Results of 30 kWt Safe Affordable Fission Engine (SAFE-30) primary heat transport testing
NASA Astrophysics Data System (ADS)
Pedersen, Kevin; van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvil, Pat; Reid, Bob
2001-02-01
The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Safe Affordable Fission Engine-30 kilowatt (SAFE30) test article are being performed at the Marshall Space Flight Center. This paper discusses the results of these experiments to date, and describes the additional testing that will be performed. Recommendations related to the design of testable space fission power and propulsion systems are made. .
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; VanDyke, Melissa; Houts, Mike; Goodfellow, Keith; Schafer, Charles (Technical Monitor)
2001-01-01
The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.
How Safe Are Kid-Safe Search Engines?
ERIC Educational Resources Information Center
Masterson-Krum, Hope
2001-01-01
Examines search tools available to elementary and secondary school students, both human-compiled and crawler-based, to help direct them to age-appropriate Web sites; analyzes the procedures of search engines labeled family-friendly or kid safe that use filters; and tests the effectiveness of these services to students in school libraries. (LRW)
Phase 1 Space Fission Propulsion System Testing and Development Progress
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)
2001-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.
Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis
NASA Technical Reports Server (NTRS)
Steeve, B. E.
2005-01-01
A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.
An Analog Computer for Electronic Engineering Education
ERIC Educational Resources Information Center
Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.
2011-01-01
This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…
2012-06-25
A frame grab from a mounted video camera on the E-3 Test Stand at Stennis Space Center documents testing of the new Project Morpheus engine. The new liquid methane, liquid oxygen engine will power the Morpheus prototype lander, which could one day evolve to carry cargo safely to the moon, asteroids or Mars surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson-Bagby, Kelly L.; Fielder, Robert S.; Van Dyke, Melissa K.
2004-02-04
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements were made with 20 FBG temperature sensors installed in the SAFE-100 thermal simulator at the NASA Marshal Space Flight Center. Experiments were performed at temperatures approaching 800 deg. C and 1150 deg. C for characterization studies of the SAFE-100 core. Temperature profiles were successfully generated for the core during temperature increases and decreases. Related tests in the SAFE-100 successfully provided strain measurement data.
NASA Technical Reports Server (NTRS)
VanDyke, M. K.; Martin, J. J.; Houts, M. G.
2003-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. At the power levels under consideration (3-300 kW electric power), almost all technical issues are thermal or stress related and will not be strongly affected by the radiation environment. These issues can be resolved more thoroughly, less expensively, and in a more timely fashing with nonnuclear testing, provided it is prototypic of the system in question. This approach was used for the safe, affordable fission engine test article development program and accomplished viz cooperative efforts with Department of Energy labs, industry, universiites, and other NASA centers. This Technical Memorandum covers the analysis, testing, and data reduction of a 30-kW simulated reactor as well as an end-to-end demonstrator, including a power conversion system and an electric propulsion engine, the first of its kind in the United States.
Physical and chemical test results of electrostatic safe flooring materials
NASA Technical Reports Server (NTRS)
Gompf, R. H.
1988-01-01
This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.
Ground Handling of Batteries at Test and Launch-site Facilities
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Hohl, Alan R.
2008-01-01
Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.
NASA Technical Reports Server (NTRS)
1994-01-01
A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.
Summary of Results from Space Shuttle Main Engine Off-Nominal Testing
NASA Technical Reports Server (NTRS)
Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.
2011-01-01
This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.
Taggart, Rebecca; Langer, Matthew D; Lewis, George K
2014-01-01
One of the major challenges in the design of a new class of medical device is ensuring that the device will have a safe and effective user interface for the intended users. Human Factors Engineering addresses these concerns through direct study of how a user interacts with newly designed devices with unique features. In this study, a novel long duration, low intensity therapeutic ultrasound device is tested by 20 end users representative of the intended user population. Over 90% of users were able to operate the device successfully. The therapeutic ultrasound device was found to be reasonably safe and effective for the intended users, uses, and use environments.
History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program
NASA Technical Reports Server (NTRS)
VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett
2010-01-01
Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.
An End-To-End Test of A Simulated Nuclear Electric Propulsion System
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 23.905 Section 23.905...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 23.905 Section 23.905...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 23.905 Section 23.905...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 23.905 Section 23.905...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 23.905 Section 23.905...
78 FR 46932 - Notice of Intent to Grant Exclusive Patent License; Safe Environment Engineering
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
...; Safe Environment Engineering AGENCY: Department of the Navy, DoD. ACTION: Notice. SUMMARY: The Department of the Navy hereby gives notice of its intent to grant to Safe Environment Engineering a revocable, nonassignable, exclusive license to practice Safe Environment Engineering's proprietary sensor systems for the...
Boeing CST-100 Starliner Processing
2018-04-26
Boeing’s CST-100 Pad Abort Test Vehicle is almost ready to head to White Sands, New Mexico, to test the launch abort engines. During that test, the four abort engines will prove that the vehicle can safely perform an abort maneuver in the event of an emergency on the launchpad or during flight. The vehicle is mated to the service module for a fit check, and then the two will be taken apart for final preparations before heading to the desert.
NASA Technical Reports Server (NTRS)
Miller, James; Leggett, Jay; Kramer-White, Julie
2008-01-01
A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy.
2003-12-01
This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
2003-12-01
In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
Creating an Agile ECE Learning Environment through Engineering Clinics
ERIC Educational Resources Information Center
Jansson, P. M.; Ramachandran, R. P.; Schmalzel, J. L.; Mandayam, S. A.
2010-01-01
To keep up with rapidly advancing technology, numerous innovations to the electrical and computer engineering (ECE) curriculum, learning methods and pedagogy have been envisioned, tested, and implemented. It is safe to say that no single approach will work for all of the diverse ECE technologies and every type of learner. However, a few key…
Transient Approximation of SAFE-100 Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Reid, Robert S.
2005-01-01
Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.
NASA Technical Reports Server (NTRS)
McArdle, Jack G.; Barth, Richard L.; Wenzel, Leon M.; Biesiadny, Thomas J.
1996-01-01
A convertible engine called the CEST TF34, using the variable inlet guide vane method of power change, was tested on an outdoor stand at the NASA Lewis Research Center with a waterbrake dynamometer for the shaft load. A new digital electronic system, in conjunction with a modified standard TF34 hydromechanical fuel control, kept engine operation stable and safely within limits. All planned testing was completed successfully. Steady-state performance and acoustic characteristics were reported previously and are referenced. This report presents results of transient and dynamic tests. The transient tests measured engine response to several rapid changes in thrust and torque commands at constant fan (shaft) speed. Limited results from dynamic tests using the pseudorandom binary noise technique are also presented. Performance of the waterbrake dynamometer is discussed in an appendix.
Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing
NASA Technical Reports Server (NTRS)
Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.
1992-01-01
The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.
SSME Key Operations Demonstration
NASA Technical Reports Server (NTRS)
Anderson, Brian; Bradley, Michael; Ives, Janet
1997-01-01
A Space Shuttle Main Engine (SSME) test program was conducted between August 1995 and May 1996 using the Technology Test Bed (TTB) Engine. SSTO vehicle studies have indicated that increases in the propulsion system operating range can save significant weight and cost at the vehicle level. This test program demonstrated the ability of the SSME to accommodate a wide variation in safe operating ranges and therefore its applicability to the SSTO mission. A total of eight tests were completed with four at Marshall Space Flight Center's Advanced Engine Test Facility and four at the Stennis Space Center (SSC) A-2 attitude test stand. Key demonstration objectives were: 1) Mainstage operation at 5.4 to 6.9 mixture ratio; 2) Nominal engine start with significantly reduced engine inlet pressures of 50 psia LOX and 38 psia fuel; and 3) Low power level operation at 17%, 22%, 27%, 40%, 45%, and 50% of Rated Power Level. Use of the highly instrumented TTB engine for this test series has afforded the opportunity to study in great detail engine system operation not possible with a standard SSME and has significantly contributed to a greater understanding of the capabilities of the SSME and liquid rocket engines in general.
1991-08-01
specifications are taken primarily from the 1983 version of the ASME Boiler and Pressure Vessel Code . Other design requirements were developea from standard safe...rules and practices of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to provide a safe and reliable system
Residential tornado safe room from commodity wood products – impact and wind pressure testing
Robert H. Falk; James J. Bridwell; C. Adam Senalik; Marshall Begel
2018-01-01
A tornado safe room is a shelter designed to provide protection during a tornado and is specifically engineered to resist the high wind pressures and debris impact generated by these high wind events. The required performance criteria of these shelters has been established and is found in the International Code Council Standard for the Design and Construction of Storm...
Lower currents: a new choice for routine testing.
Backes, John
2007-01-01
U.S. NFPA and AAMI standards both recommend a 10A ground bond test and, as has been described above, both 25A and 200mA are also recommended internationally as valid test currents for the in-service testing and inspection of medical electrical equipment. The reality is that both high and low test currents are of value to biomedical engineers and technicians in different circumstances. For benchtop testing in a workshop environment, where required test currents can be applied safely, then it seems likely that high current testing will remain the preferred option. However, for in-service test applications, where the portability and versatility of the tester is a key requirement, modern electronic technology now means that low current testing can now be applied effectively and safely. In summary, by using a low-energy, high current pulse prior to 200 mA test current, the lower test current is preferred for routine field maintenance as this can mean: Increased safety of the operator. Reduced risk of damage to the in-service medical equipment. Smaller test instruments to include valid ground bond measurements. Battery operated test equipment. Increased flexibility of the test engineer due to lightweight test equipment. Cost reduction due to reduced down time of medical equipment. More economical availability of test equipment.
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Owens, Brandon
2017-01-01
This is a presentation for a Cisco Internet of Things (IoT) Systems Engineering Virtual Training (SEVT) event. The presentation provides an overview of the UTM concept, architecture, flight test events, and lessons learned. Networking hardware used in support of flight tests is also described.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Compliance with owning-agency or military safety of flight notices, FAA airworthiness directives, or..., including appropriate engineering documentation and testing, for aircraft, powerplant, propeller, or... are safe for flight and are inspected and tested, as applicable. (f) Procedures for recording and...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Compliance with owning-agency or military safety of flight notices, FAA airworthiness directives, or..., including appropriate engineering documentation and testing, for aircraft, powerplant, propeller, or... are safe for flight and are inspected and tested, as applicable. (f) Procedures for recording and...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Compliance with owning-agency or military safety of flight notices, FAA airworthiness directives, or..., including appropriate engineering documentation and testing, for aircraft, powerplant, propeller, or... are safe for flight and are inspected and tested, as applicable. (f) Procedures for recording and...
Asteroid Deflection: How, Where and When?
NASA Astrophysics Data System (ADS)
Fargion, D.
2008-10-01
To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.
Career Profile- Subscale UAS engineer/pilot Robert "Red" Jensen- Operations Engineering Branch
2015-08-03
Robert “Red” Jensen is an Operations Engineer and Pilot for subscale aircraft here at NASA’s Armstrong Flight Research Center. As part fabricator, engineer and integrator, Red is responsible for testing subscale models of aircraft and ensuring they are safe, capable of flight and ready to support the center’s needs. Operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. This video highlights Red’s responsibilities and daily activities as well as some of the projects and missions he is currently working on.
GN&C Engineering Best Practices for Human-Rated Spacecraft Systems
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lebsock, Kenneth; West, John
2007-01-01
The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.
GN&C Engineering Best Practices for Human-Rated Spacecraft System
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lebsock, Kenneth; West, John
2008-01-01
The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.
GN&C Engineering Best Practices For Human-Rated Spacecraft Systems
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; Lebsock, Kenneth; West, John
2007-01-01
The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.
Space Fission Propulsion Testing and Development Progress. Phase 1
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.
Phase 1 space fission propulsion system testing and development progress
NASA Astrophysics Data System (ADS)
van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter
2001-02-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .
F-15 HiDEC in flight over Mojave desert
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's F-15 HIDEC (Highly Integrated Digital Electronic Control) research aircraft cruises over California's Mojave Desert at sunset on a flight out of the Dryden Flight Research Center, Edwards, California. The aircraft was used to carry out research on engine and flight control systems and most recently demonstrated the use of computer-assisted engine controls as a means of landing an aircraft safely with only engine power if its normal control surfaces such as elevators, rudders or ailerons are disabled. The aircraft also tested and evaluated a computerized self-repair flight control system for the Air Force that detects damaged or failed flight control surfaces, and then reconfigures undamaged flight surfaces so the mission can continue or the aircraft is landed safely. Nearly all research being carried out in the HIDEC program is applicable to future civilian and military aircraft.
Cost effective launch operations of the SSME
NASA Technical Reports Server (NTRS)
Klatt, F. P.
1985-01-01
The Space Shuttle Main Engine (SSME) represents the beginning of reusable rocket engine operations in the space transportation system (STS). Steps taken to reduce the overall cost of flight operations of the SSME by improving turnaround operations, extending the life of the engine, and improving the cost effectiveness of overhaul operations at the Canoga Park home plant are described. Ground certification testing to ensure safe launch operations is described, as well as certification extension testing that leads to a service life equivalent to 40 flights. The proven flight record of the SSME, which has demonstrated the utility of the SSME as a key component of America's space transportation system, is discussed.
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
U.S. Coast Guard, Office of Boating Safety
... COAST GUARD ISSUES FINALE RULE – UPDATE OF OUTBOARD ENGINE WEIGHT TEST REQUIREMENTS FY18 National Nonprofit Organization Funding ... operator, passenger, or concerned individual, can make a difference. Manufacturers Is your boat safe? You can check ...
Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program
NASA Technical Reports Server (NTRS)
Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter
1994-01-01
The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
1993-04-01
In-, 0- Sensbtng D recteur Scieintiiquce des Stnictures Chief Enggineer for Snztrur 0I’EMA IBB, Flu~amEueFEZ 29 -me de ]a Diision Lcderc POSifad 801160...lives. industry to enhance the safe-life design of rotating engine components by including The SMP/SC.33 subcommittee appointed a damage tolerant lifing
To advance the science and engineering of decontaminating pipe systems and safely disposing of high-volumes of contaminated water, Agency homeland security researchers are developing a Water Security Test Bed (WSTB).
The pasty propellant rocket engine development
NASA Astrophysics Data System (ADS)
Kukushkin, V. I.; Ivanchenko, A. N.
1993-06-01
The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.
NASA Technical Reports Server (NTRS)
Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.
2015-01-01
Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment
Optical Closed-Loop Propulsion Control System Development
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1998-01-01
The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.
STS-51 pad abort. OV103-engine 2033 (ME-2) fuel flowmeter sensor open circuit
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-51 initial launch attempt of Discovery (OV-103) was terminated on KSC launch pad 39B on 12 Aug. 1993 at 9:12 AM E.S.T. due to a sensor redundancy failure in the liquid hydrogen system of ME-2 (Engine 2033). The event description and time line are summarized. Propellant loading was initiated on 12 Aug. 1993 at 12:00 AM EST. All space shuttle main engine (SSME) chill parameters and Launch Commit Criteria (LCC) were nominal. At engine start plus 1.34 seconds a Failure Identification (FID) was posted against Engine 2033 for exceeding the 1800 spin intra-channel (A1-A2) Fuel Flowrate sensor channel qualification limit. The engine was shut down at 1.50 seconds followed by Engines 2032 and 2030. All shut down sequences were nominal and the mission was safely aborted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 111-101, Fuel Flowrate Intra-Channel Test Channel A disqualification. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to an open circuit in a Fuel Flowrate Sensor. This type of failure has occurred eight previous times in ground testing. The sensor had performed acceptably on three previous flights of the engine and SSME flight history shows 684 combined fuel flow rate sensor channel flights without failure. The disqualification of an Engine 2 (SSME No. 2033) Fuel Flowrate sensor channel was a result of an instrumentation failure and not engine performance. All other engine operations were nominal. This disqualification resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Popping a Hole in High-Speed Pursuits
NASA Technical Reports Server (NTRS)
2005-01-01
NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit
First Generation Least Expensive Approach to Fission (FiGLEAF) Testing Results
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail. Pat; Ring, Peter; Schmidt, George R. (Technical Monitor)
2000-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. The paper describes the SAFE test series, which includes test article descriptions, test results and conclusions, and future test plans.
NASA Technical Reports Server (NTRS)
Morgan, C. J.; Hulka, J. R.; Casiano, M. J.; Kenny, R. J.; Hinerman, T. D.; Scholten, N.
2015-01-01
The J-2X engine, a liquid oxygen/liquid hydrogen propellant rocket engine available for future use on the upper stage of the Space Launch System vehicle, has completed testing of three developmental engines at NASA Stennis Space Center. Twenty-one tests of engine E10001 were conducted from June 2011 through September 2012, thirteen tests of the engine E10002 were conducted from February 2013 through September 2013, and twelve tests of engine E10003 were conducted from November 2013 to April 2014. Verification of combustion stability of the thrust chamber assembly was conducted by perturbing each of the three developmental engines. The primary mechanism for combustion stability verification was examining the response caused by an artificial perturbation (bomb) in the main combustion chamber, i.e., dynamic combustion stability rating. No dynamic instabilities were observed in the TCA, although a few conditions were not bombed. Additional requirements, included to guard against spontaneous instability or rough combustion, were also investigated. Under certain conditions, discrete responses were observed in the dynamic pressure data. The discrete responses were of low amplitude and posed minimal risk to safe engine operability. Rough combustion analyses showed that all three engines met requirements for broad-banded frequency oscillations. Start and shutdown transient chug oscillations were also examined to assess the overall stability characteristics, with no major issues observed.
Analysis of 100-lb(sub f) (445-N) LO2-LCH4 Reaction Control Engine Impulse Bit Performance
NASA Technical Reports Server (NTRS)
Marshall, William M.; Klenhenz, Julie E.
2012-01-01
Recently, liquid oxygen-liquid methane (LO2-LCH4) has been considered as a potential green propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project was tasked by NASA to develop this propulsion combination to enable safe and cost-effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating with the viability of implementing such a system. The NASA Glenn Research Center conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the Center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes unique propellant conditioning feed systems (PCFS), which allow precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed-mode operation portion of testing, with a focus on minimum impulse bit (MIB) and repeatable pulse performance. The engine successfully demonstrated target MIB performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon, which was not noted in previous test programs for this engine.
Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine
1964-05-21
Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.
Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.
2010-01-01
In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.
Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine
NASA Technical Reports Server (NTRS)
Marshall, William M.; Kleinhenz, Julie E.
2011-01-01
Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.
SMC Standard: Evaluation and Test Requirements for Liquid Rocket Engines
2017-07-26
Run -Time Trends .................................................................................................... 53 7.2.4 Steady State Analytical...Administration, 2008. 22. M. Singh, J. Vargo, D. Schiffer and J. Dello, “Safe Diagram – A Design and Reliability Tool for Turbine Blading ,” Dresser-Rand...allowed starts and run ‐time including ground acceptance testing, on‐pad firings/aborts, and flight exposure. Part: A single piece (or two or more
2006-09-01
MONITORING , AND PROGNOSTICS Alireza R. Behbahani Controls / Engine Health Management Turbine Engine Division / PRTS U.S. Air Force Research...Technical Report 2005. 8. Greitzer, Frank et al, “Gas Turbine Engine Health Monitoring and Prognostics ”, International Society of Logistics (SOLE...AFRL-PR-WP-TP-2007-217 NEED FOR ROBUST SENSORS FOR INHERENTLY FAIL-SAFE GAS TURBINE ENGINE CONTROLS, MONITORING , AND PROGNOSTICS (POSTPRINT
Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Marshall, William M.; Kleinhenz, Julie E.
2010-01-01
Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.
Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core
NASA Technical Reports Server (NTRS)
Martin, James J.; Reid, Robert S.
2004-01-01
A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100 kilowatt from the core to an energy conversion system at 700 C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested.
Performance testing of collision-avoidance system for power wheelchairs.
Lopresti, Edmund F; Sharma, Vinod; Simpson, Richard C; Mostowy, L Casimir
2011-01-01
The Drive-Safe System (DSS) is a collision-avoidance system for power wheelchairs designed to support people with mobility impairments who also have visual, upper-limb, or cognitive impairments. The DSS uses a distributed approach to provide an add-on, shared-control, navigation-assistance solution. In this project, the DSS was tested for engineering goals such as sensor coverage, maximum safe speed, maximum detection distance, and power consumption while the wheelchair was stationary or driven by an investigator. Results indicate that the DSS provided uniform, reliable sensor coverage around the wheelchair; detected obstacles as small as 3.2 mm at distances of at least 1.6 m; and attained a maximum safe speed of 4.2 km/h. The DSS can drive reliably as close as 15.2 cm from a wall, traverse doorways as narrow as 81.3 cm without interrupting forward movement, and reduce wheelchair battery life by only 3%. These results have implications for a practical system to support safe, independent mobility for veterans who acquire multiple disabilities during Active Duty or later in life. These tests indicate that a system utilizing relatively low cost ultrasound, infrared, and force sensors can effectively detect obstacles in the vicinity of a wheelchair.
Investigation of the fuel feed line failures on the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Larson, E. W.
1980-01-01
The Space Shuttle Main Engine (SSME) development program experienced two similar appearing fuel feed line failures during the shutdown portion of two engine tests. Failure investigations into each incident showed that a few cycles of high-amplitude transient strain occurring during the start and cutoff portions of each test could have either accumulated damage and led to a fatigue failure after 46 tests, or caused rupture in a low-strength weld joint. The cause of the high strain was traced to a period of unsteady flow separation during the start and cutoff of each test coincident with the oblique shock approaching the nozzle exit. Since elimination of the flow separation was impractical, the steps taken to allow engine development and flight preparations to continue were: (1) establish the safe operating life of the nozzle, (2) reinforce all low-strength welds, and (3) eliminate the use of thin-wall fuel feed lines. In parallel, the feed line was redesigned and fabrication was initiated on units to be incorporated into the development program.
Diesel engine torsional vibration control coupling with speed control system
NASA Astrophysics Data System (ADS)
Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen
2017-09-01
The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.
Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry
2014-11-05
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/
Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin
2014-10-17
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/
Hypergol Systems: Design, Buildup, and Operation
NASA Technical Reports Server (NTRS)
Baker, David; Rathgeber, Kurt
2006-01-01
This course was developed by personnel at the NASA JSC White Sands Test Facility in conjunction with the NASA Safety Training Center (NSTC). The NSTC was established in May 1991 by the NASA Headquarters Safety Directorate to provide up-to-date, high-quality, NASA specific safety training on location at NASA centers, or simultaneously to multiple centers over the Video Teleconferencing System (ViTS). Our desire is to establish and maintain a strong, long-lasting relationship with all NASA centers in order to fulfill your safety training needs on a cost-effective basis. Our ultimate goal is to provide a positive contribution to safe operations at NASA. NSTC Course 055 is a 2-day course discussing the safe usage of hypergols (hydrazine fuels and nitrogen tetroxide). During the course we will identify the hazards associated with hypergols including toxicity, reactivity, fire, and explosion. Management of risk is discussed in terms of the primary engineering controls design, buildup, and operation; and secondary controls personal protective equipment and detectors/monitors. The emphasis is on the design and buildup of compatible systems and the safe operation of these systems by technicians and engineers.
Automated Testing Experience of the Linear Aerospike SR-71 Experiment (LASRE) Controller
NASA Technical Reports Server (NTRS)
Larson, Richard R.
1999-01-01
System controllers must be fail-safe, low cost, flexible to software changes, able to output health and status words, and permit rapid retest qualification. The system controller designed and tested for the aerospike engine program was an attempt to meet these requirements. This paper describes (1) the aerospike controller design, (2) the automated simulation testing techniques, and (3) the real time monitoring data visualization structure. Controller cost was minimized by design of a single-string system that used an off-the-shelf 486 central processing unit (CPU). A linked-list architecture, with states (nodes) defined in a user-friendly state table, accomplished software changes to the controller. Proven to be fail-safe, this system reported the abort cause and automatically reverted to a safe condition for any first failure. A real time simulation and test system automated the software checkout and retest requirements. A program requirement to decode all abort causes in real time during all ground and flight tests assured the safety of flight decisions and the proper execution of mission rules. The design also included health and status words, and provided a real time analysis interpretation for all health and status data.
Mahony, Mary C; Patterson, Patricia; Hayward, Brooke; North, Robert; Green, Dawne
2015-05-01
To demonstrate, using human factors engineering (HFE), that a redesigned, pre-filled, ready-to-use, pre-asembled follitropin alfa pen can be used to administer prescribed follitropin alfa doses safely and accurately. A failure modes and effects analysis identified hazards and harms potentially caused by use errors; risk-control measures were implemented to ensure acceptable device use risk management. Participants were women with infertility, their significant others, and fertility nurse (FN) professionals. Preliminary testing included 'Instructions for Use' (IFU) and pre-validation studies. Validation studies used simulated injections in a representative use environment; participants received prior training on pen use. User performance in preliminary testing led to IFU revisions and a change to outer needle cap design to mitigate needle stick potential. In the first validation study (49 users, 343 simulated injections), in the FN group, one observed critical use error resulted in a device design modification and another in an IFU change. A second validation study tested the mitigation strategies; previously reported use errors were not repeated. Through an iterative process involving a series of studies, modifications were made to the pen design and IFU. Simulated-use testing demonstrated that the redesigned pen can be used to administer follitropin alfa effectively and safely.
Environmentally safe fluids for hydraulics used in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirzberger, E.; Rexroth, M.
1995-12-31
The majority of hydraulic units used in civil engineering are operated with pressure fluids based on mineral oil. Most civil engineering projects are installed near or immediately next to bodies of water, therefore, any leakage signifies danger for the environment. We try to avert this danger with increasingly safe hydraulic drives. However, growing environmental awareness and stricter laws are demanding more and more environmentally safe hydraulic fluids. Today, the manufacturers of fluids and hydraulic drives have to accept this challenge. What exactly is an environmentally safe hydraulic fluid? The major objectives are: (1) they have to be biodegradable, (2) nomore » fish toxicity, (3) no water pollution, and (4) food compatibility.« less
14 CFR 25.933 - Reversing systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... analysis or testing, or both, for propeller systems that allow propeller blades to move from the flight low... reversal in flight the engine will produce no more than flight idle thrust. In addition, it must be shown... position; and (ii) The airplane is capable of continued safe flight and landing under any possible position...
14 CFR 25.933 - Reversing systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... analysis or testing, or both, for propeller systems that allow propeller blades to move from the flight low... reversal in flight the engine will produce no more than flight idle thrust. In addition, it must be shown... position; and (ii) The airplane is capable of continued safe flight and landing under any possible position...
Pehora, Carolyne; Gajaria, Nisha; Stoute, Melyssa; Fracassa, Sonia; Serebale-O'Sullivan, Refilwe; Matava, Clyde T
2015-06-22
The use of the Internet to search for medical and health-related information is increasing and associated with concerns around quality and safety. We investigated the current use and perceptions on reliable websites for children's health information by parents. Following institutional ethics approval, we conducted a survey of parents/guardians of children presenting for day surgery. A 20-item survey instrument developed and tested by the investigators was administered. Ninety-eight percent of respondents reported that they used the Internet to search for information about their child's health. Many respondents reported beginning their search at public search engines (80%); less than 20% reported starting their search at university/hospital-based websites. Common conditions such as colds/flu, skin conditions and fever were the most frequently searched, and unique conditions directly affecting the child were second. Despite low usage levels of university/hospital-based websites for health information, the majority of respondents (74%) regarded these as providing safe, accurate, and reliable information. In contrast, only 24% of respondents regarded public search engines as providing safe and reliable information. Fifty percent of respondents reported that they cross-checked information found on the internet with a family physician. An unprecedented majority of parents and guardians are using the Internet for their child's health information. Of concern is that parents and guardians are currently not using reliable and safe sources of information. Health care providers should begin to focus on improving access to safe, accurate, and reliable information through various modalities including education, designing for multiplatform, and better search engine optimization.
NASA Technical Reports Server (NTRS)
Yost, J. H.
1976-01-01
The research and technology demonstration requirements to achieve emergency-power capability for a civil helicopter are documented. The goal for emergency power is the ability to hover with one engine inoperative, transition to minimum-power forward flight, and continue to a safe landing where emergency power may or may not be required. The best method to obtain emergency power is to augment the basic engine power by increasing the engine's speed and turbine-inlet temperature, combined with water-alcohol injection at the engine inlet. Other methods, including turbine boost power and flywheel energy, offer potential for obtaining emergency power for minimum time durations. Costs and schedules are estimated for a research and development program to bring emergency power through a hardware-demonstration test. Interaction of engine emergency-power capability with other helicopter systems is examined.
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei
2012-01-01
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.
SAFE Testing Nuclear Rockets Economically
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Travis, Bryan; Zerkle, David K.
2003-01-01
Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.
1984-03-01
Engineering initiative to develop an orderly plan and procedure to assure that USAF acquire reliable, high quality, supportable avionics with a higher avail...susceptibility te~t~ (radiated and conducted), and emission of radio frequency energy tests."l6) Other electrical stresses can include over/under voltage...jo ints, poor welds, and dielectric defects. Also, instruments with components unable to endu very high temperatures can be safely tested. 1-19
NASA Astrophysics Data System (ADS)
Hallal, P. B.; Bis, R. F.
1986-08-01
The developmental EMATT (expendable, mobile, ASW training target) may use a high-energy (lithium/sulfuryl chloride) battery system. Safety problems with the original battery cell design were experienced during early performance and safety testing. After redesign of the battery cell, performance and safety tests were made under specified abuse conditions, as well as under simulated launch conditions. The test results showed that the power system now meets all safety requirements, and that the EMATT vehicle is safe to deploy for its engineering development phase.
Investigation of structural factors of safety for the space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.
Synthetic circuit designs for earth terraformation.
Solé, Ricard V; Montañez, Raúl; Duran-Nebreda, Salva
2015-07-18
Mounting evidence indicates that our planet might experience runaway effects associated to rising temperatures and ecosystem overexploitation, leading to catastrophic shifts on short time scales. Remediation scenarios capable of counterbalancing these effects involve geoengineering, sustainable practices and carbon sequestration, among others. None of these scenarios seems powerful enough to achieve the desired restoration of safe boundaries. We hypothesize that synthetic organisms with the appropriate engineering design could be used to safely prevent declines in some stressed ecosystems and help improving carbon sequestration. Such schemes would include engineering mutualistic dependencies preventing undesired evolutionary processes. We hypothesize that some particular design principles introduce unescapable constraints to the engineered organisms that act as effective firewalls. Testing this designed organisms can be achieved by using controlled bioreactor models, with single and heterogeneous populations, and accurate computational models including different scales (from genetic constructs and metabolic pathways to population dynamics). Our hypothesis heads towards a future anthropogenic action that should effectively act as Terraforming processes. It also implies a major challenge in the existing biosafety policies, since we suggest release of modified organisms as potentially necessary strategy for success.
NASA Astrophysics Data System (ADS)
Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin
2017-05-01
Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.
Thermal Propulsion Capture System Heat Exchanger Design
NASA Technical Reports Server (NTRS)
Richard, Evan M.
2016-01-01
One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.
Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW
NASA Technical Reports Server (NTRS)
SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.
2001-01-01
A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.
Toward an Improved Hypersonic Engine Seal
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange,Jeffrey J.; Taylor, Shawn C.
2003-01-01
High temperature, dynamic seals are required in advanced engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures from 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center (GRC) is developing advanced seals to overcome these shortfalls. Two seal designs and two types of seal preloading devices were evaluated in a series of compression tests at room temperature and 2000 F and flow tests at room temperature. Both seals lost resiliency with repeated load cycling at room temperature and 2000 F, but seals with braided cores were significantly more flexible than those with cores composed of uniaxial ceramic fibers. Flow rates for the seals with cores of uniaxial fibers were lower than those for the seals with braided cores. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency.
OVRhyp, Scramjet Test Aircraft
NASA Technical Reports Server (NTRS)
Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.
1990-01-01
A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.
Flying After Conducting an Aircraft Excessive Cabin Leakage Test.
Houston, Stephen; Wilkinson, Elizabeth
2016-09-01
Aviation medical specialists should be aware that commercial airline aircraft engineers may undertake a 'dive equivalent' operation while conducting maintenance activities on the ground. We present a worked example of an occupational risk assessment to determine a minimum safe preflight surface interval (PFSI) for an engineer before flying home to base after conducting an Excessive Cabin Leakage Test (ECLT) on an unserviceable aircraft overseas. We use published dive tables to determine the minimum safe PFSI. The estimated maximum depth acquired during the procedure varies between 10 and 20 fsw and the typical estimated bottom time varies between 26 and 53 min for the aircraft types operated by the airline. Published dive tables suggest that no minimum PFSI is required for such a dive profile. Diving tables suggest that no minimum PFSI is required for the typical ECLT dive profile within the airline; however, having conducted a risk assessment, which considered peak altitude exposure during commercial flight, the worst-case scenario test dive profile, the variability of interindividual inert gas retention, and our existing policy among other occupational groups within the airline, we advised that, in the absence of a bespoke assessment of the particular circumstances on the day, the minimum PFSI after conducting ECLT should be 24 h. Houston S, Wilkinson E. Flying after conducting an aircraft excessive cabin leakage test. Aerosp Med Hum Perform. 2016; 87(9):816-820.
Advances in Thrust-Based Emergency Control of an Airplane
NASA Technical Reports Server (NTRS)
Creech, Gray; Burken, John J.; Burcham, Bill
2003-01-01
Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but also of each engine-control computer. Inasmuch as engine-manufacturer warranties do not apply to modified engines, the challenge became one of creating a PCA system that does not entail modifications of the engine computers.
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.
2016-07-01
The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.
NASA Astrophysics Data System (ADS)
Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.
2002-01-01
ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.
NASA Technical Reports Server (NTRS)
Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.
1996-01-01
A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.
Design of an expert-system flight status monitor
NASA Technical Reports Server (NTRS)
Regenie, V. A.; Duke, E. L.
1985-01-01
The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.; Zhao, Yi-Yuan; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Engine failure represents a major safety concern to helicopter operations, especially in the critical flight phases of takeoff and landing from/to small, confined areas. As a result, the JAA and FAA both certificate a transport helicopter as either Category-A or Category-B according to the ability to continue its operations following engine failures. A Category-B helicopter must be able to land safely in the event of one or all engine failures. There is no requirement, however, for continued flight capability. In contrast, Category-A certification, which applies to multi-engine transport helicopters with independent engine systems, requires that they continue the flight with one engine inoperative (OEI). These stringent requirements, while permitting its operations from rooftops and oil rigs and flight to areas where no emergency landing sites are available, restrict the payload of a Category-A transport helicopter to a value safe for continued flight as well as for landing with one engine inoperative. The current certification process involves extensive flight tests, which are potentially dangerous, costly, and time consuming. These tests require the pilot to simulate engine failures at increasingly critical conditions, Flight manuals based on these tests tend to provide very conservative recommendations with regard to maximum takeoff weight or required runway length. There are very few theoretical studies on this subject to identify the fundamental parameters and tradeoff factors involved. Furthermore, a capability for real-time generation of OEI optimal trajectories is very desirable for providing timely cockpit display guidance to assist the pilot in reducing his workload and to increase safety in a consistent and reliable manner. A joint research program involving NASA Ames Research Center, the FAA, and the University of Minnesota is being conducted to determine OEI optimal control strategies and the associated optimal,trajectories for continued takeoff (CTO), rejected takeoff (RTO), balked landing (BL), and continued landing (CL) for a twin engine helicopter in both VTOL and STOL terminal-area operations. This proposed paper will present the problem formulation, the optimal control solution methods, and the key results of the trajectory optimization studies for both STOL and VTOL OEI operations. In addition, new results concerning the recently developed methodology, which enable a real-time generation of optimal OEI trajectories, will be presented in the paper. This new real-time capability was developed to support the second piloted simulator investigation on cockpit displays for Category-A operations being scheduled for the NASA Ames Vertical Motion Simulator in June-August of 1995. The first VMS simulation was conducted in 1994 and reported.
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
Engineered Option Treatment of Remediated Nitrate Salts: Surrogate Batch-Blending Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anast, Kurt Roy
2016-03-11
This report provides results from batch-blending test work for remediated nitrate salt (RNS) treatment. Batch blending was identified as a preferred option for blending RNS and unremediated nitrate salt (UNS) material with zeolite to effectively safe the salt/Swheat material identified as ignitable (U.S. Environmental Protection Agency code D001). Blending with zeolite was the preferred remediation option identified in the Options Assessment Report and was originally proposed as the best option for remediation by Clark and Funk in their report, Chemical Reactivity and Recommended Remediation Strategy for Los Alamos Remediated Nitrate Salt (RNS) Wastes, and also found to be a preferredmore » option in the Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing. This test work evaluated equipment and recipe alternatives to achieve effective blending of surrogate waste with zeolite.« less
The MSFC Systems Engineering Guide: An Overview and Plan
NASA Technical Reports Server (NTRS)
Shelby, Jerry A.; Thomas, L. Dale
2007-01-01
As systems and subsystems requirements become more complex in the pursuit of the exploration of space, advanced technology will demand and require an integrated approach to the design and development of safe and successful space vehicles and there products. System engineers play a vital and key role in transforming mission needs into vehicle requirements that can be verified and validated. This will result in a safe and cost effective design that will satisfy the mission schedule. A key to successful vehicle design within systems engineering is communication. Communication, through a systems engineering infrastructure, will not only ensure that customers and stakeholders are satisfied but will also assist in identifying vehicle requirements; i.e. identification, integration and management. This vehicle design will produce a system that is verifiable, traceable, and effectively satisfies cost, schedule, performance, and risk throughout the life-cycle of the product. A communication infrastructure will bring about the integration of different engineering disciplines within vehicle design. A system utilizing these aspects will enhance system engineering performance and improve upon required activities such as Development of Requirements, Requirements Management, Functional Analysis, Test, Synthesis, Trade Studies, Documentation, and Lessons Learned to produce a successful final product. This paper will describe the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that will describe the system engineering processes that are used by MSFC in the development of complex systems such as the Ares launch vehicle. It is the intent of this website to be a "One Stop Shop" for our systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.
2014-12-15
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA/Jim Grossman
NASA Technical Reports Server (NTRS)
Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.
2015-01-01
For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the ALHAT system and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. Guidance provided by the ALHAT system was impeded in portions of the trajectory and intermittent near the end of the trajectory due to optical effects arising from air heated by the rocket engine. The Flash Lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide; however, it was occasionally susceptible to an increase in range noise due to scintillation arising from air heated by the Morpheus rocket engine which entered its Field-of-View (FOV). The Flash Lidar was also susceptible to pre-triggering, during the HRN phase, on a dust cloud created during launch and transported down-range by the wind. The NDL provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The LA, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.
Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera
2015-05-14
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Rodela, Chris
2006-01-01
Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.
Fracture strength of flawed cylindrical pressure vessels under cryogenic temperatures
NASA Astrophysics Data System (ADS)
Christopher, T.; Sankarnarayanasamy, K.; Nageswara Rao, B.
2002-11-01
Damage tolerant and fail-safe approaches have been employed increasingly in the design of critical engineering components. In these approaches, one has to assess the residual strength of a component with an assumed pre-existing crack. In other cases, cracks may be detected during service. Then, there is a need to evaluate the residual strength of the cracked components in order to decide whether they can be continued safely or repair and replacement are imperative. A three-parameter fracture criterion is applied to correlate the fracture data on aluminium, titanium and steel materials from test results on cylindrical tanks/pressure vessels at cryogenic temperatures. Fracture parameters to generate the failure assessment diagram are determined for the materials considered in the present study. Failure pressure estimates were found to be in good agreement with test results.
Pelletier, David L
2005-05-01
The US Food and Drug Administration's (FDA's) 1992 policy statement was developed in the context of critical gaps in scientific knowledge concerning the compositional effects of genetic transformation and severe limitations in methods for safety testing. FDA acknowledged that pleiotropy and insertional mutagenesis may cause unintended changes, but it was unknown whether this happens to a greater extent in genetic engineering compared with traditional breeding. Moreover, the agency was not able to identify methods by which producers could screen for unintended allergens and toxicants. Despite these uncertainties, FDA granted genetically engineered foods the presumption of GRAS (Generally Recognized As Safe) and recommended that producers use voluntary consultations before marketing them.
Time lapse of CIR rack rotate and R&R
2014-07-21
ISS040-E-071994 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.
Time lapse of CIR rack rotate and R&R
2014-07-21
ISS040-E-072156 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.
Time lapse of CIR rack rotate and R&R
2014-07-21
ISS040-E-072228 (21 July 2014) --- In the International Space Station’s Destiny laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, sets up the Combustion Integrated Rack (CIR) for more ground-commanded tests. This facility, which includes an optics bench, combustion chamber, fuel and oxidizer control and five different cameras, allows a variety of combustion experiments to be performed safely aboard the station.
The Role of Structural Dynamics and Testing in the Shuttle Flowliner Crack Investigation
NASA Technical Reports Server (NTRS)
Frady, Gregory P.
2005-01-01
During a normal inspection of the main propulsion system at Kennedy Space Center, small cracks were noticed near a slotted region of a gimbal joint flowliner located just upstream from one of the Space Shuttle Main Engines (SSME). These small cracks sparked an investigation of the entire Space Shuttle fleet main propulsion feedlines. The investigation was initiated to determine the cause of the small cracks and a repair method that would be needed to return the Shuttle fleet back to operation safely. The cracks were found to be initiated by structural resonance caused by flow fluctuations from the SSME low pressure fuel turbopump interacting with the flowliner. The pump induced backward traveling wakes that excited the liner and duct acoustics which also caused the liner to vibrate in complex mode shapes. The investigation involved an extensive effort by a team of engineers from the NASA civil servant and contractor workforce with the goal to characterize the root cause of the cracking behavior of the fuel side gimbal joint flowliners. In addition to working to identify the root cause, a parallel path was taken to characterize the material properties and fatigue capabilities of the liner material such that the life of the liners could be ascertained. As the characterization of the material and the most probable cause matured, the combination of the two with pump speed restrictions provided a means to return the Shuttle to flight in a safe manner. This paper traces the flowliner investigation results with respect to the structural dynamics analysis, component level testing and hot-fire flow testing on a static testbed. The paper will address the unique aspects of a very complex problem involving backflow from a high performance pump that has never been characterized nor understood to such detail. In addition, the paper will briefly address the flow phenomena that excited the liners, the unique structural dynamic modal characteristics and the variability of SSME operation which has ultimately ensured the safe and reliable operation of the shuttle main engines for each flight.
Space transportation propulsion application - A development challenge
NASA Astrophysics Data System (ADS)
Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.
1989-10-01
This paper presents an approach to achieving a cost-effective vertical takeoff, horizontal landing earth-to-orbit vehicle. The key propulsion system problems are addressed. The approach leads to a near-term rocket-powered single-stage-to-orbit system. A flying test-bed vehicle development program is described which allows the orderly development of vital advanced propulsion system and vehicle structural technology within a reasonable cost. The experimental (X-n) vehicle approach also allows the development of operational procedures that result in airline-type costs to space, and permits concepts, such as heavy-lift flight configurations, to be tested in a stepwise manner. Thrust modulation, instead of gimballed engines, allows a significant weight reduction in the propulsion system. Air-breathing airturborocket engines are used for loiter and landing to ensure safe return to earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred
Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less
Assessment of Mars Exploration Rover Landing Site Predictions
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Arvidson, R. E.; Bell, J. F., III; Christensen, P. R.; Crisp, J. A.; Ehlmann, B. L.; Fergason, R. L.; Grant, J. A.; Haldemann, A. F. C.; Parker, T. J.;
2005-01-01
The Mars Exploration Rover (MER) landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong indicators of liquid water. The engineering constraints critical for safe landing were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing and targeted remote sensing data and models that resulted in a number of predictions of the surface characteristics of the sites, which are tested more fully herein than a preliminary assessment. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data and is essential for selecting and validating landing sites for future missions.
Industrial and Systems Engineering Applications in NASA
NASA Technical Reports Server (NTRS)
Shivers, Charles H.
2006-01-01
A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.
The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine
NASA Astrophysics Data System (ADS)
Liu, Yuan; Zhang, Xin; Zhang, Tianhong
2017-11-01
A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.
2011-08-01
meteorological conditions. More specifically, climate chamber studies of the chemical protective kennel cover were conducted over a range of...responses to predict how long the dog could safely remain in the enclosure for various ambient environmental conditions. Climate chamber studies of...Engineering Center (NSRDEC) was tested in a climate - controlled chamber to quantify its insulation and vapor permeability properties. A schematic of
Engineering Delivery Vehicles for Genome Editing.
Nelson, Christopher E; Gersbach, Charles A
2016-06-07
The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.
Space Electronic Test Engineering
NASA Technical Reports Server (NTRS)
Chambers, Rodney D.
2004-01-01
The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower the voltage signal down low enough so that it is harmless to a computer. Along with my involvement in the Space Power and Propulsion Test Engineering Branch, I am obligated to assist all other members of the branch in their work. This will help me to strengthen and extend my knowledge of Electrical Engineering.
Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.
Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong
2015-10-23
The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.
Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module
NASA Technical Reports Server (NTRS)
Martin, James; Mireles, Omar; Reid, Robert
2005-01-01
A heat pipe cooled reactor is one of several candidate reactor cores being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules. with designs verified through a combination of theoretical analysis and experimental evaluations. would be necessary to establish the viability of this option. A hardware-based program was initiated to begin experimental testing of components to verify compliance of proposed designs. To this end, a number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts. examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15 minute hold at temperature. Nominal maximum input power during the hold period was 1.9 kW. Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation fop the next startup cycle.
The use of optical pyrometers in axial flow turbines
NASA Astrophysics Data System (ADS)
Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.
1989-07-01
An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.
2014-12-10
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a fuel tank if only one fuel tank is installed), will not: (1) Prevent the continued safe operation... operation of the remaining engines. (d) Starting and stopping (piston engine). (1) The design of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... a fuel tank if only one fuel tank is installed), will not: (1) Prevent the continued safe operation... operation of the remaining engines. (d) Starting and stopping (piston engine). (1) The design of the...
Touchdown: The Development of Propulsion Controlled Aircraft at NASA Dryden
NASA Technical Reports Server (NTRS)
Tucker, Tom
1999-01-01
This monograph relates the important history of the Propulsion Controlled Aircraft project at NASA's Dryden Flight Research Center. Spurred by a number of airplane crashes caused by the loss of hydraulic flight controls, a NASA-industry team lead by Frank W. Burcham and C. Gordon Fullerton developed a way to land an aircraft safely using only engine thrust to control the airplane. In spite of initial skepticism, the team discovered that, by manually manipulating an airplane's thrust, there was adequate control for extended up-and-away flight. However, there was not adequate control precision for safe runway landings because of the small control forces, slow response, and difficulty in damping the airplane phugoid and Dutch roll oscillations. The team therefore conceived, developed, and tested the first computerized Propulsion Controlled Aircraft (PCA) system. The PCA system takes pilot commands, uses feedback from airplane measurements, and computes commands for the thrust of each engine, yielding much more precise control. Pitch rate and velocity feedback damp the phugoid oscillation, while yaw rate feedback damps the Dutch roll motion. The team tested the PCA system in simulators and conducted flight research in F-15 and MD-11 airplanes. Later, they developed less sophisticated variants of PCA called PCA Lite and PCA Ultralite to make the system cheaper and therefore more attractive to industry. This monograph tells the PCA story in a non- technical way with emphasis on the human aspects of the engineering and flic,ht-research effort. It thereby supplements the extensive technical literature on PCA and makes the development of this technology accessible to a wide audience.
Practices in Adequate Structural Design
NASA Technical Reports Server (NTRS)
Ryan, Robert S.
1989-01-01
Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.
Practices in adequate structural design
NASA Astrophysics Data System (ADS)
Ryan, Robert S.
1989-01-01
Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.
SAFETY ON UNTRUSTED NETWORK DEVICES (SOUND)
2017-10-10
in the Cyber & Communication Technologies Group , but not on the SOUND project, would review the code, design and perform attacks against a live...3.5 Red Team As part of our testing , we planned to conduct Red Team assessments. In these assessments, a group of engineers from BAE who worked...developed under the DARPA CRASH program and SOUND were designed to be companion projects. SAFE focused on the processor and the host, SOUND focused on
Apollo Operations Handbook Lunar Module (LM 11 and Subsequent) Vol. 2 Operational Procedures
NASA Technical Reports Server (NTRS)
1971-01-01
The Apollo Operations Handbook (AOH) is the primary means of documenting LM descriptions and procedures. The AOH is published in two separately bound volumes. This information is useful in support of program management, engineering, test, flight simulation, and real time flight support efforts. This volume contains crew operational procedures: normal, backup, abort, malfunction, and emergency. These procedures define the sequence of actions necessary for safe and efficient subsystem operation.
NASA Technical Reports Server (NTRS)
2011-01-01
NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.
RB-ARD: A proof of concept rule-based abort
NASA Technical Reports Server (NTRS)
Smith, Richard; Marinuzzi, John
1987-01-01
The Abort Region Determinator (ARD) is a console program in the space shuttle mission control center. During shuttle ascent, the Flight Dynamics Officer (FDO) uses the ARD to determine the possible abort modes and make abort calls for the crew. The goal of the Rule-based Abort region Determinator (RB/ARD) project was to test the concept of providing an onboard ARD for the shuttle or an automated ARD for the mission control center (MCC). A proof of concept rule-based system was developed on a LMI Lambda computer using PICON, a knowdedge-based system shell. Knowdedge derived from documented flight rules and ARD operation procedures was coded in PICON rules. These rules, in conjunction with modules of conventional code, enable the RB-ARD to carry out key parts of the ARD task. Current capabilities of the RB-ARD include: continuous updating of the available abort mode, recognition of a limited number of main engine faults and recommendation of safing actions. Safing actions recommended by the RB-ARD concern the Space Shuttle Main Engine (SSME) limit shutdown system and powerdown of the SSME Ac buses.
Development and Overview of CPAS Sasquatch Airdrop Landing Location Predictor Software
NASA Technical Reports Server (NTRS)
Bledsoe, Kristin J.; Bernatovich, Michael A.
2015-01-01
The Capsule Parachute Assembly System (CPAS) is the parachute system for NASA's Orion spacecraft. CPAS is currently in the Engineering Development Unit (EDU) phase of testing. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish a release point from the aircraft that will ensure that the article and all items released from it during flight will land in a designated safe area. The Sasquatch footprint tool was developed to determine this safe release point and to predict the probable landing locations (footprints) of the payload and all released objects. In 2012, a new version of Sasquatch, called Sasquatch Polygons, was developed that significantly upgraded the capabilities of the footprint tool. Key improvements were an increase in the accuracy of the predictions, and the addition of an interface with the Debris Tool (DT), an in-flight debris avoidance tool for use on the test observation helicopter. Additional enhancements include improved data presentation for communication with test personnel and a streamlined code structure. This paper discusses the development, validation, and performance of Sasquatch Polygons, as well as its differences from the original Sasquatch footprint tool.
NASA Technical Reports Server (NTRS)
1993-01-01
NASA's HIDEC (Highly Integrated Digital Electronic Control) F-15 aircraft nears the runway after a flight out of NASA's Dryden Flight Research Center, Edwards, California. The last project it was used for at Dryden was development of a computer-assisted engine control system that lets a plane land safely with only engine power if its normal control surfaces such as elevators, rudders or ailerons are disabled. The flight control system helps the pilot control the engines to turn the aircraft, climb, descend and eventually land safely by varying the speed of the engines one at a time or together. The HIDEC F-15A, built as the number eight prototype (Serial #71-0287), has now been retired.
Implementing Software Safety in the NASA Environment
NASA Technical Reports Server (NTRS)
Wetherholt, Martha S.; Radley, Charles F.
1994-01-01
Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.
Investigation of a Verification and Validation Tool with a Turbofan Aircraft Engine Application
NASA Technical Reports Server (NTRS)
Uth, Peter; Narang-Siddarth, Anshu; Wong, Edmond
2018-01-01
The development of more advanced control architectures for turbofan aircraft engines can yield gains in performance and efficiency over the lifetime of an engine. However, the implementation of these increasingly complex controllers is contingent on their ability to provide safe, reliable engine operation. Therefore, having the means to verify the safety of new control algorithms is crucial. As a step towards this goal, CoCoSim, a publicly available verification tool for Simulink, is used to analyze C-MAPSS40k, a 40,000 lbf class turbo-fan engine model developed at NASA for testing new control algorithms. Due to current limitations of the verification software, several modifications are made to C-MAPSS40k to achieve compatibility with CoCoSim. Some of these modifications sacrifice fidelity to the original model. Several safety and performance requirements typical for turbofan engines are identified and constructed into a verification framework. Preliminary results using an industry standard baseline controller for these requirements are presented. While verification capabilities are demonstrated, a truly comprehensive analysis will require further development of the verification tool.
Developing a Virtual Engineering Management Community
ERIC Educational Resources Information Center
Hewitt, Bill; Kidd, Moray; Smith, Robin; Wearne, Stephen
2016-01-01
The paper reviews the lessons of planning and running an "Engineering Management" practitioner development programme in a partnership between BP and the University of Manchester. This distance-learning programme is for professional engineers in mid-career experienced in the engineering and support activities for delivering safe,…
F-15 HiDEC taxi on ramp at sunrise
1991-09-23
NASA's highly modified F-15A (Serial #71-0287) used for digital electronic flight and engine control systems research, at sunrise on the ramp at the Dryden Flight Research Facility, Edwards, California. The F-15 was called the HIDEC (Highly Integrated Digital Electronic Control) flight facility. Research programs flown on the testbed vehicle have demonstrated improved rates of climb, fuel savings, and engine thrust by optimizing systems performance. The aircraft also tested and evaluated a computerized self-repairing flight control system for the Air Force that detects damaged or failed flight control surfaces. The system then reconfigures undamaged control surfaces so the mission can continue or the aircraft is landed safely.
Recent Developments: PKI Square Dish for the Soleras Project
NASA Technical Reports Server (NTRS)
Rogers, W. E.
1984-01-01
The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.
Recent developments: PKI square dish for the Soleras Project
NASA Astrophysics Data System (ADS)
Rogers, W. E.
1984-03-01
The Square Dish solar collectors are subjected to rigorous design attention regarding corrosion at the site, and certification of the collector structure. The microprocessor controls and tracking mechanisms are improved in the areas of fail safe operations, durability, and low parasitic power requirements. Prototype testing demonstrates performance efficiency of approximately 72% at 730 F outlet temperature. Studies are conducted that include developing formal engineering design studies, developing formal engineering design drawing and fabrication details, establishing subcontracts for fabrication of major components, and developing a rigorous quality control system. The improved design is more cost effective to product and the extensive manuals developed for assembly and operation/maintenance result in faster field assembly and ease of operation.
75 FR 17604 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... Safety Analysis & Forensic Engineering, LLC (SAFE) brought to our attention errors in the preamble that incorrectly attributed to it the comments of another organization, Safety Analysis, Inc. Both of these... Safety Analysis, Inc. SAFE noted that there is no affiliation between SAFE and Safety Analysis, Inc. and...
Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display
NASA Technical Reports Server (NTRS)
Moore, Charlotte
2010-01-01
The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the launch pad for NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being prepared for free flight test number 15 at the SLF. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being lowered by crane onto the launch pad. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
Stockpile stewardship past, present, and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Marvin L., E-mail: mladams@tamu.edu
2014-05-09
The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doingmore » this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.« less
Refurbishment of one-person regenerative air revitalization system
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.
1989-01-01
Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.
2007-12-01
Staff) and Mr. Doug Learned ( Intercity Manufacturing), whose efficiency and expertise was vital in manufacturing the parts required for our tests...detonation products caused by the hollow cavity. Upon initiation of a hollow lined charge, the resulting high pressure shock wave travels outward...5.6 km/s for the brass encased charge at 2 and 3 CD. This indicates that the jet must be traveling at velocities greater than the estimates, which
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2001-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2002-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
The advisability of prototypic testing for space nuclear systems
NASA Astrophysics Data System (ADS)
Lenard, Roger X.
2005-07-01
From October 1987 until 1993, the US Department of Defense conducted the Space Nuclear Thermal Propulsion program. This program's objective was to design and develop a high specific impulse, high thrust-to-weight nuclear thermal rocket engine for upper stage applications. The author was the program manager for this program until 1992. Numerous analytical, programmatic and experimental results were generated during this period of time. This paper reviews the accomplishments of the program and highlights the importance of prototypic testing for all aspects of a space nuclear program so that a reliable and safe system compliant with all regulatory requirements can be effectively engineered. Specifically, the paper will recount how many non-prototypic tests we performed only to have more representative tests consistently generate different results. This was particularly true in area of direct nuclear heat generation. As nuclear tests are generally much more expensive than non-nuclear tests, programs attempt to avoid such tests in favor of less expensive non-nuclear tests. Each time this approach was followed, the SNTP program found these tests to not be verified by nuclear heated testing. Hence the author recommends that wherever possible, a spiral development approach that includes exploratory and confirmatory experimental testing be employed to ensure a viable design.
Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method
Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong
2015-01-01
The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668
9th Diesel Engine Emissions Reduction (DEER) Workshop 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukla, P; Wright, J; Harris, G
2003-08-24
The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testingmore » is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.« less
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon
1997-01-01
An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.
Contribution to Estimating Bearing Capacity of Pile in Clayey Soils
NASA Astrophysics Data System (ADS)
Drusa, Marián; Gago, Filip; Vlček, Jozef
2016-12-01
The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.
Further Investigations of Hypersonic Engine Seals
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2004-01-01
Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two silicon nitride compression spring designs were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (50.8 m) of scrubbing at 2000 F against a silicon carbide rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Silicon nitride compression springs showed promise conceptually as potential seal preload devices to help maintain seal resiliency.
New Lubricants Protect Machines and the Environment
NASA Technical Reports Server (NTRS)
2007-01-01
In 1994, NASA and Lockheed Martin Space Operations commissioned Sun Coast Chemicals of Daytona Inc to develop a new type of lubricant that would be safe for the environment and help "grease the wheels" of the shuttle-bearing launcher platform. Founded in 1989, Sun Coast Chemicals is known amongst the racing circuit for effective lubricants that help overcome engine and transmission problems related to heat and wear damage. In a matter of weeks, Sun Coast Chemical produced the biodegradable, high-performance X-1R Crawler Track Lube. In 1996, Sun Coast Chemical determined there was a market for this new development, and introduced three derivative products, Train Track Lubricant, Penetrating Spray Lubricant, and Biodegradable Hydraulic Fluid, and then quickly followed with a gun lubricant/cleaner and a fishing rod and reel lubricant. Just recently, Sun Coast introduced the X-1R Corporation, which folds the high-performance, environmentally safe benefits into a full line of standard automotive and specially formulated racing products. The entire X-1R automotive product line has stood up to rigorous testing by groups such as the American Society of Mechanical Engineers, the Swedish National Testing and Research Institute, the Department of Mechanical Engineering at Oakland University (Rochester, Michigan), and Morgan-McClure Motorsports (Abingdon, Virginia). The X-1R Corporation also markets "handy packs" for simple jobs around the house, consisting of a multi-purpose, multi-use lubricant and grease. In 2003, The X-1R Corporation teamed up with Philadelphia-based Penn Tackle Manufacturing Co., a leading manufacturer of fishing tackle since 1932, to jointly develop and market a line of advanced lubrication products for saltwater and freshwater anglers
Remote Excavation System technology evaluation report: Buried Waste Robotics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the systemmore » and discussed the procedures used to conduct the tests.« less
2016-12-01
branches of our work . 3.1 Understanding Sensitive API Call and API Information Usage Android applications are written in a type- safe language (Java...directly invoke resolved targets. Because DroidSafe works with a comprehensive model of the Android environment , it supports precise resolution of...STATEMENT. FOR THE CHIEF ENGINEER: / S / / S / MARK K. WILLIAMS WARREN H. DEBANY, JR. Work Unit Manager
CPAS Preflight Drop Test Analysis Process
NASA Technical Reports Server (NTRS)
Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.
2015-01-01
Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei; Litt, Jonathan S.
2007-01-01
Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.
Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making.
Godwin, Hilary; Nameth, Catherine; Avery, David; Bergeson, Lynn L; Bernard, Daniel; Beryt, Elizabeth; Boyes, William; Brown, Scott; Clippinger, Amy J; Cohen, Yoram; Doa, Maria; Hendren, Christine Ogilvie; Holden, Patricia; Houck, Keith; Kane, Agnes B; Klaessig, Frederick; Kodas, Toivo; Landsiedel, Robert; Lynch, Iseult; Malloy, Timothy; Miller, Mary Beth; Muller, Julie; Oberdorster, Gunter; Petersen, Elijah J; Pleus, Richard C; Sayre, Philip; Stone, Vicki; Sullivan, Kristie M; Tentschert, Jutta; Wallis, Philip; Nel, Andre E
2015-01-01
For nanotechnology to meet its potential as a game-changing and sustainable technology, it is important to ensure that the engineered nanomaterials and nanoenabled products that gain entry to the marketplace are safe and effective. Tools and methods are needed for regulatory purposes to allow rapid material categorization according to human health and environmental risk potential, so that materials of high concern can be targeted for additional scrutiny, while material categories that pose the least risk can receive expedited review. Using carbon nanotubes as an example, we discuss how data from alternative testing strategies can be used to facilitate engineered nanomaterial categorization according to risk potential and how such an approach could facilitate regulatory decision-making in the future.
Engineering report for simulated riser installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brevick, C.H., Westinghouse Hanford
1996-05-09
The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.
A View From Space. NASA Systems Engineering and Test
2014-12-01
rocket ship called Atlantis came alive. Technology was ubiquitous. There were so many critical components that had to be harmonized. If it weren’t for...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a...July 8, 2011, affirmed whether every key compo- nent could safely “go for launch.” If any component operated outside its performance enve- lope
Type Safe Extensible Programming
NASA Astrophysics Data System (ADS)
Chae, Wonseok
2009-10-01
Software products evolve over time. Sometimes they evolve by adding new features, and sometimes by either fixing bugs or replacing outdated implementations with new ones. When software engineers fail to anticipate such evolution during development, they will eventually be forced to re-architect or re-build from scratch. Therefore, it has been common practice to prepare for changes so that software products are extensible over their lifetimes. However, making software extensible is challenging because it is difficult to anticipate successive changes and to provide adequate abstraction mechanisms over potential changes. Such extensibility mechanisms, furthermore, should not compromise any existing functionality during extension. Software engineers would benefit from a tool that provides a way to add extensions in a reliable way. It is natural to expect programming languages to serve this role. Extensible programming is one effort to address these issues. In this thesis, we present type safe extensible programming using the MLPolyR language. MLPolyR is an ML-like functional language whose type system provides type-safe extensibility mechanisms at several levels. After presenting the language, we will show how these extensibility mechanisms can be put to good use in the context of product line engineering. Product line engineering is an emerging software engineering paradigm that aims to manage variations, which originate from successive changes in software.
Multiple Restart Testing of a Stainless Steel Sodium Heat Pipe Module
NASA Astrophysics Data System (ADS)
Martin, James; Mireles, Omar; Reid, Robert
2005-02-01
A heat pipe cooled reactor is one of several candidate reactor concepts being considered for space power and propulsion systems to support future space exploration activities. Long life heat pipe modules, with concepts verified through a combination of theoretical analysis and experimental evaluations, would be necessary to establish the viability of this option. A number of stainless steel/sodium heat pipe modules have been designed and fabricated to support experimental testing of a Safe Affordable Fission Engine (SAFE) project, a 100-kWt core design pursued jointly by the Marshall Space Flight Center and the Los Alamos National Laboratory. One of the SAFE heat pipe modules was successfully subjected to over 200 restarts, examining the behavior of multiple passive freeze/thaw operations. Typical operation included a 1-hour startup to an average evaporator temperature of 1000 K followed by a 15-minute hold at temperature. Nominal maximum input power to the evaporator (measured at the power supply) during the hold period was 1.9 kW, with approximately 1.6 kW calculated as the axial power transfer to the condenser (the 300W difference was lost to environment at the evaporator surface). Between heating cycles the module was cooled to less than 325 K, returning the sodium to a frozen state in preparation for the next startup cycle.
Photovoltaic power system reliability considerations
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1980-01-01
An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.
Photovoltaic power system reliability considerations
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1980-01-01
This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2014 CFR
2014-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2012 CFR
2012-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2013 CFR
2013-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
49 CFR 383.113 - Required skills.
Code of Federal Regulations, 2011 CFR
2011-10-01
... inspected to ensure a safe operating condition of each part, including: (i) Engine compartment; (ii) Cab/engine start; (iii) Steering; (iv) Suspension; (v) Brakes; (vi) Wheels; (vii) Side of vehicle; (viii... they will activate in emergency situations; (iv) With the engine running, make sure that the system...
Identification of informative features for predicting proinflammatory potentials of engine exhausts.
Wang, Chia-Chi; Lin, Ying-Chi; Lin, Yuan-Chung; Jhang, Syu-Ruei; Tung, Chun-Wei
2017-08-18
The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.
Computational Plume Modeling of COnceptual ARES Vehicle Stage Tests
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Ahuja, Vineet
2007-01-01
The plume-induced environment of a conceptual ARES V vehicle stage test at the NASA Stennis Space Center (NASA-SSC) was modeled using computational fluid dynamics (CFD). A full-scale multi-element grid was generated for the NASA-SSC B-2 test stand with the ARES V stage being located in a proposed off-center forward position. The plume produced by the ARES V main power plant (cluster of five RS-68 LOX/LH2 engines) was simulated using a multi-element flow solver - CRUNCH. The primary objective of this work was to obtain a fundamental understanding of the ARES V plume and its impingement characteristics on the B-2 flame-deflector. The location, size and shape of the impingement region were quantified along with the un-cooled deflector wall pressures, temperatures and incident heating rates. Issues with the proposed tests were identified and several of these addressed using the CFD methodology. The final results of this modeling effort will provide useful data and boundary conditions in upcoming engineering studies that are directed towards determining the required facility modifications for ensuring safe and reliable stage testing in support of the Constellation Program.
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-13
CAPE CANAVERAL, Fla. – A Huey helicopter tests hazard avoidance instrumentation at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks using the instrument. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician tests hazard avoidance instrumentation recently installed on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
ATD-1 Team Completes Flight Tests
2017-02-24
Members of a NASA-led research team pose in front of a trio of aircraft, which on Feb. 22 concluded racking up enough air miles to circle the planet four times, all in the name of testing a new cockpit-based air traffic management tool. The prototype hardware and software is designed to automatically provide pilots with more precise spacing information on approach into a busy airport so that more planes can safely land in a given time. The technology is intended to help airplanes spend less time in the air, save money on fuel, and reduce engine emissions – all the while improving schedule efficiency to help passengers arrive on time.
Making the Hubble Space Telescope servicing mission safe
NASA Technical Reports Server (NTRS)
Bahr, N. J.; Depalo, S. V.
1992-01-01
The implementation of the HST system safety program is detailed. Numerous safety analyses are conducted through various phases of design, test, and fabrication, and results are presented to NASA management for discussion during dedicated safety reviews. Attention is given to the system safety assessment and risk analysis methodologies used, i.e., hazard analysis, fault tree analysis, and failure modes and effects analysis, and to how they are coupled with engineering and test analysis for a 'synergistic picture' of the system. Some preliminary safety analysis results, showing the relationship between hazard identification, control or abatement, and finally control verification, are presented as examples of this safety process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... simultaneous use of the ramp by vehicles and pedestrians. (d) Ramp maintenance. Ramps shall be properly... ramp inclines safely. (j) Safe speeds. Power driven vehicles used in Ro-Ro operations shall be operated at speeds that are safe for prevailing conditions. (k) Ventilation. Internal combustion engine-driven...
The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues
2010-03-18
and Health, July 2006. 91 Progress Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health, June 2007. 92...2007. Progress Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health. June 2007. Approaches to Safe...Nanotechnology in the Workplace , National Institute for Occupational Safety and Health. July 2006. Nanoscale Science, Engineering, and Technology in
Safe and Sustainable Water Resources Strategic Research Action Plan 2012-2016
This document represents a strategic guide to EPA’s research actions, alone and in part-nership with the broader federal, industry and scientific research community, to provide the science and engineering necessary for safe and sustainable water resources.
Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Hill, Dennis
2011-01-01
After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.
Design of automatic startup and shutdown logic for a Brayton-cycle 2- to 15-kilowatt engine
NASA Technical Reports Server (NTRS)
Vrancik, J. E.; Bainbridge, R. C.
1975-01-01
The NASA Lewis Research Center is conducting a closed-Brayton-cycle power conversion system technology program in which a complete power system (engine) has been designed and demonstrated. This report discusses the design of automatic startup and shutdown logic circuits as a modification to the control system presently used in this demonstration engine. This modification was primarily intended to make starting the engine as simple and safe as possible and to allow the engine to be run unattended. In the modified configuration the engine is started by turning the control console power on and pushing the start button after preheating the gas loop. No other operator action is required to effect a complete startup. Shutdown, if one is required, is also effected by a simple stop button. The automatic startup and shutdown of the engine have been successfully and purposefully demonstrated more than 50 times at the Lewis Research Center during 10,000 hours of unattended operation. The net effect of this modification is an engine that can be safely started and stopped by relatively untrained personnel. The approach lends itself directly to remote unattended operation.
The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues
2010-05-13
Health, July 2006. 91 Progress Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health, June 2007. 92 NIOSH...Toward Safe Nanotechnology in the Workplace , National Institute for Occupational Safety and Health. June 2007. Approaches to Safe Nanotechnology in...the Workplace , National Institute for Occupational Safety and Health. July 2006. Nanoscale Science, Engineering, and Technology in DOE’s Office of
Design and development of a structural mode control system
NASA Technical Reports Server (NTRS)
1977-01-01
A program was conducted to compile and document some of the existing information about the conceptual design, development, and tests of the B-1 structural mode control system (SMCS) and its impact on ride quality. This report covers the following topics: (1) Rationale of selection of SMCS to meet ride quality criteria versus basic aircraft stiffening. (2) Key considerations in designing an SMCS, including vane geometry, rate and deflection requirements, power required, compensation network design, and fail-safe requirements. (3) Summary of key results of SMCS vane wind tunnel tests. (4) SMCS performance. (5) SMCS design details, including materials, bearings, and actuators. (6) Results of qualification testing of SMCS on the "Iron Bird" flight control simulator, and lab qualification testing of the actuators. (7) Impact of SMCS vanes on engine inlet characteristics from wind tunnel tests.
Monitoring of Engineering Buildings Behaviour Within the Disaster Management System
NASA Astrophysics Data System (ADS)
Oku Topal, G.; Gülal, E.
2017-11-01
The Disaster management aims to prevent events that result in disaster or to reduce their losses. Monitoring of engineering buildings, identification of unusual movements and taking the necessary precautions are very crucial for determination of the disaster risk so possible prevention could be taken to reduce big loss. Improving technology, increasing population due to increased construction and these areas largest economy lead to offer damage detection strategies. Structural Health Monitoring (SHM) is the most effective of these strategies. SHM research is very important to maintain all this structuring safely. The purpose of structural monitoring is determining in advance of possible accidents and taking necessary precaution. In this paper, determining the behaviour of construction using Global Positioning System (GPS) is investigated. For this purpose shaking table tests were performed. Shaking table was moved at different amplitude and frequency aiming to determine these movement with a GPS measuring system. The obtained data were evaluated by analysis of time series and Fast Fourier Transformation techniques and the frequency and amplitude values are calculated. By examining the results of the tests made, it will be determined whether the GPS measurement method can accurately detect the movements of the engineering structures.
NASA Astrophysics Data System (ADS)
Beaumont, Peter W. R.
2014-02-01
Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.
Manual Manipulation of Engine Throttles for Emergency Flight Control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Fullerton, C. Gordon; Maine, Trindel A.
2004-01-01
If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.
2014-05-27
NASA Administrator Charles Bolden poses with an all-girl engineering team that participated in the White House Science Fair. "Team Rocket Power" was one of 100 teams that qualified for last year’s Team America Rocketry Challenge (TARC). Nia'mani Robinson, 15, Jasmyn Logan, 15, and Rebecca Chapin-Ridgely, 17, gave up their weekends and free time after school to build and test their bright purple rocket, which is designed to launch to an altitude of about 750 ft, and then return a “payload” (an egg) to the ground safely. The fourth White House Science Fair was held at the White House on May 27, 2014 and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)
Engineering Software Suite Validates System Design
NASA Technical Reports Server (NTRS)
2007-01-01
EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers
Wigler, Ronald; Koren, Tal; Tsesis, Igor
2015-11-01
To compare the cleaning effectiveness and shaping ability of SafeSider, ProTaper Universal and Lightspeed rotary instruments during the preparation of curved root canals in extracted human teeth. A total of 63 roots with curved root canals were divided into three groups. Canals were prepared using SafeSider, ProTaper Universal or Lightspeed LSX. Using pre- and post-instrumentation radiographs, straightening of the canal curvatures and loss of working length were determined with a computer image analysis program. The amounts of debris at the apical 5 mm were quantified on the basis of a numerical evaluation scale. The data were analyzed statistically using the two-way analysis of variance (ANOVA). There was significantly more transportation among the Lightspeed LSX group compared to the SafeSider and ProTaper Universal groups only at the 4 mm level (p < 0.05). The ProTaper Universal instruments performed significantly faster than other groups. No significant differences were observed between the three engine-driven instruments with regards to debris removal. SafeSider, ProTaper Universal and Lightspeed LSX rotary instruments maintained the original canal curvature well at the apical 3 mm and were safe to use. No difference was found in cleaning efficacy and none rendered the apical part of the canal free of debris. SafeSider, ProTaper Universal and Lightspeed LSX rotary instruments are safe to use in curved root canals.
NASA Astrophysics Data System (ADS)
Jovanov, D.; Vollpracht, H. J.; Beles, H.; Popa, V.; Tolea, B. A.
2017-10-01
Most common road safety engineering deficiencies identified by the authors in South Eastern Europe, including Romania, have been collected together and presented in this paper as a part of road safety unbreakably connected to the safe system approach (driver-vehicle-road). In different South Eastern Europe countries Road Safety Audit (RSA), Road Safety Inspection (RSI), as well as Black Spot Management (BSM) was introduced and practical implementation experience enabled the authors to analyze the road safety problems. Typical road safety engineering deficiencies have been presented in 8 different subsections, based on PIARC (World Road Association) RSA approach. This paper presents collected common road safety problems with relevant illustrations (real pictures) with associated accident risks.
Nuclear thermal source transfer unit, post-blast soil sample drying system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ralph S.; Valencia, Matthew J
Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less
Space Shuttle Main Engine: Advanced Health Monitoring System
NASA Technical Reports Server (NTRS)
Singer, Chirs
1999-01-01
The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.
Learning Styles of Mexican Food Science and Engineering Students
ERIC Educational Resources Information Center
Palou, Enrique
2006-01-01
People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…
AADL and Model-based Engineering
2014-10-20
and MBE Feiler, Oct 20, 2014 © 2014 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems ...D eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency...confusion Hardware Engineer Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software
Code of Federal Regulations, 2010 CFR
2010-07-01
..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...
Virtual Reality Used to Serve the Glenn Engineering Community
NASA Technical Reports Server (NTRS)
Carney, Dorothy V.
2001-01-01
There are a variety of innovative new visualization tools available to scientists and engineers for the display and analysis of their models. At the NASA Glenn Research Center, we have an ImmersaDesk, a large, single-panel, semi-immersive display device. This versatile unit can interactively display three-dimensional images in visual stereo. Our challenge is to make this virtual reality platform accessible and useful to researchers. An example of a successful application of this computer technology is the display of blade out simulations. NASA Glenn structural dynamicists, Dr. Kelly Carney and Dr. Charles Lawrence, funded by the Ultra Safe Propulsion Project under Base R&T, are researching blade outs, when turbine engines lose a fan blade during operation. Key objectives of this research include minimizing danger to the aircraft via effective blade containment, predicting destructive loads due to the imbalance following a blade loss, and identifying safe, cost-effective designs and materials for future engines.
2009-06-30
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Marshall Smith, the Ares I-X Systems Engineering and Integration chief, reviews consensus for stacking and mating of the I-X upper stage segments with the management team. Launch of the Ares I-X flight test is targeted no earlier than Aug. 30 from Launch Pad 39B. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Photo credit: NASA/Dimitri Gerondidakis
NASA Technical Reports Server (NTRS)
Roback, Vincent E.; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.; Bulyshev, Alexander E.
2015-01-01
For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, guide the Morpheus autonomous, rocket-propelled, free-flying test bed to a safe landing on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging flash lidar is a second generation, compact, real-time, air-cooled instrument developed from a number of cutting-edge components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The flash lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision at 1 sigma. The flash lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Doppler Lidar system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The Doppler Lidar's measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter, also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the flash lidar, can provide range along a separate vector. The Laser Altimeter measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the lidar suite and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. The flash lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide, however, it was occasionally susceptible to an increase in range noise due to heated air from the Morpheus rocket plume which entered its Field-of-View (FOV). The flash lidar was also susceptible to pre-triggering on dust during the HRN phase which was created during launch and transported by the wind. The Doppler Lidar provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The Laser Altimeter, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.
SAFE: SPARQL Federation over RDF Data Cubes with Access Control.
Khan, Yasar; Saleem, Muhammad; Mehdi, Muntazir; Hogan, Aidan; Mehmood, Qaiser; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh
2017-02-01
Several query federation engines have been proposed for accessing public Linked Open Data sources. However, in many domains, resources are sensitive and access to these resources is tightly controlled by stakeholders; consequently, privacy is a major concern when federating queries over such datasets. In the Healthcare and Life Sciences (HCLS) domain real-world datasets contain sensitive statistical information: strict ownership is granted to individuals working in hospitals, research labs, clinical trial organisers, etc. Therefore, the legal and ethical concerns on (i) preserving the anonymity of patients (or clinical subjects); and (ii) respecting data ownership through access control; are key challenges faced by the data analytics community working within the HCLS domain. Likewise statistical data play a key role in the domain, where the RDF Data Cube Vocabulary has been proposed as a standard format to enable the exchange of such data. However, to the best of our knowledge, no existing approach has looked to optimise federated queries over such statistical data. We present SAFE: a query federation engine that enables policy-aware access to sensitive statistical datasets represented as RDF data cubes. SAFE is designed specifically to query statistical RDF data cubes in a distributed setting, where access control is coupled with source selection, user profiles and their access rights. SAFE proposes a join-aware source selection method that avoids wasteful requests to irrelevant and unauthorised data sources. In order to preserve anonymity and enforce stricter access control, SAFE's indexing system does not hold any data instances-it stores only predicates and endpoints. The resulting data summary has a significantly lower index generation time and size compared to existing engines, which allows for faster updates when sources change. We validate the performance of the system with experiments over real-world datasets provided by three clinical organisations as well as legacy linked datasets. We show that SAFE enables granular graph-level access control over distributed clinical RDF data cubes and efficiently reduces the source selection and overall query execution time when compared with general-purpose SPARQL query federation engines in the targeted setting.
The J-2X Upper Stage Engine: From Heritage to Hardware
NASA Technical Reports Server (NTRS)
Byrd, THomas
2008-01-01
NASA's Global Exploration Strategy requires safe, reliable, robust, efficient transportation to support sustainable operations from Earth to orbit and into the far reaches of the solar system. NASA selected the Ares I crew launch vehicle and the Ares V cargo launch vehicle to provide that transportation. Guiding principles in creating the architecture represented by the Ares vehicles were the maximum use of heritage hardware and legacy knowledge, particularly Space Shuttle assets, and commonality between the Ares vehicles where possible to streamline the hardware development approach and reduce programmatic, technical, and budget risks. The J-2X exemplifies those goals. It was selected by the Exploration Systems Architecture Study (ESAS) as the upper stage propulsion for the Ares I Upper Stage and the Ares V Earth Departure Stage (EDS). The J-2X is an evolved version ofthe historic J-2 engine that successfully powered the second stage of the Saturn I launch vehicle and the second and third stages of the Saturn V launch vehicle. The Constellation architecture, however, requires performance greater than its predecessor. The new architecture calls for larger payloads delivered to the Moon and demands greater loss of mission reliability and numerous other requirements associated with human rating that were not applied to the original J-2. As a result, the J-2X must operate at much higher temperatures, pressures, and flow rates than the heritage J-2, making it one of the highest performing gas generator cycle engines ever built, approaching the efficiency of more complex stage combustion engines. Development is focused on early risk mitigation, component and subassembly test, and engine system test. The development plans include testing engine components, including the subscale injector, main igniter, powerpack assembly (turbopumps, gas generator and associated ducting and structural mounts), full-scale gas generator, valves, and control software with hardware-in-the-loop. Testing expanded in 2007, accompanied by the refinement of the design through several key milestones. This paper discusses those 2007 tests and milestones, as well as updates key developments in 2008.
EHR Safety: The Way Forward to Safe and Effective Systems
Walker, James M.; Carayon, Pascale; Leveson, Nancy; Paulus, Ronald A.; Tooker, John; Chin, Homer; Bothe, Albert; Stewart, Walter F.
2008-01-01
Diverse stakeholders—clinicians, researchers, business leaders, policy makers, and the public—have good reason to believe that the effective use of electronic health care records (EHRs) is essential to meaningful advances in health care quality and patient safety. However, several reports have documented the potential of EHRs to contribute to health care system flaws and patient harm. As organizations (including small hospitals and physician practices) with limited resources for care-process transformation, human-factors engineering, software safety, and project management begin to use EHRs, the chance of EHR-associated harm may increase. The authors propose a coordinated set of steps to advance the practice and theory of safe EHR design, implementation, and continuous improvement. These include setting EHR implementation in the context of health care process improvement, building safety into the specification and design of EHRs, safety testing and reporting, and rapid communication of EHR-related safety flaws and incidents. PMID:18308981
Structural integrity of engineering composite materials: a cracking good yarn.
Beaumont, Peter W R; Soutis, Costas
2016-07-13
Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane
1995-01-01
Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane lowers the Orion service module into the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin technicians and engineers prepare to move the Orion service module to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, prior to rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians help guide the Orion service module into the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane lowers the Orion service module into the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
ERIC Educational Resources Information Center
Hilley, Robert
This curriculum guide contains teacher and student materials for a course on outboard-engine boat systems for power product equipment technician occupations. The course contains the following three units of instruction: (1) Orientation to Outboard-Engine Boat Systems and Rigging; (2) Trailers and Safe Towing and Boat Operation; and (3) Seasonal…
NASA Technical Reports Server (NTRS)
Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.
1995-01-01
With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.
NETGEAR ProSAFE M4300 Series 10-GbE Switch Tutorial
2016-11-01
ARL-TN-0803 ● NOV 2016 US Army Research Laboratory NETGEAR ProSAFE M4300 Series 10-GbE Switch Tutorial by Benjamin Kenawell...Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other...NETGEAR ProSAFE M4300 Series 10-GbE Switch Tutorial by Benjamin Kenawell Science and Engineering Apprentice Program (SEAP), Adelphi, MD Brian
A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases
NASA Technical Reports Server (NTRS)
Hill, Janice L.
2007-01-01
Safety standards contain technical and process-oriented safely requirements. The best time to include these requirements is early in the development lifecycle of the system. When software safety requirements are levied on a legacy system after the fact, a retrospective safety case will need to be constructed for the software in the system. This can be a difficult task because there may be few to no art facts available to show compliance to the software safely requirements. The risks associated with not meeting safely requirements in a legacy safely-critical computer system must be addressed to give confidence for reuse. This paper introduces a proposal for a software safely risk taxonomy for legacy safely-critical computer systems, by specializing the Software Engineering Institute's 'Software Development Risk Taxonomy' with safely elements and attributes.
46 CFR 69.121 - Engine room deduction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... necessary for the safe operation and maintenance of the propelling machinery, the entire space, or, if... machinery space is not bulkheaded off or is larger than necessary for the safe operation and maintenance of... room deduction is either a percentage of the vessel's total propelling machinery spaces or a percentage...
75 FR 56491 - Technical Amendments for Marine Spark-Ignition Engines and Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... portable fuel tanks to these new requirements, manufacturers working together on systems integration...
Fuels Performance | Transportation Research | NREL
. Video Promotes Safe CNG Tank Decommissioning Practices A video on CNG fuel tank defueling instruct transit agencies and others about safe CNG tank end-of-life practices. The video was previewed at Biodiesel Performance in Modern Engines NREL is working cooperatively with the National Biodiesel Board on
75 FR 56477 - Technical Amendments for Marine Spark-Ignition Engines and Vessels
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-16
... spillage, incorporating safe recommended practices will result in a net benefit to the environment and lead... portable fuel tanks to these new requirements, manufacturers working together on systems integration.... We have engaged the industry to identify a simple, safe, and emissions neutral solution to this...
Safety considerations in the design and operation of large wind turbines
NASA Technical Reports Server (NTRS)
Reilly, D. H.
1979-01-01
The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.
NASA Technical Reports Server (NTRS)
Dugala, Gina M.
2010-01-01
The U.S. Department of Energy, Lockheed Martin Space Systems Company, Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than with currently available alternatives. One part of NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. and GRC. The ASC consists of a free-piston Stirling engine integrated with a linear alternator. NASA GRC has been building test facilities to support extended operation of the ASCs for several years. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. One part of the test facility is the test rack, which provides a means for data collection, convertor control, and safe operation. Over the years, the test rack requirements have changed. The initial ASC test rack utilized an alternating-current (AC) bus for convertor control; the ASRG Engineering Unit (EU) test rack can operate with AC bus control or with an ASC Control Unit (ACU). A new test rack is being developed to support extended operation of the ASC-E2s with higher standards of documentation, component selection, and assembly practices. This paper discusses the differences among the ASC, ASRG EU, and ASC-E2 test racks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...
Code of Federal Regulations, 2013 CFR
2013-07-01
... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...
Code of Federal Regulations, 2014 CFR
2014-07-01
... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...
Kushniruk, A; Nohr, C; Jensen, S; Borycki, E M
2013-01-01
The objective of this paper is to explore human factors approaches to understanding the use of health information technology (HIT) by extending usability engineering approaches to include analysis of the impact of clinical context through use of clinical simulations. Methods discussed are considered on a continuum from traditional laboratory-based usability testing to clinical simulations. Clinical simulations can be conducted in a simulation laboratory and they can also be conducted in real-world settings. The clinical simulation approach attempts to bring the dimension of clinical context into stronger focus. This involves testing of systems with representative users doing representative tasks, in representative settings/environments. Application of methods where realistic clinical scenarios are used to drive the study of users interacting with systems under realistic conditions and settings can lead to identification of problems and issues with systems that may not be detected using traditional usability engineering methods. In conducting such studies, careful consideration is needed in creating ecologically valid test scenarios. The evidence obtained from such evaluation can be used to improve both the usability and safety of HIT. In addition, recent work has shown that clinical simulations, in particular those conducted in-situ, can lead to considerable benefits when compared to the costs of running such studies. In order to bring context of use into the testing of HIT, clinical simulation, involving observing representative users carrying out tasks in representative settings, holds considerable promise.
2004-04-15
The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
NASA Technical Reports Server (NTRS)
2004-01-01
The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.
Anggraeni, Melisa R; Connors, Natalie K; Wu, Yang; Chuan, Yap P; Lua, Linda H L; Middelberg, Anton P J
2013-09-13
Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-05-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
NASA Technical Reports Server (NTRS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-01-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salguero, Laura Marie; Huff, Johnathon; Matta, Anthony R.
Sandia National Laboratories is an organization with a wide range of research and development activities that include nuclear, explosives, and chemical hazards. In addition, Sandia has over 2000 labs and over 40 major test facilities, such as the Thermal Test Complex, the Lightning Test Facility, and the Rocket Sled Track. In order to support safe operations, Sandia has a diverse Environment, Safety, and Health (ES&H) organization that provides expertise to support engineers and scientists in performing work safely. With such a diverse organization to support, the ES&H program continuously seeks opportunities to improve the services provided for Sandia by usingmore » various methods as part of their risk management strategy. One of the methods being investigated is using enterprise architecture analysis to mitigate risk inducing characteristics such as normalization of deviance, organizational drift, and problems in information flow. This paper is a case study for how a Department of Defense Architecture Framework (DoDAF) model of the ES&H enterprise, including information technology applications, can be analyzed to understand the level of risk associated with the risk inducing characteristics discussed above. While the analysis is not complete, we provide proposed analysis methods that will be used for future research as the project progresses.« less
Cheng, Derrick L; Greenberg, Paul B; Borton, David A
2017-03-01
To date, reviews of retinal prostheses have focused primarily on devices undergoing human trials in the Western Hemisphere and fail to capture significant advances in materials and engineering research in countries such as Japan and Korea, as well as projects in early stages of development. To address these gaps, this systematic review examines worldwide advances in retinal prosthetic research, evaluates engineering characteristics and clinical progress of contemporary device initiatives, and identifies potential directions for future research in the field of retinal prosthetics. A literature search using PubMed, Google Scholar, and IEEExplore was conducted following the PRISMA Guidelines for Systematic Review. Inclusion criteria were peer-reviewed papers demonstrating progress in human or animal trials and papers discussing the prosthetic engineering design. For each initiative, a description of the device, its engineering considerations, and recent clinical results were provided. Ten prosthetic initiatives met our inclusion criteria and were organized by stimulation location. Of these initiatives, four have recently completed human trials, three are undergoing multi- or single-center human trials, and three are undergoing preclinical animal testing. Only the Argus II (FDA 2013, CE 2011) has obtained FDA approval for use in the United States; the Alpha-IMS (CE 2013) has achieved the highest visual acuity using a Landolt-C test to date and is the only device presently undergoing a multicenter clinical trial. Several distinct approaches to retinal stimulation have been successful in eliciting visual precepts in animals and/or humans. However, many clinical needs are still not met and engineering challenges must be addressed before a retinal prosthesis with the capability to fully and safely restore functional vision can be realized.
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin technicians and engineers monitor the progress as a crane is used to lift the Orion service module from a test stand and move it to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
Space Fission Propulsion System Development Status
NASA Astrophysics Data System (ADS)
Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability of a SAFE-powered electric propulsion system to outer planet science missions will also be discussed.
JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.
2012-07-05
The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less
A versatile modular bioreactor platform for Tissue Engineering
Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike
2016-01-01
Abstract Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. PMID:27492568
A versatile modular bioreactor platform for Tissue Engineering.
Schuerlein, Sebastian; Schwarz, Thomas; Krziminski, Steffan; Gätzner, Sabine; Hoppensack, Anke; Schwedhelm, Ivo; Schweinlin, Matthias; Walles, Heike; Hansmann, Jan
2017-02-01
Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue-specific, non-disposable bioreactor systems. To ensure a high level of standardization, a suitable cost-effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mass Analyzers Facilitate Research on Addiction
NASA Technical Reports Server (NTRS)
2012-01-01
The famous go/no go command for Space Shuttle launches comes from a place called the Firing Room. Located at Kennedy Space Center in the Launch Control Center (LCC), there are actually four Firing Rooms that take up most of the third floor of the LCC. These rooms comprise the nerve center for Space Shuttle launch and processing. Test engineers in the Firing Rooms operate the Launch Processing System (LPS), which is a highly automated, computer-controlled system for assembly, checkout, and launch of the Space Shuttle. LPS monitors thousands of measurements on the Space Shuttle and its ground support equipment, compares them to predefined tolerance levels, and then displays values that are out of tolerance. Firing Room operators view the data and send commands about everything from propellant levels inside the external tank to temperatures inside the crew compartment. In many cases, LPS will automatically react to abnormal conditions and perform related functions without test engineer intervention; however, firing room engineers continue to look at each and every happening to ensure a safe launch. Some of the systems monitored during launch operations include electrical, cooling, communications, and computers. One of the thousands of measurements derived from these systems is the amount of hydrogen and oxygen inside the shuttle during launch.
MD-11 PCA - Research flight team photo
NASA Technical Reports Server (NTRS)
1995-01-01
On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.
14 CFR 23.1437 - Accessories for multiengine airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Accessories for multiengine airplanes. 23.1437 Section 23.1437 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine-driven accessories essential to safe operation must be distributed among two or more engines so...
14 CFR 23.1437 - Accessories for multiengine airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Accessories for multiengine airplanes. 23.1437 Section 23.1437 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., engine-driven accessories essential to safe operation must be distributed among two or more engines so...
ERIC Educational Resources Information Center
Hauer, Ezra
1991-01-01
Contends that the level of safety built into roads is largely unpremeditated and that roads and highways are not as safe as they might be. Discusses practices, standards, and deficiencies in highway and traffic safety related to geometric design and traffic engineering. Recommends increased transportation engineering professionalism and public…
Technology to improve quality and accountability.
Kay, Jonathan
2006-01-01
A body of evidence has been accumulated to demonstrate that current practice is not sufficiently safe for several stages of central laboratory testing. In particular, while analytical and perianalytical steps that take place within the laboratory are subjected to quality control procedures, this is not the case for several pre- and post-analytical steps. The ubiquitous application of auto-identification technology seems to represent a valuable tool for reducing error rates. A series of projects in Oxford has attempted to improve processes which support several areas of laboratory medicine, including point-of-care testing, blood transfusion, delivery and interpretation of reports, and support of decision-making by clinicians. The key tools are auto-identification, Internet communication technology, process re-engineering, and knowledge management.
Command and Control Software Development
NASA Technical Reports Server (NTRS)
Wallace, Michael
2018-01-01
The future of the National Aeronautics and Space Administration (NASA) depends on its innovation and efficiency in the coming years. With ambitious goals to reach Mars and explore the vast universe, correct steps must be taken to ensure our space program reaches its destination safely. The interns in the Exploration Systems and Operations Division at the Kennedy Space Center (KSC) have been tasked with building command line tools to ease the process of managing and testing the data being produced by the ground control systems while its recording system is not in use. While working alongside full-time engineers, we were able to create multiple programs that reduce the cost and time it takes to test the subsystems that launch rockets to outer space.
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.
Engineering in an age of anxiety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, A.M.
Public fears of nuclear or chemical accidents should challenge engineers to build systems that are inherently safe. Much of our national anxiety focuses on modern technology. This anxiety places constraints on our technologies. Probabilistic risk assessment (PBA) has become an accepted tool for determining the safety of a device. Although PBA is widely accepted by engineers, it will not allay the public's anxieties. To concede that a technology has the potential for causing a major disaster, even if the probability of occurrence is minute, is unacceptable in the age of anxiety. The search for inherent safety concepts, that - informedmore » skeptics - and the public will accept, continues. The greenhouse effect may be decisive in spurring the demand for inherently safe nuclear technology. Ultimately what the public requires by way of assurance may well depend on the alternatives available. 11 refs.« less
Aircraft control forces and EMG activity in a C-130 Hercules during strength-critical maneuvers.
Hewson, D J; McNair, P J; Marshall, R N
2001-03-01
The force levels required to operate aircraft controls should be readily generated by pilots, without undue fatigue or exertion. However, maximum pilot applied forces, as specified in aircraft design standards, were empirically derived from the subjective comments of test pilots, and may not be applicable for the majority of pilots. Further, experienced RNZAF Hercules flying instructors have indicated that endurance and fatigue are problems for Hercules pilots. The aim of this study was to quantify aircraft control forces during emergency maneuvers in a Hercules aircraft and compare these forces with design standards. In addition, EMG data were recorded as an indicator of muscle fatigue during flight. Six subjects were tested in a C-130 Hercules aircraft. The maneuvers performed were low-level dynamic flight, one engine-off straight-and-level flight, and a two-engines-off simulated approach. The variables recorded were pilot-applied forces and EMG activity. Left rudder pedal force and vastus lateralis activity were both significantly greater during engine-off maneuvers than during low-level dynamic flight (p < 0.05). Maximum aircraft control forces for all controls were within 10% of the design standards. The mean EMG activity across all muscles and maneuvers was 26% MVC, with a peak of 61% MVC in vastus lateralis during the two-engine-off approach. The median frequency of the vastus lateralis EMG signal decreased 13.0% and 16.0% for the one engine-off and two-engine-off maneuvers, respectively. The forces required to fly a Hercules aircraft during emergency maneuvers are similar to the aircraft design standards. However, the levels of vastus lateralis muscle activation observed during the engine-off maneuvers can be sustained for approximately 1 min only. Thus, if two engines fail more than 1 min before landing, pilots may have to alternate control of the aircraft to share the workload and enable the aircraft to land safely.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.
2011-01-01
A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.
Compendium of fracture mechanics problems
NASA Technical Reports Server (NTRS)
Stallworth, R.; Wilson, C.; Meyers, C.
1990-01-01
Fracture mechanics analysis results are presented from the following structures/components analyzed at Marshall Space Flight Center (MSFC) between 1982 and 1989: space shuttle main engine (SSME), Hubble Space Telescope (HST), external tank attach ring, B-1 stand LOX inner tank, and solid rocket booster (SRB). Results from the SSME high pressure fuel turbopump (HPFTP) second stage blade parametric analysis determine a critical flaw size for a wide variety of stress intensity values. The engine 0212 failure analysis was a time dependent fracture life assessment. Results indicated that the disk ruptured due to an overspeed condition. Results also indicated that very small flaws in the curvic coupling area could propagate and lead to failure under normal operating conditions. It was strongly recommended that a nondestructive evaluation inspection schedule be implemented. The main ring of the HST, scheduled to launch in 1990, was analyzed by safe-life and fail-safe analyses. First safe-life inspection criteria curves for the ring inner and outer skins and the fore and aft channels were derived. Afterwards the skins and channels were determined to be fail-safe by analysis. A conservative safe-life analysis was done on the 270 redesign external tank attach ring. Results from the analysis were used to determine the nondestructive evaluation technique required.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
2012-11-14
CAPE CANAVERAL, Fla. – The Orion spacecraft crew access arm, or CAA, seal prototype is being checked by technicians and engineers at the Launch Equipment Test Facility at NASAs Kennedy Space Center in Florida. The tests will use a mockup of the vehicle Outer Mold Line and CAA white room to assess the performance of the seal while simulating vehicle to CAA white room excursions. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Jim Grossmann
2012-11-14
CAPE CANAVERAL, Fla. – The Orion spacecraft crew access arm, or CAA, seal prototype is being checked by technicians and engineers at the Launch Equipment Test Facility at NASAs Kennedy Space Center in Florida. The tests will use a mockup of the vehicle Outer Mold Line and CAA white room to assess the performance of the seal while simulating vehicle to CAA white room excursions. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Jim Grossmann
Experimental Studies of Radial Wave Thermoacoustic Engines. Navy Environmentally Safe Ships Program.
1995-07-15
4 B. Pressure and specific acoustic impedance differer.: hd equation. .... ................ 6...the engine, Arf Sr) the resonator cross-see:iona! area at r. Ap(r) the cross-sectional area of" a porn at r, V; >h :c .... ,Ar tk. resonator at r
46 CFR 169.609 - Exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Exhaust systems. 169.609 Section 169.609 Shipping COAST... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... Yacht Council, Inc. Standard P-1, “Safe Installation of Exhaust Systems for Propulsion and Auxiliary...
Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed
NASA Technical Reports Server (NTRS)
Gayda, John
2002-01-01
Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the photomicrographs. The fine grain size in the bore can be contrasted with the coarse grain size in the rim. Testing (at NASA Glenn) of coupons machined from these disks showed that the DMHT approach did indeed produce a high-strength, fatigue resistant bore and a creep-resistant rim. This combination of properties was previously unobtainable using conventional heat treatments, which produced disks with a uniform grain size. Future plans are in place to spin test a DMHT disk under the Ultra Safe Propulsion Project to assess the viability of this technology at the component level. This testing will include measurements of disk growth at a high temperature as well as the determination of burst speed at an intermediate temperature.
2014-05-30
CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-30
CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
Contingency power concepts for helicopter turboshaft engine
NASA Technical Reports Server (NTRS)
Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.
1984-01-01
Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
Farquar, George
2018-01-16
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farquar, George
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilationmore » and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.« less
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and controllers in a mobile control room prepare for flight number 15 of NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
Next Generation Launch Technology Program Lessons Learned
NASA Technical Reports Server (NTRS)
Cook, Stephen; Tyson, Richard
2005-01-01
In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane is used to move the Orion service module to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane is used to move the Orion service module to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
"Starfish" Heater Head For Stirling Engine
NASA Technical Reports Server (NTRS)
Vitale, N.
1993-01-01
Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.
14 CFR 136.1 - Applicability and definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (powered or un-powered), parachutes (powered or un-powered), gyroplanes, or airships. (d) For the purposes... site-specific areas would provide an emergency landing area for a single-engine helicopter or a multiengine helicopter that does not have the capability to reach a safe landing area after an engine power...
14 CFR 136.1 - Applicability and definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (powered or un-powered), parachutes (powered or un-powered), gyroplanes, or airships. (d) For the purposes... site-specific areas would provide an emergency landing area for a single-engine helicopter or a multiengine helicopter that does not have the capability to reach a safe landing area after an engine power...
14 CFR 136.1 - Applicability and definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (powered or un-powered), parachutes (powered or un-powered), gyroplanes, or airships. (d) For the purposes... site-specific areas would provide an emergency landing area for a single-engine helicopter or a multiengine helicopter that does not have the capability to reach a safe landing area after an engine power...
14 CFR 136.1 - Applicability and definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (powered or un-powered), parachutes (powered or un-powered), gyroplanes, or airships. (d) For the purposes... site-specific areas would provide an emergency landing area for a single-engine helicopter or a multiengine helicopter that does not have the capability to reach a safe landing area after an engine power...
14 CFR 136.1 - Applicability and definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (powered or un-powered), parachutes (powered or un-powered), gyroplanes, or airships. (d) For the purposes... site-specific areas would provide an emergency landing area for a single-engine helicopter or a multiengine helicopter that does not have the capability to reach a safe landing area after an engine power...
Silencing of meiosis-critical genes for engineering male sterility in plants
USDA-ARS?s Scientific Manuscript database
Engineering sterile traits in plants through the tissue-specific expression of a cytotoxic gene provides an effective way for containing transgene flow; however, the microbial origin of cytotoxic genes has raised concerns. In an attempt to develop a safe alternative, we have chosen the meiosis-crit...
14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... airplane can be safely controlled in flight after an engine becomes inoperative) or 115 percent of the... this section— (1) It may be assumed that takeoff power is used on all engines during the acceleration... reported tailwind component, may be taken into account; (3) The average runway gradient (the difference...
14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... airplane can be safely controlled in flight after an engine becomes inoperative) or 115 percent of the... this section— (1) It may be assumed that takeoff power is used on all engines during the acceleration... reported tailwind component, may be taken into account; (3) The average runway gradient (the difference...
14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... airplane can be safely controlled in flight after an engine becomes inoperative) or 115 percent of the... this section— (1) It may be assumed that takeoff power is used on all engines during the acceleration... reported tailwind component, may be taken into account; (3) The average runway gradient (the difference...
14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... airplane can be safely controlled in flight after an engine becomes inoperative) or 115 percent of the... this section— (1) It may be assumed that takeoff power is used on all engines during the acceleration... reported tailwind component, may be taken into account; (3) The average runway gradient (the difference...
14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... airplane can be safely controlled in flight after an engine becomes inoperative) or 115 percent of the... this section— (1) It may be assumed that takeoff power is used on all engines during the acceleration... reported tailwind component, may be taken into account; (3) The average runway gradient (the difference...
Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use and eventual disposal requires the capability to forecast and avoid potential problems. This review is concerned with the releases of ENM into the environmen...
14 CFR 21.500 - Approval of engines and propellers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Approval of engines and propellers. 21.500 Section 21.500 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... propeller— (a) Conforms to its U.S. type certificate and is in condition for safe operation; and (b) Has...
78 FR 45898 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... incorporate a revision to the Airworthiness Limitations Section of the maintenance planning data (MPD... suction feed capability on one engine, and in-flight shutdown of the engine. This action revises that... charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations...
Holzer, Thomas L.
1998-01-01
This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.
Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael
2011-01-01
Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Marshall Space Flight Center (MSFC) Engineering Directorate, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This briefing will demonstrate how the MSFC Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions and how that strategy aligns with the Agency and Center systems engineering policies and processes. Sustainable space exploration solutions demand that all lifecycle phases be optimized, and engineering the next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. Adopting PLM, which has been used by the aerospace and automotive industry for many years, for spacecraft applications provides a foundation for strong, disciplined systems engineering and accountable return on investment. PLM enables better solutions using fewer resources by making lifecycle considerations in an integrative decision-making process.
Wind pressure testing of tornado safe room components made from wood
Robert Falk; Deepak Shrestha
2016-01-01
To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...
NASA Astrophysics Data System (ADS)
Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.
2018-01-01
Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.
Shum, Thomas; Kruse, Robert L; Rooney, Cliona M
2018-05-04
Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. Areas covered: We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. Expert opinion: CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.
PCL-HA microscaffolds for in vitro modular bone tissue engineering.
Totaro, Alessandra; Salerno, Aurelio; Imparato, Giorgia; Domingo, Concepción; Urciuolo, Francesco; Netti, Paolo Antonio
2017-06-01
The evolution of microscaffolds and bone-bioactive surfaces is a pivotal point in modular bone tissue engineering. In this study, the design and fabrication of porous polycaprolactone (PCL) microscaffolds functionalized with hydroxyapatite (HA) nanoparticles by means of a bio-safe and versatile thermally-induced phase separation process is reported. The ability of the as-prepared nanocomposite microscaffolds to support the adhesion, growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in standard and osteogenic media and using dynamic seeding/culture conditions was investigated. The obtained results demonstrated that the PCL-HA nanocomposite microparticles had an enhanced interaction with hMSCs and induced their osteogenic differentiation, even without the exogenous addition of osteogenic factors. In particular, calcium deposition, alizarin red assay, histological analysis, osteogenic gene expression and collagen I secretion were assessed. The results of these tests demonstrated the formation of bone microtissue precursors after 28 days of dynamic culture. These findings suggest that PCL-HA nanocomposite microparticles represent an excellent platform for in vitro modular bone tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Gorman, J.; Voshell, M.; Sliva, A.
2016-09-01
The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and automated processes. Such operationally relevant and integrated testing provides a sound foundation for operator trust in system automation that is required to safely operate satellite systems.
Tornado Emergency Readiness Planning for Schools.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison.
A place of safe refuge in the event of violent natural forces or a tornado should be included in the design of all new school buildings. Existing a school buildings should be analyzed by the architect, contractor, or engineer to determine if a safe place exists or if one can be readily adapted. Most criteria for fallout shelters are the same for…
Water You Engineering? An Activity to Develop Water-Quality Awareness
ERIC Educational Resources Information Center
Riskowski, Jody; Todd, Carrie Davis
2009-01-01
Water is one of our most precious resources. However, for many in the United States, having fresh, safe drinking water is taken for granted, and due to this perceived lack of relevance, students may not fully appreciate the luxury of having safe running water--in the home. One approach to resolving water-quality issues in the United States may…
Safe drinking water supply is one of the most notable modern engineering achievements in the 20th century. It is a centerpiece of the U.S. environmental protection effort under the federal Safe Drinking Water Act (SDWA) and its amendments. In this chapter, water quality changes a...
Flight and Integrated Testing: Blazing the Trail for the Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Taylor, James L.; Cockrell, Charlie; Robinson, Kimberly; Tuma, Margaret L.; Flynn, Kevin C.; Briscoe, Jeri M.
2007-01-01
It has been 30 years since the United States last designed and built a human-rated launch vehicle. The National Aeronautics and Space Administration (NASA) has marshaled unique resources from the government and private sectors that will carry the next generation of astronauts into space safer and more efficiently than ever and send them to the Moon to develop a permanent outpost. NASA's Flight and Integrated Test Office (FITO) located at Marshall Space Flight Center and the Ares I-X Mission Management Office have primary responsibility for developing and conducting critical ground and flight tests for the Ares I and Ares V launch vehicles. These tests will draw upon Saturn and the Space Shuttle experiences, which taught the value of using sound systems engineering practices, while also applying aerospace best practices such as "test as you fly" and other lessons learned. FITO will use a variety of methods to reduce the technical, schedule, and cost risks of flying humans safely aboard a launch vehicle.
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, an engineer prepares for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers monitor data during the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
2013-10-24
CAPE CANAVERAL, Fla. – Inside the Orion Test and Launch Control Center at NASA’s Kennedy Space Center in Florida, engineers prepare for the first Exploration Flight Test 1, or EFT-1, power up test. NASA’s first-ever deep space craft, Orion, was powered on for the first time, marking a major milestone in the final year of preparations for flight. Orion’s avionics system was installed on the crew module and powered up for a series of systems tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: Dimitri Gerondidakis
A NASA technician paints NASA's first Orion full-scale abort flight test crew module.
2008-03-31
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
Influences on Low-SES First-Generation Students' Decision to Pursue Engineering
ERIC Educational Resources Information Center
Strutz, Michele Louise
2012-01-01
"The ability of this nation to provide a growing economy, strong health and human services, and a secure and safe nation depends upon a vibrant, creative, and diverse engineering and science workforce" (Blue, et al., 2005, p.4). To contribute to technological advancements, engage in global collaboration, solve complex problems, encourage…
49 CFR 240.129 - Criteria for monitoring operational performance of certified engineers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... railroad's rules and practices for the safe operation of locomotives and trains; (2) Be designed so that... service. (c) The procedures shall: (1) Be designed to determine that the person possesses and routinely... operational performance monitoring will be conducted; (3) Be designed so that the locomotive engineer is...
Licencing and Training Reform in the Australian Aircraft Maintenance Industry
ERIC Educational Resources Information Center
Hampson, Ian; Fraser, Doug
2016-01-01
The training and licencing of aircraft maintenance engineers fulfils a crucial protective function since it is they who perform and supervise aircraft maintenance and certify that planes are safe afterwards. In Australia, prior to training reform, a trades-based system of aircraft maintenance engineer training existed in an orderly relation with…
Salerno, Aurelio; Domingo, Concepción
2014-09-01
Open-pore biodegradable microparticles are object of considerable interest for biomedical applications, particularly as cell and drug delivery carriers in tissue engineering and health care treatments. Furthermore, the engineering of microparticles with well definite size distribution and pore architecture by bio-safe fabrication routes is crucial to avoid the use of toxic compounds potentially harmful to cells and biological tissues. To achieve this important issue, in the present study a straightforward and bio-safe approach for fabricating porous biodegradable microparticles with controlled morphological and structural features down to the nanometer scale is developed. In particular, ethyl lactate is used as a non-toxic solvent for polycaprolactone particles fabrication via a thermal induced phase separation technique. The used approach allows achieving open-pore particles with mean particle size in the 150-250 μm range and a 3.5-7.9 m(2)/g specific surface area. Finally, the combination of thermal induced phase separation and porogen leaching techniques is employed for the first time to obtain multi-scaled porous microparticles with large external and internal pore sizes and potential improved characteristics for cell culture and tissue engineering. Samples were characterized to assess their thermal properties, morphology and crystalline structure features and textural properties. Copyright © 2014 Elsevier B.V. All rights reserved.
High Reliability Engine Control Demonstrated for Aircraft Engines
NASA Technical Reports Server (NTRS)
Guo, Ten-Huei
1999-01-01
For a dual redundant-control system, which is typical for short-haul aircraft, if a failure is detected in a control sensor, the engine control is transferred to a safety mode and an advisory is issued for immediate maintenance action to replace the failed sensor. The safety mode typically results in severely degraded engine performance. The goal of the High Reliability Engine Control (HREC) program was to demonstrate that the neural-network-based sensor validation technology can safely operate an engine by using the nominal closed-loop control during and after sensor failures. With this technology, engine performance could be maintained, and the sensor could be replaced as a conveniently scheduled maintenance action.
Green Toxicology: a strategy for sustainable chemical and material development.
Crawford, Sarah E; Hartung, Thomas; Hollert, Henner; Mathes, Björn; van Ravenzwaay, Bennard; Steger-Hartmann, Thomas; Studer, Christoph; Krug, Harald F
2017-01-01
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Teaching Engineering Practices
NASA Astrophysics Data System (ADS)
Cunningham, Christine M.; Carlsen, William S.
2014-03-01
Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.
NASA Astrophysics Data System (ADS)
Dujarric, C.; Santovincenzo, A.; Summerer, L.
2013-03-01
Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required Initial Mass in Low Earth Orbit compared to conventional nuclear thermal rockets for a human mission to Mars. Of course, the realization of this concept still requires proper engineering and the dimensioning of quite unconventional machinery. A patent was filed on the concept. Because of the operating parameters of the nuclear core, which are very specific to this type of concept, it seems possible to test on ground this kind of engine at full scale in close loop using a reasonable size test facility with safe and clean conditions. Such tests can be conducted within fully confined enclosure, which would substantially increase the associated inherent nuclear safety levels. This breakthrough removes a showstopper for nuclear rocket engines development. The present paper will disclose the NTER (Nuclear Thermal Electric Rocket) engine concept, will present some of the results of the ESTEC concurrent engineering exercise, and will explain the concept for the NTER on-ground testing facility. Regulations and safety issues related to the development and implementation of the NTER concept will be addressed as well.
Recent Stirling Conversion Technology Developments and Operational Measurements
NASA Technical Reports Server (NTRS)
Oriti, Salvatore; Schifer, Nicholas
2009-01-01
Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.
Granular Simulation of NEO Anchoring
NASA Technical Reports Server (NTRS)
Mazhar, Hammad
2011-01-01
NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hazard avoidance instrumentation it being prepared for installation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a technician installs hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to lift the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians begin lifting the agency's Orion spacecraft for mounting atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
NASA Technical Reports Server (NTRS)
1976-01-01
After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).
X-38 flies free from NASA's B-52 mothership, July 10, 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a 'lifeboat' for the International Space Station based on X-38 research.
X-38 flies free from NASA's B-52 mothership, July 10, 2001
2001-07-10
The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a "lifeboat" for the International Space Station based on X-38 research.
Primary battery design and safety guidelines handbook
NASA Technical Reports Server (NTRS)
Bragg, Bobby J.; Casey, John E.; Trout, J. Barry
1994-01-01
This handbook provides engineers and safety personnel with guidelines for the safe design or selection and use of primary batteries in spaceflight programs. Types of primary batteries described are silver oxide zinc alkaline, carbon-zinc, zinc-air alkaline, manganese dioxide-zionc alkaline, mercuric oxide-zinc alkaline, and lithium anode cells. Along with typical applications, the discussions of the individual battery types include electrochemistry, construction, capacities and configurations, and appropriate safety measures. A chapter on general battery safety covers hazard sources and controls applicable to all battery types. Guidelines are given for qualification and acceptance testing that should precede space applications. Permissible failure levels for NASA applications are discussed.
Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs) . Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Prosser, William H.
2014-01-01
In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.
NASA Technical Reports Server (NTRS)
Rogallo, Vernon L.; Yaggy, Paul F.; McCloud, John L., III
1954-01-01
An investigation of a decoupler and a controlled-feathering device incorporated with the YT-56A turboprop engine has been made to determine the effectiveness of these devices in reducing the high negative thrust (drag) which accompanies power failure of this type of engine. Power failures were simulated by fuel cut-off, both without either device free to operate, and with each device free to operate singly. The investigation was made through an airspeed range from 50 to 230 mph. It was found that with neither device free to operate, the drag levels realized after power failures at airspeeds above 170 mph would impose vertical tail loads higher than those allowable for the YC-130, the airplane for which the test power package was designed. These levels were reached in approximately one second. The maximum drag realized after power failure was not appreciably altered by the use of the decoupler although the decoupler did put a limit on the duration of the peak drag. The controlled-feathering device maintained a level of essentially zero drag after power failure. The use of the decoupler in the YT-56A engine complicates windmilling air-starting procedures and makes it necessary to place operating restrictions on the engine to assure safe flight at low-power conditions,
F-15 digital electronic engine control system description
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.
Reflections on system safety and the law
NASA Technical Reports Server (NTRS)
Hayes, D. F., Sr.
1971-01-01
The application of law to the determination of what constitutes safeness is discussed. The numerous factors are analyzed which enter into the decisions of courts in deciding what is safe and what is unsafe. It is pointed out that as technology changes, legal interpretations of safety also change. Arguements are given for the use of system safety techniques and better engineering analyses as instruments of defense against liability.
Ensuring a Safe Technological Revolution
2016-12-01
Defense AT&L: November-December 2016 14 Ensuring a Safe Technological Revolution William E. Frazier, Ph.D. n Elizabeth L. McMichael n Jennifer...for 5 years, working on nonferrous welding and AM and has an M.S. in Mechanical Engineering from the University of Maryland, Baltimore County. I n...has acceptable proper- ties. A “certified” part can perform properly in its operating environment . The conventional qualification/certification
NASA Technical Reports Server (NTRS)
Iseler, Laura; Chen, Robert; Dearing, Munro; Decker, William; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Two recent piloted simulation experiments have investigated advanced display concepts applied to civil transport helicopter terminal area operations. Civil Category A helicopter operations apply to multi-engine helicopters wherein a safe recovery (land or fly out) is required in the event of a single engine failure. The investigation used the NASA Ames Research Center Vertical Motion Simulator, which has a full six degrees of freedom, to simulate the flight task as closely as possible. The goal of these experiments was to use advanced cockpit displays to improve flight safety and enhance the mission performance of Category A terminal area operations in confined areas. The first experiment investigated the use of military display formats to assist civil rotorcraft in performing a Category A takeoff in confined terminal areas. Specifically, it addressed how well a difficult hovering backup path could be followed using conventional instruments in comparison to panel mounted integrated displays. The hovering backup takeoff, which enables pilots to land back to the confined area pad in the event of an engine failure, was chosen since it is a difficult task to perform. Seven NASA and Army test pilots participated in the experiment. Evaluations, based on task performance and pilot workload, showed that an integrated display enabled the pilot to consistently achieve adequate or desired performance with reasonable pilot workload. Use of conventional instruments, however, frequently resulted in unacceptable performance (poor flight path tracking), higher pilot workload, and poor situational awareness. Although OEI landbacks were considered a visual task, the improved performance on the backup portion, in conjunction with increased situational awareness resulting from use of integrated displays, enabled the pilots to handle an engine failure and land back safely. In contrast, use of conventional instruments frequently led to excessive rates of sink at touchdown. A second simulation (in progress - July - August) is being conducted to investigate the use of advanced displays to perform vertical and short takeoffs and landings. One Engine Inoperative trajectories, which were optimized based on safety of flight restrictions, are utilized. Based on comments from the first experiment and further analytic development, appropriate fly out and approach guidance was added. Displays include conventional instruments with raw data, and the following integrated displays: multi-view and side-view hover displays based on the Apache Pilot Night Vision System, and variations of the pathway-in-the-sky displays with a flight-path-vector, a leader and flight director modifications. Panel mounted and head-up displays are being evaluated. Engine modifications have been incorporated to simulate 30 second and 2 minute contingency power ratings. Evaluations are based on task performance and pilot workload. NASA, Army, FAA, and industry test pilots participated. Details concerning the design, conduct, and the results of the experiment will be reported in the proposed paper.
NASA Astrophysics Data System (ADS)
Hickman, S.; Mooney, W. D.; Hsieh, P. A.; Enomoto, C.; Nelson, P. H.; McNutt, M.
2010-12-01
Scientists, engineers and managers from BP, other private companies, universities, government research labs and a broad spectrum of federal agencies have formed a unique cooperative working relationship in responding to the Macondo oil well (Deepwater Horizon) blowout. Among the many activities performed during this effort, U.S. Geological Survey personnel evaluated the potential geologic hazard of shutting in the Macondo well at the sea floor, and collectively decided, with others, the conditions under which it could be safely undertaken. These hazards included the possible loss of wellbore integrity under the anticipated high shut-in pressures, potentially leading to new pathways for hydrocarbon release to the Gulf of Mexico through upward hydraulic fracture propagation and/or soft sediment erosion initiating at possible leak points in the cemented casing. This hazard evaluation required analysis of 2D and 3D seismic surveys, seafloor bathymetry, pressure transient tests, geophysical well logs, in-situ stress (“leak-off”) tests and drilling data (e.g., mud logs) to assess the geological, hydrological and geomechanical conditions at and around the Macondo well. After the well was successfully capped and shut in by BP on July 15, a variety of monitoring practices were put into place to guard against further leaks into the Gulf. These monitoring activities included acquisition of wellhead pressure data, marine multi-channel seismic profiles, sea-floor and sea-surface sonar surveys (the latter using the NOAA RV/Pisces), and wellhead visual/acoustic monitoring. Scientists and engineers from BP, outside consultants, government agencies and the university community then worked together to continuously evaluate these data to ensure that the well remained safely shut in until reservoir pressures were suppressed (“killed”) with heavy drilling mud and the well was sealed with cement. This effort to shut in and then permanently seal the blown-out Macondo well has involved an unprecedented level of interaction, collaboration and coordination among scientists, engineers, managers and emergency response officials, and will hopefully lead to improved methodologies and approaches to assessing and then mitigating hazards posed by deepwater drilling.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2011-12-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2012-01-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
I Didn't Know I Couldn't Do That
NASA Technical Reports Server (NTRS)
Harrison, Dan
2016-01-01
Dan Harrison will discuss overcoming institutional and cultural obstacles that he encountered during his more than 35-year career in engineering and engineering management. He will discuss why it is important to challenge the "unwritten laws" and the status quo that large organizations develop that are contrary to the end-goal of safe, affordable space exploration.
Demonstration, Testing and Qualification of a High Temperature, High Speed Magnetic Thrust Bearing
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth
2005-01-01
The gas turbine industry has a continued interest in improving engine performance and reducing net operating and maintenance costs. These goals are being realized because of advancements in aeroelasticity, materials, and computational tools such as CFD and engine simulations. These advancements aid in increasing engine thrust-to-weight ratios, specific fuel consumption, pressure ratios, and overall reliability through higher speed, higher temperature, and more efficient engine operation. Currently, rolling element bearing and squeeze film dampers are used to support rotors in gas turbine engines. Present ball bearing configurations are limited in speed (<2 million DN) and temperature (<5OO F) and require both cooling air and an elaborate lubrication system. Also, ball bearings require extensive preventative maintenance in order to assure their safe operation. Since these bearings are at their operational limits, new technologies must be found in order to take advantage of other advances. Magnetic bearings are well suited to operate at extreme temperatures and higher rotational speeds and are a promising solution to the problems that conventional rolling element bearings present. Magnetic bearing technology is being developed worldwide and is considered an enabling technology for new engine designs. Using magnetic bearings, turbine and compressor spools can be radically redesigned to be significantly larger and stiffer with better damping and higher rotational speeds. These advances, a direct result of magnetic bearing technology, will allow significant increases in engine power and efficiency. Also, magnetic bearings allow for real-time, in-situ health monitoring of the system, lower maintenance costs and down time.
Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.
Sowale, Ayodeji; Kolios, Athanasios J; Fidalgo, Beatriz; Somorin, Tosin; Parker, Alison; Williams, Leon; Collins, Matt; McAdam, Ewan; Tyrrel, Sean
2018-06-01
The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.
2012-11-14
CAPE CANAVERAL, Fla. – The Orion spacecraft crew access arm, or CAA, seal prototype is being checked out at the Launch Equipment Test Facility at NASA's Kennedy Space Center in Florida. Monitoring the activity, from the left are Kent Bachelor, Stinger Ghaffarian Technologies lead, Kelli Maloney, NASA lead and Clayton Gvasse, Nelson Engineering lead. The tests will use a mockup of the vehicle Outer Mold Line and CAA white room to test the performance of the seal while simulating vehicle to CAA white room excursions. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/Jim Grossmann
Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.
2011-01-01
Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations
NASA Technical Reports Server (NTRS)
Lawrence, Charles
2003-01-01
One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Wait, John
2003-01-01
AlliedSignal Engines (AE) defined a number of concepts that significantly increased the horsepower of a turboshaft engine to accommodate the loss of an engine and enable the safe landing of a twin-engined, 40-passenger, short haul civil tiltrotor. From these concepts, "Water/Methanol Injection," a "Better Power Turbine Than Required," and a "Secondary Combustor For Interturbine Reheat" were chosen, based on system safety and economics, for more detailed examination. Engine performance, mission, and cost analysis of these systems indicated contingency power levels of 26 to 70 percent greater than normal rated takeoff could be attained for short durations, thus enabling direct operating cost savings between 2 and 6 percent.
Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.
Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon
2010-06-01
Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.
NASA Technical Reports Server (NTRS)
Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.
2015-01-01
Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Daniel Harvey; Crafts, Chris C.
This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehiclemore » applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.« less
Space Shuttle Orbiter Approach and Landing Test: Final Evaluation Report
NASA Technical Reports Server (NTRS)
1978-01-01
The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2014-12-11
CAPE CANAVERAL, Fla. – NASA Project Morpheus prototype lander is being lifted by crane during preparations for free flight test number 15 at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being transported to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-11
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is prepared for transport to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA Project Morpheus prototype lander and support equipment are being transported to the north end of the Shuttle Landing Facility for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowski, E.M.; Borland, M.M.; Norris, L.
1995-06-01
The U.S. Army Edgewood Research, Development and Engineering Center, the U.S. Army Aberdeen Proving Ground Support Activity, Directorate of Safety, Health and the Environment and SciTech Services Inc., an independent contractor, have developed an approach for screening environmental samples for the presence of chemical warfare agents. Since 1918, the Edgewood area of Aberdeen Proving Ground has been a research and testing ground for toxic agent compounds. Since these materials are considered highly toxic, screening for their presence in environmental samples is necessary for safe shipment to contract laboratories for testing by EPA guidelines. The screening ensures worker safety and maintainsmore » U.S. Army standards for transportation of materials potentially contaminated with chemical warfare agents. This paper describes the screening methodology.« less
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.; Yurkovich, S.; Hill, J. P.; Kingler, T. A.
1983-01-01
The development of models of tensor type for a digital simulation of the quiet, clean safe engine (QCSE) gas turbine engine; the extension, to nonlinear multivariate control system design, of the concepts of total synthesis which trace their roots back to certain early investigations under this grant; the role of series descriptions as they relate to questions of scheduling in the control of gas turbine engines; the development of computer-aided design software for tensor modeling calculations; further enhancement of the softwares for linear total synthesis, mentioned above; and calculation of the first known examples using tensors for nonlinear feedback control are discussed.
Rotorcraft contingency power study
NASA Technical Reports Server (NTRS)
Hirschkron, R.; Haynes, J. F.; Goldstein, D. N.; Davis, R. H.
1984-01-01
Twin helicopter engines are often sized by the power requirement of a safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 Contingency Power rating, permitting an engine size reduction. The merits of water injection, turbine cooling airflow modulation, throttle push, and a propellant auxiliary power plant were evaluated using military Life Cycle Cost (LCC) and commercial helicopter Direct Operating Cost (DOC) merit factors in a rubber engine and a rubber aircraft scenario.
The Principles of Engineering Immune Cells to Treat Cancer
Lim, Wendell A.; June, Carl H.
2017-01-01
Chimeric antigen receptor (CAR) T cells have proven that engineered immune cells can serve as a powerful new class of cancer therapeutics. Clinical experience has helped to define the major challenges that must be met to make engineered T cells a reliable, safe, and effective platform that can be deployed against a broad range of tumors. The emergence of synthetic biology approaches for cellular engineering is providing us with a broadly expanded set of tools for programming immune cells. We discuss how these tools could be used to design the next generation of smart T cell precision therapeutics. PMID:28187291
Anderson, Devon E; Watts, Bradley V
2013-09-01
Despite innumerable attempts to eliminate the postoperative retention of surgical sponges, the medical error persists in operating rooms worldwide and places significant burden on patient safety, quality of care, financial resources, and hospital/physician reputation. The failure of countless solutions, from new sponge counting methods to radio labeled sponges, to truly eliminate the event in the operating room requires that the emerging field of health-care delivery science find innovative ways to approach the problem. Accordingly, the VA National Center for Patient Safety formed a unique collaboration with a team at the Thayer School of Engineering at Dartmouth College to evaluate the retention of surgical sponges after surgery and find a solution. The team used an engineering problem solving methodology to develop the best solution. To make the operating room a safe environment for patients, the team identified a need to make the sponge itself safe for use as opposed to resolving the relatively innocuous counting methods. In evaluation of this case study, the need for systematic engineering evaluation to resolve problems in health-care delivery becomes clear.
NASA Technical Reports Server (NTRS)
Blaze, Gina M.
2004-01-01
Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions and also safely shutdown the engines. The test will last for a period of 8000 to 9000 hours. Other types of tests that have been performed are: performance mapping, controller development, launch environment, and vibration emissions testing. Currently, the thermo-mechanical system branch is housing a RG-350, a stirling convertor. The convertor was used in previous tests such as a Hall Thruster test, world s first integrated test of a dynamic power system with electric propulsion. Another test performed was to conclude if free piston stirling convertors can be synchronized for vibration balancing, with no thermodynamic or electrical connections and not cause both to shutdown if one failed. The ability to reduce vibration by synchronizing convertor operation but still be able to operate when one partner fails is pertinent in space and terrestrial applications. The convertor is now being brought back into operation and a controller is in the process of being developed. This convertor will be used as a testbed for new controllers. I worked with Mary Ellen Roth on the electric engineering aspects of the RG-350. My main goal was to enhance the data collection process. I worked on different aspects of the RG-350, with a main focus on the engine controller. I drew a schematic of the wire connections in the engine controller, using PCB Express, so that a plan could be devised to connect the power meter properly between the output of the engine and the engine controller. I measured the power using two different instruments: Valhalla Scientific power meter and Ohio Semitronics power measurement device. The convertor is connected to an Agilent 34970A Data Acquisition/Switch Unit, which allows the user to measure, record, and monitor voltage, current, frequency, and temperature. I assisted in preparing the Data Acquisition for general operation. I also helped test a panel of transducers, which will be placed in the rack that powers and monitors the convertor.
Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.
1997-12-01
DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less
A Summary of Research and Progress on Carbon Monoxide Exposure Control Solutions on Houseboats
Hall, Ronald M.; Earnest, G. Scott; Hammond, Duane R.; Dunn, Kevin H.; Garcia, Alberto
2015-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used. PMID:24568306
A summary of research and progress on carbon monoxide exposure control solutions on houseboats.
Hall, Ronald M; Earnest, G Scott; Hammond, Duane R; Dunn, Kevin H; Garcia, Alberto
2014-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used.
High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2004-01-01
Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA s Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two types of seal preloading devices were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. 1000 cycles) of scrubbing at 1600 F against an Inconel 625 rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency. A finite element model of the canted coil spring revealed that it should be possible to produce a spring out of high temperature materials for applications at 2000+ F.
High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2003-01-01
Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two types of seal preloading devices were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (1000 cycles) of scrubbing at room temperature against an Inconel 625 rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were much lower than those recorded for the best braided rope seal flow blockers. Canted coil springs and silicon nitride compression springs showed promise conceptually as potential seal preloading devices to help maintain seal resiliency. A finite element model of the canted coil spring revealed that it should be possible to produce a spring out of high temperature materials for applications at 2000+ F.
Rosso, Caroline Brum; Saurin, Tarcisio Abreu
2018-09-01
Although lean production (LP) has been increasingly adopted in healthcare systems, its benefits often fall short of expectations. This might be partially due to the failure of lean to account for the complexity of healthcare. This paper discusses the joint use of principles of LP and resilience engineering (RE), which is an approach for system design inspired by complexity science. Thus, a framework for supporting the design of socio-technical systems, which combines insights from LP and RE, was developed and tested in a system involving a patient flow from an emergency department to an intensive care unit. Based on this empirical study, as well as on extant theory, eight design propositions that support the framework application were developed. Both the framework and its corresponding propositions can contribute to the design of socio-technical systems that are at the same time safe and efficient. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guidance, Navigation and Control (GN&C): Best Practices for Human-Rated Spacecraft Systems
NASA Technical Reports Server (NTRS)
Lebsock, Ken; West, John
2008-01-01
In 2007 the NESC completed an in-depth assessment to identify, define and document engineering considerations for the Design Development Test and Evaluation (DDT&E) of human-rated spacecraft systems. This study had been requested by the Astronaut Office at JSC to help them to better understand what is required to ensure safe, robust, and reliable human-rated spacecraft systems. The 22 GN&C engineering Best Practices described in this paper are a condensed version of what appears in the NESC Technical Report. These Best Practices cover a broad range from fundamental system architectural considerations to more specific aspects (e.g., stability margin recommendations) of GN&C system design and development. 15 of the Best Practices address the early phases of a GN&C System development project and the remaining 7 deal with the later phases. Some of these Best Practices will cross-over between both phases. We recognize that this set of GN&C Best Practices will not be universally applicable to all projects and mission applications.
NASA Technical Reports Server (NTRS)
Boyle, Devin K.
2017-01-01
The Vehicle Integrated Propulsion Research (VIPR) Phase III project was executed at Edwards Air Force Base, California, by the National Aeronautics and Space Administration and several industry, academic, and government partners in the summer of 2015. One of the research objectives was to use external radial acoustic microphone arrays to detect changes in the noise characteristics produced by the research engine during volcanic ash ingestion and seeded fault insertion scenarios involving bleed air valves. Preliminary results indicate the successful acoustic detection of suspected degradation as a result of cumulative exposure to volcanic ash. This detection is shown through progressive changes, particularly in the high-frequency content, as a function of exposure to greater cumulative quantities of ash. Additionally, detection of the simulated failure of the 14th stage stability bleed valve and, to a lesser extent, the station 2.5 stability bleed valve, to their fully-open fail-safe positions was achieved by means of spectral comparisons between nominal (normal valve operation) and seeded fault scenarios.
Sodium Handling Technology and Engineering Design of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Kendrick, R.; Forest, C. B.; O'Connell, R.; Wright, A.; Robinson, K.
1998-11-01
A new liquid metal MHD experiment is being constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 degrees Celsius. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurazation are presented, and safety elements are highlighted.
... is all in the volume. Chainsaws and motorcycle engines create about 100 decibels of sound. That much ... and other noise hazards) so you can take steps to be safe. Reviewed by: Danielle Inverso, AuD, ...
NASA's Space Launch System: Development and Progress
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft/Payload Integration and Evolution element marked completion of the upper stage test article. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.
NASA's SPACE LAUNCH SYSTEM: Development and Progress
NASA Technical Reports Server (NTRS)
Honeycutt, John; Lyles, Garry
2016-01-01
NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed. Major work continues in 2016 as the program continues both flight and development RS-25 engine testing, begins welding test article and flight core stage tanks, completes stage adapter manufacturing, and test fires the second booster qualification motor. This paper will discuss the program's key accomplishments to date and the challenging work ahead for what will be the world's most capable launch vehicle.
Electrochemical energy engineering: a new frontier of chemical engineering innovation.
Gu, Shuang; Xu, Bingjun; Yan, Yushan
2014-01-01
One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.
Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)
NASA Technical Reports Server (NTRS)
Prosser, William H.
2014-01-01
In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.
Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs). Corrected Copy, Aug. 25, 2014
NASA Technical Reports Server (NTRS)
Prosser, William H.
2014-01-01
In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.
Technology of civil usage of composites. [in commercial aircraft structures
NASA Technical Reports Server (NTRS)
Kemp, D. E.
1977-01-01
The paper deals with the use of advanced composites in structural components of commercial aircraft. The need for testing the response of a material system to service environment is discussed along with methods for evaluating design and manufacturing aspects of a built-up structure under environmental conditions and fail-safe (damage-tolerance) evaluation of structures. Crashworthiness aspects, the fire-hazard potential, and electrical damage of composite structures are considered. Practical operational experience with commercial aircraft is reviewed for boron/epoxy foreflaps, Kevlar/epoxy fillets and fairings, graphite/epoxy spoilers, graphite/polysulfone spoilers, graphite/epoxy floor posts, boron/aluminum aft pylon skin panels, graphite/epoxy engine nose cowl outer barrels, and graphite/epoxy upper aft rudder segments.
Readiness for First Crewed Flight
NASA Technical Reports Server (NTRS)
Schaible, Dawn M.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.
2014-11-11
At NASA's Kennedy Space Center in Florida, the agency's Orion is transported to Launch Complex 37 at Cape Canaveral Air Force Station. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Magnetostrictive direct drive motors
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1990-01-01
Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.
Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Burt, Richard K.
2008-01-01
This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities, along with an introduction to the new missions that these sleeping giants will be fulfilling as NASA readies the Ares I for service in the 2015 timeframe, and plans the development work for fielding the Ares V late next decade (fig. 1). Validating modern computer design models and techniques requires the sorts of data that can only be generated by these one-of-a-kind facilities.
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold D.; Smith, Thomas B.
2007-01-01
As NASA plans to send humans back to the Moon and develop a lunar outpost, technologies must be developed to place humans and cargo safely, precisely, repeatedly, on the lunar surface with the capability to avoid surface hazards. Exploration Space Architecture Study requirements include the need for global lunar surface access with safe, precise landing without lighting constraints on terrain that may have landing hazards for human scale landing vehicles. Landing accuracies of perhaps 1,000 meters for sortie crew missions to 10 s of meters for Outpost class missions are required. The Autonomous precision Landing Hazard Avoidance Technology (ALHAT) project will develop the new and unique descent and landing Guidance, Navigation and Control (GNC) hardware and software technologies necessary for these capabilities. The ALHAT project will qualify a lunar descent and landing GNC system to a Technology Readiness Level (TRL) of 6 capable of supporting lunar crewed, cargo, and robotic missions. The (ALHAT) development project was chartered by NASA Headquarters in October 2006. The initial effort to write a project plan and define an ALHAT Team was followed by a fairly aggressive research and analysis effort to determine what technologies existed that could be developed and applied to the lunar landing problems indicated above. This paper describes the project development, research, analysis and concept evolution that has occurred since the assignment of the project. This includes the areas of systems engineering, GNC, sensors, sensor algorithms, simulations, fielding testing, laboratory testing, Hardware-In-The-Loop testing, system avionics and system certification concepts.
DeJoy, David M; Smith, Todd D; Woldu, Henok; Dyal, Mari-Amanda; Steege, Andrea L; Boiano, James M
2017-07-01
Antineoplastic drugs pose risks to the healthcare workers who handle them. This fact notwithstanding, adherence to safe handling guidelines remains inconsistent and often poor. This study examined the effects of pertinent organizational safety practices and perceived safety climate on the use of personal protective equipment, engineering controls, and adverse events (spill/leak or skin contact) involving liquid antineoplastic drugs. Data for this study came from the 2011 National Institute for Occupational Safety and Health (NIOSH) Health and Safety Practices Survey of Healthcare Workers which included a sample of approximately 1,800 nurses who had administered liquid antineoplastic drugs during the past seven days. Regression modeling was used to examine predictors of personal protective equipment use, engineering controls, and adverse events involving antineoplastic drugs. Approximately 14% of nurses reported experiencing an adverse event while administering antineoplastic drugs during the previous week. Usage of recommended engineering controls and personal protective equipment was quite variable. Usage of both was better in non-profit and government settings, when workers were more familiar with safe handling guidelines, and when perceived management commitment to safety was higher. Usage was poorer in the absence of specific safety handling procedures. The odds of adverse events increased with number of antineoplastic drugs treatments and when antineoplastic drugs were administered more days of the week. The odds of such events were significantly lower when the use of engineering controls and personal protective equipment was greater and when more precautionary measures were in place. Greater levels of management commitment to safety and perceived risk were also related to lower odds of adverse events. These results point to the value of implementing a comprehensive health and safety program that utilizes available hazard controls and effectively communicates and demonstrates the importance of safe handling practices. Such actions also contribute to creating a positive safety climate.
48 CFR 52.250-5 - SAFETY Act-Equitable Adjustment.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., engineering services, software development services, software integration services, threat assessments... security, i.e., it will perform as intended, conforms to the seller's specifications, and is safe for use...
48 CFR 52.250-5 - SAFETY Act-Equitable Adjustment.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., engineering services, software development services, software integration services, threat assessments... security, i.e., it will perform as intended, conforms to the seller's specifications, and is safe for use...
48 CFR 52.250-5 - SAFETY Act-Equitable Adjustment.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., engineering services, software development services, software integration services, threat assessments... security, i.e., it will perform as intended, conforms to the seller's specifications, and is safe for use...
48 CFR 52.250-5 - SAFETY Act-Equitable Adjustment.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., engineering services, software development services, software integration services, threat assessments... security, i.e., it will perform as intended, conforms to the seller's specifications, and is safe for use...
29 CFR 1919.77 - Safe working load increase.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or original design limitations unless such increase meets with the manufacturer's approval. Where the manufacturer's services are not available, or where the equipment is of foreign manufacture, engineering design...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Min Sun; Biosystems and Bioengineering Program, University of Science and Technology; Mun, Ji-Young
2013-07-19
Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineeredmore » the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.« less
Evolution of the Hubble Space Telescope Safing Systems
NASA Technical Reports Server (NTRS)
Pepe, Joyce; Myslinski, Michael
2006-01-01
The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the telescope.
Integrating MBSE into Ongoing Projects: Requirements Validation and Test Planning for the ISS SAFER
NASA Technical Reports Server (NTRS)
Anderson, Herbert A.; Williams, Antony; Pierce, Gregory
2016-01-01
The International Space Station (ISS) Simplified Aid for Extra Vehicular Activity (EVA) Rescue (SAFER) is the spacewalking astronaut's final safety measure against separating from the ISS and being unable to return safely. Since the late 1990s, the SAFER has been a standard element of the spacewalking astronaut's equipment. The ISS SAFER project was chartered to develop a new block of SAFER units using a highly similar design to the legacy SAFER (known as the USA SAFER). An on-orbit test module was also included in the project to enable periodic maintenance/propulsion system checkout on the ISS SAFER. On the ISS SAFER project, model-based systems engineering (MBSE) was not the initial systems engineering (SE) approach, given the volume of heritage systems engineering and integration (SE&I) products. The initial emphasis was ensuring traceability to ISS program standards as well as to legacy USA SAFER requirements. The requirements management capabilities of the Cradle systems engineering tool were to be utilized to that end. During development, however, MBSE approaches were applied selectively to address specific challenges in requirements validation and test and verification (T&V) planning, which provided measurable efficiencies to the project. From an MBSE perspective, ISS SAFER development presented a challenge and an opportunity. Addressing the challenge first, the project was tasked to use the original USA SAFER operational and design requirements baseline, with a number of additional ISS program requirements to address evolving certification expectations for systems operating on the ISS. Additionally, a need to redesign the ISS SAFER avionics architecture resulted in a set of changes to the design requirements baseline. Finally, the project added an entirely new functionality for on-orbit maintenance. After initial requirements integration, the system requirements count was approaching 1000, which represented a growth of 4x over the original USA SAFER system. This presented the challenge - How to confirm that this new set of requirements set would result in the creation of the desired capability.
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. The GIZMO is a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians are performing a GIZMO demonstration test on the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator. Technicians attach the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the hatches on the crew module and LAS for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, onto the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians have prepared the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-01
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, engineers and technicians prepare the ground test article Launch Abort System, or LAS, ogive panel and an Orion crew module simulator for a GIZMO demonstration test. A technician moves the GIZMO, a pneumatically-balanced manipulator that will be used for installation of the crew module and LAS flight hatches for the uncrewed Exploration Flight Test-1 and Exploration Mission-1, toward the mockup. The Ground Systems Development and Operations Program is running the test to demonstrate that the GIZMO can meet the reach and handling requirements for the task. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Winn, L. W.; Eusepi, M.
1976-01-01
The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.
Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism
NASA Technical Reports Server (NTRS)
Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael
2014-01-01
Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-28
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, S. L.; Cinson, A. D.; Diaz, A. A.
2015-11-23
In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objectivemore » of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.« less
NASA Technical Reports Server (NTRS)
Kopasakis, George
2004-01-01
An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.
Multi-Element Unstructured Analyses of Complex Valve Systems
NASA Technical Reports Server (NTRS)
Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy
2004-01-01
The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.
Innovative Technology Development for Comprehensive Air Quality Characterization from Open Burning
2012-04-01
Burning/Open Detonation (OB/OD) has been used as a safe, effective , and economic way to demilitarize munitions for energetic material disposal. Field...target analyte i (lb/lb i in ordnance) ERDC-CERL Engineer Research Development Center, Construction Engineering Research Laboratory GC/FID gas ...chromatograph(y) - flame ionization detector GC/MS gas chromatography/mass spectrometry GPS global positioning system ISO International Organization for
Code of Federal Regulations, 2013 CFR
2013-07-01
... following emission limitation, except during periods of startup . . . During periods of startup you must... the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1 b. Limit the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... following emission limitation, except during periods of startup . . . During periods of startup you must... the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1 b. Limit the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... following emission limitation, except during periods of startup . . . During periods of startup you must... the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply.1 b. Limit the...
75 FR 75721 - Environmental Impact Statement: Billings County, North Dakota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
...- of-Way Engineer, Federal Highway Administration, 1471 Interstate Loop, Bismarck, North Dakota 58503... agricultural, commercial, and industrial vehicles and equipment. The safe and efficient movement of people and...
An Exposure Prevention Plan for an Anhydrous Ammonia Handling System
NASA Technical Reports Server (NTRS)
Padolewski, Cathy L.; Bower, Amy; Ponikvar, Gary; Mellott, Ken
1997-01-01
In July of 1996, the Industrial Hygiene Team of the Environmental Management Office at NASA Lewis Research Center was contacted by the Space Station Program Office to conduct ammonia awareness training for a team of engineers and technicians. The team was tasked with assembling and operating an ammonia handling system for testing of a photovoltaic radiator at the NASA Plum Brook Station Space Power Facility. The ammonia handling system supports a radiator designed to radiate excess heat from a photovoltaic array module used to provide power to the International Space Station. The system would consist of a hazardous materials trailer equipped with an anhydrous ammonia tank, heater, accumulator, chiller, and flow bench. Meetings were held with representatives from the Space Station Program Office, the engineers and Plum Brook safety personnel. Guidance was also provided by representatives from Kennedy Space Center. Determinations were made concerning the locations and types of potential exposures and a plan was developed which included training, personal protective equipment, engineering controls and emergency response. Various organizations including the Plum Brook Safety Committee, the Lewis Environmental Management Office, the Test Readiness Review Board and the Program Office all had requirements that had to be met in order to satisfy themselves that all personnel involved in the operation of the system would be safe. What resulted was a comprehensive plan that provided more than adequate safety measures and succeeded in protecting all personnel from the hazards of the ammonia system. Testing of the photovoltaic radiator was successful and although ammonia leaks were detected and maintenance of the system was ongoing, no one was injured. It was felt that the training and controls in place allowed for a comfort level that did not interfere with the operations.
Summary of CPAS Gen II Parachute Analysis
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Bledsoe, Kristin J.; Fraire, Usbaldo, Jr.; Moore, James W.; Olson, Leah M.; Ray, Eric
2011-01-01
The Orion spacecraft is currently under development by NASA and Lockheed Martin. Like Apollo, Orion will use a series of parachutes to slow its descent and splashdown safely. The Orion parachute system, known as the CEV Parachute Assembly System (CPAS), is being designed by NASA, the Engineering and Science Contract Group (ESCG), and Airborne Systems. The first generation (Gen I) of CPAS testing consisted of thirteen tests and was executed in the 2007-2008 timeframe. The Gen I tests provided an initial understanding of the CPAS parachutes. Knowledge gained from Gen I testing was used to plan the second generation of testing (Gen II). Gen II consisted of six tests: three singleparachute tests, designated as Main Development Tests, and three Cluster Development Tests. Gen II required a more thorough investigation into parachute performance than Gen I. Higher fidelity instrumentation, enhanced analysis methods and tools, and advanced test techniques were developed. The results of the Gen II test series are being incorporated into the CPAS design. Further testing and refinement of the design and model of parachute performance will occur during the upcoming third generation of testing (Gen III). This paper will provide an overview of the developments in CPAS analysis following the end of Gen I, including descriptions of new tools and techniques as well as overviews of the Gen II tests.
Final report : UAB transportation workforce development.
DOT National Transportation Integrated Search
2014-06-01
Transportation engineering supports safe and efficient movement of people and goods through : planning, design, operation and management of transportation systems. As needs for : transportation continue to grow, the future needs for qualified transpo...
NHQ_2017_0086_Expedition 50 Crew Lands Safely in Kazakhstan to Complete Six-Month Mission
2017-04-10
Expedition 50 Commander Shane Kimbrough of NASA and Soyuz Commander Sergey Ryzhikov and Flight Engineer Andrey Borisenko of Roscosmos landed safely near the town of Dzhezkazgan, Kazakhstan April 10 after bidding farewell to their colleagues on the complex and undocking their Soyuz MS-02 spacecraft from the Poisk Module on the International Space Station. The trio spent 173 days in space conducting research and operational work in support of the station.
Advanced orbit transfer vehicle propulsion system study
NASA Technical Reports Server (NTRS)
Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.
1985-01-01
A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.
Synthetic biology approaches to engineer T cells.
Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A
2015-08-01
There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Byrd, Thomas D.; Kynard, Michael .
2007-01-01
NASA's Vision for Exploration requires a safe, reliable, affordable upper stage engine to power the Ares I Crew Launch Vehicle (CLV) and the Ares V Cargo Launch Vehicle. The J-2X engine is being developed for that purpose, epitomizing NASA's philosophy of employing legacy knowledge, heritage hardware, and commonality to carry the next generation of explorers into low-Earth orbit and out into the solar system This presentation gives top-level details on accomplishments to date and discusses forward work necessary to bring the J-2X engine to the launch pad.
An Automated Safe-to-Mate (ASTM) Tester
NASA Technical Reports Server (NTRS)
Nguyen, Phuc; Scott, Michelle; Leung, Alan; Lin, Michael; Johnson, Thomas
2013-01-01
Safe-to-mate testing is a common hardware safety practice where impedance measurements are made on unpowered hardware to verify isolation, continuity, or impedance between pins of an interface connector. A computer-based instrumentation solution has been developed to resolve issues. The ASTM is connected to the circuit under test, and can then quickly, safely, and reliably safe-to-mate the entire connector, or even multiple connectors, at the same time.
2014-01-21
CAPE CANAVERAL, Fla. – Technicians and engineers perform safing procedures on the Project Morpheus prototype lander after it touched down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. The lander successfully completed its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
2014-08-10
LOS ANGELES, Calif. – Visitors tour the well deck of the USS Anchorage and view the Orion boilerplate test vehicle secured in its recovery cradle during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. A combined team from NASA’s Ground Systems Development and Operations Program and the U.S. Navy were in San Diego to practice recovering Orion from the ocean, as they will do in December following the spacecraft's first trip to space during Exploration Flight Test-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-10
LOS ANGELES, Calif. – Visitors tour the well deck of the USS Anchorage and view the Orion boilerplate test vehicle secured in its recovery cradle during the Science, Technology, Engineering and Mathematics, or STEM, Expo for L.A. Navy Days at the Port of Los Angeles in California. A combined team from NASA’s Ground Systems Development and Operations Program and the U.S. Navy were in San Diego to practice recovering Orion from the ocean, as they will do in December following the spacecraft's first trip to space during Exploration Flight Test-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Distributed Impact Detector System (DIDS) Health Monitoring System Evaluation
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2010-01-01
Damage due to impacts from micrometeoroids and orbital debris is one of the most significant on-orbit hazards for spacecraft. Impacts to thermal protection systems must be detected and the damage evaluated to determine if repairs are needed to allow safe re-entry. To address this issue for the International Space Station Program, Langley Research Center and Johnson Space Center technologists have been working to develop and implement advanced methods for detecting impacts and resultant leaks. LaRC funded a Small Business Innovative Research contract to Invocon, Inc. to develop special wireless sensor systems that are compact, light weight, and have long battery lifetimes to enable applications to long duration space structures. These sensor systems are known as distributed impact detection systems (DIDS). In an assessment, the NASA Engineering and Safety Center procured two prototype DIDS sensor units to evaluate their capabilities in laboratory testing and field testing in an ISS Node 1 structural test article. This document contains the findings of the assessment.
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being transported from a hangar at the Shuttle Landing Facility, or SLF, for free flight test number 15 at the north end of the SLF at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being lowered by crane onto a launch pad at the north end of the Shuttle Landing Facility in preparation for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
Design, Development, Testing, and Evaluation: Human Factors Engineering
NASA Technical Reports Server (NTRS)
Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia
2006-01-01
While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is an exterior view of the U.S. Laboratory Module Simulator containing the ECLSS Internal Thermal Control System (ITCS) testing facility at MSFC. At the bottom right is the data acquisition and control computers (in the blue equipment racks) that monitor the testing in the facility. The ITCS simulator facility duplicates the function, operation, and troubleshooting problems of the ITCS. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.
Tissue engineering of urinary bladder - current state of art and future perspectives.
Adamowicz, Jan; Kowalczyk, Tomasz; Drewa, Tomasz
2013-01-01
Tissue engineering and biomaterials science currently offer the technology needed to replace the urinary tract wall. This review addresses current achievements and barriers for the regeneration of the urinary blad- der based on tissue engineering methods. Medline was search for urinary bladder tissue engineering regenerative medicine and stem cells. Numerous studies to develop a substitute for the native urinary bladder wall us- ing the tissue engineering approach are ongoing. Stem cells combined with biomaterials open new treatment methods, including even de novo urinary bladder construction. However, there are still many issues before advances in tissue engineering can be introduced for clinical application. Before tissue engineering techniques could be recognize as effective and safe for patients, more research stud- ies performed on large animal models and with long follow-up are needed to carry on in the future.
Dissolving the engineering moral dilemmas within the Islamic ethico-legal praxes.
Solihu, Abdul Kabir Hussain; Ambali, Abdul Rauf
2011-03-01
The goal of responsible engineers is the creation of useful and safe technological products and commitment to public health, while respecting the autonomy of the clients and the public. Because engineers often face moral dilemma to resolve such issues, different engineers have chosen different course of actions depending on their respective moral value orientations. Islam provides a value-based mechanism rooted in the Maqasid al-Shari'ah (the objectives of Islamic law). This mechanism prioritizes some values over others and could help resolve the moral dilemmas faced in engineering. This paper introduces the Islamic interpretive-evaluative maxims to two core issues in engineering ethics: genetically modified foods and whistleblowing. The study aims primarily to provide problem-solving maxims within the Maqasid al-Shari'ah matrix through which such moral dilemmas in science and engineering could be studied and resolved.
STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.
Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J
2009-01-01
University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.
An Overview of Recent Patents on Musculoskeletal Interface Tissue Engineering
Rao, Rohit T.; Browe, Daniel P.; Lowe, Christopher J.; Freeman, Joseph W.
2018-01-01
Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues e.g. between ligament and bone tissue. However, these interfaces often do not physiologically regenerate upon injury, resulting in impaired tissue function. Therefore, interface tissue engineering approaches are considered to be particularly relevant for the structural restoration of musculoskeletal tissues interfaces. In this article we provide an overview of the various strategies used for engineering musculoskeletal tissue interfaces with a specific focus on the recent important patents that have been issued for inventions that were specifically designed for engineering musculoskeletal interfaces as well as those that show promise to be adapted for this purpose. PMID:26577344
ERIC Educational Resources Information Center
Ephron, Hazel; Bishop, Walter
2001-01-01
Explains why upgrading a school's pools can help reduce maintenance costs and make safer facilities. Three top engineering issues in older pools are addressed: recirculation, filtration, and dehumidification. Concluding comments discuss procedures for establishing safe swimming. (GR)
Developing a new course for public transportation education.
DOT National Transportation Integrated Search
2015-06-01
Safe, efficient, and accessible public transportation is a key component of livable and sustainable : transportation systems. It is therefore critical that both undergraduate and graduate-level Civil : Engineering students have a better understanding...
Traffic impacts of bicycle facilities : final report.
DOT National Transportation Integrated Search
2017-06-01
Engineers need information about interactions between vehicles and bicyclists to design efficient, safe transportation systems. This study involved a review of design guidelines for bicycle facilities, observation of bicycle-vehicle interactions at n...
Direct Final Rule for Technical Amendments for Marine Spark-Ignition Engines and Vessels
Rule published September 16, 2010 to make technical amendments to the design standard for portable marine fuel tanks. This rule incorporates safe recommended practices, developed through industry consensus.
2016-03-16
CHIEF ENGINEER OF THE LAUNCH VEHICLE FOR NASA'S COMMERCIAL CREW PROGRAM, DAN DORNEY GUIDES THE TEAM EVALUATING THE VEHICLES CREATED BY INDUSTRY PARTNERS AND ENSURES THE ROCKETS MEET THE REQUIREMENTS TO SAFELY CARRY ASTRONAUTS TO THE INTERNATIONAL SPACE STATION.
The Role of Probabilistic Design Analysis Methods in Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2016-01-01
For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.
Engineering stem cells for future medicine.
Ricotti, Leonardo; Menciassi, Arianna
2013-03-01
Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.
Preliminary Assessment of Mars Exploration Rover Landing Site Predictions
NASA Technical Reports Server (NTRS)
Golombek, M.; Grant, J.; Parker, T.; Crisp, J.; Squyres, S.; Carr, M.; Haldemann, A.; Arvidson, R.; Ehlmann, B.; Bell, J.
2004-01-01
Selection of the Mars Exploration Rover (MER) landing sites took place over a three year period in which engineering constraints were identified, 155 possible sites were downselected to the final two, surface environments and safety considerations were developed, and the potential science return at the sites was considered. Landing sites in Gusev crater and Meridiani Planum were selected because they appeared acceptably safe for MER landing and roving and had strong morphologic and mineralogical indicators of liquid water in their past and thus appeared capable of addressing the science objectives of the MER missions, which are to determine the aqueous, climatic, and geologic history of sites on Mars where conditions may have been favorable to the preservation of evidence of possible pre-biotic or biotic processes. Engineering constraints important to the selection included: latitude (10 N-15 S) for maximum solar power; elevation (<-1.3 km) for sufficient atmosphere to slow the lander; low horizontal winds, shear and turbulence in the last few kilometers to minimize horizontal velocity; low 10-m scale slopes to reduce airbag spinup and bounce; moderate rock abundance to reduce abrasion or stroke-out of the airbags; and a radar-reflective, load-bearing and trafficable surface safe for landing and roving that is not dominated by fine-grained dust. In selecting the MER landing sites these engineering constraints were addressed via comprehensive evaluation of surface and atmospheric characteristics from existing remote sensing data and models as well as targeted orbital information acquired from Mars Global Surveyor and Mars Odyssey. This evaluation resulted in a number of predictions of the surface characteristics of the sites, which are tested in this abstract. Relating remote sensing signatures to surface characteristics at landing sites allows these sites to be used as ground truth for the orbital data, is essential for selecting and validating landing sites for future missions, and is required for correctly interpreting the surfaces and materials globally present on Mars.
Hot Wax Sweeps Debris From Narrow Passages
NASA Technical Reports Server (NTRS)
Ricklefs, Steven K.
1990-01-01
Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.
Update on SLD Engineering Tools Development
NASA Technical Reports Server (NTRS)
Miller, Dean R.; Potapczuk, Mark G.; Bond, Thomas H.
2004-01-01
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions. In response to this need, NASA and its partners conceived a strategy or Roadmap for developing experimental and analytical SLD simulation tools. Following review and refinement by the airworthiness authorities and other international research partners, this technical strategy has been crystallized into a project plan to guide the SLD Engineering Tool Development effort. This paper will provide a brief overview of the latest version of the project plan and technical rationale, and provide a status of selected SLD Engineering Tool Development research tasks which are currently underway.
NASA Technical Reports Server (NTRS)
2006-01-01
Just before the space shuttle reaches orbit, its three main engines shut down so that it can achieve separation from the massive external tank that provided the fuel required for liftoff and ascent. In jettisoning the external tank, which is completely devoid of fuel at this point in the flight, the space shuttle fires a series of thrusters, separate from its main engines, that gives the orbiter the maneuvering ability necessary to safely steer clear of the descending tank and maintain its intended flight path. These thrusters make up the space shuttle s Reaction Control System. While the space shuttle s main engines only provide thrust in one direction (albeit a very powerful thrust), the Reaction Control System engines allow the vehicle to maneuver in any desired direction (via small amounts of thrust). The resulting rotational maneuvers are known as pitch, roll, and yaw, and are very important in ensuring that the shuttle docks properly when it arrives at the International Space Station and safely reenters the Earth s atmosphere upon leaving. To prevent the highly complex Reaction Control System from malfunctioning during space shuttle flights, and to provide a diagnosis if such a mishap were to occur, NASA turned to a method of artificial intelligence that truly defied the traditional laws of computer science.
Designsafe-Ci a Cyberinfrastructure for Natural Hazard Simulation and Data
NASA Astrophysics Data System (ADS)
Dawson, C.; Rathje, E.; Stanzione, D.; Padgett, J.; Pinelli, J. P.
2017-12-01
DesignSafe is the web-based research platform of the Natural Hazards Engineering Research Infrastructure (NHERI) network that provides the computational tools needed to manage and analyze critical data for natural hazards research, with wind and storm surge related hazards being a primary focus. One of the simulation tools under DesignSafe is the Advanced Circulation (ADCIRC) model, a coastal ocean model used in storm surge analysis. ADCIRC is an unstructured, finite element model with high resolution capabilities for studying storm surge impacts, and has long been used in storm surge hind-casting and forecasting. In this talk, we will demonstrate the use of ADCIRC within the DesignSafe platform and its use for forecasting Hurricane Harvey. We will also demonstrate how to analyze, visualize and archive critical storm surge related data within DesignSafe.
NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community
NASA Astrophysics Data System (ADS)
Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.
2017-12-01
The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.
Comparison of Two Recent Launch Abort Platforms
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Harding, Adam
2011-01-01
The development of new and safer manned space vehicles is a top priority at NASA. Recently two different approaches of how to accomplish this mission of keeping astronauts safe was successfully demonstrated. With work already underway on an Apollo-like launch abort system for the Orion Crew Exploration Vehicle (CEV), an alternative design concept named the Max Launch Abort System, or MLAS, was developed as a parallel effort. The Orion system, managed by the Constellation office, is based on the design of a single solid launch abort motor in a tower positioned above the capsule. The MLAS design takes a different approach placing the solid launch abort motor underneath the capsule. This effort was led by the NASA Engineering and Safety Center (NESC). Both escape systems were designed with the Ares I Rocket as the launch vehicle and had the same primary requirement to safely propel a crew module away from any emergency event either on the launch pad or during accent. Beyond these two parameters, there was little else in common between the two projects, except that they both concluded in successful launches that will further promote the development of crew launch abort systems. A comparison of these projects from the standpoint of technical requirements; program management and flight test objectives will be done to highlight the synergistic lessons learned by two engineers who worked on each program. This comparison will demonstrate how the scope of the project architecture and management involvement in innovation should be tailored to meet the specific needs of the system under development.
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., ca
NASA Technical Reports Server (NTRS)
2002-01-01
Technicians at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., carefully thread control lines through a bulkhead during engine installation on NASA's Altair aircraft. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.
Rock breaking methods to replace blasting
NASA Astrophysics Data System (ADS)
Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing
2018-03-01
The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.
Full-scale flight tests of aircraft morphing structures using SMA actuators
NASA Astrophysics Data System (ADS)
Mabe, James H.; Calkins, Frederick T.; Ruggeri, Robert T.
2007-04-01
In August of 2005 The Boeing Company conducted a full-scale flight test utilizing Shape Memory Alloy (SMA) actuators to morph an engine's fan exhaust to correlate exhaust geometry with jet noise reduction. The test was conducted on a 777-300ER with GE-115B engines. The presence of chevrons, serrated aerodynamic surfaces mounted at the trailing edge of the thrust reverser, have been shown to greatly reduce jet noise by encouraging advantageous mixing of the free, and fan streams. The morphing, or Variable Geometry Chevrons (VGC), utilized compact, light weight, and robust SMA actuators to morph the chevron shape to optimize the noise reduction or meet acoustic test objectives. The VGC system was designed for two modes of operation. The entirely autonomous operation utilized changes in the ambient temperature from take-off to cruise to activate the chevron shape change. It required no internal heaters, wiring, control system, or sensing. By design this provided one tip immersion at the warmer take-off temperatures to reduce community noise and another during the cooler cruise state for more efficient engine operation, i.e. reduced specific fuel consumption. For the flight tests a powered mode was added where internal heaters were used to individually control the VGC temperatures. This enabled us to vary the immersions and test a variety of chevron configurations. The flight test demonstrated the value of SMA actuators to solve a real world aerospace problem, validated that the technology could be safely integrated into the airplane's structure and flight system, and represented a large step forward in the realization of SMA actuators for production applications. In this paper the authors describe the development of the actuator system, the steps required to integrate the morphing structure into the thrust reverser, and the analysis and testing that was required to gain approval for flight. Issues related to material strength, thermal environment, vibration, electrical power, controls, data acquisition, and engine operability are discussed. Furthermore the authors layout a road map for the next stage of development of SMA aerospace actuators. A detailed look at the requirements and specifications that may define a production SMA actuator and the technology development required to meet them are presented. A path for meeting production requirements and achieving the next level of technology readiness for both autonomous and controlled SMA actuators is proposed. This path relies strongly on cross functional and organizational teaming including industry, academia, and government.
14 CFR 27.1505 - Never-exceed speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... enough to allow an operationally practical and safe variation of VNE. (c) For helicopters, a stabilized...) § 27.65(b) for single engine helicopters; and (ii) § 27.67 for multiengine helicopters. (2) VNE (power...
14 CFR 27.1505 - Never-exceed speed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... enough to allow an operationally practical and safe variation of VNE. (c) For helicopters, a stabilized...) § 27.65(b) for single engine helicopters; and (ii) § 27.67 for multiengine helicopters. (2) VNE (power...
14 CFR 27.1505 - Never-exceed speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... enough to allow an operationally practical and safe variation of VNE. (c) For helicopters, a stabilized...) § 27.65(b) for single engine helicopters; and (ii) § 27.67 for multiengine helicopters. (2) VNE (power...
Flame Tests Performed Safely: A Safe and Effective Alternative to the Traditional Flame Test
ERIC Educational Resources Information Center
Dogancay, Deborah
2005-01-01
The trend toward inquiry-based learning is providing today's students with a more enriching education. When implementing inquiry it is important to recognize the great number of safety concerns that accompany this paradigm shift. Fortunately, with some consideration, teachers can shape students' laboratory experiments into safe and valuable…
Strain-Life Assessment of Grainex Mar-M 247 for NASA's Turbine Seal Test Facility
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Halford, Gary R.; Steinetz, Bruce M.; Rimnac, Clare M.
2004-01-01
NASA s Turbine Seal Test Facility is used to test air-to-air seals for use primarily in advanced jet engine applications. Combinations of high temperature, high speed, and high pressure limit the disk life, due to the concern of crack initiation in the bolt holes of the Grainex Mar-M 247 disk. The primary purpose of this current work is to determine an inspection interval to ensure safe operation. The current work presents high temperature fatigue strain-life data for test specimens cut from an actual Grainex Mar-M 247 disk. Several different strain-life models were compared to the experimental data including the Manson-Hirschberg Method of Universal Slopes, the Halford-Nachtigall Mean Stress Method, and the Modified Morrow Method. The Halford-Nachtigall Method resulted in only an 18 percent difference between predicted and experimental results. Using the experimental data at a 99.95 percent prediction level and the presence of 6 bolt holes it was found that the disk should be inspected after 665 cycles based on a total strain of 0.5 percent at 649 C.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
Human Factors for Nursing: From In-Situ Testing to Mobile Usability Engineering.
Kushniruk, Andre W; Borycki, Elizabeth M; Solvoll, Terje; Hullin, Carola
2016-01-01
The tutorial goal is to familiarize participants with human aspects of health informatics and human-centered approaches to the design, evaluation and deployment of both usable and safe healthcare information systems. The focus will be on demonstrating and teaching practical and low-cost methods for evaluating mobile applications in nursing. Basic background to testing methods will be provided, followed by live demonstration of the methods. Then the audience will break into small groups to explore the application of the methods to applications of interest (there will be a number of possible applications that will be available for applications in areas such as electronic health records and decision support, however, if the groups have applications of specific interest to them that will be possible). The challenges of conducting usability testing, and in particular mobile usability testing will be discussed along with practical solutions. The target audience includes practicing nurses and nurse researchers, nursing informatics specialists, nursing students, nursing managers and health informatics professionals interested in improving the usability and safety of healthcare applications.
NSTAR Ion Thruster and Breadboard Power Processor Functional Integration Test Results
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Myers, Roger M.; Bowers, Glen E.
1996-01-01
A 2.3 kW Breadboard Power Processing Unit (BBPPU) was developed as part of the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) Program. The NSTAR program will deliver an electric propulsion system based on a 30 cm xenon ion thruster to the New Millennium (NM) program for use as the primary propulsion system for the initial NM flight. The final development test for the BBPPU, the Functional Integration Test, was carried out to demonstrate all aspects of BBPPU operation with an Engineering Model Thruster. Test objectives included: (1) demonstration and validation of automated thruster start procedures, (2) demonstration of stable closed loop control of the thruster beam current, (3) successful response and recovery to thruster faults, and (4) successful safing of the system during simulated spacecraft faults. These objectives were met over the specified 80-120 VDC input voltage range and 0.5-2.3 output power capability of the BBPPU. Two minor anomalies were noted in discharge and neutralizer keeper current. These anomalies did not affect the stability of the system and were successfully corrected.
2014-09-07
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew and service module stack for Exploration Flight Test-1 was lifted by crane out of the test cell. The stack has been lowered onto the mating device. Technicians are attaching the stack to the mating device. A protective covering surrounds the crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Ben Smegelsky
2014-09-07
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, a crane has lifted the Orion crew and service module stack for Exploration Flight Test-1 out of the test cell and is being transferred to a mating device. A protective covering surrounds the crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Ben Smegelsky
2014-09-07
CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew and service module stack for Exploration Flight Test-1 was lifted by crane out of the test cell and is being lowered onto a mating device A protective covering surrounds the crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Ben Smegelsky
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.
NASA Technical Reports Server (NTRS)
Barbier, Louis M.; Smith, Robert; Murphy, Scott; Christian, Eric R.; Farley, Rodger; Krizmanic, John F.; Mitchell, John W.; Streitmatter, Robert E.; Loh, Eugene C.; Stochaj, Stephen
2004-01-01
We have designed and built an instrument to measure and monitor the "nightglow" of the Earth's atmosphere in the near ultraviolet (NUV). In this paper we describe the design of this instrument, called NIGHTGLOW. NIGHTGLOW is designed to be flown-from a high altitude research balloon, and circumnavigate the globe. NIGHTGLOW is a NASA, University of Utah, and New Mexico State University project. A test flight took place from Palestine, Texas on July 5, 2000, lasting about 8 hours. The instrument performed well and landed safely in Stiles, Texas with little damage. The resulting measurements of the NUV nightglow are consistent with previous measurements from sounding rockets and balloons. The results will be presented and discussed.
Control Design for an Advanced Geared Turbofan Engine
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Litt, Jonathan S.
2017-01-01
This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.
Goode, Travis D; Kim, Janice J; Maren, Stephen
2015-03-01
Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous" context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context ("ambiguous" context) or in a third novel context ("safe" context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context--in place of the unsignaled shock context--did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. © 2015 Goode et al.; Published by Cold Spring Harbor Laboratory Press.
NASA Technical Reports Server (NTRS)
Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.
1995-01-01
A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
...The FAA proposes to adopt a new airworthiness directive (AD) for PW Model PW2037, PW2037(M), and PW2040 turbofan engines. This proposed AD would require removing erosion damage on fan blades with cutback leading edges and restoring the leading edge contour. This proposed AD results from reports from PW that fan blade leading edge erosion can result in a fan thrust deterioration mode (FTDM) condition, which reduces the engine's capability of producing full rated take-off thrust. We are proposing this AD to prevent loss of engine thrust from an FTDM condition, which could result in an inability to maintain safe flight.
Site-Specific Genome Engineering in Human Pluripotent Stem Cells.
Merkert, Sylvia; Martin, Ulrich
2016-06-24
The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.
Open Field Release of Genetically Engineered Sterile Male Aedes aegypti in Malaysia
Raduan, Norzahira; Kwee Wee, Lim; Hong Ming, Wong; Guat Ney, Teoh; Rahidah A.A., Siti; Salman, Sawaluddin; Subramaniam, Selvi; Nordin, Oreenaiza; Hanum A.T., Norhaida; Angamuthu, Chandru; Marlina Mansor, Suria; Lees, Rosemary S.; Naish, Neil; Scaife, Sarah; Gray, Pam; Labbé, Geneviève; Beech, Camilla; Nimmo, Derric; Alphey, Luke; Vasan, Seshadri S.; Han Lim, Lee; Wasi A., Nazni; Murad, Shahnaz
2012-01-01
Background Dengue is the most important mosquito-borne viral disease. In the absence of specific drugs or vaccines, control focuses on suppressing the principal mosquito vector, Aedes aegypti, yet current methods have not proven adequate to control the disease. New methods are therefore urgently needed, for example genetics-based sterile-male-release methods. However, this requires that lab-reared, modified mosquitoes be able to survive and disperse adequately in the field. Methodology/Principal Findings Adult male mosquitoes were released into an uninhabited forested area of Pahang, Malaysia. Their survival and dispersal was assessed by use of a network of traps. Two strains were used, an engineered ‘genetically sterile’ (OX513A) and a wild-type laboratory strain, to give both absolute and relative data about the performance of the modified mosquitoes. The two strains had similar maximum dispersal distances (220 m), but mean distance travelled of the OX513A strain was lower (52 vs. 100 m). Life expectancy was similar (2.0 vs. 2.2 days). Recapture rates were high for both strains, possibly because of the uninhabited nature of the site. Conclusions/Significance After extensive contained studies and regulatory scrutiny, a field release of engineered mosquitoes was safely and successfully conducted in Malaysia. The engineered strain showed similar field longevity to an unmodified counterpart, though in this setting dispersal was reduced relative to the unmodified strain. These data are encouraging for the future testing and implementation of genetic control strategies and will help guide future field use of this and other engineered strains. PMID:22970102
Orion Launch Abort System Performance During Exploration Flight Test 1
NASA Technical Reports Server (NTRS)
McCauley, Rachel; Davidson, John; Gonzalez, Guillo
2015-01-01
The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.
TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.
Colson, R Griff; Auman, Laurence E
2003-08-01
ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.
Dual clearance squeeze film damper
NASA Technical Reports Server (NTRS)
Fleming, D. P. (Inventor)
1985-01-01
A dual clearance hydrodynamic liquid squeeze film damper for a gas turbine engine is described. Under normal operating conditions, the device functions as a conventional squeeze film damper, using only one of its oil films. When an unbalance reaches abusive levels, as may occur with a blade loss or foreign object damage, a second, larger clearance film becomes active, controlling vibration amplitudes in a near optimum manner until the engine can be safely shut down and repaired.
2018-05-07
Kathleen O'Brady reviews documents in her office at NASA’s Kennedy Space Center in Florida. As a certification systems engineer in the Commercial Crew Program’s (CCP's) Systems Engineering and Integration Office, she is responsible for defining an integrated plan for certification which is being executed by the agency's CCP partners Boeing and SpaceX. The two companies are developing spacecraft to fly NASA astronauts to the International Space Station and return them safely home.
USSR Report, World Economy and International Relations, No. 1, January 1987
1987-05-22
food, ecology . The gap in the levels of economic development between states is becoming increasingly threatening, and the developing countries’ debt...practice of the safe development of nuclear power engineering. To "star wars," it proposes "star peace," that is, interaction in peaceful space, the...electric power engineering, industry and municipal services. Thus the construction of new heat and electric power plants using fuel oil was
Expedition 53-54 Crew Safely Onboard the Space Station
2017-09-13
After docking their Soyuz MS-06 spacecraft to the Poisk module on the Russian segment of the International Space Station, Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA were greeted by station Commander Randy Bresnik of NASA and flight engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of the European Space Agency, as the hatches between the spacecraft were opened.
Assessing the Environmental Safety of Engineered Nanomaterials
Nanotechnology research in the United States is coordinated under the National Nano-technology Initiative with the goal of fostering development and implementation of nanomaterials and products that incorporate them and assuring that they are environmentally safe. The environmen...
Comprehensive Engineering Approach to Achieving Safe Neighborhoods.
DOT National Transportation Integrated Search
2000-09-01
Steady increases in travel demand coupled with minimal increases in arterial street capacity have led to an increase in traffic-related safety problems in residential neighborhoods. These problems stem from the significant number of motorists that di...
EPA Science Matters Newsletter: Volume 3, Number 3
The Agency's Safe and Sustainable Water Research program—the focus of this special issue of EPA's Science Matters—is designed to provide the innovative science and engineering solutions needed for protecting the nation's water resources today.
Workplace Safety and Health Topics: Safety & Prevention
... Health Records (EHRs) and Patient Work Information Engineering Controls Equipment Design in Mining Falls in the Workplace Green, Safe, and Healthy Jobs – Prevention through Design Hierarchy of Controls Industry and Occupation Coding and Support Logging Safety ...
Research and application of borehole structure optimization based on pre-drill risk assessment
NASA Astrophysics Data System (ADS)
Zhang, Guohui; Liu, Xinyun; Chenrong; Hugui; Yu, Wenhua; Sheng, Yanan; Guan, Zhichuan
2017-11-01
Borehole structure design based on pre-drill risk assessment and considering risks related to drilling operation is the pre-condition for safe and smooth drilling operation. Major risks of drilling operation include lost circulation, blowout, sidewall collapsing, sticking and failure of drilling tools etc. In the study, studying data from neighboring wells was used to calculate the profile of formation pressure with credibility in the target well, then the borehole structure design for the target well assessment by using the drilling risk assessment to predict engineering risks before drilling. Finally, the prediction results were used to optimize borehole structure design to prevent such drilling risks. The newly-developed technique provides a scientific basis for lowering probability and frequency of drilling engineering risks, and shortening time required to drill a well, which is of great significance for safe and high-efficient drilling.
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; ...
2015-12-21
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Some recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. We utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Furthermore, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.
2015-01-01
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. PMID:26686655
NASA Technical Reports Server (NTRS)
Asher, Troy A.; Cumming, Stephen B.
2012-01-01
The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.
Detection and Prevention of Insider Threats in Database Driven Web Services
NASA Astrophysics Data System (ADS)
Chumash, Tzvi; Yao, Danfeng
In this paper, we take the first step to address the gap between the security needs in outsourced hosting services and the protection provided in the current practice. We consider both insider and outsider attacks in the third-party web hosting scenarios. We present SafeWS, a modular solution that is inserted between server side scripts and databases in order to prevent and detect website hijacking and unauthorized access to stored data. To achieve the required security, SafeWS utilizes a combination of lightweight cryptographic integrity and encryption tools, software engineering techniques, and security data management principles. We also describe our implementation of SafeWS and its evaluation. The performance analysis of our prototype shows the overhead introduced by security verification is small. SafeWS will allow business owners to significantly reduce the security risks and vulnerabilities of outsourcing their sensitive customer data to third-party providers.