was measured on an anteroposterior shoulder x-ray image with the arm in neutral rotation by 3 observers at 2 different times. The study recruited 71 patients (33 patients, 38 controls). Mean GTA value was 72.5° (range, 67.6°-79.2°) in patients and 65.2° (range, 55.8°-70.5°) for controls (P <.001). A value above 70° resulted in 93-fold higher odds of detecting a rotator cuff tear (P <.001). Interobserver and intraobserver reliability were high. GT morphology is implicated in rotator cuff tears. The GTA is a reliable radiographic marker, with more than 70° being highly predictive in detecting such lesions. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.

  19. Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?

    USGS Publications Warehouse

    Reyes, Juan C.; Kalkan, Erol

    2012-01-01

    In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide the most critical EDPs in nonlinear-inelastic domain; however, they tend to produce larger EDPs than as-recorded (arbitrarily oriented) motions.

  20. Comparison of Shoulder Range of Motion, Strength, and Playing Time in Uninjured High School Baseball Pitchers Who Reside in Warm- and Cold-Weather Climates

    PubMed Central

    Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.; Hurd, Wendy J.

    2014-01-01

    Background There is an assumption that baseball athletes who reside in warm-weather climates experience larger magnitude adaptations in throwing shoulder motion and strength compared with their peers who reside in cold-weather climates. Hypotheses (1) The warm-weather climate (WWC) group would exhibit more pronounced shoulder motion and strength adaptations than the cold-weather climate (CWC) group, and (2) the WWC group would participate in pitching activities for a greater proportion of the year than the CWC group, with the time spent pitching predicting throwing shoulder motion and strength in both groups. Study Design Cross-sectional study; Level of evidence, 3. Methods One hundred uninjured high school pitchers (50 each WWC, CWC) were recruited. Rotational shoulder motion and isometric strength were measured and participants reported the number of months per year they pitched. To identify differences between groups, t tests were performed; linear regression was used to determine the influence of pitching volume on shoulder motion and strength. Results The WWC group pitched more months per year than athletes from the CWC group, with the number of months spent pitching negatively related to internal rotation motion and external rotation strength. The WWC group exhibited greater shoulder range of motion in all planes compared with the CWC group, as well as significantly lower external rotation strength and external/internal rotation strength ratios. There was no difference in internal rotation strength between groups, nor a difference in the magnitude of side-to-side differences for strength or motion measures. Conclusion Athletes who reside in cold- and warm-weather climates exhibit differences in throwing shoulder motion and strength, related in part to the number of months spent participating in pitching activities. The amount of time spent participating in pitching activities and the magnitude of range of motion and strength adaptations in athletes who reside in warm-weather climates may make these athletes more susceptible to throwing-related injuries. PMID:21051421

  1. The effect of local use of nandrolone decanoate on rotator cuff repair in rabbits.

    PubMed

    Papaspiliopoulos, Athanasios; Papaparaskeva, Kleo; Papadopoulou, Eleni; Feroussis, John; Papalois, Apostolos; Zoubos, Aristedes

    2010-08-01

    There is still controversy about the effect of anabolic steroid on connective tissue. This study examines the hypothesis that the local use of nandrolone decanoate, an anabolic steroid on rotator cuff, facilitates the healing process when used in combination with surgical repair. Forty-eight male rabbits were divided in four groups with anabolic steroids (Nandrolone Decanoate 10 mg/kg) and immobilization as variables. The groups were the following: first group, nonsteroid use-immobilization (NSI); second group, nonsteroid use-nonimmobilization (NSNI); third group, steroid use-immobilization (SI); fourth group steroid use-nonimmobilization (SNI). Every rabbit underwent a rotator cuff incision and reconstruction. Fifteen days later the tendons were sent for biomechanical and histological evaluation. Groups that did not receive anabolic steroids showed better healing and more tendon strength in comparison to groups that received anabolic steroids. Microscopic examination of specimens from the groups without the use of anabolic steroid showed extensive fibroblastic activity whereas the specimens from those groups with anabolic steroid use showed focal fibroblastic reaction and inflammation. Immobilization provided better results in the groups with anabolic steroid use but it did not influence healing in groups without steroids. The effect of local nandrolone decanoate use on a rotator cuff tear is detrimental, acting as a healing inhibitor.

  2. Role of anti-adhesive barriers following rotator cuff repair surgery: an experimental study.

    PubMed

    Kalem, Mahmut; Şahin, Ercan; Songür, Murat; Zehir, Sinan; Armangil, Mehmet; Demirtaş, Mehmet A

    2016-01-01

    This experimental study investigates the effectiveness of expanded polytetrafluoroethylene (Dualmesh®, Gore Medical, Flagstaff, AZ, USA), sodium hyaluronate-carboxymethyl cellulose (Seprafilm®, Genzyme, Cambridge, MA, USA), and polysiloxane (silicone) as anti-adhesive barriers for inhibition of fibrosis in the subacromial area following rotator cuff repair. Rabbit rotator cuff tenotomy and repair was conducted on 24 rabbits in 4 groups: control (Group A), Dualmesh® (Group B), Seprafilm® (Group C), and silicone (Group D). Anti-adhesive barrier materials were sutured over the repaired rotator cuff. Macroscopic and histological evaluations were made at the end of the sixth postoperative week. Macroscopic evaluation revealed that minimal adhesion occurred in the control and silicone groups, while the Seprafilm® and Dualmesh® groups showed evidence of fibrosis. Microscopic evaluation revealed diffuse fibrosis and collagen accumulation in the Dualmesh® and Seprafilm® groups, whereas minimal collagen deposition and inflammatory cell reaction was found among the silicone and control groups. Significant differences were found between the silicone and Dualmesh® (p=0.001) and silicone and Seprafilm® groups (p=0.002), as well as between the control and Dualmesh® (p=0.002) and control and Seprafilm® groups (p=0.002). Expanded polytetrafluoroethylene (ePTFE/Dualmesh®) and sodium hyaluronate carboxymethyl cellulose (SH-CMC/Seprafilm®) did not prevent or attenuate postoperative subacromial fibrosis following cuff tear repair. Nor did silicone prevent or attenuate fibrosis. More detailed research is needed for development of an effective anti-adhesive barrier for use after rotator cuff tear surgery.

  3. Effect of platelet-rich plasma on tendon-to-bone healing after rotator cuff repair in rats: an in vivo experimental study.

    PubMed

    Hapa, Onur; Cakıcı, Hüsamettin; Kükner, Aysel; Aygün, Hayati; Sarkalan, Nazlı; Baysal, Gökhan

    2012-01-01

    The purpose of this experimental study was to analyze the effects of local autologous platelet-rich plasma (PRP) injection on tendon-to-bone healing in a rotator cuff repair model in rats. Rotator cuff injury was created in 68 left shoulders of rats. PRP was obtained from the blood of an additional 15 rats. The 68 rats were divided into 4 groups with 17 rats in each group; PRP group (Week 2), control group (Week 2), PRP group (Week 4), and control group (Week 4). Platelet-rich plasma or saline was injected to the repair area intraoperatively. Rats were sacrificed 2 and 4 weeks after the surgery. Histological analysis using a semiquantitative scoring was performed on 7 rats per group. Tendon integrity and increases in vascularity and inflammatory cells and the degree of new bone formation were evaluated and compared between the groups. The remaining tendons (n=10) were mechanically tested. Degree of inflammation and vascularity were less in the study group at both time intervals (p<0.05). Tendon continuity was better in the study group at 2 weeks (p<0.05). Obvious new bone formation was detected in the control group at 4 weeks (p<0.05). Biomechanically, platelet-rich plasma-treated specimens were stronger at 2 weeks (p<0.05). Local autologous PRP injection may have beneficial effects on initial rotator cuff tendon-to-bone healing and enhance initial tendon-to-bone healing remodeling. This may represent a clinically important improvement in rotator cuff repair.

  4. Design and Testing of the Contra-Rotating Turbine for the Scimitar Precooled Mach 5 Cruise Engine

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Paniagua, G.; Kato, H.; Thatcher, M.

    tion chamber and subsequent expansion through the main noz- zle to produce thrust. In subsonic flight it becomes the gas generator driving a high bypass ratio ducted fan through a hub turbine, the exhaust mixing with the duct flow and discharging through the bypass nozzle to produce thrust. In both modes the turbo-compressor is driven by a helium turbine which has contra rotating stages to improve its efficiency at low rotational speed and reduce the number of stages required. Due to the large speed of sound mismatch between the air compressor and the helium turbine it is possible to eliminate the turbine stators by contra rotating the spools. The compressor is divided into low pressure and high pressure spools although by normal gas turbine standards they are both low pressure ratio machines.

  5. Advances in measuring techniques for turbine cooling test rigs

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1972-01-01

    Surface temperature distribution measurements for turbine vanes and blades were obtained by measuring the infrared energy emitted by the airfoil. The IR distribution can be related to temperature distribution by suitable calibration methods and the data presented in the form of isotherm maps. Both IR photographic and real time electro-optical methods are being investigated. The methods can be adapted to rotating as well as stationary targets, and both methods can utilize computer processing. Pressure measurements on rotating components are made with a rotating system incorporating 10 miniature transducers. A mercury wetted slip ring assembly was used to supply excitation power and as a signal transfer device. The system was successfully tested up to speeds of 9000 rpm and is now being adapted to measure rotating blade airflow quantities in a spin rig and a research engine.

  6. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  7. Turbocharger

    DOEpatents

    Sun, Harold Huimin; Hanna, Dave; Zhang, Jizhong; Hu, Liangjun; Krivitzky, Eric M.; Larosiliere, Louis M.; Baines, Nicholas C.

    2013-08-27

    In one example, a turbocharger for an internal combustion engine is described. The turbocharger comprises a casing containing an impeller having a full blade coupled to a hub that rotates about an axis of rotation. The casing includes a bleed port and an injection port. The full blade includes a hub edge, a casing edge, and a first distribution of angles, each angle measured between the axis of rotation and a mean line at the hub edge at a meridional distance along the hub edge. The full blade includes a second distribution of angles, each angle measured between the axis of rotation and a mean line at the casing edge at a meridional distance along the casing edge. Further, various systems are described for affecting the aerodynamic properties of the compressor and turbine components in a way that may extend the operating range of the turbocharger.

  8. Rotational and translational stability of different methods for direct acromioclavicular ligament repair in anatomic acromioclavicular joint reconstruction.

    PubMed

    Beitzel, Knut; Obopilwe, Elifho; Apostolakos, John; Cote, Mark P; Russell, Ryan P; Charette, Ryan; Singh, Hardeep; Arciero, Robert A; Imhoff, Andreas B; Mazzocca, Augustus D

    2014-09-01

    Many reconstructions of acromioclavicular (AC) joint dislocations have focused on the coracoclavicular (CC) ligaments and neglected the functional contribution of the AC ligaments and the deltotrapezial fascia. To compare the modifications of previously published methods for direct AC reconstruction in addition to a CC reconstruction. The hypothesis was that there would be significant differences within the variations of surgical reconstructions. Controlled laboratory study. A total of 24 cadaveric shoulders were tested with a servohydraulic testing system. Two digitizing cameras evaluated the 3-dimensional movement. All reconstructions were based on a CC reconstruction using 2 clavicle tunnels and a tendon graft. The following techniques were used to reconstruct the AC ligaments: a graft was shuttled underneath the AC joint back from anterior and again sutured to the acromial side of the joint (group 1), a graft was fixed intramedullary in the acromion and distal clavicle (group 2), a graft was passed over the acromion and into an acromial tunnel (group 3), and a FiberTape was fixed in a cruciate configuration (group 4). Anterior, posterior, and superior translation, as well as anterior and posterior rotation, were tested. Group 1 showed significantly less posterior translation compared with the 3 other groups (P < .05) but did not show significant differences compared with the native joint. Groups 3 and 4 demonstrated significantly more posterior translation than the native joint. Group 1 showed significantly less anterior translation compared with groups 2 and 3. Group 3 demonstrated significantly more anterior translation than the native joint. Group 1 demonstrated significantly less superior translation compared with the other groups and with the native joint. The AC joint of group 1 was pulled apart less compared with all other reconstructions. Only group 1 reproduced the native joint for the anterior rotation at the posterior marker. Group 4 showed significantly increased distances for all 3 measure points when the clavicle was rotated posteriorly. Reconstruction of the AC ligament by direct wrapping and suturing of the remaining graft around the AC joint (group 1) was the most stable method and was the only one to show anterior rotation comparable with the native joint. In contrast, the transacromial technique (group 3) showed the most translation and rotation. An anatomic repair should address both the CC ligaments and the AC ligaments to control the optimal physiologic function (translation and rotation). © 2014 The Author(s).

  9. Rotation and activity among solar-type stars of the Ursa Major Group

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Mayor, Michel

    1993-01-01

    We examine rotation and chromospheric activity among G and K dwarfs recently shown to be members of the Ursa Major Group (UMaG). Rotation periods for UMaG stars are smaller than for stars of the same colors in the Hyades, and by an amount corresponding to the Skumanich relation. Most UMaG stars have about the same level of Ca II and K emission, implying that they also have nearly uniform intrinsic rotation rates. That means that the diversity of rotation rates and levels of activity seen among solar-type stars in the Alpha Persei and Pleiades clusters has largely converged by the age of UMaG (0.3 Gyr).

  10. Intensive plantation culture: 12 years research

    Treesearch

    Edward A. Hansen

    1983-01-01

    A collection of papers summarize the status of knowledge for growing hybrid poplars in a short rotation intensively cultured system. The research included studies of propagation, physiology, culture, engineering, insects and diseases, and economics.

  11. Ceramic thermal protective coating withstands hostile environment of rotating turbine blades

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stecura, S.

    1975-01-01

    Ceramic coatings have low thermal conductivity. They provide potential for increased engine performance, reduced fuel consumption, use of less costly materials or construction procedures, and increased life and durability.

  12. Arctic communications techniques: Remote unattended power systems

    NASA Astrophysics Data System (ADS)

    Walker, G.

    1986-02-01

    The purpose of this report is to describe the accomplishments during the reporting period, 16 December 1985 through 1 February 1986, on the project entitled Arctic Communications Techniques: Remote Unattended Power Systems. All of the fabricated component parts for the first Ross-Stirling engine were completed. During the assembly process several interferences between some of the parts in the rotating mechanism were discovered causing drawing changes and subsequent rework to a few of the components. Assembly of the first engine was then completed. On the first attempt the engine ran successfully at approximately 3500 rpm.

  13. Numerical analysis of stiffened shells of revolution. Volume 4: Engineer's program manual for STARS-2S shell theory automated for rotational structures - 2 (statics) digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.; Ogilvie, P.

    1973-01-01

    The engineering programming information for the digital computer program for analyzing shell structures is presented. The program is designed to permit small changes such as altering the geometry or a table size to fit the specific requirements. Each major subroutine is discussed and the following subjects are included: (1) subroutine description, (2) pertinent engineering symbols and the FORTRAN coded counterparts, (3) subroutine flow chart, and (4) subroutine FORTRAN listing.

  14. 3D Model Generation From the Engineering Drawing

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav

    2010-01-01

    The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.

  15. Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Rein, Keith D.; Roy, Sukesh; Sanders, Scott T.; Caswell, Andrew W.; Schauer, Frederick R.; Gord, James R.

    2017-03-01

    Cycle-resolved measurements of H2O temperatures and number densities taken within the detonation channel of a hydrogen—air rotating detonation engine (RDE) at a 100 kHz repetition rate using laser absorption spectroscopy are presented. The laser source used is an MEMS-tunable Vertical-Cavity Surface Emitting laser which scans from 1330 to 1360 nm. Optical access into and out of the RDE is achieved using a dual-core fiber optic. Light is pitched into the RDE through a sapphire window via a single-mode core, retroreflected off the mirror-polished inner radius of the RDE annulus, and collected with the multi-mode fiber core. The resulting absorption spectra are used to determine gas temperatures as a function of time. These measurements allow characterization of the transient-temperature response of the RDE.

  16. Numerical study of rotating detonation engine with an array of injection holes

    NASA Astrophysics Data System (ADS)

    Yao, S.; Han, X.; Liu, Y.; Wang, J.

    2017-05-01

    This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.

  17. Monitoring techniques for the X-29A aircraft's high-speed rotating power takeoff shaft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    1990-01-01

    The experimental X-29A forward swept-wing aircraft has many unique and critical systems that require constant monitoring during ground or flight operation. One such system is the power takeoff shaft, which is the mechanical link between the engine and the aircraft-mounted accessory drive. The X-29A power takeoff shaft opertes in a range between 0 and 16,810 rpm, is longer than most jet engine power takeoff shafts, and is made of graphite epoxy material. Since the X-29A aircraft operates on a single engine, failure of the shaft during flight could lead to loss of the aircraft. The monitoring techniques and test methods used during power takeoff shaft ground and flight operations are discussed. Test data are presented in two case studies where monitoring and testing of the shaft dynamics proved instrumental in discovering and isolating X-29A power takeoff shaft problems. The first study concerns the installation of an unbalanced shaft. The effect of the unbalance on the shaft vibration data and the procedure used to correct the problem are discussed. The second study deals with the shaft exceeding the established vibration limits during flight. This case study found that the vibration of connected rotating machinery unbalances contributed to the excessive vibration level of the shaft. The procedures used to identify the contributions of other rotating machinery unbalances to the power takeoff shaft unbalance are discussed.

  18. Modeling Indications of Technology in Planetary Transit Light Curves-Dark-side Illumination

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sallmen, Shauna M.; Leystra Greene, Diana

    2015-08-01

    We analyze potential effects of an extraterrestrial civilization’s use of orbiting mirrors to illuminate the dark side of a synchronously rotating planet on planetary transit light curves. Previous efforts to detect civilizations based on side effects of planetary-scale engineering have focused on structures affecting the host star output (e.g., Dyson spheres). However, younger civilizations are likely to be less advanced in their engineering efforts, yet still capable of sending small spacecraft into orbit. Since M dwarfs are the most common type of star in the solar neighborhood, it seems plausible that many of the nearest habitable planets orbit dim, low-mass M stars, and will be in synchronous rotation. Logically, a civilization evolving on such a planet may be inspired to illuminate their planet’s dark side by placing a single large mirror at the L2 Lagrangian point, or launching a fleet of small thin mirrors into planetary orbit. We briefly examine the requirements and engineering challenges of such a collection of orbiting mirrors, then explore their impact on transit light curves. We incorporate stellar limb darkening and model a simplistic mirror fleet’s effects for transits of Earth-like (R = 0.5 to 2 {R}{Earth}) planets which would be synchronously rotating for orbits within the habitable zone of their host star. Although such an installation is undetectable in Kepler data, the James Webb Space Telescope will provide the sensitivity necessary to detect a fleet of mirrors orbiting Earth-like habitable planets around nearby stars.

  19. A model for developing job rotation schedules that eliminate sequential high workloads and minimize between-worker variability in cumulative daily workloads: Application to automotive assembly lines.

    PubMed

    Yoon, Sang-Young; Ko, Jeonghan; Jung, Myung-Chul

    2016-07-01

    The aim of study is to suggest a job rotation schedule by developing a mathematical model in order to reduce cumulative workload from the successive use of the same body region. Workload assessment using rapid entire body assessment (REBA) was performed for the model in three automotive assembly lines of chassis, trim, and finishing to identify which body part exposed to relatively high workloads at workstations. The workloads were incorporated to the model to develop a job rotation schedule. The proposed schedules prevent the exposure to high workloads successively on the same body region and minimized between-worker variance in cumulative daily workload. Whereas some of workers were successively assigned to high workload workstation under no job rotation and serial job rotation. This model would help to reduce the potential for work-related musculoskeletal disorders (WMSDs) without additional cost for engineering work, although it may need more computational time and relative complex job rotation sequences. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

Top