Response Sensitivity of Typical Aircraft Jet Engine Fan Blade-Like Structures to Bird Impacts.
1982-05-01
AIRCRAFT ENGINE BU--ETC F/G 21/5 RESPONSE SENSITIVITY OF TYPICAL AIRCRAFT JET ENGINE FAN BLADE -L...SENSITIVITY OF TYPICAL AIRCRAFT JET ENGINE FAN BLADE -LIKE STRUCTURES TO BIRD IMPACTS David P. Bauer Robert S. Bertke University of Dayton Research...COVERED RESPONSE SENSITIVITY OF TYPICAL AIRCRAFT FINAL REPORT JET ENGINE FAN BLADE -LIKE STRUCTURES Oct. 1977 to Jan. 1979 TO BIRD IMPACTS s.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
The responsibilities of engineers.
Smith, Justin; Gardoni, Paolo; Murphy, Colleen
2014-06-01
Knowledge of the responsibilities of engineers is the foundation for answering ethical questions about the work of engineers. This paper defines the responsibilities of engineers by considering what constitutes the nature of engineering as a particular form of activity. Specifically, this paper focuses on the ethical responsibilities of engineers qua engineers. Such responsibilities refer to the duties acquired in virtue of being a member of a group. We examine the practice of engineering, drawing on the idea of practices developed by philosopher Alasdair MacIntyre, and show how the idea of a practice is important for identifying and justifying the responsibilities of engineers. To demonstrate the contribution that knowledge of the responsibilities of engineers makes to engineering ethics, a case study from structural engineering is discussed. The discussion of the failure of the Sleipner A Platform off the coast of Norway in 1991 demonstrates how the responsibilities of engineers can be derived from knowledge of the nature of engineering and its context.
New Tool Released for Engine-Airframe Blade-Out Structural Simulations
NASA Technical Reports Server (NTRS)
Lawrence, Charles
2004-01-01
Researchers at the NASA Glenn Research Center have enhanced a general-purpose finite element code, NASTRAN, for engine-airframe structural simulations during steady-state and transient operating conditions. For steady-state simulations, the code can predict critical operating speeds, natural modes of vibration, and forced response (e.g., cabin noise and component fatigue). The code can be used to perform static analysis to predict engine-airframe response and component stresses due to maneuver loads. For transient response, the simulation code can be used to predict response due to bladeoff events and subsequent engine shutdown and windmilling conditions. In addition, the code can be used as a pretest analysis tool to predict the results of the bladeout test required for FAA certification of new and derivative aircraft engines. Before the present analysis code was developed, all the major aircraft engine and airframe manufacturers in the United States and overseas were performing similar types of analyses to ensure the structural integrity of engine-airframe systems. Although there were many similarities among the analysis procedures, each manufacturer was developing and maintaining its own structural analysis capabilities independently. This situation led to high software development and maintenance costs, complications with manufacturers exchanging models and results, and limitations in predicting the structural response to the desired degree of accuracy. An industry-NASA team was formed to overcome these problems by developing a common analysis tool that would satisfy all the structural analysis needs of the industry and that would be available and supported by a commercial software vendor so that the team members would be relieved of maintenance and development responsibilities. Input from all the team members was used to ensure that everyone's requirements were satisfied and that the best technology was incorporated into the code. Furthermore, because the code would be distributed by a commercial software vendor, it would be more readily available to engine and airframe manufacturers, as well as to nonaircraft companies that did not previously have access to this capability.
1980-01-01
standard procedure for Analysis of all types of civil engineering struc- tures. Early in its development, it became apparent that this method had...unique potentialities in the evaluation of stress in dams, and many of its earliest civil engineering applications concerned special problems associated...with such structures [3,4]. The earliest dynamic finite element analyses of civil engineering structures involved the earthquake response analysis of
Structural Engineering Managers - Innovation Challenges for their Skills
NASA Astrophysics Data System (ADS)
Linkeschová, D.; Tichá, A.
2015-11-01
The profession of a structural engineer is highly responsible, because the consequences of a structural engineer's errors result not only in economic damage to the property and often irreversible damage to the environment, they can also lead to direct loss of lives. In the current turbulent, dynamically developing society the managerial methods of structural engineers should not stagnate at the level of the last century applications. This paper deals with the challenges which the ongoing century poses to structural engineers and managers. It compares the results of research regarding the current state of managerial skills of structural engineers in Czech building companies to the defined skills of the 21st century's managers according to the global research programme ITL Research and according to the Vision for the Future of Structural Engineering, drawn up by Structural Engineering Institute - SEI ASCE.
NASA Astrophysics Data System (ADS)
Karimzadeh, Shaghayegh; Askan, Aysegul; Yakut, Ahmet
2017-09-01
Simulated ground motions can be used in structural and earthquake engineering practice as an alternative to or to augment the real ground motion data sets. Common engineering applications of simulated motions are linear and nonlinear time history analyses of building structures, where full acceleration records are necessary. Before using simulated ground motions in such applications, it is important to assess those in terms of their frequency and amplitude content as well as their match with the corresponding real records. In this study, a framework is outlined for assessment of simulated ground motions in terms of their use in structural engineering. Misfit criteria are determined for both ground motion parameters and structural response by comparing the simulated values against the corresponding real values. For this purpose, as a case study, the 12 November 1999 Duzce earthquake is simulated using stochastic finite-fault methodology. Simulated records are employed for time history analyses of frame models of typical residential buildings. Next, the relationships between ground motion misfits and structural response misfits are studied. Results show that the seismological misfits around the fundamental period of selected buildings determine the accuracy of the simulated responses in terms of their agreement with the observed responses.
Engine-induced structural-borne noise in a general aviation aircraft
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.
1979-01-01
Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.
An optimal design of wind turbine and ship structure based on neuro-response surface method
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young
2015-07-01
The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1987-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1989-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; August, R.; Nagpal, V.
1993-01-01
Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
NASA Technical Reports Server (NTRS)
May, Ryan D.; Garg, Sanjay
2012-01-01
Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.
Real-time open-loop frequency response analysis of flight test data
NASA Technical Reports Server (NTRS)
Bosworth, J. T.; West, J. C.
1986-01-01
A technique has been developed to compare the open-loop frequency response of a flight test aircraft real time with linear analysis predictions. The result is direct feedback to the flight control systems engineer on the validity of predictions and adds confidence for proceeding with envelope expansion. Further, gain and phase margins can be tracked for trends in a manner similar to the techniques used by structural dynamics engineers in tracking structural modal damping.
Probabilistic structural analysis methods for space transportation propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.
1991-01-01
Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .
Multi-responsive hydrogels for drug delivery and tissue engineering applications
Knipe, Jennifer M.; Peppas, Nicholas A.
2014-01-01
Multi-responsive hydrogels, or ‘intelligent’ hydrogels that respond to more than one environmental stimulus, have demonstrated great utility as a regenerative biomaterial in recent years. They are structured biocompatible materials that provide specific and distinct responses to varied physiological or externally applied stimuli. As evidenced by a burgeoning number of investigators, multi-responsive hydrogels are endowed with tunable, controllable and even biomimetic behavior well-suited for drug delivery and tissue engineering or regenerative growth applications. This article encompasses recent developments and challenges regarding supramolecular, layer-by-layer assembled and covalently cross-linked multi-responsive hydrogel networks and their application to drug delivery and tissue engineering. PMID:26816625
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
ERIC Educational Resources Information Center
Kaihlavirta, Auri; Isomöttönen, Ville; Kärkkäinen, Tommi
2015-01-01
This paper provides a self-ethnographic investigation of a continuing education program in engineering in Central Finland. The program was initiated as a response to local economic structural change, in order to offer re-education possibilities for a higher educated workforce currently under unemployment threat. We encountered considerable…
Dynamics of Rotating Multi-component Turbomachinery Systems
NASA Technical Reports Server (NTRS)
Lawrence, Charles
1993-01-01
The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented.
NASA Technical Reports Server (NTRS)
Collins, T. P.; Witmer, E. A.
1973-01-01
An approximate analysis, termed the Collision Imparted Velocity Method (CIVM), was employed for predicting the transient structural responses of containment rings or deflector rings which are subjected to impact from turbojet-engine rotor burst fragments. These 2-d structural rings may be initially circular or arbitrarily curved and may have either uniform or variable thickness; elastic, strain hardening, and strain rate material properties are accommodated. This approximate analysis utilizes kinetic energy and momentum conservation relations in order to predict the after-impact velocities of the fragment and the impacted ring segment. This information is then used in conjunction with a finite element structural response computation code to predict the transient, large deflection responses of the ring. Similarly, the equations of motion for each fragment are solved in small steps in time. Also, some comparisons of predictions with experimental data for fragment-impacted free containment rings are presented.
Eslahi, Niloofar; Abdorahim, Marjan; Simchi, Abdolreza
2016-11-14
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Protein-based hydrogels for tissue engineering
Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne J.
2017-01-01
The tunable mechanical and structural properties of protein-based hydrogels make them excellent scaffolds for tissue engineering and repair. Moreover, using protein-based components provides the option to insert sequences associated with the promoting both cellular adhesion to the substrate and overall cell growth. Protein-based hydrogel components are appealing for their structural designability, specific biological functionality, and stimuli-responsiveness. Here we present highlights in the field of protein-based hydrogels for tissue engineering applications including design requirements, components, and gel types. PMID:27677513
Simulation of Aircraft Engine Blade-Out Structural Dynamics
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2001-01-01
A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.
Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2001-01-01
A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.
Probabilistic analysis of structures involving random stress-strain behavior
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Thacker, B. H.; Harren, S. V.
1991-01-01
The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.
NASA Astrophysics Data System (ADS)
Cox, B. S.; Groh, R. M. J.; Avitabile, D.; Pirrera, A.
2018-07-01
The buckling and post-buckling behaviour of slender structures is increasingly being harnessed for smart functionalities. Equally, the post-buckling regime of many traditional engineering structures is not being used for design and may therefore harbour latent load-bearing capacity for further structural efficiency. Both applications can benefit from a robust means of modifying and controlling the post-buckling behaviour for a specific purpose. To this end, we introduce a structural design paradigm termed modal nudging, which can be used to tailor the post-buckling response of slender engineering structures without any significant increase in mass. Modal nudging uses deformation modes of stable post-buckled equilibria to perturb the undeformed baseline geometry of the structure imperceptibly, thereby favouring the seeded post-buckling response over potential alternatives. The benefits of this technique are enhanced control over the post-buckling behaviour, such as modal differentiation for smart structures that use snap-buckling for shape adaptation, or alternatively, increased load-carrying capacity, increased compliance or a shift from imperfection sensitivity to imperfection insensitivity. Although these concepts are, in theory, of general applicability, we concentrate here on planar frame structures analysed using the nonlinear finite element method and numerical continuation procedures. Using these computational techniques, we show that planar frame structures may exhibit isolated regions of stable equilibria in otherwise unstable post-buckling regimes, or indeed stable equilibria entirely disconnected from the natural structural response. In both cases, the load-carrying capacity of these isolated stable equilibria is greater than the natural structural response of the frames. Using the concept of modal nudging it is possible to "nudge" the frames onto these equilibrium paths of greater load-carrying capacity. Due to the scale invariance of modal nudging, these findings may impact the design of structures from the micro- to the macro-scale.
Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Thompson, Robert L.
1988-01-01
Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.
Engineering of routes to heparin and related polysaccharides.
Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2012-01-01
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
Hamilton Standard Q-fan demonstrator dynamic pitch change test program, volume 1
NASA Technical Reports Server (NTRS)
Demers, W. J.; Nelson, D. J.; Wainauski, H. S.
1975-01-01
Tests of a full scale variable pitch fan engine to obtain data on the structural characteristics, response times, and fan/core engine compatibility during transient changes in blade angle, fan rpm, and engine power is reported. Steady state reverse thrust tests with a take off nozzle configuration were also conducted. The 1.4 meter diameter, 13 bladed controllable pitch fan was driven by a T55 L 11A engine with power and blade angle coordinated by a digital computer. The tests demonstrated an ability to change from full forward thrust to reverse thrust in less than one (1) second. Reverse thrust was effected through feather and through flat pitch; structural characteristics and engine/fan compatibility were within satisfactory limits.
Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes
NASA Astrophysics Data System (ADS)
Moniri, Hassan
2017-03-01
Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.
Modal test of Shuttle engine nozzle
NASA Technical Reports Server (NTRS)
Johnston, G. D.; Coleman, A. D.
1983-01-01
A structural failure occurred on the main propulsion test stand at NSTL causing a hydrogen fire and damage to the engines to be used on the Orbiter Columbia. Scattered accelerometer measurements indicated very high response levels at 254 hertz and 311 hertz. The Engine Office at MSFC asked the Dynamics Test Branch to try and find out what caused the failure. All three nozzles were sent to Huntsville for testing. Modal test data revealed very quickly how the failure occurred in the steerhorn and also pointed out two other structural problems. A complete set of data is presented along with a narrative explanation of the steps taken to identify and verify the structural problem.
NASA Astrophysics Data System (ADS)
Moya, J. L.; Skocypec, R. D.; Thomas, R. K.
1993-09-01
Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.
Kumeria, Tushar; Santos, Abel; Losic, Dusan
2014-01-01
Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150
Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads
2013-09-01
19.21, 215713. Thostenson, E. T.; Chou, T.‐W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing ...composite structural life and the goal of the proposed research program to develop self -responsive engineered composites. Over 80%‒90% of the life of a...composite material. It is also envisaged to investigate and develop self -responsive engineered composite materials that provide an accurate health
NASA Astrophysics Data System (ADS)
Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.
2010-05-01
IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of an Inventory of existing studies and projects considering observed and projected trends in the hydrological regimes of riverbasins and adaptation measures of the structural and non-structural type in Europe, Africa, America, Asia and Oceania and are presented.
Structural tailoring of engine blades (STAEBL) user's manual
NASA Technical Reports Server (NTRS)
Brown, K. W.
1985-01-01
This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.
NASA Astrophysics Data System (ADS)
von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter
2016-04-01
Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.
Engineers and Active Responsibility.
Pesch, Udo
2015-08-01
Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.
Probabilistic structural analysis of aerospace components using NESSUS
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.
1988-01-01
Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multifactor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multi-factor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications
NASA Astrophysics Data System (ADS)
Das, Tanya
Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.
Passively Adaptive Inflatable Structure for the Shooting Star Experiment
NASA Technical Reports Server (NTRS)
Tinker, Michael L..
1998-01-01
An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.
2007-05-01
Organizational Structure 40 6.1.3 Funding Model 40 6.1.4 Role of Information Technology 40 6.2 Considering Process Improvement 41 6.2.1 Dimensions of...to the process definition for resiliency engineering. 6.1.3 Funding Model Just as organizational structures tend to align across security and...responsibility. Adopting an enter- prise view of operational resiliency and a process improvement approach requires that the funding model evolve to one
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, J.; Pindera, M. J.; Arnold, Steven M.
2001-01-01
Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.
Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering
Gerhardt, Lutz-Christian; Boccaccini, Aldo R.
2010-01-01
Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review. PMID:28883315
Engineered control of enzyme structural dynamics and function.
Boehr, David D; D'Amico, Rebecca N; O'Rourke, Kathleen F
2018-04-01
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine. © 2018 The Protein Society.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Full-scale monitoring of wind and suspension bridge response
NASA Astrophysics Data System (ADS)
Snæbjörnsson, J. T.; Jakobsen, J. B.; Cheynet, E.; Wang, J.
2017-12-01
Monitoring of real structures is important for many reasons. For structures susceptible to environmental actions, full-scale observations can provide valuable information about the environmental conditions at the site, as well as the characteristics of the excitation acting on the structure. The recorded data, if properly analyzed, can be used to validate and/or update experiments and models used in the design of new structures, such as the load description and modelling of the structural response. Various aspects of full-scale monitoring are discussed in the paper and the full-scale wind engineering laboratory at the Lysefjord suspension bridge introduced. The natural excitation of the bridge comes from wind and traffic. The surrounding terrain is complex and its effect on the wind flow can only be fully studied on site, in full-scale. The monitoring program and associated data analysis are described. These include various studies of the relevant turbulence characteristics, identification of dynamic properties and estimation of wind- and traffic-induced response parameters. The overall monitoring activity also included a novel application of the remote optical sensing in bridge engineering, which is found to have an important potential to complement traditional “single-point” wind observations by sonic anemometers.
Turbine Engine Hot Section Technology 1986
NASA Technical Reports Server (NTRS)
1986-01-01
The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.
Aircraft propeller induced structure-borne noise
NASA Technical Reports Server (NTRS)
Unruh, James F.
1989-01-01
A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.
Structureborne noise measurements on a small twin-engine aircraft
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Martini, K. F.
1988-01-01
Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.
Pickwell, Andrew J; Dorey, Robert A; Mba, David
2011-09-01
Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.
Nonlinear heat transfer and structural analyses of SSME turbine blades
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; Kaufman, A.
1987-01-01
Three-dimensional nonlinear finite-element heat transfer and structural analyses were performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 material properties were considered for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress-strain histories were calculated using MARC finite-element computer code. The study was undertaken to assess the structural response of an SSME turbine blade and to gain greater understanding of blade damage mechanisms, convective cooling effects, and the thermal-mechanical effects.
Structureborne noise measurements on a small twin-engine aircraft
NASA Astrophysics Data System (ADS)
Cole, J. E., III; Martini, K. F.
1988-06-01
Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.
33 CFR 222.4 - Reporting earthquake effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.4 Reporting earthquake effects. (a) Purpose. This... structural integrity and operational adequacy of major Civil Works structures following the occurrence of...) Applicability. This regulation is applicable to all field operating agencies having Civil Works responsibilities...
Nonlinear dissipative devices in structural vibration control: A review
NASA Astrophysics Data System (ADS)
Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin
2018-06-01
Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Turbine Engine Hot Section Technology (HOST)
NASA Technical Reports Server (NTRS)
1982-01-01
Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.
Application of an integrated flight/propulsion control design methodology to a STOVL aircraft
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.
1991-01-01
Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.
NASA Astrophysics Data System (ADS)
Ozbasaran, Hakan
Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response) link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.
NASA Astrophysics Data System (ADS)
Stronge, W. J.
2004-03-01
Impact mechanics is concerned with the reaction forces that develop during a collision and the dynamic response of structures to these reaction forces. The subject has a wide range of engineering applications, from designing sports equipment to improving the crashworthiness of automobiles. This book develops several different methodologies for analysing collisions between structures. These range from rigid body theory for structures that are stiff and compact, to vibration and wave analyses for flexible structures. The emphasis is on low-speed impact where damage is local to the small region of contact between the colliding bodies. The analytical methods presented give results that are more robust or less sensitive to initial conditions than have been achieved hitherto. As a text, Impact Mechanics builds upon foundation courses in dynamics and strength of materials. It includes numerous industrially relevant examples and end-of-chapter homework problems drawn from industry and sports. Practising engineers will also find the methods presented in this book useful in calculating the response of a mechanical system to impact.
NASA Technical Reports Server (NTRS)
Rajiyah, Harindra (Inventor); Pla, Frederic G. (Inventor); Hedeen, Robert A. (Inventor); Renshaw, Anthony A. (Inventor)
1995-01-01
A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.
Coupled multi-disciplinary simulation of composite engine structures in propulsion environment
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Singhal, Surendra N.
1992-01-01
A computational simulation procedure is described for the coupled response of multi-layered multi-material composite engine structural components which are subjected to simultaneous multi-disciplinary thermal, structural, vibration, and acoustic loadings including the effect of hostile environments. The simulation is based on a three dimensional finite element analysis technique in conjunction with structural mechanics codes and with acoustic analysis methods. The composite material behavior is assessed at the various composite scales, i.e., the laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization model. Sample cases exhibiting nonlinear geometrical, material, loading, and environmental behavior of aircraft engine fan blades, are presented. Results for deformed shape, vibration frequency, mode shapes, and acoustic noise emitted from the fan blade, are discussed for their coupled effect in hot and humid environments. Results such as acoustic noise for coupled composite-mechanics/heat transfer/structural/vibration/acoustic analyses demonstrate the effectiveness of coupled multi-disciplinary computational simulation and the various advantages of composite materials compared to metals.
NASA Technical Reports Server (NTRS)
Houbolt, John C; Kordes, Eldon E
1954-01-01
An analysis is made of the structural response to gusts of an airplane having the degrees of freedom of vertical motion and wing bending flexibility and basic parameters are established. A convenient and accurate numerical solution of the response equations is developed for the case of discrete-gust encounter, an exact solution is made for the simpler case of continuous-sinusoidal-gust encounter, and the procedure is outlined for treating the more realistic condition of continuous random atmospheric turbulence, based on the methods of generalized harmonic analysis. Correlation studies between flight and calculated results are then given to evaluate the influence of wing bending flexibility on the structural response to gusts of two twin-engine transports and one four-engine bomber. It is shown that calculated results obtained by means of a discrete-gust approach reveal the general nature of the flexibility effects and lead to qualitative correlation with flight results. In contrast, calculations by means of the continuous-turbulence approach show good quantitative correlation with flight results and indicate a much greater degree of resolution of the flexibility effects.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Agarwal, Pradeep K; Gupta, Kapil; Lopato, Sergiy; Agarwal, Parinita
2017-04-01
Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neitzel, D.A.; McKenzie, D.H.
To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact andmore » review biological information needed for intake design.« less
Acoustic-Structure Interaction in Rocket Engines: Validation Testing
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.
2009-01-01
While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.
Electromagnetic metamaterials: Engineering the physics of light
NASA Astrophysics Data System (ADS)
Driscoll, Tom
Structures engineered to give a specific response to light are certainly nothing new. The long history of engineering materials response to light encompasses seemingly disparate structures from antennas to stained glass, lighting rods to mirrors. It is only in the recent decade, however, that we have appreciated the full gamut of possibilities this field holds, and envisioned paths towards realizing these possibilities. The new field of electromagnetic metamaterials has given us the potential to create devices that manipulate light in nearly any way we can envision. The work of this thesis is involved principally with the study of metamaterials and their unique properties. Using a wide array of developed apparatus and techniques - spanning microwave frequencies through the infrared - we investigate metamaterial behavior, and the ways they differ from conventional materials. Applications are always kept in the forefront of thought. The demonstration of a graded negative-index lens, fabricated from metamaterial fiberglass composite, highlights the potential of these structures. Characterization procedures and instruments suitable for metamaterial samples, developed in the course of this work, enable not only our investigation of the physics of metamaterials, but also facilitate the full design cycle critical to engineering. Our demonstration of dynamic tuning directly addresses the role bandwidth plays as a major roadblock to metamaterial devices. Finally a demonstrated novel use as a sensor/detector adds to the growing list of metamaterial roles in emerging technology.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
ERIC Educational Resources Information Center
Mayat, Nafisa; Amosun, Seyi Ladele
2011-01-01
This study explored the perceptions of academic staff towards admission of students with disabilities, and their accommodation once accepted into an undergraduate Civil Engineering program in a South African university. Qualitative responses relating to the perceptions of five academic staff were obtained through semi-structured interviews. The…
Component-specific modeling. [jet engine hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.
DOT National Transportation Integrated Search
1978-01-01
This manual has been written to provide the pavement manager and design engineer with a ready reference of procedures to predict the structural responses and hence the integrity of flexible pavements. A pavement section of known geometry is chosen, a...
NASA Astrophysics Data System (ADS)
CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.
1999-07-01
The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.
1988-01-01
The effects of actual variations, also called uncertainties, in geometry and material properties on the structural response of a space shuttle main engine turbopump blade are evaluated. A normal distribution was assumed to represent the uncertainties statistically. Uncertainties were assumed to be totally random, partially correlated, and fully correlated. The magnitude of these uncertainties were represented in terms of mean and variance. Blade responses, recorded in terms of displacements, natural frequencies, and maximum stress, was evaluated and plotted in the form of probabilistic distributions under combined uncertainties. These distributions provide an estimate of the range of magnitudes of the response and probability of occurrence of a given response. Most importantly, these distributions provide the information needed to estimate quantitatively the risk in a structural design.
Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.
2004-01-01
A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.
Fatigue Reliability of Gas Turbine Engine Structures
NASA Technical Reports Server (NTRS)
Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.
1997-01-01
The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.
Anggraeni, Melisa R; Connors, Natalie K; Wu, Yang; Chuan, Yap P; Lua, Linda H L; Middelberg, Anton P J
2013-09-13
Biomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen. Specifically, this quality of immune response is correlated to the peptide antigen module structure. We modularized a helical peptide antigen element, helix 190 (H190) from the influenza hemagglutinin (HA) receptor binding region, for presentation on murine polyomavirus VLP, using two strategies aimed to promote H190 helicity on the VLP. In the first strategy, H190 was flanked by GCN4 structure-promoting elements within the antigen module; in the second, dual H190 copies were arrayed as tandem repeats in the module. Molecular dynamics simulation predicted that tandem repeat arraying would minimize secondary structural deviation of modularized H190 from its native conformation. In vivo testing supported this finding, showing that although both modularization strategies conferred high H190-specific immunogenicity, tandem repeat arraying of H190 led to a strikingly higher immune response quality, as measured by ability to generate antibodies recognizing a recombinant HA domain and split influenza virion. These findings provide new insights into the rational engineering of VLP vaccines, and could ultimately enable safe and efficacious vaccine design as an alternative to conventional approaches necessitating pathogen cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Probabilistic structural analysis of space propulsion system LOX post
NASA Technical Reports Server (NTRS)
Newell, J. F.; Rajagopal, K. R.; Ho, H. W.; Cunniff, J. M.
1990-01-01
The probabilistic structural analysis program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress; Cruse et al., 1988) is applied to characterize the dynamic loading and response of the Space Shuttle main engine (SSME) LOX post. The design and operation of the SSME are reviewed; the LOX post structure is described; and particular attention is given to the generation of composite load spectra, the finite-element model of the LOX post, and the steps in the NESSUS structural analysis. The results are presented in extensive tables and graphs, and it is shown that NESSUS correctly predicts the structural effects of changes in the temperature loading. The probabilistic approach also facilitates (1) damage assessments for a given failure model (based on gas temperature, heat-shield gap, and material properties) and (2) correlation of the gas temperature with operational parameters such as engine thrust.
Mixed Methods: Incorporating multiple learning styles into a measurements course
NASA Astrophysics Data System (ADS)
Pallone, Arthur
2010-03-01
The best scientists and engineers regularly combine creative and critical skill sets. As faculty, we are responsible to provide future scientists and engineers with those skills sets. EGR 390: Engineering Measurements at Murray State University is structured to actively engage students in the processes that develop and enhance those skills. Students learn through a mix of traditional lecture and homework, active discussion of open-ended questions, small group activities, structured laboratory exercises, oral and written communications exercises, student chosen team projects, and peer evaluations. Examples of each of these activities, the skill set addressed by each activity, outcomes from and effectiveness of each activity and recommendations for future directions in the EGR 390 course as designed will be presented.
NASA Astrophysics Data System (ADS)
Wang, Zhihua; Fan, Xiaoxiao; Han, Dongmei; Gu, Fubo
2016-05-01
Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior.Novel alkali metal doped 3DOM WO3 materials were prepared using a simple colloidal crystal template method. Raman, XRD, SEM, TEM, XPS, PL, Hall and UV-Vis techniques were used to characterize the structural and electronic properties of all the products, while the corresponding sensing performances targeting ppb level NO2 were determined at different working temperatures. For the overall goal of structural and electronic engineering, the co-effect of structural and electronic properties on the improved NO2 sensing performance of alkali metal doped 3DOM WO3 was studied. The test results showed that the gas sensing properties of 3DOM WO3/Li improved the most, with the fast response-recovery time and excellent selectivity. More importantly, the response of 3DOM WO3/Li to 500 ppb NO2 was up to 55 at room temperature (25 °C). The especially high response to ppb level NO2 at room temperature (25 °C) in this work has a very important practical significance. The best sensing performance of 3DOM WO3/Li could be ascribed to the most structure defects and the highest carrier mobility. And the possible gas sensing mechanism based on the model of the depletion layer was proposed to demonstrate that both structural and electronic properties are responsible for the NO2 sensing behavior. Electronic supplementary information (ESI) available: Raman, SEM, TEM, mapping, XPS and PL images; transient plot; response of 3DOM WO3/Li to NO2 concentration, sensing stability and the corresponding log (Sg - 1) versus log Cg curves. See DOI: 10.1039/c6nr00858e
AGT-102 automotive gas turbine
NASA Technical Reports Server (NTRS)
1981-01-01
Development of a gas turbine powertrain with a 30% fuel economy improvement over a comparable S1 reciprocating engine, operation within 0.41 HC, 3.4 CO, and 0.40 NOx grams per mile emissions levels, and ability to use a variety of alternate fuels is summarized. The powertrain concept consists of a single-shaft engine with a ceramic inner shell for containment of hot gasses and support of twin regenerators. It uses a fixed-geometry, lean, premixed, prevaporized combustor, and a ceramic radial turbine rotor supported by an air-lubricated journal bearing. The engine is coupled to the vehicle through a widerange continuously variable transmission, which utilizes gearing and a variable-ratio metal compression belt. A response assist flywheel is used to achieve acceptable levels of engine response. The package offers a 100 lb weight advantage in a Chrysler K Car front-wheel-drive installation. Initial layout studies, preliminary transient thermal analysis, ceramic inner housing structural analysis, and detailed performance analysis were carried out for the basic engine.
Nonlinear ultrasound imaging of nanoscale acoustic biomolecules
NASA Astrophysics Data System (ADS)
Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.
2017-02-01
Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.
ERIC Educational Resources Information Center
Arteaga, Ines Lopez; Vinken, Esther
2013-01-01
Results of a successful pilot study are presented, in which quizzes are introduced in a second year bachelor course for mechanical engineering students. The pilot study course entailed the basic concepts of mechanical vibrations in complex, realistic structures. The quiz is held weekly using a SharePoint application. The purpose of the quizzes is…
CF6 Jet Engine Performance Improvement: High Pressure Turbine Active Clearance Control
NASA Technical Reports Server (NTRS)
Rich, S. E.; Fasching, W. A.
1982-01-01
An active clearance control system was developed which reduces fuel consumption and performance degradation. This system utilizes compressor discharge air during takeoff and fan discharge air during cruise to impinge on the shroud structure to improve the thermal response. The system was evaluated in component and engine tests. The test results demonstrated a performance improvement of 0.7 percent in cruise SFC.
Design of a Temperature-Responsive Transcription Terminator.
Roßmanith, Johanna; Weskamp, Mareen; Narberhaus, Franz
2018-02-16
RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translation initiation by occlusion of the ribosome binding site at low temperatures. Increasing temperatures destabilize the RNA structure and facilitate ribosome access. In this study, we exploited temperature-responsive RNAT structures to design regulatory elements that control transcription termination instead of translation initiation in Escherichia coli. In order to mimic the structure of factor-independent intrinsic terminators, naturally occurring RNAT hairpins were genetically engineered to be followed by a U-stretch. Functional temperature-responsive terminators (thermoterms) prevented mRNA synthesis at low temperatures but resumed transcription after a temperature upshift. The successful design of temperature-controlled terminators highlights the potential of RNA structures as versatile gene expression control elements.
Nonlinear Control of a Reusable Rocket Engine for Life Extension
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
Unsteady Probabilistic Analysis of a Gas Turbine System
NASA Technical Reports Server (NTRS)
Brown, Marilyn
2003-01-01
In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Storace, A. S.; Gaffney, E. F.; Bach, L. J.; Stallone, M. J.
1981-01-01
The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2015-01-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
Towards Coupling of Macroseismic Intensity with Structural Damage Indicators
NASA Astrophysics Data System (ADS)
Kouteva, Mihaela; Boshnakov, Krasimir
2016-04-01
Knowledge on basic data of ground motion acceleration time histories during earthquakes is essential to understanding the earthquake resistant behaviour of structures. Peak and integral ground motion parameters such as peak ground motion values (acceleration, velocity and displacement), measures of the frequency content of ground motion, duration of strong shaking and various intensity measures play important roles in seismic evaluation of existing facilities and design of new systems. Macroseismic intensity is an earthquake measure related to seismic hazard and seismic risk description. Having detailed ideas on the correlations between the earthquake damage potential and macroseismic intensity is an important issue in engineering seismology and earthquake engineering. Reliable earthquake hazard estimation is the major prerequisite to successful disaster risk management. The usage of advanced earthquake engineering approaches for structural response modelling is essential for reliable evaluation of the accumulated damages in the existing buildings and structures due to the history of seismic actions, occurred during their lifetime. Full nonlinear analysis taking into account single event or series of earthquakes and the large set of elaborated damage indices are suitable contemporary tools to cope with this responsible task. This paper presents some results on the correlation between observational damage states, ground motion parameters and selected analytical damage indices. Damage indices are computed on the base of nonlinear time history analysis of test reinforced structure, characterising the building stock of the Mediterranean region designed according the earthquake resistant requirements in mid XX-th century.
Controllable molecular motors engineered from myosin and RNA
NASA Astrophysics Data System (ADS)
Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev
2018-01-01
Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.
Glycan Engineering for Cell and Developmental Biology.
Griffin, Matthew E; Hsieh-Wilson, Linda C
2016-01-21
Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seismic design and engineering research at the U.S. Geological Survey
1988-01-01
The Engineering Seismology Element of the USGS Earthquake Hazards Reduction Program is responsible for the coordination and operation of the National Strong Motion Network to collect, process, and disseminate earthquake strong-motion data; and, the development of improved methodologies to estimate and predict earthquake ground motion. Instrumental observations of strong ground shaking induced by damaging earthquakes and the corresponding response of man-made structures provide the basis for estimating the severity of shaking from future earthquakes, for earthquake-resistant design, and for understanding the physics of seismologic failure in the Earth's crust.
Bird impact analysis package for turbine engine fan blades
NASA Technical Reports Server (NTRS)
Hirschbein, M. S.
1982-01-01
A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.
Development of a Novel Method for Determination of Residual Stresses in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
2001-01-01
Material constitutive properties, which describe the mechanical behavior of a material under loading, are vital to the design and implementation of engineering materials. For homogeneous materials, the standard process for determining these properties is the tensile test, which is used to measure the material stress-strain response. However, a majority of the applications for engineering materials involve the use of heterogeneous materials and structures (i.e. alloys, welded components) that exhibit heterogeneity on a global or local level. Regardless of the scale of heterogeneity, the overall response of the material or structure is dependent on the response of each of the constituents. Therefore, in order to produce materials and structures that perform in the best possible manner, the properties of the constituents that make up the heterogeneous material must be thoroughly examined. When materials exhibit heterogeneity on a local level, such as in alloys or particle/matrix composites, they are often treated as statistically homogenous and the resulting 'effective' properties may be determined through homogenization techniques. In the case of globally heterogeneous materials, such as weldments, the standard tensile test provides the global response but no information on what is Occurring locally within the different constituents. This information is necessary to improve the material processing as well as the end product.
Alumni Perceptions: A Test of NCHEMS' Outcomes Structure. AIR Forum 1981 Paper.
ERIC Educational Resources Information Center
McLaughlin, Gerald W.; And Others
A theoretical taxonomy of student outcomes based on the National Center for Higher Education Management Systems' (NCHEMS) structure was investigated using survey responses from 1,833 alumni of a comprehensive state university. The alumni spanned 45 class years and four major curricular types: applied science, business, engineering, and qualitative…
Research on response spectrum of dam based on scenario earthquake
NASA Astrophysics Data System (ADS)
Zhang, Xiaoliang; Zhang, Yushan
2017-10-01
Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.
UNLV’s environmentally friendly Science and Engineering Building is monitored for earthquake shaking
Kalkan, Erol; Savage, Woody; Reza, Shahneam; Knight, Eric; Tian, Ying
2013-01-01
The University of Nevada Las Vegas’ (UNLV) Science and Engineering Building is at the cutting edge of environmentally friendly design. As the result of a recent effort by the U.S. Geological Survey’s National Strong Motion Project in cooperation with UNLV, the building is now also in the forefront of buildings installed with structural monitoring systems to measure response during earthquakes. This is particularly important because this is the first such building in Las Vegas. The seismic instrumentation will provide essential data to better understand the structural performance of buildings, especially in this seismically active region.
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kielb, R. E.
1981-01-01
The effect of small differences between the individual blades (mistuning) on the aeroelastic stability and response of a cascade were studied. The aerodynamic, inertial, and structural coupling between the bending and torsional motions of each blade and the aerodynamic coupling between the blades was considered. A digital computer program was developed to conduct parametric studies. Results indicate that the mistuning has a beneficial effect on the coupled bending torsion and uncoupled torsion flutter. On forced response, however, the effect may be either beneficial or adverse, depending on the engine order of the forcing function. The results also illustrate that it may be feasible to utilize mistuning as a passive control to increase flutter speed while maintaining forced response at an acceptable level.
Making structures for cell engineering.
Wilkinson, C D W
2004-10-22
This is a mainly historical account of the events, methods and artifacts arising from my collaboration with Adam Curtis over the past twenty years to make exercise grounds for biological cells. Initially the structures were made in fused silica by photo-lithography and dry etching. The need to make micron-sized features in biodegradable polymers, led to the development of embossing techniques. Some cells response to grooves only a few tens of nanometers deep--this led to a desire to find the response of cells to features of nanometric size overall. Regular arrays of such features were made using electron beam lithography for definition of the pattern. Improvements were made in the lithographic techniques to allow arrays to be defined over areas bigger than 1 cm2. Structures with microelectrodes arranged inside guiding grooves to allow the formation of sparse predetermined networks of neurons were made. It is concluded that the creation of pattern, as in vivo, in assemblies of regrown cells in scaffolds may well be necessary in advanced cell engineering applications.
High-Throughput, Data-Rich Cellular RNA Device Engineering
Townshend, Brent; Kennedy, Andrew B.; Xiang, Joy S.; Smolke, Christina D.
2015-01-01
Methods for rapidly assessing sequence-structure-function landscapes and developing conditional gene-regulatory devices are critical to our ability to manipulate and interface with biology. We describe a framework for engineering RNA devices from preexisting aptamers that exhibit ligand-responsive ribozyme tertiary interactions. Our methodology utilizes cell sorting, high-throughput sequencing, and statistical data analyses to enable parallel measurements of the activities of hundreds of thousands of sequences from RNA device libraries in the absence and presence of ligands. Our tertiary interaction RNA devices exhibit improved performance in terms of gene silencing, activation ratio, and ligand sensitivity as compared to optimized RNA devices that rely on secondary structure changes. We apply our method to building biosensors for diverse ligands and determine consensus sequences that enable ligand-responsive tertiary interactions. These methods advance our ability to develop broadly applicable genetic tools and to elucidate understanding of the underlying sequence-structure-function relationships that empower rational design of complex biomolecules. PMID:26258292
Chang, Susan; Frankel, Arthur D.; Weaver, Craig S.
2014-01-01
On March 4, 2013, the City of Seattle and the U.S. Geological Survey (USGS) convened a workshop of 25 engineers and seismologists to provide recommendations to the City for the incorporation of amplification of earthquake ground shaking by the Seattle sedimentary basin in the design of tall buildings in Seattle. The workshop was initiated and organized by Susan Chang, a geotechnical engineer with the City of Seattle Department of Planning and Development, along with Art Frankel and Craig Weaver of the USGS. C.B. Crouse of URS Corporation, Seattle made key suggestions for the agenda. The USGS provided travel support for most of the out-of-town participants. The agenda and invited attendees are given in the appendix. The attendees included geotechnical and structural engineers working in Seattle, engineers with experience utilizing basin response factors in other regions, and seismologists who have studied basin response in a variety of locations. In this report, we summarize the technical presentations and the recommendations from the workshop.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
Strain measurements in a rotary engine housing
NASA Technical Reports Server (NTRS)
Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.
1989-01-01
The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Lin, Y. K.; Zhu, Li-Ping; Fang, Jian-Jie; Cai, G. Q.
1994-01-01
This report supplements a previous report of the same title submitted in June, 1992. It summarizes additional analytical techniques which have been developed for predicting the response of linear and nonlinear structures to noise excitations generated by large propulsion power plants. The report is divided into nine chapters. The first two deal with incomplete knowledge of boundary conditions of engineering structures. The incomplete knowledge is characterized by a convex set, and its diagnosis is formulated as a multi-hypothesis discrete decision-making algorithm with attendant criteria of adaptive termination.
JSC Metal Finishing Waste Minimization Methods
NASA Technical Reports Server (NTRS)
Sullivan, Erica
2003-01-01
THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.
Strain-engineering of Janus SiC monolayer functionalized with H and F atoms
NASA Astrophysics Data System (ADS)
Drissi, L. B.; Sadki, K.; Kourra, M.-H.; Bousmina, M.
2018-05-01
Based on ab initio density functional theory calculations, the structural, electronic, mechanical, acoustic, thermodynamic, and piezoelectric properties of (F,H) Janus SiC monolayers are studied. The new set of derivatives shows buckled structures and different band gap values. Under strain, the buckling changes and the structures pass from semiconducting to metallic. The elastic limits and the metastable regions are determined. The Young's modulus and Poisson ratio reveal stronger behavior for the modified conformers with respect to graphene. The values of the Debye temperature make the new materials suitable for thermal application. Moreover, all the conformers show in-plane and out-of-plane piezoelectric responses comparable with known two-dimensional materials. If engineered, such piezoelectric Janus structures may be promising materials for various nanoelectromechanical applications.
NASA Astrophysics Data System (ADS)
Lievens, Klaus; Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter
2016-09-01
In civil engineering and architecture, the availability of high strength materials and advanced calculation techniques enables the construction of slender footbridges, generally highly sensitive to human-induced excitation. Due to the inherent random character of the human-induced walking load, variability on the pedestrian characteristics must be considered in the response simulation. To assess the vibration serviceability of the footbridge, the statistics of the stochastic dynamic response are evaluated by considering the instantaneous peak responses in a time range. Therefore, a large number of time windows are needed to calculate the mean value and standard deviation of the instantaneous peak values. An alternative method to evaluate the statistics is based on the standard deviation of the response and a characteristic frequency as proposed in wind engineering applications. In this paper, the accuracy of this method is evaluated for human-induced vibrations. The methods are first compared for a group of pedestrians crossing a lightly damped footbridge. Small differences of the instantaneous peak value were found by the method using second order statistics. Afterwards, a TMD tuned to reduce the peak acceleration to a comfort value, was added to the structure. The comparison between both methods in made and the accuracy is verified. It is found that the TMD parameters are tuned sufficiently and good agreements between the two methods are found for the estimation of the instantaneous peak response for a strongly damped structure.
On the dimension of complex responses in nonlinear structural vibrations
NASA Astrophysics Data System (ADS)
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.
ERIC Educational Resources Information Center
Lee, Ahlam
2015-01-01
Among the disciplines of science, technology, engineering, and math (STEM), much attention has been paid to the influences of math- and science-related learning contexts on students' STEM major selection. However, the technology and engineering learning contexts that are linked to STEM major selection have been overlooked. In response, a…
2017-10-03
and Microbiome Research Seminar Series . Baylor College of Medicine. 10/26/16. 12. "Rewiring the DNA binding domains ofbacterial two-component system...Structural and Quantitative Biology Seminar Series . 11/16/15. 16. "Engineering bacterial two component signal transduction systems to function as sensors...hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects
NASA Technical Reports Server (NTRS)
Nagpal, V. K.
1985-01-01
A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.
Forming engineers' sociocultural competence: Engineering ethics at tomsk polytechnic university
NASA Astrophysics Data System (ADS)
Galanina, E.; Dulzon, A.; Schwab, A.
2015-10-01
The aim of the present research is to discuss Tomsk Polytechnic University in respect of forming engineers’ sociocultural competence and teaching engineering ethics. Today international standards of training engineers cover efficient communication skills, ability to understand societal and environment context, professional and ethical responsibility. This article deals with the problem of contradiction between the need to form engineers’ sociocultural competence in Russian higher education institutions in order to meet the requirements of international accreditation organizations and the real capabilities of existing engineering curricula. We have described ethics teaching experience of TPU, studied the engineering master programs of TPU to see how the planned results are achieved. We have also given our recommendations to alter the structure of TPU educational curricula, which can also be applied in other higher education institutions.
Geological Investigation and analysis in response to Earthquake Induced Landslide in West Sumatra
NASA Astrophysics Data System (ADS)
Karnawati, D.; Wilopo, W.; Salahudin, S.; Sudarno, I.; Burton, P.
2009-12-01
Substantial socio-economical loss occurred in response to the September 30. 2009 West Sumatra Earthquake with magnitude of 7.6. Damage of houses and engineered structures mostly occurred at the low land of alluvium sediments due to the ground amplification, whilst at the high land of mountain slopes several villages were buried by massive debris of rocks and soils. It was recorded that 1115 people died due to this disasters. Series of geological investigation was carried out by Geological Engineering Department of Gadjah Mada University, with the purpose to support the rehabilitation program. Based on this preliminary investigation it was identified that most of the house and engineered structural damages at the alluvial deposits mainly due to by the poor quality of such houses and engineered structures, which poorly resist the ground amplification, instead of due to the control of geological conditions. On the other hand, the existence and distribution of structural geology (faults and joints) at the mountaineous regions are significant in controlling the distribution of landslides, with the types of rock falls, debris flows and debris falls. Despite the landslide susceptibility mapping conducted by Geological Survey of Indonesia, more detailed investigation is required to be carried out in the region surrounding Maninjau Lake, in order to provide safer places for village relocation. Accordingly Gadjah Mada University in collaboration with the local university (Andalas University) as well as with the local Government of Agam Regency and the Geological Survey of Indonesia, serve the mission for conducting rather more detailed geological and landslide investigation. It is also crucial that the investigation (survey and mapping) on the social perception and expectation of local people living in this landslide susceptible area should also be carried out, to support the mitigation effort of any future potential earthquake induced landslides.
Kalkan, Erol; Kwong, Neal S.
2010-01-01
The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground-motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case for the central United States), or when high-intensity records are needed (as is the case for San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure recently was developed to determine scale factors for a small number of records, such that the scaled records provide accurate and efficient estimates of 'true' median structural responses. The adjective 'accurate' refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective 'efficient' refers to the record-to-record variability of responses. Herein, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing 'ordinary standard' bridges typical of reinforced-concrete bridge construction in California. These bridges are the single-bent overpass, multi span bridge, curved-bridge, and skew-bridge. As compared to benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the responses. Thus, the MPS procedure is a useful tool for scaling ground motions as input to nonlinear RHAs of 'ordinary standard' bridges.
NASA Astrophysics Data System (ADS)
Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying
2018-06-01
The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ruf, Joe
2007-01-01
As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, R.P.; Kincaid, R.H.; Short, S.A.
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics onmore » structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5.« less
Reverse engineering the cooperative machinery of human hemoglobin.
Ren, Zhong
2013-01-01
Hemoglobin transports molecular oxygen from the lungs to all human tissues for cellular respiration. Its α2β2 tetrameric assembly undergoes cooperative binding and releasing of oxygen for superior efficiency and responsiveness. Over past decades, hundreds of hemoglobin structures were determined under a wide range of conditions for investigation of molecular mechanism of cooperativity. Based on a joint analysis of hemoglobin structures in the Protein Data Bank (Ren, companion article), here I present a reverse engineering approach to elucidate how two subunits within each dimer reciprocate identical motions that achieves intradimer cooperativity, how ligand-induced structural signals from two subunits are integrated to drive quaternary rotation, and how the structural environment at the oxygen binding sites alter their binding affinity. This mechanical model reveals the intricate design that achieves the cooperative mechanism and has previously been masked by inconsistent structural fluctuations. A number of competing theories on hemoglobin cooperativity and broader protein allostery are reconciled and unified.
The Control System for the X-33 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey
1998-01-01
The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.
NASA Astrophysics Data System (ADS)
Ma, J.; Narayanan, H.; Garikipati, K.; Grosh, K.; Arruda, E. M.
The important mechanisms by which soft collagenous tissues such as ligament and tendon respond to mechanical deformation include non-linear elasticity, viscoelasticity and poroelasticity. These contributions to the mechanical response are modulated by the content and morphology of structural proteins such as type I collagen and elastin, other molecules such as glycosaminoglycans, and fluid. Our ligament and tendon constructs, engineered from either primary cells or bone marrow stromal cells and their autogenous matricies, exhibit histological and mechanical characteristics of native tissues of different levels of maturity. In order to establish whether the constructs have optimal mechanical function for implantation and utility for regenerative medicine, constitutive relationships for the constructs and native tissues at different developmental levels must be established. A micromechanical model incorporating viscoelastic collagen and non-linear elastic elastin is used to describe the non-linear viscoelastic response of our homogeneous engineered constructs in vitro. This model is incorporated within a finite element framework to examine the heterogeneity of the mechanical responses of native ligament and tendon.
Damage detection of engine bladed-disks using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
Fang, X.; Tang, J.
2006-03-01
The timely detection of damage in aero-engine bladed-disks is an extremely important and challenging research topic. Bladed-disks have high modal density and, particularly, their vibration responses are subject to significant uncertainties due to manufacturing tolerance (blade-to-blade difference or mistuning), operating condition change and sensor noise. In this study, we present a new methodology for the on-line damage detection of engine bladed-disks using their vibratory responses during spin-up or spin-down operations which can be measured by blade-tip-timing sensing technique. We apply a principle component analysis (PCA)-based approach for data compression, feature extraction, and denoising. The non-model based damage detection is achieved by analyzing the change between response features of the healthy structure and of the damaged one. We facilitate such comparison by incorporating the Hotelling's statistic T2 analysis, which yields damage declaration with a given confidence level. The effectiveness of the method is demonstrated by case studies.
Nerurkar, Nandan L; Han, Woojin; Mauck, Robert L; Elliott, Dawn M
2011-01-01
Understanding the interplay of composition, organization and mechanical function in load-bearing tissues is a prerequisite in the successful engineering of tissues to replace diseased ones. Mesenchymal stem cells (MSCs) seeded on electrospun scaffolds have been successfully used to generate organized tissues that mimic fibrocartilages such as the knee meniscus and the annulus fibrosus of the intervertebral disc. While matrix deposition has been observed in parallel with improved mechanical properties, how composition, organization, and mechanical function are related is not known. Moreover, how this relationship compares to that of native fibrocartilage is unclear. Therefore, in the present work, functional fibrocartilage constructs were formed from MSC-seeded nanofibrous scaffolds, and the roles of collagen and glycosaminoglycan (GAG) in compressive and tensile properties were determined. MSCs deposited abundant collagen and GAG over 120 days of culture, and these extracellular molecules were organized in such a way that they performed similar mechanical functions to their native roles: collagen dominated the tensile response while GAG was important for compressive properties. GAG removal resulted in significant stiffening in tension. A similar stiffening response was observed when GAG was removed from native inner annulus fibrosus, suggesting an interaction between collagen fibers and their surrounding extrafibrillar matrix that is shared by both engineered and native fibrocartilages. These findings strongly support the use of electrospun scaffolds and MSCs for fibrocartilage tissue engineering, and provide insight on the structure-function relations of both engineered and native biomaterials. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nerurkar, Nandan L.; Han, Woojin; Mauck, Robert L.; Elliott, Dawn M.
2010-01-01
Understanding the interplay of composition, organization and mechanical function in load-bearing tissues is a prerequisite in the successful engineering of replacement tissues for diseased ones. Mesenchymal stem cells (MSCs) seeded on electrospun scaffolds have been successfully used to generate organized tissues that mimic fibrocartilages such as the knee meniscus and the annulus fibrosus of the intervertebral disc. While matrix deposition has been observed in parallel with improved mechanical properties, how composition, organization, and mechanical function are related is not known. Moreover, how this relationship compares to that of native fibrocartilage is unclear. Therefore, in the present work, functional fibrocartilage constructs were formed from MSC-seeded nanofibrous scaffolds, and the roles of collagen and glycosaminoglycan (GAG) in compressive and tensile properties were determined. MSCs deposited abundant collagen and GAG over 120 days of culture, and these extracellular molecules were organized in such a way that they performed similar mechanical functions to their native roles: collagen dominated the tensile response while GAG was important for compressive properties. GAG removal resulted in significant stiffening in tension. A similar stiffening response was observed when GAG was removed from native inner annulus fibrosus, suggesting an interaction between collagen fibers and their surrounding extrafibrillar matrix that is shared by both engineered and native fibrocartilages. These findings strongly support the use of electrospun scaffolds and MSCs for fibrocartilage tissue engineering, and provide insight on the structure-function relations of both engineered and native biomaterials. PMID:20880577
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Spilker, R. L.; Witmer, E. A.
1976-01-01
A user-oriented computer program CIVM-JET 4B is described to predict the large-deflection elastic-plastic structural responses of fragment impacted single-layer: (a) partial-ring fragment containment or deflector structure or (b) complete-ring fragment containment structure. These two types of structures may be either free or supported in various ways. Supports accommodated include: (1) point supports such as pinned-fixed, ideally-clamped, or supported by a structural branch simulating mounting-bracket structure and (2) elastic foundation support distributed over selected regions of the structure. The initial geometry of each partial or complete ring may be circular or arbitrarily curved; uniform or variable thicknesses of the structure are accommodated. The structural material is assumed to be initially isotropic; strain hardening and strain rate effects are taken into account.
Dynamic and Structural Gas Turbine Engine Modeling
NASA Technical Reports Server (NTRS)
Turso, James A.
2003-01-01
Model the interactions between the structural dynamics and the performance dynamics of a gas turbine engine. Generally these two aspects are considered separate, unrelated phenomena and are studied independently. For diagnostic purposes, it is desirable to bring together as much information as possible, and that involves understanding how performance is affected by structural dynamics (if it is) and vice versa. This can involve the relationship between thrust response and the excitation of structural modes, for instance. The job will involve investigating and characterizing these dynamical relationships, generating a model that incorporates them, and suggesting and/or developing diagnostic and prognostic techniques that can be incorporated in a data fusion system. If no coupling is found, at the least a vibration model should be generated that can be used for diagnostics and prognostics related to blade loss, for instance.
Quantifying uncertainties in the structural response of SSME blades
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.
1987-01-01
To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.
2015-01-01
The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.
NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1993-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.
Parameter identification of civil engineering structures
NASA Technical Reports Server (NTRS)
Juang, J. N.; Sun, C. T.
1980-01-01
This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
NASA Technical Reports Server (NTRS)
1981-01-01
Some of the pogo related data from STS-1 are documented. The measurements and data reduction are described. In the data analysis reference is made to FRF and single engine test results. The measurements are classified under major project elements of the space shuttle main engine, the external tank, and the orbiter. The subsystems are structural dynamics and main propulsion. Data were recorded onboard the orbiter with a minimum response rate of 1.5 to 50 Hz. The wideband, 14 track recorder was used, and the data required demultiplexing before reduction. The flight phase of interest was from liftoff through main engine cutoff.
Tissue engineering and regenerative medicine as applied to the gastrointestinal tract.
Bitar, Khalil N; Zakhem, Elie
2013-10-01
The gastrointestinal (GI) tract is a complex system characterized by multiple cell types with a determined architectural arrangement. Tissue engineering of the GI tract aims to reinstate the architecture and function of all structural layers. The key point for successful tissue regeneration includes the use of cells/biomaterials that elucidate minimal immune response after implantation. Different biomaterial choices and cell sources have been proposed to engineer the GI tract. This review summarizes the recent advances in bioengineering the GI tract with emphasis on cell sources and scaffolding biomaterials. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jordan, Michelle
Uncertainty is ubiquitous in life, and learning is an activity particularly likely to be fraught with uncertainty. Previous research suggests that students and teachers struggle in their attempts to manage the psychological experience of uncertainty and that students often fail to experience uncertainty when uncertainty may be warranted. Yet, few educational researchers have explicitly and systematically observed what students do, their behaviors and strategies, as they attempt to manage the uncertainty they experience during academic tasks. In this study I investigated how students in one fifth grade class managed uncertainty they experienced while engaged in collaborative robotics engineering projects, focusing particularly on how uncertainty management was influenced by task structure and students' interactions with their peer collaborators. The study was initiated at the beginning of instruction related to robotics engineering and preceded through the completion of several long-term collaborative robotics projects, one of which was a design project. I relied primarily on naturalistic observation of group sessions, semi-structured interviews, and collection of artifacts. My data analysis was inductive and interpretive, using qualitative discourse analysis techniques and methods of grounded theory. Three theoretical frameworks influenced the conception and design of this study: community of practice, distributed cognition, and complex adaptive systems theory. Uncertainty was a pervasive experience for the students collaborating in this instructional context. Students experienced uncertainty related to the project activity and uncertainty related to the social system as they collaborated to fulfill the requirements of their robotics engineering projects. They managed their uncertainty through a diverse set of tactics for reducing, ignoring, maintaining, and increasing uncertainty. Students experienced uncertainty from more different sources and used more and different types of uncertainty management strategies in the less structured task setting than in the more structured task setting. Peer interaction was influential because students relied on supportive social response to enact most of their uncertainty management strategies. When students could not garner socially supportive response from their peers, their options for managing uncertainty were greatly reduced.
Challenges in engineering osteochondral tissue grafts with hierarchical structures.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
2012-01-16
January 2012 2012 226:Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications M Grujicic, W C Bell...unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Effect of the tin- versus air-side plate-glass...orientation on the impact response and penetration resistance of a laminated transparent armour structure M Grujicic1*, W C Bell1, B Pandurangan1, B
NASA Engineering and Technology Advancement Office: A proposal to the administrator
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1993-01-01
NASA has continually had problems with cost, schedule, performance, reliability, quality, and safety aspects in programs. Past solutions have not provided the answers needed, and a major change is needed in the way of doing business. A new approach is presented for consideration. These problems are all engineering matters, and therefore, require engineering solutions. Proper engineering tools are needed to fix engineering problems. Headquarters is responsible for providing the management structure to support programs with appropriate engineering tools. A guide to define those tools and an approach for putting them into place is provided. Recommendations include establishing a new Engineering and Technology Advancement Office, requesting a review of this proposal by the Administrator since this subject requires a top level decision. There has been a wide peer review conducted by technical staff at Headquarters, the Field Installations, and others in industry as discussed.
Controlling Interfacial Separation in Porous Structures by Void Patterning
NASA Astrophysics Data System (ADS)
Ghareeb, Ahmed; Elbanna, Ahmed
Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.
A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA
Marcicki, James; Zhu, Min; Bartlett, Alexander; ...
2017-02-04
The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less
NASA Technical Reports Server (NTRS)
Aguilar, R.
2006-01-01
Pratt & Whitney Rocketdyne has developed a real-time engine/vehicle system integrated health management laboratory, or testbed, for developing and testing health management system concepts. This laboratory simulates components of an integrated system such as the rocket engine, rocket engine controller, vehicle or test controller, as well as a health management computer on separate general purpose computers. These general purpose computers can be replaced with more realistic components such as actual electronic controllers and valve actuators for hardware-in-the-loop simulation. Various engine configurations and propellant combinations are available. Fault or failure insertion capability on-the-fly using direct memory insertion from a user console is used to test system detection and response. The laboratory is currently capable of simulating the flow-path of a single rocket engine but work is underway to include structural and multiengine simulation capability as well as a dedicated data acquisition system. The ultimate goal is to simulate as accurately and realistically as possible the environment in which the health management system will operate including noise, dynamic response of the engine/engine controller, sensor time delays, and asynchronous operation of the various components. The rationale for the laboratory is also discussed including limited alternatives for demonstrating the effectiveness and safety of a flight system.
Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Sullivan, T. J.
2012-04-01
The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework consists of the following four main analysis stages: (i) probabilistic seismic hazard analysis to give the mean occurrence rate of earthquake events having an intensity greater than a threshold value, (ii) structural analysis to estimate the global structural response, given a certain value of seismic intensity, (iii) damage analysis, in which fragility functions are used to express the probability that a building component exceeds a damage state, as a function of the global structural response, (iv) loss analysis, in which the overall performance is assessed based on the damage state of all components. This final step gives estimates of the mean annual frequency with which various repair cost levels (or other decision variables) are exceeded. The realisation of this framework does suggest that risk-based seismic design is now possible. However, comparing current code approaches with the proposed PBEE framework, it becomes apparent that mainstream consulting engineers would have to go through a massive learning curve in order to apply the new procedures in practice. With this in mind, it is proposed that simplified loss-based seismic design procedures are a logical means of helping the engineering profession transition from what are largely deterministic seismic design procedures in current codes, to more rational risk-based seismic design methodologies. Examples are provided to illustrate the likely benefits of adopting loss-based seismic design approaches in practice.
USDA-ARS?s Scientific Manuscript database
Polyhydroxyalkanoates (PHAs) are attractive biomaterials in both conventional medical devices and tissue engineering. PHA synthase is responsible for catalyzing the formation of polyhydroxyalkanoates (PHA), but its structural information is limited. Hence, the focus of this study is to predict 3D mo...
Response of two identical seven-story structures to the San Fernando earthquake of February 9, 1971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, S.A.; Honda, K.K.
1973-10-01
The results of the structural dynamic investigation of two sevenstory reinforced concrete frame structures are presented here. The structures are both Holiday Inn rnotor hotels that are essentially identical: one is locrted about 13 miles and the other about 26 miles from the epicenter of the February 9, 1971, San Fernando earthquake. Appreciable nonstructural damage as well as some structural damage was observed. Strong-motion seismic records were obtained for the roof, intermediate story, and ground floor of each structure. The analyses are based on data from the structural drawings, architectural drawings, photographs, engineering reports, and seisrnogram records obtained before, during,more » and after the San Fernando earthquake. Both structures experienced motion well beyond the limits of the building code design criteria. A change in fundamental period was observed for each structure after several seconds of response to the earthquake, which indicated nonlinear response. The analyses indicated that the elastic capacity of some structural members was exceeded. Idealized linear models were constructed to approximate response at various time segments. A method for approximating the nonlinear response of each structure is presented. The effects of nonstructural elements, yielding beams, and column capacities are illustrated. Comparisons of the two buildings are made for ductility factors, dynarnic response characteristics, and damage. Conclusions are drawn concerning the effects of the earthquake on the structures and the future capacities of the structures. (auth)« less
Topological guiding of elastic waves in phononic metamaterials based on 2D pentamode structures.
Guo, Yuning; Dekorsy, Thomas; Hettich, Mike
2017-12-22
A topological state with protected propagation of elastic waves is achieved by appropriately engineering a phononic metamaterial based on 2D pentamode structures in silicon. Gapless edge states in the designed structure, which are characterized by pseudospin-dependent transport, provide backscattering-immune propagation of the elastic wave along bend paths. The role of the states responsible for forward and backward transfer can be interchanged by design.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2011-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the response. The results instead showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists. Because the bulk of resonance problems are due to the "clean" excitations, a 10% underprediction is not necessarily a problem, especially since the average response in the transient is similar to the frequency response result, and so in a realistic finite life calculation, the life would be same. However, in the rare cases when the "messy" excitations harmonics are identified as the source of potential resonance concerns, this research does indicate that frequency response analysis is inadequate for accurate characterization of blade structural capability.
Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L
2013-06-01
The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.
Numerical Simulation Of Shock Response To Wall Changes In High Speed Intakes
NASA Astrophysics Data System (ADS)
Fincham, J.; Taylor, N. V.
2011-05-01
Hypersonic flight presents a number of challenges to the designer, one of which is the intake behaviour. Minimising drag requires careful positioning of the intake shock structure, while accurate understanding of the dynamic behaviour is required to allow minimisation of margins. In this paper, a two shock external compression intake derived from the Reaction Engines Limited SABRE engine is examined using inviscid axisymmetric CFD analysis to determine the response of the normal shockwave to axial motion of the intake centrebody. An approximately linear relationship between centrebody position and both the normal shock position and additive drag in steady flow is demonstrated. Initial results from an unsteady analysis are also given, which show complex behaviours may be triggered by rapid motion of the centrebody in response to control input.
GRYPHON: Air launched space booster
NASA Technical Reports Server (NTRS)
1993-01-01
The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group. This group then selected suitable batteries and other components to meet these requirements. The group also designed heat shielding and cooling systems to ensure subsystem performance. In addition to these responsibilities this group designed the attitude control methods and RCS components for the vehicle. The Aircraft Integration Group was responsible for all aspects of the booster aircraft connection. This included the design of the connection structure and the drop mechanism. This group also designed the vehicle assembly facility and identified possible ground bases for the plane.
GRYPHON: Air launched space booster
NASA Astrophysics Data System (ADS)
1993-06-01
The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group.
NASA Technical Reports Server (NTRS)
Rajagopal, Kadambi R.; DebChaudhury, Amitabha; Orient, George
2000-01-01
This report describes a probabilistic structural analysis performed to determine the probabilistic structural response under fluctuating random pressure loads for the Space Shuttle Main Engine (SSME) turnaround vane. It uses a newly developed frequency and distance dependent correlation model that has features to model the decay phenomena along the flow and across the flow with the capability to introduce a phase delay. The analytical results are compared using two computer codes SAFER (Spectral Analysis of Finite Element Responses) and NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) and with experimentally observed strain gage data. The computer code NESSUS with an interface to a sub set of Composite Load Spectra (CLS) code is used for the probabilistic analysis. A Fatigue code was used to calculate fatigue damage due to the random pressure excitation. The random variables modeled include engine system primitive variables that influence the operating conditions, convection velocity coefficient, stress concentration factor, structural damping, and thickness of the inner and outer vanes. The need for an appropriate correlation model in addition to magnitude of the PSD is emphasized. The study demonstrates that correlation characteristics even under random pressure loads are capable of causing resonance like effects for some modes. The study identifies the important variables that contribute to structural alternate stress response and drive the fatigue damage for the new design. Since the alternate stress for the new redesign is less than the endurance limit for the material, the damage due high cycle fatigue is negligible.
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Bond, Leonard J.
2017-02-01
Structural health monitoring (SHM) of engineering structures in service has assumed a significant role in assessing their safety and integrity. Several sensing modalities have been developed to monitor cracking, using acoustic emission (AE). Piezoelectric sensors are commonly used in AE systems, however, for some applications there are limitations and challenges. One alternative approach that is being investigated is using Fiber Bragg Grating (FBG) sensors which have emerged as a reliable, in situ and nondestructive tool in some applications for monitoring and diagnostics in large-scale structure. The main objective of this work is to evaluate and compare the AE sensing characteristics for FBG and piezoelectric sensors. A ball drop impact is used as the source for generating waves in an Aluminum plate. The source repeatability was verified and a 4-channel FBG AE detection device was used to compare with the response of PZT sensors, investigating amplitude and frequency response which can indicate sensitivity. The low sensitivity and slow sampling rate are identified, for the unit investigated, as the main factors limiting FBG engineering AE applications.
NASA Astrophysics Data System (ADS)
Pioldi, Fabio; Rizzi, Egidio
2017-07-01
Output-only structural identification is developed by a refined Frequency Domain Decomposition ( rFDD) approach, towards assessing current modal properties of heavy-damped buildings (in terms of identification challenge), under strong ground motions. Structural responses from earthquake excitations are taken as input signals for the identification algorithm. A new dedicated computational procedure, based on coupled Chebyshev Type II bandpass filters, is outlined for the effective estimation of natural frequencies, mode shapes and modal damping ratios. The identification technique is also coupled with a Gabor Wavelet Transform, resulting in an effective and self-contained time-frequency analysis framework. Simulated response signals generated by shear-type frames (with variable structural features) are used as a necessary validation condition. In this context use is made of a complete set of seismic records taken from the FEMA P695 database, i.e. all 44 "Far-Field" (22 NS, 22 WE) earthquake signals. The modal estimates are statistically compared to their target values, proving the accuracy of the developed algorithm in providing prompt and accurate estimates of all current strong ground motion modal parameters. At this stage, such analysis tool may be employed for convenient application in the realm of Earthquake Engineering, towards potential Structural Health Monitoring and damage detection purposes.
Kalkan, E.; Kwong, N.
2012-01-01
The earthquake engineering profession is increasingly utilizing nonlinear response history analyses (RHA) to evaluate seismic performance of existing structures and proposed designs of new structures. One of the main ingredients of nonlinear RHA is a set of ground motion records representing the expected hazard environment for the structure. When recorded motions do not exist (as is the case in the central United States) or when high-intensity records are needed (as is the case in San Francisco and Los Angeles), ground motions from other tectonically similar regions need to be selected and scaled. The modal-pushover-based scaling (MPS) procedure was recently developed to determine scale factors for a small number of records such that the scaled records provide accurate and efficient estimates of “true” median structural responses. The adjective “accurate” refers to the discrepancy between the benchmark responses and those computed from the MPS procedure. The adjective “efficient” refers to the record-to-record variability of responses. In this paper, the accuracy and efficiency of the MPS procedure are evaluated by applying it to four types of existing Ordinary Standard bridges typical of reinforced concrete bridge construction in California. These bridges are the single-bent overpass, multi-span bridge, curved bridge, and skew bridge. As compared with benchmark analyses of unscaled records using a larger catalog of ground motions, it is demonstrated that the MPS procedure provided an accurate estimate of the engineering demand parameters (EDPs) accompanied by significantly reduced record-to-record variability of the EDPs. Thus, it is a useful tool for scaling ground motions as input to nonlinear RHAs of Ordinary Standard bridges.
An efficient constraint to account for mistuning effects in the optimal design of engine rotors
NASA Technical Reports Server (NTRS)
Murthy, Durbha V.; Pierre, Christophe; Ottarsson, Gisli
1992-01-01
Blade-to-blade differences in structural properties, unavoidable in practice due to manufacturing tolerances, can have significant influence on the vibratory response of engine rotor blade. Accounting for these differences, also known as mistuning, in design and in optimization procedures is generally not possible. This note presents an easily calculated constraint that can be used in design and optimization procedures to control the sensitivity of final designs to mistuning.
Rezaeian, Sanaz; Zhong, Peng; Hartzell, Stephen; Zareian, Farzin
2015-01-01
Simulated earthquake ground motions can be used in many recent engineering applications that require time series as input excitations. However, applicability and validation of simulations are subjects of debate in the seismological and engineering communities. We propose a validation methodology at the waveform level and directly based on characteristics that are expected to influence most structural and geotechnical response parameters. In particular, three time-dependent validation metrics are used to evaluate the evolving intensity, frequency, and bandwidth of a waveform. These validation metrics capture nonstationarities in intensity and frequency content of waveforms, making them ideal to address nonlinear response of structural systems. A two-component error vector is proposed to quantify the average and shape differences between these validation metrics for a simulated and recorded ground-motion pair. Because these metrics are directly related to the waveform characteristics, they provide easily interpretable feedback to seismologists for modifying their ground-motion simulation models. To further simplify the use and interpretation of these metrics for engineers, it is shown how six scalar key parameters, including duration, intensity, and predominant frequency, can be extracted from the validation metrics. The proposed validation methodology is a step forward in paving the road for utilization of simulated ground motions in engineering practice and is demonstrated using examples of recorded and simulated ground motions from the 1994 Northridge, California, earthquake.
SENSITIVITY OF STRUCTURAL RESPONSE TO GROUND MOTION SOURCE AND SITE PARAMETERS.
Safak, Erdal; Brebbia, C.A.; Cakmak, A.S.; Abdel Ghaffar, A.M.
1985-01-01
Designing structures to withstand earthquakes requires an accurate estimation of the expected ground motion. While engineers use the peak ground acceleration (PGA) to model the strong ground motion, seismologists use physical characteristics of the source and the rupture mechanism, such as fault length, stress drop, shear wave velocity, seismic moment, distance, and attenuation. This study presents a method for calculating response spectra from seismological models using random vibration theory. It then investigates the effect of various source and site parameters on peak response. Calculations are based on a nonstationary stochastic ground motion model, which can incorporate all the parameters both in frequency and time domains. The estimation of the peak response accounts for the effects of the non-stationarity, bandwidth and peak correlations of the response.
Plasmonic antennas as design elements for coherent ultrafast nanophotonics.
Brinks, Daan; Castro-Lopez, Marta; Hildner, Richard; van Hulst, Niek F
2013-11-12
Broadband excitation of plasmons allows control of light-matter interaction with nanometric precision at femtosecond timescales. Research in the field has spiked in the past decade in an effort to turn ultrafast plasmonics into a diagnostic, microscopy, computational, and engineering tool for this novel nanometric-femtosecond regime. Despite great developments, this goal has yet to materialize. Previous work failed to provide the ability to engineer and control the ultrafast response of a plasmonic system at will, needed to fully realize the potential of ultrafast nanophotonics in physical, biological, and chemical applications. Here, we perform systematic measurements of the coherent response of plasmonic nanoantennas at femtosecond timescales and use them as building blocks in ultrafast plasmonic structures. We determine the coherent response of individual nanoantennas to femtosecond excitation. By mixing localized resonances of characterized antennas, we design coupled plasmonic structures to achieve well-defined ultrafast and phase-stable field dynamics in a predetermined nanoscale hotspot. We present two examples of the application of such structures: control of the spectral amplitude and phase of a pulse in the near field, and ultrafast switching of mutually coherent hotspots. This simple, reproducible and scalable approach transforms ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid-state physics, and quantum biology.
Dynamic Behavior of Engineered Lattice Materials
Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.
2016-01-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697
Chapter C. The Loma Prieta, California, Earthquake of October 17, 1989 - Building Structures
Çelebi, Mehmet
1998-01-01
Several approaches are used to assess the performance of the built environment following an earthquake -- preliminary damage surveys conducted by professionals, detailed studies of individual structures, and statistical analyses of groups of structures. Reports of damage that are issued by many organizations immediately following an earthquake play a key role in directing subsequent detailed investigations. Detailed studies of individual structures and statistical analyses of groups of structures may be motivated by particularly good or bad performance during an earthquake. Beyond this, practicing engineers typically perform stress analyses to assess the performance of a particular structure to vibrational levels experienced during an earthquake. The levels may be determined from recorded or estimated ground motions; actual levels usually differ from design levels. If a structure has seismic instrumentation to record response data, the estimated and recorded response and behavior of the structure can be compared.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.
Chou, Leo Y T; Song, Fayi; Chan, Warren C W
2016-04-06
DNA assembly of nanoparticles is a powerful approach to control their properties and prototype new materials. However, the structure and properties of DNA-assembled nanoparticles are labile and sensitive to interactions with counterions, which vary with processing and application environment. Here we show that substituting polyamines in place of elemental counterions significantly enhanced the structural rigidity and plasmonic properties of DNA-assembled metal nanoparticles. These effects arose from the ability of polyamines to condense DNA and cross-link DNA-coated nanoparticles. We further used polyamine wrapped DNA nanostructures as structural templates to seed the growth of polymer multilayers via layer-by-layer assembly, and controlled the degree of DNA condensation, plasmon coupling efficiency, and material responsiveness to environmental stimuli by varying polyelectrolyte composition. These results highlight counterion engineering as a versatile strategy to tailor the properties of DNA-nanoparticle assemblies for various applications, and should be applicable to other classes of DNA nanostructures.
Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code
NASA Technical Reports Server (NTRS)
Lemonds, Jeffrey; Kumar, Virendra
1995-01-01
An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.
Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1993-01-01
In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.
Biomimetically Engineered Demi-Bacteria Potentiate Vaccination against Cancer.
Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo; Wei, Wei; Ma, Guanghui
2017-10-01
Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi-bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross-presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB-based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism-sourced materials thus presents new opportunities for potent cancer therapy.
Biomimetically Engineered Demi‐Bacteria Potentiate Vaccination against Cancer
Ni, Dezhi; Qing, Shuang; Ding, Hui; Yue, Hua; Yu, Di; Wang, Shuang; Luo, Nana; Su, Zhiguo
2017-01-01
Abstract Failure in enhancing antigen immunogenicity has limited the development of cancer vaccine. Inspired by effective immune responses toward microorganisms, demi‐bacteria (DB) from Bacillus are engineered as carriers for cancer vaccines. The explored hydrothermal treatment enables the Bacillus to preserve optimal pathogen morphology with intrinsic mannose receptor agonist. Meanwhile, the treated Bacillus can be further endowed with ideal hollow/porous structure for efficient accommodation of antigen and adjuvant, such as CpG. Therefore, this optimal engineered nanoarchitecture allows multiple immunostimulatory elements integrate in a pattern closely resembling that of bacterial pathogens. Such pathogen mimicry greatly enhances antigen uptake and cross‐presentation, resulting in stronger immune activation suitable for cancer vaccines. Indeed, DB‐based biomimetic vaccination in mice induces synergistic cellular and humoral immune responses, achieving potent therapeutic and preventive effects against cancer. Application of microorganism‐sourced materials thus presents new opportunities for potent cancer therapy. PMID:29051851
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Computational Study of the Structure and Mechanical Properties of the Molecular Crystal RDX
2011-01-01
Doctor of Philosophy, 2011 Directed By: Assistant Professor Santiago D. Solares , Department of Mechanical Engineering Molecular crystals...Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response...NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed
NASA Astrophysics Data System (ADS)
Haghnevis, Moeed
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
Campbell, Ryan C; Wilson, Denise
2017-04-01
This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.
Multiphysics Code Demonstrated for Propulsion Applications
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Melis, Matthew E.
1998-01-01
The utility of multidisciplinary analysis tools for aeropropulsion applications is being investigated at the NASA Lewis Research Center. The goal of this project is to apply Spectrum, a multiphysics code developed by Centric Engineering Systems, Inc., to simulate multidisciplinary effects in turbomachinery components. Many engineering problems today involve detailed computer analyses to predict the thermal, aerodynamic, and structural response of a mechanical system as it undergoes service loading. Analysis of aerospace structures generally requires attention in all three disciplinary areas to adequately predict component service behavior, and in many cases, the results from one discipline substantially affect the outcome of the other two. There are numerous computer codes currently available in the engineering community to perform such analyses in each of these disciplines. Many of these codes are developed and used in-house by a given organization, and many are commercially available. However, few, if any, of these codes are designed specifically for multidisciplinary analyses. The Spectrum code has been developed for performing fully coupled fluid, thermal, and structural analyses on a mechanical system with a single simulation that accounts for all simultaneous interactions, thus eliminating the requirement for running a large number of sequential, separate, disciplinary analyses. The Spectrum code has a true multiphysics analysis capability, which improves analysis efficiency as well as accuracy. Centric Engineering, Inc., working with a team of Lewis and AlliedSignal Engines engineers, has been evaluating Spectrum for a variety of propulsion applications including disk quenching, drum cavity flow, aeromechanical simulations, and a centrifugal compressor flow simulation.
NASA Astrophysics Data System (ADS)
Rulifson, Gregory A.
Engineers impact the lives of every person every day, and need to have a strong sense of social responsibility. Understanding what students think about social responsibility in engineering and their futures is very important. Further, by identifying influences that change these ideas and shape their conceptualizations, we can intervene to help prepare students for their responsibilities as part of the profession in the future. This thesis presents the experiences, in their own words, of 34 students who started in engineering. The study is composed of three parts: (i) engineering students' ideas about socially responsible engineering and what influenced these ideas, (ii) how students see themselves as future socially responsible engineers and how this idea changes over their first three years of college, and (iii) what social responsibility-related reasons students who leave engineering have for choosing a new major. Results show that students are complicated and have varied paths through and out of engineering studies. Students came up with their own ideas about socially responsible engineering that converged over the years on legal and safety related aspects of the profession. Relatedly, students identified with the engineering profession through internships and engineering courses, and rarely described socially responsible aspirations that could be accomplished with engineering. More often, those students who desired to help the disadvantaged through their engineering work left engineering. Their choice to leave was a combination of an unsupportive climate, disinterest in their classes, and a desire to combine their personal and professional social responsibility ambitions. If we want engineering students to push the engineering profession forward to be more socially responsible, we can identify the effective influences and develop a curriculum that encourages critical thinking about the social context and impacts of engineering. Additionally, a social responsibility-related curriculum could provide more opportunities for engagement that keeps those socially-motivated students in engineering. The engineering profession must also reflect these values to keep the new engineers working towards social responsibility and pushing the profession forward.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali
1996-01-01
Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.
NASA Astrophysics Data System (ADS)
Ishin, Artem; Voeykov, Sergey; Perevalova, Natalia; Khakhinov, Vitaliy
2017-12-01
As a part of the Plasma-Progress and Radar-Progress space experiments conducted from 2006 to 2014, effects of the Progress spacecraft engines on the ionosphere have been studied using data from Global Navigation Satellite System (GNSS) receivers. 72 experiments have been carried out. All these experiments were based on data from the International GNSS Service (IGS) to record ionospheric plasma irregularities caused by engine operation. 35 experiments used data from the ISTP SB RAS network SibNet. The analysis of the spatio-temporal structure of total electron content (TEC) variations has shown that the problem of identifying the TEC response to engine operation is complicated by a number of factors: 1) the engine effect on ionospheric plasma is strongly localized in space and has a relatively low intensity; 2) a small number of satellite-receiver radio rays due to the limited number of GNSS stations, particularly before 2013; 3) a potential TEC response is masked with background ionospheric disturbances of various intensities. However, TEC responses are identified with certainty when a satellite-receiver radio ray crosses a disturbed region within minutes after the impact. TEC responses have been registered in 7 experiments (10 % of cases). The amplitude of ionospheric response (0.3-0.16 TECU) exceeded the background TEC variations (~0.25 TECU) several times. The TEC data indicate that the ionospheric irregularity lifetime is from 4 to 10 minutes. According to the estimates we made, the transverse size of irregularities is from 12 to 30 km.
A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.
Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-11-21
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Challenges Facing Design and Analysis Tools
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)
2001-01-01
The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools will be described.
Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio
2016-01-01
Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-12-12
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-01-01
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868
NASA Astrophysics Data System (ADS)
Agostoni, S.; Cheli, F.; Leo, E.; Pezzola, M.
2012-08-01
Motor vehicle ride comfort is mainly affected by reciprocating engine inertia unbalances. These forces are transmitted to the driver through the main frame, the engine mounts, and the auxiliary sub systems—all components with which he physically comes into contact. On-road traction vehicle engines are mainly characterized by transient exercise. Thus, an excitation frequency range from 800 RPM (≈15 Hz for stationary vehicles) up to 15,000 RPM (≈250 Hz as a cut off condition) occurs. Several structural resonances are induced by the unbalancing forces spectrum, thus exposing the driver to amplified vibrations. The aim of this research is to reduce driver vibration exposure, by acting on the modal response of structures with which the driver comes into contact. An experimental methodology, capable of identifying local vibration modes was developed. The application of this methodology on a reference vehicle allows us to detect if/when/how the above mentioned resonances are excited. Numerical models were used to study structural modifications. In this article, a handlebar equipped with an innovative multi reciprocating tuned mass damper was optimized. All structural modifications were designed, developed and installed on a vehicle. Modal investigations were then performed in order to predict modification efficiency. Furthermore, functional solution efficiency was verified during sweep tests performed on a target vehicle, by means of a roller bench capable of replicating on-road loads. Three main investigation zones of the vehicle were detected and monitored using accelerometers: (1) engine mounts, to characterize vibration emissions; (2) bindings connecting the engine to the frame, in order to detect vibration transfer paths, with particular attention being paid to local dynamic amplifications due to compliances and (3) the terminal components with which the driver comes into contact.
Bartnikowski, Michal; Klein, Travis J; Melchels, Ferry P W; Woodruff, Maria A
2014-07-01
Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, while maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size, and permeability decreased, while computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (∼ 45% to ∼ 86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment. © 2014 Wiley Periodicals, Inc.
Gadjanski, Ivana; Vunjak-Novakovic, Gordana
2015-01-01
Introduction A major hurdle in treating osteochondral (OC) defects are the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct-engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. Areas covered This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. Expert opinion A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens, and harnessing of inflammatory responses of the host will likely drive the further progress. PMID:26195329
[Engineered spider silk: the intelligent biomaterial of the future. Part I].
Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna
2011-06-17
The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution.
Campbell, Ryan C.; Wilson, Denise
2016-01-01
This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student’s writing on the human health and environmental impacts of “backyard” electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering. PMID:27368195
coordinates research in support of the PEER mission in performance-based earthquake engineering. The broad system dynamic response; assessment of the performance of the structural and nonstructural systems ; consequences in terms of casualties, capital costs, and post-earthquake functionality; and decision-making to
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents.
RoyChoudhury, Sohini; Rawat, Vaishali; Jalal, Ahmed Hasnain; Kale, S N; Bhansali, Shekhar
2016-12-15
Potential applications of thin film metamaterials are diverse and their realization to offer miniaturized waveguides, antennas and shielding patterns are on anvil. These artificially engineered structures can produce astonishing electromagnetic responses because of their constituents being engineered at much smaller dimensions than the wavelength of the incident electromagnetic wave, hence behaving as artificial materials. Such micro-nano dimensions of thin film metamaterial structures can be customized for various applications due to their exclusive responses to not only electromagnetic, but also to acoustic and thermal waves that surpass the natural materials' properties. In this paper, the recent major advancements in the emerging fields of diagnostics (sensors) and therapeutics involving thin film metamaterials have been reviewed and underlined; discussing their edge over conventional counterpart techniques; concentrating on their design considerations and feasible ways of achieving them. Challenges faced in sensitivity, precision, accuracy and factors that interfere with the degree of performance of the sensors are also dealt with, herein. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Manderscheid, J. M.; Kaufman, A.
1985-01-01
Turbine blades for reusable space propulsion systems are subject to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high-temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite-element computer code. The MARC solutions are compared to cyclic response predictions from a simplified structural analysis procedure developed at the NASA Lewis Research Center.
SHARD - a SeisComP3 module for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.
2016-12-01
Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1992-01-01
The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
Nonlinear mechanics of non-rigid origami: an efficient computational approach
NASA Astrophysics Data System (ADS)
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
Nonlinear mechanics of non-rigid origami: an efficient computational approach.
Liu, K; Paulino, G H
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on 'bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
[Master course in biomedical engineering].
Jobbágy, Akos; Benyó, Zoltán; Monos, Emil
2009-11-22
The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.
Casali, Monica; Banta, Scott; Zambonelli, Carlo; Megeed, Zaki; Yarmush, Martin L
2008-06-01
Environmentally responsive proteins and peptides are increasingly finding utility in various engineered systems due to their ability to respond to the presentation of external stimuli. A classic example of this behavior is the influenza hemagglutinin (HA) fusion protein. At neutral pH, HA exists in a non-fusogenic state, but upon exposure to low pH, the conformation of the structure changes to expose a fusogenic peptide. During this structural change, massive rearrangements occur in a subunit of HA (HA2). Crystallography data has shown that a loop of 28 amino acids (residues 54-81) undergoes a dramatic transition from a random coil to an alpha-helix. This segment connects to two flanking helical regions (short and long) to form a long, continuous helix. Here, we report the results of site-directed mutagenesis study on LOOP-36 to further understand the mechanism of this important stimulus-responsive peptide. The conformational transition of a bacterially expressed LOOP-36 was found to be less dramatic than has been previously reported. The systematic mutation of glutamate and histidine residues in the peptide to glutamines (glutamine scanning) did not impact the conformational behavior of the peptide, but the substitution of the glycine residue at position 22 with alanine resulted in significant pH-responsive behavior. Therefore this mutant stimulus-responsive peptide may be more valuable for future protein engineering and bionanotechnology efforts.
Sensitivity Analysis in Engineering
NASA Technical Reports Server (NTRS)
Adelman, Howard M. (Compiler); Haftka, Raphael T. (Compiler)
1987-01-01
The symposium proceedings presented focused primarily on sensitivity analysis of structural response. However, the first session, entitled, General and Multidisciplinary Sensitivity, focused on areas such as physics, chemistry, controls, and aerodynamics. The other four sessions were concerned with the sensitivity of structural systems modeled by finite elements. Session 2 dealt with Static Sensitivity Analysis and Applications; Session 3 with Eigenproblem Sensitivity Methods; Session 4 with Transient Sensitivity Analysis; and Session 5 with Shape Sensitivity Analysis.
A Bibliography of Software Engineering Terms.
1979-10-01
WHAT HAPPENS TO DATA, HOW DATA IS TRANSFORMED, AND HOW ONE CAN PARTITION THE PROCESS INTO SUBPROCESSES WITH A MINIMAL NEED OF DATA TRANSFERS. (DAN 323...ANSI-X3HI) 75 p 1 PARANORMAL TERMINATION UNSTRUCTURED ESCAPES (IN CONTROL) FROM A MODULE IN RESPONSE TO NORMAL EVENTS OR CONDITIONS. MODULES HAVING... PARANORMAL TERMINATIONS MAY YET EXHIBIT A FORM OF STRUCTURED CONTROL FLOW, IF PROPERLY CONFIGURED INTO " PARANORMAL EXTENSIONS" OF STRUCTURED PROGRAMMING
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
An Efficient Crankshaft Dynamic Analysis Using Substructuring with Ritz Vectors
NASA Astrophysics Data System (ADS)
MOURELATOS, Z. P.
2000-11-01
A structural analysis using dynamic substructuring with Ritz vectors is presented for predicting the dynamic response of an engine crankshaft, based on the finite-element method. A two-level dynamic substructuring is performed using a set of load-dependent Ritz vectors. The rotating crankshaft is properly coupled with the non-rotating, compliant engine block. The block compliance is represented by a distributed linear elastic foundation at each main bearing location. The stiffness of the elastic foundation can be different in the vertical and horizontal planes, thereby considering the anisotropy of the engine block compliance with respect to the crankshaft rotation. The analysis accounts for the kinematic non-linearity resulting from the crankangle-dependent circumferential contact location between each journal and the corresponding bore of the engine block. Crankshaft “bent” and block “misboring” effects due to manufacturing imperfections are considered in the analysis. The superior accuracy and reduced computational effort of the present method as compared with the equivalent superelement analysis in MSC/NASTRAN, are demonstrated using the free and forced vibrations of a slender cylindrical beam and free vibrations of a four-cylinder engine crankshaft. Subsequently, the accuracy of the present method in calculating the dynamic response of engine crankshafts is shown through comparisons between the analytical predictions and experimental results for the torsional vibrations of an in-line five cylinder engine and the bending vibrations of the crankshaft-flywheel assembly of a V6 engine.
NASA Technical Reports Server (NTRS)
Riff, Richard
1988-01-01
The prediction of inelastic behavior of metallic materials at elevated temperatures has increased in importance in recent years. The operating conditions within the hot section of a rocket motor or a modern gas turbine engine present an extremely harsh thermomechanical environment. Large thermal transients are induced each time the engine is started or shut down. Additional thermal transients from an elevated ambient occur whenever the engine power level is adjusted to meet flight requirements. The structural elements employed in such hot sections, as well as any engine components located therein, must be capable of withstanding such extreme conditions. Failure of a component would, due to the critical nature of the hot section, lead to an immediate and catastrophic loss in power. Consequently, assuring satisfactory long term performance for such components is a major concern. Nonisothermal loading of structures often causes excursion of stress well into the inelastic range. Moreover, the influence of geometry changes on the response is also significant in most cases. Therefore, both material and geometric nonlinear effects are considered.
Engineering controllable bidirectional molecular motors based on myosin
Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev
2012-01-01
Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382
Engineering controllable bidirectional molecular motors based on myosin
NASA Astrophysics Data System (ADS)
Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev
2012-04-01
Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.
Anelone, Anet J N; Spurgeon, Sarah K
2016-01-01
Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.
Effect of stress concentrations in composite structures
NASA Technical Reports Server (NTRS)
Babcock, C. D.; Waas, A. M.
1985-01-01
Composite structures have found wide use in many engineering fields and a sound understanding of their response under load is important to their utilization. An experimental program is being carried out to gain a fundamental understanding of the failure mechanics of multilayered composite structures at GALCIT. As a part of this continuing study, the performance of laminated composite plates in the presence of a stress gradient and the failure of composite structures at points of thickness discontinuity is assessed. In particular, the questions of initiation of failure and its subsequent growth to complete failure of the structure are addressed.
A liquid metal-based structurally embedded vascular antenna: I. Concept and multiphysical modeling
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Frank, G. J.; Huff, G. H.; Baur, J. W.
2017-02-01
This work proposes a new concept for a reconfigurable structurally embedded vascular antenna (SEVA). The work builds on ongoing research of structurally embedded microvascular systems in laminated structures for thermal transport and self-healing and on studies of non-toxic liquid metals for reconfigurable electronics. In the example design, liquid metal-filled channels in a laminated composite act as radiating elements for a high-power planar zig-zag wire log periodic dipole antenna. Flow of liquid metal through the channels is used to limit the temperature of the composite in which the antenna is embedded. A multiphysics engineering model of the transmitting antenna is formulated that couples the electromagnetic, fluid, thermal, and mechanical responses. In part 1 of this two-part work, it is shown that the liquid metal antenna is highly reconfigurable in terms of its electromagnetic response and that dissipated thermal energy generated during high power operation can be offset by the action of circulating or cyclically replacing the liquid metal such that heat is continuously removed from the system. In fact, the SEVA can potentially outperform traditional copper-based antennas in high-power operational configurations. The coupled engineering model is implemented in an automated framework and a design of experiment study is performed to quantify first-order design trade-offs in this multifunctional structure. More rigorous design optimization is addressed in part 2.
CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production
USDA-ARS?s Scientific Manuscript database
Anthocyanins are a class of brightly colored, glycosylated flavonoid pigments that imbue their flower, fruit, and vegetable host tissues with hues of predominantly red, purple, and blue. Although all anthocyanins exhibit pH-responsive photochemical changes, distinct structural decorations on the cor...
Turbine Engine Hot Section Technology, 1987
NASA Technical Reports Server (NTRS)
1987-01-01
Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.
Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.
Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P
2009-06-01
Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.
NASA Technical Reports Server (NTRS)
Zirin, R. M.; Witmer, E. A.
1972-01-01
An approximate collision analysis, termed the collision-force method, was developed for studying impact-interaction of an engine rotor blade fragment with an initially circular containment ring. This collision analysis utilizes basic mass, material property, geometry, and pre-impact velocity information for the fragment, together with any one of three postulated patterns of blade deformation behavior: (1) the elastic straight blade model, (2) the elastic-plastic straight shortening blade model, and (3) the elastic-plastic curling blade model. The collision-induced forces are used to predict the resulting motions of both the blade fragment and the containment ring. Containment ring transient responses are predicted by a finite element computer code which accommodates the large deformation, elastic-plastic planar deformation behavior of simple structures such as beams and/or rings. The effects of varying the values of certain parameters in each blade-behavior model were studied. Comparisons of predictions with experimental data indicate that of the three postulated blade-behavior models, the elastic-plastic curling blade model appears to be the most plausible and satisfactory for predicting the impact-induced motions of a ductile engine rotor blade and a containment ring against which the blade impacts.
Annan, Joe-Steve; Addai, Emmanuel K.; Tulashie, Samuel K.
2015-01-01
Occupational health and safety (OHS) is a broad field of professional practice, which involves specialists from different disciplines including but not limited to engineers, occupational health physicians, physical and biological scientists, economists, and statisticians. The preventive systems required to ensure workers are protected from injuries and illnesses dwell heavily on engineers; however, the extent to which the engineer can go regarding planning and implementing preventive measures is dependent on specific legal requirements, leadership commitment from the company, organization, and nation. The objective of this paper is to identify the areas of opportunities for improvements in OHS management in Ghana with regard to the nation's legal requirements, commitment of the Ghana government, and Ghanaian leadership as well as appropriate structuring of Ghanaian institutions responsible for monitoring and managing OHS in Ghana. This paper identified Ghana's fragmented legal requirements concerning OHS, which are under different jurisdictions with unclear responsibilities and accountabilities. The paper also highlights the training needs of Ghanaian academic institutions regarding OHS. Among other recommendations made including structuring of Ghanaian institutions to manage OHS in line with the ILO-OSH 2001, this paper aligns the recommendations with the articles and elements of International Labour Organization convention number 155 and OHSAS 18001 elements. PMID:26106516
Aircraft engine hot section technology: An overview of the HOST Project
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E.; Hirschberg, Marvin H.
1990-01-01
NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.
Structural system identification based on variational mode decomposition
NASA Astrophysics Data System (ADS)
Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.
2018-03-01
In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.
Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio
2011-01-01
In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.
Functional supramolecular polymers for biomedical applications.
Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian
2015-01-21
As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Life Extending Controls Using Nonlinear Parameter Optimization
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This report presents the conceptual development of a life extending control system where the objective is to achieve high performance and structural durability of the plant. A life extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel and oxidizer turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. This design approach makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life extending controller module to augment a conventional performance controller of a rocket engine. The nonlinear aspect of the design is achieved using nonlinear parameter optimization of a prescribed control structure.
NASA Technical Reports Server (NTRS)
Thomas, LeAnn; Doreswamy, Rajiv N.
2008-01-01
Systems Engineering and Integration (SE&I) is a critical discipline in developing new space systems. In 2005, NASA performed an internal study of 24 agency and Department of Defense (DoD) programs to evaluate methods of integrating SE&I practices and determine their effectiveness. The goal of the study was to determine the best SE&I implementation strategy for the Ares Projects Office. The study identified six SE&I organizational structures: 1. Lead systems integrator (LSI) with SE&I responsibility and government technical insight. 2a. Integration contractor with government SE&I responsibility (government insight). 2b. Integration contractor with government SE&I responsibility (government oversight). 3a. Prime contractor with SE&I responsibility (government insight). 3b. Prime contractor with SE&I responsibility (government oversight). 3c. Prime contractor with SE&I responsibility (government/industry partnership). 4a.Prime contractor with government SE&I responsibility (government insight). 4b. Prime contractor with government SE&I responsibility (government oversight). 4d.Prime contractors with total system performance responsibility (TSPR). 5. Prime contractor with government SE&I responsibility and integration products through a Federally Funded Research and Development Center (FFRDC). 6. Government/FFRDC in-house development with SE&I responsibility and function. The organizational structure used most often was number 4, using a prime contractor with government SE&I responsibility and government technical insight. However, data analyses did not establish a positive relationship between program development costs and specific SE&I organizational types, nor did it positively determine the relationship between successful programs or projects and their SE&I structure. The SE&I study reached the following conclusions: (1) Large, long-duration, technically complex programs or projects reach their technical goals, but rarely meet schedule or cost goals. NASA's recent successes have been smaller, short-duration development projects using heritage hardware/software, focused technology development, technical oversight and stable external factors. (2) Programs and projects have failed or been terminated due to lack of technical insight, relaxing of SE&I processes, and unstable external factors. (3) The study did not find a single, clear optimum SE&I organization type to fit all projects. However, while any organizational structure can be made to work, the fewer complexities in the program, the better the likelihood of success. (4) The most common successful SE&I organization structure type in the study was type 4b, where the government maintained integration responsibility, with the prime contractor providing SE&I products and the government providing technical oversight. This study was instrumental in helping the APO select organization structure 4, following the same SE&I and oversight process used during humanlund7s last voyages to the Moon.
All-angle negative refraction and active flat lensing of ultraviolet light.
Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J
2013-05-23
Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago flat lensing, in free space, of arbitrarily shaped, two-dimensional objects beyond the near field. We further demonstrate active, all-optical modulation of the image transferred by the flat lens.
Airframe-Jet Engine Integration Noise
NASA Technical Reports Server (NTRS)
Tam, Christopher; Antcliff, Richard R. (Technical Monitor)
2003-01-01
It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.
Flood trends and river engineering on the Mississippi River system
Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.
2008-01-01
Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.
Dynamic Loads Generation for Multi-Point Vibration Excitation Problems
NASA Technical Reports Server (NTRS)
Shen, Lawrence
2011-01-01
A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.
NASA Technical Reports Server (NTRS)
Findley, D. S.; Huckel, V.; Hubbard, H. H.
1975-01-01
In order to evaluate reaction of people to sonic booms of varying overpressures and time durations, a series of closely controlled and systematic flight tests/studies were conducted from June 3 to June 23, 1966. The dynamic responses of several building structures were measured, with emphasis on a two-story residence structure. Sample acceleration and strain recordings from F-104, B-58, and XB-70 sonic boom exposures are included, along with tabulations of the maximum acceleration and strain values measured for each one of about 140 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
NASA Astrophysics Data System (ADS)
Bartmański, Cezary; Bochenek, Wojciech; Passia, Henryk; Szade, Adam
2006-06-01
The methods of direct measurement and analysis of the dynamic response of a building structure through real-time recording of the amplitude of low-frequency vibration (tilt) have been presented. Subject to analyses was the reaction induced either by kinematic excitation (road traffic and mining-induced vibration) or controlled action of solid-fuel rocket micro-engines installed on the building. The forces were analysed by means of a set of transducers installed both in the ground and on the structure. After the action of excitation forces has been stopped, the system (structure) makes damped vibration around the static equilibrium position. It has been shown that the type of excitation affects the accuracy of evaluation of principal dynamic parameters of the structure. In the authors opinion these are the decrement of damping and natural vibration frequency. Positive results of tests with the use of excitation by means of short-action (0.6 second) rocket micro-engines give a chance to develop a reliable method for periodical assessment of acceptable loss of usability characteristics of building structures heavily influenced by environmental effects.
Unexpected Control Structure Interaction on International Space Station
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Platonov, Valery; Medina, Elizabeth A.; Borisenko, Alexander; Bogachev, Alexey
2017-01-01
On June 23, 2011, the International Space Station (ISS) was performing a routine 180 degree yaw maneuver in support of a Russian vehicle docking when the on board Russian Segment (RS) software unexpectedly declared two attitude thrusters failed and switched thruster configurations in response to unanticipated ISS dynamic motion. Flight data analysis after the maneuver indicated that higher than predicted structural loads had been induced at various locations on the United States (U.S.) segment of the ISS. Further analysis revealed that the attitude control system was firing thrusters in response to both structural flex and rigid body rates, which resonated the structure and caused high loads and fatigue cycles. It was later determined that the thruster themselves were healthy. The RS software logic, which was intended to react to thruster failures, had instead been heavily influenced by interaction between the control system and structural flex. This paper will discuss the technical aspects of the control structure interaction problem that led to the RS control system firing thrusters in response to structural flex, the factors that led to insufficient preflight analysis of the thruster firings, and the ramifications the event had on the ISS. An immediate consequence included limiting which thrusters could be used for attitude control. This complicated the planning of on-orbit thruster events and necessitated the use of suboptimal thruster configurations that increased propellant usage and caused thruster lifetime usage concerns. In addition to the technical aspects of the problem, the team dynamics and communication shortcomings that led to such an event happening in an environment where extensive analysis is performed in support of human space flight will also be examined. Finally, the technical solution will be presented, which required a multidisciplinary effort between the U.S. and Russian control system engineers and loads and dynamics structural engineers to develop and implement an extensive modification in the RS software logic for ISS attitude control thruster firings.
Engineering Property Prediction Tools for Tailored Polymer Composite Structures (49465)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil
2009-12-29
Process and constitutive models as well as characterization tools and testing methods were developed to determine stress-strain responses, damage development, strengths and creep of long-fiber thermoplastics (LFTs). The developed models were implemented in Moldflow and ABAQUS and have been validated against LFT data obtained experimentally.
Quality Assurance Program Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halford, Vaughn Edward; Ryder, Ann Marie
Effective May 1, 2017, led by a new executive leadership team, Sandia began operating within a new organizational structure. National Technology and Engineering Solutions of Sandia (Sandia’s) Quality Assurance Program (QAP) was established to assign responsibilities and authorities, define workflow policies and requirements, and provide for the performance and assessment of work.
Jha, Ramesh K; Chakraborti, Subhendu; Kern, Theresa L; Fox, David T; Strauss, Charlie E M
2015-07-01
Structure-based rational mutagenesis for engineering protein functionality has been limited by the scarcity and difficulty of obtaining crystal structures of desired proteins. On the other hand, when high-throughput selection is possible, directed evolution-based approaches for gaining protein functionalities have been random and fortuitous with limited rationalization. We combine comparative modeling of dimer structures, ab initio loop reconstruction, and ligand docking to select positions for mutagenesis to create a library focused on the ligand-contacting residues. The rationally reduced library requirement enabled conservative control of the substitutions by oligonucleotide synthesis and bounding its size within practical transformation efficiencies (∼ 10(7) variants). This rational approach was successfully applied on an inducer-binding domain of an Acinetobacter transcription factor (TF), pobR, which shows high specificity for natural effector molecule, 4-hydroxy benzoate (4HB), but no native response to 3,4-dihydroxy benzoate (34DHB). Selection for mutants with high transcriptional induction by 34DHB was carried out at the single-cell level under flow cytometry (via green fluorescent protein expression under the control of pobR promoter). Critically, this selection protocol allows both selection for induction and rejection of constitutively active mutants. In addition to gain-of-function for 34DHB induction, the selected mutants also showed enhanced sensitivity and response for 4HB (native inducer) while no sensitivity was observed for a non-targeted but chemically similar molecule, 2-hydroxy benzoate (2HB). This is unique application of the Rosetta modeling protocols for library design to engineer a TF. Our approach extends applicability of the Rosetta redesign protocol into regimes without a priori precision structural information. © 2015 Wiley Periodicals, Inc.
System reliability of randomly vibrating structures: Computational modeling and laboratory testing
NASA Astrophysics Data System (ADS)
Sundar, V. S.; Ammanagi, S.; Manohar, C. S.
2015-09-01
The problem of determination of system reliability of randomly vibrating structures arises in many application areas of engineering. We discuss in this paper approaches based on Monte Carlo simulations and laboratory testing to tackle problems of time variant system reliability estimation. The strategy we adopt is based on the application of Girsanov's transformation to the governing stochastic differential equations which enables estimation of probability of failure with significantly reduced number of samples than what is needed in a direct simulation study. Notably, we show that the ideas from Girsanov's transformation based Monte Carlo simulations can be extended to conduct laboratory testing to assess system reliability of engineering structures with reduced number of samples and hence with reduced testing times. Illustrative examples include computational studies on a 10-degree of freedom nonlinear system model and laboratory/computational investigations on road load response of an automotive system tested on a four-post test rig.
Advanced organic composite materials for aircraft structures: Future program
NASA Technical Reports Server (NTRS)
1987-01-01
Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.
2008-05-02
information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources, gathering...their central engines cannot be resolved with ordinary telescopes. Gravitational telescopes, however, provide the necessary resolution to study the...structure of the continuum emission regions at optical and X-ray wavelengths and make time delay estimates in the systems in which sufficient data were
NASA Technical Reports Server (NTRS)
Greene, P. H.
1972-01-01
Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.
High-temperature combustor liner tests in structural component response test facility
NASA Technical Reports Server (NTRS)
Moorhead, Paul E.
1988-01-01
Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.
Young, Simon; Kretlow, James D; Nguyen, Charles; Bashoura, Alex G; Baggett, L Scott; Jansen, John A; Wong, Mark; Mikos, Antonios G
2008-09-01
Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs.
The European Project Semester at ISEP: the challenge of educating global engineers
NASA Astrophysics Data System (ADS)
Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo
2015-05-01
Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.
Formula student as part of a mechanical engineering curriculum
NASA Astrophysics Data System (ADS)
Davies, Huw Charles
2013-10-01
Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that derives from the FS activity through a series of semi-structured interviews with key stakeholders. Through the analysis of the interview data, it was found that the FS activity supported development of student skills and competencies in the following areas: use of engineering knowledge to support the application of existing and emerging technology; application of theoretical and practical knowledge to the solution of engineering problems; development of technical and commercial management skills; development of effective interpersonal skills, including communication skills; and demonstration of personal commitment to professional development. In addition, a number of areas for implementing 'good practise' have been identified. The information herein supports educators in their responsibility to help meet the needs of the engineering industry for high quality graduates.
Biodegradable composite scaffolds: a strategy to modulate stem cell behaviour.
Armentano, Ilaria; Fortunati, Elena; Mattioli, Samantha; Rescignano, Nicolatta; Kenny, José M
2013-04-01
The application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanostructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo.
Structural response of transport airplanes in crash situations
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1983-01-01
This report highlights the results of contractural studies of transport accident data undertaken in a joint research program sponsored by the FAA and NASA. From these accident data studies it was concluded that the greatest potential for improved transport crashworthiness is in the reduction of fire related fatalities. Accident data pertaining to fuselage integrity, main landing gear collapse, fuel tank rupture, wing breaks, tearing of tank lower surfaces, and engine pod scrubbing are discussed. In those accidents where the energy absorbing protective capability of the fuselage structure is expended and the airplane experiences major structural damage, trauma caused fatalities are also discussed. The dynamic performance of current seat/restraint systems are examined but it is concluded that the accident data does not adequately define the relationship between occupant response and the dynamic interaction with the seat, floor and fuselage structure.
Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering
NASA Astrophysics Data System (ADS)
Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo
2011-01-01
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.
Designing ECM-mimetic Materials Using Protein Engineering
Cai, Lei; Heilshorn, Sarah C.
2014-01-01
The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
NASA Technical Reports Server (NTRS)
Smith, P. J.; Thomson, L. W.; Wilson, R. D.
1986-01-01
NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.
Zhu, Baolei; Merindol, Remi; Benitez, Alejandro J; Wang, Baochun; Walther, Andreas
2016-05-04
Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.
NASA Astrophysics Data System (ADS)
Jing, Xin; Mi, Hao-Yang; Peng, Xiang-Fang; Turng, Lih-Sheng
2016-03-01
Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ɛ-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface features of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.
NASA Technical Reports Server (NTRS)
Turso, James; Lawrence, Charles; Litt, Jonathan
2004-01-01
The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, D.S.; Holman, G.S.
1991-10-01
This report documents the strategy employed to develop recommended wind/tornado hazard design guidelines for a New Production Reactor (NRP) currently planned for either the Idaho National Engineering Laboratory (INEL) or the Savannah River (SR) site. The Wind/Tornado Working Group (WTWG), comprising six nationally recognized experts in structural engineering, wind engineering, and meteorology, formulated an independent set of guidelines based on site-specific wind/tornado hazard curves and state-of-the-art tornado missile technology. The basic philosophy was to select realistic wind and missile load specifications, and to meet performance goals by applying conservative structural response evaluation and acceptance criteria. Simplified probabilistic risk analyses (PRAs)more » for wind speeds and missile impact were performed to estimate annual damage risk frequencies for both the INEL and SR sites. These PRAs indicate that the guidelines will lead to facilities that meet the US Department of Energy (DOE) design requirements and that the Nuclear Regulatory Commission guidelines adopted by the DOE for design are adequate to meet the NPR safety goals.« less
NASA Technical Reports Server (NTRS)
Turso, James A.; Lawrence, Charles; Litt, Jonathan S.
2007-01-01
The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.
NASA Astrophysics Data System (ADS)
Janiuk, Agnieszka; Moscibrodzka, Monika
Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass.
Modeling and Characterization of Electrical Resistivity of Carbon Composite Laminates
NASA Astrophysics Data System (ADS)
Yasuda, Hiromi
Origami has recently received significant interest from the scientific and engineering communities as a method for designing building blocks of engineered structures to enhance their mechanical properties. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. In this thesis, we study two different types of volumetric origami structures, Tachi-Miura Polyhedron (TMP) and Triangulated Cylindrical Origami (TCO), hierarchically from a single unit cell level to an assembly of multi-origami cells. We strategically assemble these origami cells into mechanical metamaterials and demonstrate their unique static/dynamic mechanical responses. In particular, these origami structures exhibit tailorable stiffness and strain softening/hardening behaviors, which leads to rich wave dynamics in origami-based architectures such as tunable frequency bands and new types of nonlinear wave propagations. One of the novel waveforms investigated in this thesis is the rarefaction solitary wave arising from strain-softening nature of origami unit cell. This unique wave dynamic mechanism is analyzed in numerical, analytical, and experimental approaches. By leveraging their tailorable folding mechanisms, the origami-based mechanical metamaterials can be used for designing new types of engineering devices and structures, not only for deployable space and disaster relief applications, but also for vibration filtering, impact mitigation, and energy harvesting.
Bačáková, L; Novotná, K; Pařízek, M
2014-01-01
Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.
Artificially Engineered Protein Polymers.
Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D
2017-06-07
Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.
An Overview: NASA LeRC Structures Programs
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1998-01-01
A workshop on National Structures Programs was held, jointly sponsored by the AIAA Structures Technical Committee, the University of Virginia's Center for Advanced Computational Technology and NASA. The Objectives of the Workshop were to: provide a forum for discussion of current Government-sponsored programs in the structures area; identify high potential research areas for future aerospace systems; and initiate suitable interaction mechanisms with the managers of structures programs. The presentations covered structures programs at NASA, DOD (AFOSR, ONR, ARO and DARPA), and DOE. This publication is the presentation of the Structures and Acoustics Division of the NASA Lewis Research Center. The Structures and Acoustics Division has its genesis dating back to 1943. It is responsible for NASA research related to rotating structures and structural hot sections of both airbreathing and rocket engines. The work of the division encompasses but is not limited to aeroelasticity, structural life prediction and reliability, fatigue and fracture, mechanical components such as bearings, gears, and seals, and aeroacoustics. These programs are discussed and the names of responsible individuals are provided for future reference.
In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.
Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad
2018-04-25
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H
2016-03-11
Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.
Argonaute2 is the catalytic engine of mammalian RNAi.
Liu, Jidong; Carmell, Michelle A; Rivas, Fabiola V; Marsden, Carolyn G; Thomson, J Michael; Song, Ji-Joon; Hammond, Scott M; Joshua-Tor, Leemor; Hannon, Gregory J
2004-09-03
Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1975-01-01
STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.
Multiscale Poly-(ϵ-caprolactone) Scaffold Mimicking Nonlinearity in Tendon Tissue Mechanics
Banik, Brittany L.; Lewis, Gregory S.; Brown, Justin L.
2016-01-01
Regenerative medicine plays a critical role in the future of medicine. However, challenges remain to balance stem cells, biomaterial scaffolds, and biochemical factors to create successful and effective scaffold designs. This project analyzes scaffold architecture with respect to mechanical capability and preliminary mesenchymal stem cell response for tendon regeneration. An electrospun fiber scaffold with tailorable properties based on a “Chinese-fingertrap” design is presented. The unique criss-crossed fiber structures demonstrate non-linear mechanical response similar to that observed in native tendon. Mechanical testing revealed that optimizing the fiber orientation resulted in the characteristic “S”-shaped curve, demonstrating a toe region and linear elastic region. This project has promising research potential across various disciplines: vascular engineering, nerve regeneration, and ligament and tendon tissue engineering. PMID:27141530
14 CFR 33.23 - Engine mounting attachments and structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine mounting attachments and structure... mounting attachments and structure. (a) The maximum allowable limit and ultimate loads for engine mounting attachments and related engine structure must be specified. (b) The engine mounting attachments and related...
Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure1[w
Paul, Anna-Lisa; Schuerger, Andrew C.; Popp, Michael P.; Richards, Jeffrey T.; Manak, Michael S.; Ferl, Robert J.
2004-01-01
As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations. PMID:14701916
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Huang, Wenwen; Rollett, Alexandra; Kaplan, David L
2015-05-01
Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.
Fast nastic motion of plants and bioinspired structures
Guo, Q.; Dai, E.; Han, X.; Xie, S.; Chao, E.; Chen, Z.
2015-01-01
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. PMID:26354828
Fast nastic motion of plants and bioinspired structures.
Guo, Q; Dai, E; Han, X; Xie, S; Chao, E; Chen, Z
2015-09-06
The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. © 2015 The Author(s).
Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna
2003-01-01
Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.
A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Watts, Stephen R.
1995-01-01
This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.
Turbine Engine Hot Section Technology, 1984
NASA Technical Reports Server (NTRS)
1984-01-01
Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.
Stochastic Simulation Tool for Aerospace Structural Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F.; Moore, David F.
2006-01-01
Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.
Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites
NASA Technical Reports Server (NTRS)
Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.
2003-01-01
In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.
ERIC Educational Resources Information Center
Chatman, Steve
2011-01-01
Using the example of responses from civil engineering students at a very highly ranked participating university, this guide demonstrates the importance of comparative data when using student questionnaire data for undergraduate academic program review. It also emphasizes the advantage of using factor structures for better questionnaire-based…
1977-12-01
Ice Plate Example. To demonstrate the capability of the visco- elastic finite-element computer code (5), the structural response of an infinite ... sea -ice plate on a fluid foundation is investigated for a simulated aircraft loading condition and, using relaxation functions, is determined
OrChem - An open source chemistry search engine for Oracle(R).
Rijnbeek, Mark; Steinbeck, Christoph
2009-10-22
Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net.
Programmable assembly of pressure sensors using pattern-forming bacteria.
Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong
2017-11-01
Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to assemble patterned materials. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height, and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration.
Rulifson, Greg; Bielefeldt, Angela R
2018-03-20
Engineers should learn how to act on their responsibility to society during their education. At present, however, it is unknown what students think about the meaning of socially responsible engineering. This paper synthesizes 4 years of longitudinal interviews with engineering students as they progressed through college. The interviews revolved broadly around how students saw the connections between engineering and social responsibility, and what influenced these ideas. Using the Weidman Input-Environment-Output model as a framework, this research found that influences included required classes such as engineering ethics, capstone design, and some technical courses, pre-college volunteering and familial values, co-curricular groups such as Engineers Without Borders and the Society of Women Engineers, as well as professional experiences through internships. Further, some experiences such as technical courses and engineering internships contributed to confine students' understanding of an engineer's social responsibility. Overall, students who stayed in engineering tended to converge on basic responsibilities such as safety and bettering society as a whole, but tended to become less concerned with improving the lives of the marginalized and disadvantaged. Company loyalty also became important for some students. These results have valuable, transferable contributions, providing guidance to foster students' ideas on socially responsible engineering.
Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza
2016-01-01
ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875
Traction force microscopy of engineered cardiac tissues.
Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit
2018-01-01
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.
Structural Dynamic Behavior of Wind Turbines
NASA Technical Reports Server (NTRS)
Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III
2009-01-01
The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).
NASA Astrophysics Data System (ADS)
Gao, Liang; Zhang, Shan; Zhang, Junfa; Wu, Xiangnan
2017-06-01
Rockfall impact on bridge piers threats severely the mountain bridge structures of lifeline engineering. Intended for mountain bridge pier protection against rockfall impact, the paper conducted comprehensive reviews on the research status of impact effects, anti-collision structure, impact response to rockfall, and protective design at home and abroad, and proposed a new-type protective structure against rockfall impact. In addition, the paper carried out deep studies on such key scientific issues as impact effect calculation, protective materials against rockfall impact, damage mechanism of protective units, and parameter optimization on the system of protective structures against rockfall impact as well, aiming to strength disaster prevention of mountain bridge structures.
Engine Structures Modeling Software System (ESMOSS)
NASA Technical Reports Server (NTRS)
1991-01-01
Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.
Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wu, Wei; Shi, Bin; Jiang, Xiaojie; Zhang, Ni; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun
2017-08-01
Graphene plasmons provide great opportunities in light-matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of 3.8×10-4λ02 within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering a pH responsive pore forming protein.
Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor
2017-02-08
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
Engineering a pH responsive pore forming protein
NASA Astrophysics Data System (ADS)
Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor
2017-02-01
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin
2007-01-01
In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and electrical power functions to other Elements of the CLV, is included as secondary structure. The MSFC has an overall responsibility for the integrated US element as well as structural design an thermal control of the fuel tanks, intertank, interstage, avionics, main propulsion system, Reaction Control System (RCS) for both the Upper Stage and the First Stage. MSFC's Spacecraft and Vehicle Department, Structural and Analysis Design Division is developing a set of predicted mass of these elements. This paper details the methodology, criterion and tools used for the preliminary mass predictions of the upper stage structural assembly components. In general, weight of the cylindrical barrel sections are estimated using the commercial code Hypersizer, whereas, weight of the domes are developed using classical solutions. HyperSizer is software that performs automated structural analysis and sizing optimization based on aerospace methods for strength, stability, and stiffness. Analysis methods range from closed form, traditional hand calculations repeated every day in industry to more advanced panel buckling algorithms. Margin-of-safety reporting for every potential failure provides the engineer with a powerful insight into the structural problem. Optimization capabilities include finding minimum weight panel or beam concepts, material selections, cross sectional dimensions, thicknesses, and lay-ups from a library of 40 different stiffened and sandwich designs and a database of composite, metallic, honeycomb, and foam materials. Multiple different concepts (orthogrid, isogrid, and skin stiffener) were run for multiple loading combinations of ascent design load with and with out tank pressure as well as proof pressure condition. Subsequently, selected optimized concept obtained from Hypersizer runs was translated into a computer aid design (CAD) model to account for the wall thickness tolerance, weld land etc for developing the most probable weight of the components. The flow diram summarizes the analysis steps used in developing these predicted mass.
Methodologies for Combined Loads Tests Using a Multi-Actuator Test Machine
NASA Technical Reports Server (NTRS)
Rouse, Marshall
2013-01-01
The NASA Langley COmbined Loads Test System (COLTS) Facility was designed to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. Structural tests have been conducted in COLTS that address structural integrity issues of metallic and fiber reinforced composite aerospace structures in support of NASA Programs (i.e. the Aircraft Structural Integrity (ASIP) Program, High-Speed-Research program and the Supersonic Project, NASA Engineering and Safety Center (NESC) Composite Crew Module Project, and the Environmentally Responsible Aviation Program),. This paper presents experimental results for curved panels subjected to mechanical and internal pressure loads using a D-box test fixture. Also, results are presented that describe use of a checkout beam for development of testing procedures for a combined mechanical and pressure loading test of a Multi-bay box. The Multi-bay box test will be used to experimentally verify the structural performance of the Multi-bay box in support of the Environmentally Responsible Aviation Project at NASA Langley.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
In situ damage detection in frame structures through coupled response measurements
NASA Astrophysics Data System (ADS)
Liu, D.; Gurgenci, H.; Veidt, M.
2004-05-01
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.
2011-01-01
Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that deposited ECM contributes to the construct shear properties. Collectively, these findings show that aligned electrospun PCL scaffolds are a promising tool for engineering fibrocartilage tissues, and that the shear properties of both acellular and cell-seeded formulations can match or exceed native tissue benchmarks. PMID:22098865
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
14 CFR 183.29 - Designated engineering representatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Designated engineering representatives. 183... § 183.29 Designated engineering representatives. (a) A structural engineering representative may approve structural engineering information and other structural considerations within limits prescribed by and under...
NASA Astrophysics Data System (ADS)
Balogh, Zsuzsa Enriko
For at least the last decade, engineering, civil engineering, along with structural engineering as a profession within civil engineering, have and continue to face an emerging need for "Raising the Bar" of preparedness of young engineers seeking to become practicing professional engineers. The present consensus of the civil engineering profession is that the increasing need for broad and in-depth knowledge should require the young structural engineers to have at least a Masters-Level education. This study focuses on the Masters-Level preparedness in the structural engineering area within the civil engineering field. It follows much of the methodology used in the American Society of Civil Engineers (ASCE) Body of Knowledge determination for civil engineering and extends this type of study to better define the portion of the young engineers preparation beyond the undergraduate program for one specialty area of civil engineering. The objective of this research was to create a Framework of Knowledge for the young engineer which identifies and recognizes the needs of the profession, along with the profession's expectations of how those needs can be achieved in the graduate-level academic setting, in the practice environment, and through lifelong learning opportunities with an emphasis on the initial five years experience past completion of a Masters program in structural engineering. This study applied a modified Delphi method to obtain the critical information from members of the structural engineering profession. The results provide a Framework of Knowledge which will be useful to several groups seeking to better ensure the preparedness of the future young structural engineers at the Masters-Level.
Reyes, Juan C.; Kalkan, Erol
2012-01-01
In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide the most critical EDPs in nonlinear-inelastic domain; however, they tend to produce larger EDPs than as-recorded (arbitrarily oriented) motions.
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity
Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2012-01-01
Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056
NASA Technical Reports Server (NTRS)
Findley, D. S.; Huckel, V.; Henderson, H. R.
1975-01-01
In order to evaluate reaction of people to sonic booms of varying overpressures and time durations, a series of closely controlled and systematic flight test studies were conducted in the vicinity of Edwards AFB, California, from June 3 to June 23, 1966. The dynamic responses of several building structures were measured as a part of these studies, and the measurements made in a one-story residence structure (Edwards test structure No. 1) are presented. Sample acceleration and strain recordings are presented from F-104, B-58, and XB-70 sonic-boom exposures, along with tabulations of the maximum acceleration and strain values measured for each one of about 140 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well
NASA Astrophysics Data System (ADS)
Duque, C. A.; Akimov, V.; Demediuk, R.; Belykh, V.; Tiutiunnyk, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Fomina, O.; Tulupenko, V.
2015-11-01
The degree of ionization, controlled by external fields, of delta-doped layers inside the quantum wells can affect their energy structure, therefore delta-doped QWs can be used to engineer different kinds of tunable THz optical devices on intersubband transitions. Here it is calculated and analyzed the linear and nonlinear (Kerr-type) optical response, including absorption coefficient and refractive index change of 20 nm-wide Si0.8Ge0.2/Si/Si0.8Ge0.2 QW structures n-delta-doped either at the center or at the edge of the well under different temperatures. The conduction subband energy structure was found self-consistently, including the calculation of the impurity binding energy. Our results show that the degree of ionization of the impurity layer as well as the heterostructure symmetry has a strong influence on optical properties of the structures in THz region.
Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine
NASA Astrophysics Data System (ADS)
Chien, Karen B.
Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood glucose and insulin sensitivity levels. Furthermore, soy scaffolds implanted in the intraperitoneal cavity attached to adjacent liver tissue with no abnormalities. In vitro, soy scaffolds supported hMSC viability and transdifferentiation into hepatocyte-like cells. These results support the use of soy scaffolds for liver tissue engineering and for treating metabolic diseases. Based on achievable structural and mechanical properties, as well as systemic effects of ingested and degraded soy proteins, soy protein scaffolds may serve as new multifunctional biomaterials for tissue engineering and regenerative medicine.
Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses.
Li, Man; Li, You; Peng, Ke; Wang, Ying; Gong, Tao; Zhang, Zhirong; He, Qin; Sun, Xun
2017-12-01
Intranasal mRNA vaccination provides immediate immune protection against pandemic diseases. Recent studies have shown that diverse forms of polyethyleneimine (PEI) have potent mucosal adjuvant activity, which could significantly facilitate the delivery of intranasal mRNA vaccines. Nevertheless, optimizing the chemical structure of PEI to maximize its adjuvanticity and decrease its toxicity remains a challenge. Here we show that the chemical structure of PEI strongly influences how well nanocomplexes of PEI and mRNA migrate to the lymph nodes and elicit immune responses. Conjugating cyclodextrin (CD) with PEI600 or PEI2k yielded CP (CD-PEI) polymers with different CD/PEI ratios. We analyzed the delivery efficacy of CP600, CP2k, and PEI25k as intranasal mRNA vaccine carriers by evaluating the lymph nodes migration and immune responses. Among these polymers, CP2k/mRNA showed significantly higher in vitro transfection efficiency, stronger abilities to migrate to lymph nodes and stimulate dendritic cells maturation in vivo, which further led to potent humoral and cellular immune responses, and showed lower local and systemic toxicity than PEI25k/mRNA. These results demonstrate the potential of CD-PEI2k/mRNA nanocomplex as a self-adjuvanting vaccine delivery vehicle that traffics to lymph nodes with high efficiency. As we face outbreaks of pandemic diseases such as Zika virus, intranasal mRNA vaccination provides instant massive protection against highly variant viruses. Various polymer-based delivery systems have been successfully applied in intranasal vaccine delivery. However, the influence of molecular structure of the polymeric carriers on the lymph node trafficking and dendritic cell maturation is seldom studied for intranasal vaccination. Therefore, engineering polymer-based vaccine delivery system and elucidating the relationship between molecular structure and the intranasal delivery efficiency are essential for maximizing the immune responses. We hereby construct self-adjuvanting polymer-based intranasal mRNA vaccines to enhance lymph node trafficking and further improve immune responses. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Ziping; Tao, Cancan; Yin, Jungang; Wang, Yunhui; Li, Yanshen
2018-04-30
Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors. Copyright © 2017 Elsevier B.V. All rights reserved.
2010-05-01
SCRAMJET WIND TUNNEL (POSTPRINT) 5a. CONTRACT NUMBER FA8650-10-D-5226-0002 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S...prototype scramjet engine as a wind tunnel . A sample holder was designed using combustion fluid dynamics results as inputs into structural models. The...Z39-18 Development of a Test to Evaluate Aerothermal Response of Materials to Hypersonic Flow Using a Scramjet Wind Tunnel Triplicane A
Hierarchical Engineered Materials and Structures
2012-11-30
May 30th to June 1st, Chicago, IL, 2011. 5) D’Mello R. J. and Waas A. M., “Synergistic energy absorption in the axial static compressive response of...For the macroscopic strain (end crushing over initial length) of 0.25 onwards, prominent barreling was observed. The specimen was compressed up to 90...Presentations 1) L. Hansen, S. Guntupalli, R.J. D’Mello, A. Salvi and A. Waas, “The Effects of Defects and Loading Rate on the Compressive Crushing Response of
Analysis methods for Kevlar shield response to rotor fragments
NASA Technical Reports Server (NTRS)
Gerstle, J. H.
1977-01-01
Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.
Simulations of Instabilities in Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.
2006-01-01
CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
Citizen sensors for SHM: use of accelerometer data from smartphones.
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-29
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.
Young, Simon; Kretlow, James D.; Nguyen, Charles; Bashoura, Alex G.; Baggett, L. Scott; Jansen, John A.; Wong, Mark
2008-01-01
Abstract Vasculogenesis and angiogenesis have been studied for decades using numerous in vitro and in vivo systems, fulfilling the need to elucidate the mechanisms involved in these processes and to test potential therapeutic agents that inhibit or promote neovascularization. Bone tissue engineering in particular has benefited from the application of proangiogenic strategies, considering the need for an adequate vascular supply during healing and the challenges associated with the vascularization of scaffolds implanted in vivo. Conventional methods of assessing the in vivo angiogenic response to tissue-engineered constructs tend to rely on a two-dimensional assessment of microvessel density within representative histological sections without elaboration of the true vascular tree. The introduction of microcomputed tomography (micro-CT) has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, including renal, coronary, and hepatic vascular networks, as well as bone formation within healing defects. To date, few studies have utilized micro-CT to study the vascular response to an implanted tissue engineering scaffold. In this paper, conventional in vitro and in vivo models for studying angiogenesis will be discussed, followed by recent developments in the use of micro-CT for vessel imaging in bone tissue engineering research. A new study demonstrating the potential of contrast-enhanced micro-CT for the evaluation of in vivo neovascularization in bony defects is described, which offers significant potential in the evaluation of bone tissue engineering constructs. PMID:18657028
Computational Infrastructure for Engine Structural Performance Simulation
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Select computer codes developed over the years to simulate specific aspects of engine structures are described. These codes include blade impact integrated multidisciplinary analysis and optimization, progressive structural fracture, quantification of uncertainties for structural reliability and risk, benefits estimation of new technology insertion and hierarchical simulation of engine structures made from metal matrix and ceramic matrix composites. Collectively these codes constitute a unique infrastructure readiness to credibly evaluate new and future engine structural concepts throughout the development cycle from initial concept, to design and fabrication, to service performance and maintenance and repairs, and to retirement for cause and even to possible recycling. Stated differently, they provide 'virtual' concurrent engineering for engine structures total-life-cycle-cost.
NASA Technical Reports Server (NTRS)
Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.
1985-01-01
The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.
Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads
Panaretos, Anastasios H.; Yuwen, Yu A.; Werner, Douglas H.; Mayer, Theresa S.
2015-01-01
The optical properties of a dimer type nanoantenna loaded with a plasmonic nanoring are investigated through numerical simulations and measurements of fabricated prototypes. It is demonstrated that by judiciously choosing the nanoring geometry it is possible to engineer its electromagnetic properties and thus devise an effective wavelength dependent nanoswitch. The latter provides a mechanism for controlling the coupling between the dimer particles, and in particular to establish a pair of coupled/de-coupled states for the total structure, that effectively results in its dual mode response. Using electron beam lithography the targeted structure has been accurately fabricated and the desired dual mode response of the nanoantenna was experimentally verified. The response of the fabricated structure is further analyzed numerically. This permits the visualization of the electromagnetic fields and polarization surface charge distributions when the structure is at resonance. In this way the switching properties of the plasmonic nanoring are revealed. The documented analysis illustrates the inherent tuning capabilities that plasmonic nanorings offer, and furthermore paves the way towards a practical implementation of tunable optical nanoantennas. Additionally, our analysis through an effective medium approach introduces the nanoring as a compact and efficient solution for realizing nanoscale circuits. PMID:25961804
Offeddu, Giovanni S; Ashworth, Jennifer C; Cameron, Ruth E; Oyen, Michelle L
2015-02-01
Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community
NASA Technical Reports Server (NTRS)
Cutright, Amanda; Shaughnessy, Brendan
2010-01-01
The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Dynamic response analysis of surrounding rock under the continuous blasting seismic wave
NASA Astrophysics Data System (ADS)
Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.
2017-10-01
The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.
Technology of civil usage of composites. [in commercial aircraft structures
NASA Technical Reports Server (NTRS)
Kemp, D. E.
1977-01-01
The paper deals with the use of advanced composites in structural components of commercial aircraft. The need for testing the response of a material system to service environment is discussed along with methods for evaluating design and manufacturing aspects of a built-up structure under environmental conditions and fail-safe (damage-tolerance) evaluation of structures. Crashworthiness aspects, the fire-hazard potential, and electrical damage of composite structures are considered. Practical operational experience with commercial aircraft is reviewed for boron/epoxy foreflaps, Kevlar/epoxy fillets and fairings, graphite/epoxy spoilers, graphite/polysulfone spoilers, graphite/epoxy floor posts, boron/aluminum aft pylon skin panels, graphite/epoxy engine nose cowl outer barrels, and graphite/epoxy upper aft rudder segments.
Chemical decontamination technical resources at Los Alamos National Laboratory (2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E
This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernandomore » Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.« less
2012-09-30
different livelihood strategies? How have community resilience and household vulnerability changed in response to engineered structures, shifting...impacts of environmental change by strengthening the factors that contribute to community resilience . 6 IMPACT/APPLICATIONS Our research will
NASA Astrophysics Data System (ADS)
Frederick, Joshua C.
Lead-based ferroelectric materials are of significant technological importance for sensing and actuation due to their high piezoelectric performance (i.e., the ability to convert an electrical signal to mechanical displacement, and vice versa). Traditionally, bulk ceramic or single crystals materials have filled these roles; however, emerging technologies stand to benefit by incorporating thin films to achieve miniaturization while maintaining high efficiency and sensitivity. Currently, chemical systems that have been well characterized in bulk form (e.g. Pb(Mg1/3Nb2/3)O3- xPbTiO3, or PMN-xPT) require further study to optimize both the chemistry and structure for deployment in thin film devices. Furthermore, the effect of internal electric fields is more significant at the length scales of thin films, resulting in self biases that require compensation to reveal their intrinsic dielectric response. To this end, the structure-property relations of epitaxial PMN-xPT films sputter deposited on a variety of substrates were investigated. Attention was paid to how the structure (i.e., strain state, crystal structure, domain configuration, and defects) gave rise to the ferroelectric, dielectric, and piezoelectric response. Three-dimensional visualization of the dielectric response as a simultaneous function of electric field and temperature revealed the true phase transition of the films, which was found to correspond to the strain state and defect concentration. A lead-buffered anneal process was implemented to enhance the ferroelectric and dielectric response of the films without altering their stoichiometry. It was discovered that PMN- xPT films could be domain-engineered to exhibit a mixed domain state through chemistry and substrate choice. Such films exhibited a monoclinic distortion similar to that of the bulk compositions near the morphotropic phase boundary. Finally, it was revealed that the piezoelectric response could be greatly enhanced by declamping the film from the substrate via a membrane fabrication technique. The membrane structures exhibited enhanced domain wall mobility, suggesting that domain wall motion is crucial for strong piezoelectric performance in PMN-xPT films. The findings can help guide strain- and domain-engineered relaxor ferroelectric thin films tailored for particular applications.
SAbPred: a structure-based antibody prediction server
Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Marks, Claire; Nowak, Jaroslaw; Regep, Cristian; Georges, Guy; Kelm, Sebastian; Popovic, Bojana; Deane, Charlotte M.
2016-01-01
SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred. PMID:27131379
NASA Technical Reports Server (NTRS)
Camp, George H.; Fallon, Dennis J.
1987-01-01
The Underwater Explosions Research Division (UERD) of the David Taylor Naval Ship Research and Development Center makes extensive use of NASTRAN/COSMIC on a CDC 176 to evaluate the structural response of ship structures subjected to underwater explosion shock loadings in the time domain. As relatively new users, UERD engineers have experienced difficulties with the checkpoint/restart feature because of the vague instructions in the user manual. Working procedures for the application of the checkpoint/restart feature to the transient analysis using NASTRAN/COSMIC are illustrated.
One-step assembly of coordination complexes for versatile film and particle engineering.
Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank
2013-07-12
The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
Topological Acoustic Delay Line
NASA Astrophysics Data System (ADS)
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan
2018-03-01
Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.
ShakeNet: a portable wireless sensor network for instrumenting large civil structures
Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert
2015-08-03
We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.
Composite Structures Materials Testing for the Orion Crew Vehicle Heat Shield
NASA Technical Reports Server (NTRS)
Khemani, Farah N.
2011-01-01
As research is being performed for the new heat shield for the Orion capsule, National Aeronautics and Space Administration (NASA) is developing the first composite heat shield. As an intern of the Structures Branch in the Engineering Directorate (ES 2), my main task was to set up a test plan to determine the material properties of the honeycomb that will be used on the Orion Crew Module heat shield to verify that the composite is suitable for the capsule. Before conducting composite shell tests, which are performed to simulate the crush performance of the heat shield on the capsule, it is necessary to determine the compression and shear properties of the composite used on the shell. During this internship, I was responsible for developing a test plan, designing parts for the test fixtures as well as getting them fabricated for the honeycomb shear and compression testing. This involved work in Pro/Engineer as well as coordinating with Fab Express, the Building 9 Composite Shop and the Structures Test Laboratory (STL). The research and work executed for this project will be used for composite sandwich panel testing in the future as well. As a part of the Structures Branch, my main focus was to research composite structures. This involves system engineering and integration (SE&I) integration, manufacturing, and preliminary testing. The procedures for these projects that were executed during this internship included design work, conducting tests and performing analysis.
Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator
NASA Technical Reports Server (NTRS)
Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.
2000-01-01
NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.
Usman, Muhammad; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; O'Reilly, Eoin P; Klimeck, Gerhard; Passaseo, Adriana
2012-04-27
III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.
Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet
NASA Astrophysics Data System (ADS)
Iwata, Y.; Miyashita, S.; Iwase, E.
2017-12-01
This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.
Programmable assembly of pressure sensors using pattern-forming bacteria
Cao, Yangxiaolu; Feng, Yaying; Ryser, Marc D.; Zhu, Kui; Herschlag, Gregory; Cao, Changyong; Marusak, Katherine; Zauscher, Stefan; You, Lingchong
2017-01-01
Biological systems can generate microstructured materials that combine organic and inorganic components and possess diverse physical and chemical properties. However, these natural processes in materials fabrication are not readily programmable. Here, we use a synthetic-biology approach to mimic such natural processes to assemble patterned materials.. We demonstrate programmable fabrication of three-dimensional (3D) materials by printing engineered self-patterning bacteria on permeable membranes that serve as a structural scaffold. Application of gold nanoparticles to the colonies creates hybrid organic-inorganic dome structures. The dynamics of the dome structures' response to pressure is determined by their geometry (colony size, dome height and pattern), which is easily modified by varying the properties of the membrane (e.g., pore size and hydrophobicity). We generate resettable pressure sensors that process signals in response to varying pressure intensity and duration. PMID:28991268
Structural dynamics and vibrations of damped, aircraft-type structures
NASA Technical Reports Server (NTRS)
Young, Maurice I.
1992-01-01
Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.
Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology
Uto, Koichiro; Tsui, Jonathan H.; DeForest, Cole A.; Kim, Deok-Ho
2016-01-01
Human tissues are sophisticated ensembles of many distinct cell types embedded in the complex, but well-defined, structures of the extracellular matrix (ECM). Dynamic biochemical, physicochemical, and mechano-structural changes in the ECM define and regulate tissue-specific cell behaviors. To recapitulate this complex environment in vitro, dynamic polymer-based biomaterials have emerged as powerful tools to probe and direct active changes in cell function. The rapid evolution of polymerization chemistries, structural modulation, and processing technologies, as well as the incorporation of stimuli-responsiveness, now permit synthetic microenvironments to capture much of the dynamic complexity of native tissue. These platforms are comprised not only of natural polymers chemically and molecularly similar to ECM, but those fully synthetic in origin. Here, we review recent in vitro efforts to mimic the dynamic microenvironment comprising native tissue ECM from the viewpoint of material design. We also discuss how these dynamic polymer-based biomaterials are being used in fundamental cell mechanobiology studies, as well as towards efforts in tissue engineering and regenerative medicine. PMID:28522885
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Robotic Scaffolds for Tissue Engineering and Organ Growth
NASA Technical Reports Server (NTRS)
Stoica, Adrian
2011-01-01
The aim of tissue engineering (TE) is to restore tissue and organ functions with minimal host rejection. TE is seen as a future solution to solve the crisis of donor organs for transplant, which faces a shortage expected only to increase in the future. In this innovation, a flexible and configurable scaffold has been conceived that mechanically stresses cells that are seeded on it, stimulating them to increased growth. The influence of mechanical stress/ loading on cell growth has been observed on all forms of cells. For example, for cartilages, studies in animals, tissue explants, and engineered tissue scaffolds have all shown that cartilage cells (chondrocytes) modify their extracellular matrix in response to loading. The chondrocyte EMC production response to dynamics of the physical environment (in vivo cartilage development) illustrates a clear benefit (better growth) when stressed. It has been shown that static and dynamic compression regulates PRG4 biosynthesis by cartilage explants. Mechanical tissue stimulation is beneficial and (flexible) scaffolds with movable components, which are able to induce mechanical stimulation, offer advantages over the fixed, rigid scaffold design. In addition to improved cell growth from physical/mechanical stimulation, additional benefits include the ability to increase in size while preserving shape, or changing shape. By making scaffolds flexible, allowing relative movement between their components, adding sensing (e.g., for detecting response of cells to drug release and to mechanical actions), building controls for drug release and movement, and building even simple algorithms for mapping sensing to action, these structures can actually be made into biocompatible and biodegradable robots. Treating them as robots is a perspective shift that may offer advantages in the design and exploitation of these structures of the future.
Coating and release of an anti-inflammatory hormone from PLGA microspheres for tissue engineering.
Go, Dewi P; Palmer, Jason A; Gras, Sally L; O'Connor, Andrea J
2012-02-01
Many biomaterials used in tissue engineering cause a foreign body response in vivo, which left untreated can severely reduce the effectiveness of tissue regeneration. In this study, an anti-inflammatory hormone α-melanocyte stimulating hormone (α-MSH) was physically adsorbed to the surface of biodegradable poly (lactic-co-glycolic) acid (PLGA) microspheres to reduce inflammatory responses to this material. The stability and adsorption isotherm of peptide binding were characterized. The peptide secondary structure was not perturbed by the adsorption and subsequent desorption process. The α-MSH payload was released over 72 h and reduced the expression of the inflammatory cytokine, Tumor necrosis factor-α (TNF-α) in lipopolysaccharide activated RAW 264.7 macrophage cells, indicating that the biological activity of α-MSH was preserved. α-MSH coated PLGA microspheres also appeared to reduce the influx of inflammatory cells in a subcutaneous implantation model in rats. This study demonstrates the potential of α-MSH coatings for anti-inflammatory delivery and this approach may be applied to other tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
Sicari, Brian M; Dearth, Christopher L; Badylak, Stephen F
2014-01-01
The well-recognized ability of skeletal muscle for functional and structural regeneration following injury is severely compromised in degenerative diseases and in volumetric muscle loss. Tissue engineering and regenerative medicine strategies to support muscle reconstruction have typically been cell-centric with approaches that involve the exogenous delivery of cells with myogenic potential. These strategies have been limited by poor cell viability and engraftment into host tissue. Alternative approaches have involved the use of biomaterial scaffolds as substrates or delivery vehicles for exogenous myogenic progenitor cells. Acellular biomaterial scaffolds composed of mammalian extracellular matrix (ECM) have also been used as an inductive niche to promote the recruitment and differentiation of endogenous myogenic progenitor cells. An acellular approach, which activates or utilizes endogenous cell sources, obviates the need for exogenous cell administration and provides an advantage for clinical translation. The present review examines the state of tissue engineering and regenerative medicine therapies directed at augmenting the skeletal muscle response to injury and presents the pros and cons of each with respect to clinical translation. Copyright © 2013 Wiley Periodicals, Inc.
Tailorable chiroptical activity of metallic nanospiral arrays.
Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng
2016-02-28
The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
The role of under-determined approximations in engineering and science application
NASA Technical Reports Server (NTRS)
Carpenter, William C.
1992-01-01
There is currently a great deal of interest in using response surfaces in the optimization of aircraft performance. The objective function and/or constraint equations involved in these optimization problems may come from numerous disciplines such as structures, aerodynamics, environmental engineering, etc. In each of these disciplines, the mathematical complexity of the governing equations usually dictates that numerical results be obtained from large computer programs such as a finite element method program. Thus, when performing optimization studies, response surfaces are a convenient way of transferring information from the various disciplines to the optimization algorithm as opposed to bringing all the sundry computer programs together in a massive computer code. Response surfaces offer another advantage in the optimization of aircraft structures. A characteristic of these types of optimization problems is that evaluation of the objective function and response equations (referred to as a functional evaluation) can be very expensive in a computational sense. Because of the computational expense in obtaining functional evaluations, the present study was undertaken to investigate under-determinined approximations. An under-determined approximation is one in which there are fewer training pairs (pieces of information about a function) than there are undetermined parameters (coefficients or weights) associated with the approximation. Both polynomial approximations and neural net approximations were examined. Three main example problems were investigated: (1) a function of one design variable was considered; (2) a function of two design variables was considered; and (3) a 35 bar truss with 4 design variables was considered.
Lim, Jing; Chong, Mark Seow Khoon; Chan, Jerry Kok Yen; Teoh, Swee-Hin
2014-06-25
Synthetic polymers used in tissue engineering require functionalization with bioactive molecules to elicit specific physiological reactions. These additives must be homogeneously dispersed in order to achieve enhanced composite mechanical performance and uniform cellular response. This work demonstrates the use of a solvent-free powder processing technique to form osteoinductive scaffolds from cryomilled polycaprolactone (PCL) and tricalcium phosphate (TCP). Cryomilling is performed to achieve micrometer-sized distribution of PCL and reduce melt viscosity, thus improving TCP distribution and improving structural integrity. A breakthrough is achieved in the successful fabrication of 70 weight percentage of TCP into a continuous film structure. Following compaction and melting, PCL/TCP composite scaffolds are found to display uniform distribution of TCP throughout the PCL matrix regardless of composition. Homogeneous spatial distribution is also achieved in fabricated 3D scaffolds. When seeded onto powder-processed PCL/TCP films, mesenchymal stem cells are found to undergo robust and uniform osteogenic differentiation, indicating the potential application of this approach to biofunctionalize scaffolds for tissue engineering applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas
2012-01-01
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Xin, E-mail: jingxinscut@gmail.com; Mi, Hao-Yang; Wisconsin Institutes for Discovery, University of Wisconsin-Madison, 53715
Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ε-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface featuresmore » of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.« less
48 CFR 52.236-23 - Responsibility of the Architect-Engineer Contractor.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Architect-Engineer Contractor. 52.236-23 Section 52.236-23 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.236-23 Responsibility of the Architect-Engineer Contractor. As prescribed in 36.609-2(b), insert the following clause: Responsibility of the Architect-Engineer Contractor (APR 1984) (a...
48 CFR 52.236-23 - Responsibility of the Architect-Engineer Contractor.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Architect-Engineer Contractor. 52.236-23 Section 52.236-23 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.236-23 Responsibility of the Architect-Engineer Contractor. As prescribed in 36.609-2(b), insert the following clause: Responsibility of the Architect-Engineer Contractor (APR 1984) (a...
48 CFR 52.236-23 - Responsibility of the Architect-Engineer Contractor.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Architect-Engineer Contractor. 52.236-23 Section 52.236-23 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.236-23 Responsibility of the Architect-Engineer Contractor. As prescribed in 36.609-2(b), insert the following clause: Responsibility of the Architect-Engineer Contractor (APR 1984) (a...
48 CFR 52.236-23 - Responsibility of the Architect-Engineer Contractor.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Architect-Engineer Contractor. 52.236-23 Section 52.236-23 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.236-23 Responsibility of the Architect-Engineer Contractor. As prescribed in 36.609-2(b), insert the following clause: Responsibility of the Architect-Engineer Contractor (APR 1984) (a...
48 CFR 52.236-23 - Responsibility of the Architect-Engineer Contractor.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Architect-Engineer Contractor. 52.236-23 Section 52.236-23 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.236-23 Responsibility of the Architect-Engineer Contractor. As prescribed in 36.609-2(b), insert the following clause: Responsibility of the Architect-Engineer Contractor (APR 1984) (a...
NASA Astrophysics Data System (ADS)
Gerist, Saleheh; Maheri, Mahmoud R.
2016-12-01
In order to solve structural damage detection problem, a multi-stage method using particle swarm optimization is presented. First, a new spars recovery method, named Basis Pursuit (BP), is utilized to preliminarily identify structural damage locations. The BP method solves a system of equations which relates the damage parameters to the structural modal responses using the sensitivity matrix. Then, the results of this stage are subsequently enhanced to the exact damage locations and extents using the PSO search engine. Finally, the search space is reduced by elimination of some low damage variables using micro search (MS) operator embedded in the PSO algorithm. To overcome the noise present in structural responses, a method known as Basis Pursuit De-Noising (BPDN) is also used. The efficiency of the proposed method is investigated by three numerical examples: a cantilever beam, a plane truss and a portal plane frame. The frequency response is used to detect damage in the examples. The simulation results demonstrate the accuracy and efficiency of the proposed method in detecting multiple damage cases and exhibit its robustness regarding noise and its advantages compared to other reported solution algorithms.
Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R
2007-04-01
It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.
NASA Technical Reports Server (NTRS)
Taylor, Burt L , III; Oppenheimer, Frank L
1951-01-01
Experimental frequency-response characteristics of engine speed for a typical turbine-propeller engine are presented. These data were obtained by subjecting the engine to sinusoidal variations of fuel flow and propeller-blade-angle inputs. Correlation is made between these experimental data and analytical frequency-response characteristics obtained from a linear differential equation derived from steady-state torque-speed relations.
Transient rheology of stimuli responsive hydrogels: Integrating microrheology and microfluidics
NASA Astrophysics Data System (ADS)
Sato, Jun
Stimuli-responsive hydrogels have diverse potential applications in the field of drug delivery, tissue engineering, agriculture, cosmetics, gene therapy, and as sensors and actuators due to their unique responsiveness to external signals, such as pH, temperature, and ionic strength. Understanding the responsiveness of hydrogel structure and rheology to these stimuli is essential for designing materials with desirable performance. However, no instrumentation and well-defined methodology are available to characterize the structural and rheological responses to rapid solvent changes. In this thesis, a new microrheology set-up is described, which allows us to quantitatively measure the transient rheological properties and microstructure of a variety of solvent-responsive complex fluids. The device was constructed by integrating particle tracking microrheology and microfluidics and offers unique experimental capabilities for performing solvent-reponse measurements on soft fragile materials without applying external shear forces. Transient analysis methods to quantitatively obtain rheological properties were also constructed, and guidelines for the trade-off between statistical validity and temporal resolution were developed to accurately capture physical transitions. Employing the new device and methodology, we successfully quantified the transient rheological and microstructural responses during gel formation and break-up, and viscosity changes of solvent-responsive complex fluids. The analysis method was expanded for heterogeneous samples, incorporating methods to quantify the microrheology of samples with broad distributions of individual particle dynamics. Transient microrheology measurements of fragile, heterogeneous, self-assembled block copolypeptide hydrogels revealed that solvent exchange via convective mixing and dialysis can lead to significantly different gel properties and that commonly applied sample preparation protocols for the characterization of soft biomaterials could lead to erroneous conclusions about microstructural dynamics. Systematic investigations by varying key parameters, like molecular structure, gel concentration, salt concentration, and tracer particle size for microrheology, revealed that subtle variations in molecular architecture can cause major changes in response dynamics. Moreover, the results showed that the method can be applied for studying gel formation and breakup kinetics. The research in this thesis facilitates the design of solvent-responsive soft materials with appropriate microstructural dynamics for in vivo applications like tissue engineering and drug delivery, and can also be applied to study the effect of solvents on self-assembly mechanisms in other responsive soft materials, such as polymer solutions and colloidal dispersions.
Nonlinear Site Response Validation Studies Using KIK-net Strong Motion Data
NASA Astrophysics Data System (ADS)
Asimaki, D.; Shi, J.
2014-12-01
Earthquake simulations are nowadays producing realistic ground motion time-series in the range of engineering design applications. Of particular significance to engineers are simulations of near-field motions and large magnitude events, for which observations are scarce. With the engineering community slowly adopting the use of simulated ground motions, site response models need to be re-evaluated in terms of their capabilities and limitations to 'translate' the simulated time-series from rock surface output to structural analyses input. In this talk, we evaluate three one-dimensional site response models: linear viscoelastic, equivalent linear and nonlinear. We evaluate the performance of the models by comparing predictions to observations at 30 downhole stations of the Japanese network KIK-Net that have recorded several strong events, including the 2011 Tohoku earthquake. Velocity profiles are used as the only input to all models, while additional parameters such as quality factor, density and nonlinear dynamic soil properties are estimated from empirical correlations. We quantify the differences of ground surface predictions and observations in terms of both seismological and engineering intensity measures, including bias ratios of peak ground response and visual comparisons of elastic spectra, and inelastic to elastic deformation ratio for multiple ductility ratios. We observe that PGV/Vs,30 — as measure of strain— is a better predictor of site nonlinearity than PGA, and that incremental nonlinear analyses are necessary to produce reliable estimates of high-frequency ground motion components at soft sites. We finally discuss the implications of our findings on the parameterization of nonlinear amplification factors in GMPEs, and on the extensive use of equivalent linear analyses in probabilistic seismic hazard procedures.
Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order.
Teuschl, Andreas Herbert; van Griensven, Martijn; Redl, Heinz
2014-05-01
Silk fibroin has previously been described as a promising candidate for ligament tissue engineering (TE) approaches. For biocompatibility reasons, silkworm silk requires removal of sericin, which can elicit adverse immune responses in the human body. One disadvantage of the required degumming process is the alteration of the silk fiber structural properties, which can hinder textile engineering of high order hierarchical structures. Therefore, the aim of this study was to find a way to remove sericin from a compact and highly ordered raw silk fiber matrix. The wire rope design of the test model scaffold comprises several levels of geometric hierarchy. Commonly used degumming solutions fail in removing sericin in this wire rope design. Weight loss measurements, picric acid and carmine staining as well as scanning electron microscopy demonstrated that the removal of sericin from the model scaffold of a wire rope design can be achieved through a borate buffer-based system. Furthermore, the borate buffer degummed silks were shown to be nontoxic and did not alter cell proliferation behavior. The possibility to remove sericin after the textile engineering process has taken place eases the production of highly ordered scaffold structures and may expand the use of silk as scaffold material in further TE and regenerative medicine applications.
Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites
NASA Technical Reports Server (NTRS)
Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.
2003-01-01
In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700h436 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 degrees plus or minus 60 degrees, and 0 degrees plus or minus 45 degrees) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bow-tie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/O degrees plus or minus 45 degrees configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 degrees plus or minus 60 degrees configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.
NASA Langley developments in response calculations needed for failure and life prediction
NASA Technical Reports Server (NTRS)
Housner, Jerrold M.
1993-01-01
NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.
NASA Astrophysics Data System (ADS)
Duy Hien, Ta; Lam, Nguyen Ngoc
2018-04-01
The dynamics of plates subjected to a moving load must be considered by engineering mechanics and design structures. This paper deals with the dynamic responses of functionally graded (FG) rectangular plates resting on a viscoelastic foundation under moving loads. It is assumed that material properties of the plate vary continuously in the thickness direction according to the power-law. The governing equations are derived by using Hamilton’s principle, which considers the effect of the higher-order shear deformation in the plate. Transient responses of simply supported FG rectangular plates are employed by using state-space methods. Several examples are given for displacement and stresses in the plates with various structural parameters, and the effects of these parameters are discussed.
Development cooperation as methodology for teaching social responsibility to engineers
NASA Astrophysics Data System (ADS)
Lappalainen, Pia
2011-12-01
The role of engineering in promoting global well-being has become accentuated, turning the engineering curriculum into a means of dividing well-being equally. The gradual fortifying calls for humanitarian engineering have resulted in the incorporation of social responsibility themes in the university curriculum. Cooperation, communication, teamwork, intercultural cooperation, sustainability, social and global responsibility represent the socio-cultural dimensions that are becoming increasingly important as globalisation intensifies the demands for socially and globally adept engineering communities. This article describes an experiment, the Development Cooperation Project, which was conducted at Aalto University in Finland to integrate social responsibility themes into higher engineering education.
Tiburcy, Malte; Hudson, James E.; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Liao, Mei-Ling Chang; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D.; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W.; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A.; Unger, Andreas; Linke, Wolfgang A.; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C.; Zimmermann, Wolfram-Hubertus
2017-01-01
Background Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modelling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) towards an adult phenotype under defined conditions. Methods We systematically investigated cell composition, matrix and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We employed morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M-bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency-response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and NT-proBNP release; all are classical hallmarks of heart failure. Additionally, we demonstrate scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions We provide proof-of-concept for a universally applicable technology for the engineering of macro-scale human myocardium for disease modelling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions. PMID:28167635
Tiburcy, Malte; Hudson, James E; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Chang Liao, Mei-Ling; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A; Unger, Andreas; Linke, Wolfgang A; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C; Zimmermann, Wolfram-Hubertus
2017-05-09
Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β 1 - and β 2 -adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions. © 2017 American Heart Association, Inc.
Murphy, Colleen; Gardoni, Paolo
2017-07-18
The development of the curriculum for engineering education (course requirements as well as extra-curricular activities like study abroad and internships) should be based on a comprehensive understanding of engineers' responsibilities. The responsibilities that are constitutive of being an engineer include striving to fulfill the standards of excellence set by technical codes; to improve the idealized models that engineers use to predict, for example, the behavior of alternative designs; and to achieve the internal goods such as safety and sustainability as they are reflected in the design codes. Globalization has implications for these responsibilities and, in turn, for engineering education, by, for example, modifying the collection of possible solutions recognized for existing problems. In addition, international internships can play an important role in fostering the requisite moral imagination of engineering students.
Integrated analysis of engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1981-01-01
The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Self diagnostic accelerometer ground testing on a C-17 aircraft engine
NASA Astrophysics Data System (ADS)
Tokars, Roger P.; Lekki, John D.
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
46 CFR 11.505 - Engineer officer structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...
46 CFR 11.505 - Engineer officer structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...
46 CFR 11.505 - Engineer officer structure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...
46 CFR 11.505 - Engineer officer structure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Engineer officer structure. 11.505 Section 11.505 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN REQUIREMENTS FOR OFFICER ENDORSEMENTS Professional Requirements for Engineer Officer § 11.505 Engineer officer structure...
Hadfield during InSPACE Experiment in the U.S. Laboratory
2012-12-31
View of Canadian Space Agency (CSA) Chris Hadfield,Expedition 34 Flight Engineer (FE), during the Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 3 (InSPACE-3) experiment. InSPACE-3 collects and records data on fluids containing ellipsoid-shaped particles that change the physical properties of the fluids in response to magnetic fields. Photo was taken during Expedition 34.
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2009-06-01
Solidified Alumina - Titania Composites", Key Engineering Materials, 290 (2005) pp 199 - 202. PEER REVIEWED CONFERENCE PROCEEDINGS 22. A. Sayir, S...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 1 Progress Report for 2006 For the Grant Directionally Solidified Eutectic Ceramics ...incorporating structural ceramics in future aerospace applications: (1) the challenges associated with ceramics are improving strength, toughness and
2010-09-01
22 Figure 23. Flow Type and the reference empirical model ............................................................ 24 Figure 24. Baseline...Trajectory ...................................................................................................... 25 Figure 25. Flow Features Important...94 viii GLOSSARY ACCTE Advanced Ceramic Composites for Turbine Engines AFRL Air Force Research Laboratory AoA Angle of Attack ASE
ERIC Educational Resources Information Center
Yoon, Susan
Even though we live in an age of advancing technology and changing structure of science, especially in genetics engineering, there appears to be a great lack of understanding of these basic concepts by society in general. Society carries responsibilities to both living and non-living things; this lack of understanding may result in combined…
Coastal Adaptation: The Case of Ocean Beach, San Francisco
NASA Astrophysics Data System (ADS)
Cheong, S.
2012-12-01
Coastal erosion, storms, sea-level rise, and tsunamis all lead to inundation that puts people and communities at risk. Adapting to these coastal hazards has gained increasing attention with climate change. Instead of promoting one particular strategy such as seawalls or defending against one type of hazard, scholars and practitioners encourage a combination of existing methods and strategies to promote synergistic effects. The recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on climate extremes reflects this trend in the integration of disaster risk management and climate change adaptation. This paper focuses on the roles, compatibilities, and synergies of three coastal adaptation options - engineering, vegetation, and policy - in the case of Ocean Beach in San Francisco. Traditionally engineering approach and ecosystem conservation often have stood in opposition as hard shoreline structures destroy coastal habitats, worsen coastal erosion, divert ocean currents, and prevent the natural migration of shores. A natural migration of shores without structure translates into the abandonment of properties in the coastal zone, and is at odds with property rights and development. For example, policies of relocation, retreat, and insurance may not be popular given the concerns of infrastructure and coastal access. As such, engineering, natural defense, and policy can be more conflictual than complementary. Nonetheless, all these responses are used in combination in many locations. Complementarities and compatibilities, therefore, must be assessed when considering the necessity of engineering responses, natural defense capabilities, and policy options. In this light, the question is how to resolve the problem of mixed responses and short- and long-term interests and values, identify compatibilities, and generate synergies. In the case of Ocean Beach, recent erosions that endangered San Francisco's wastewater treatment system acted as major stimuli in coastal adaptation initiatives and resulted in the Ocean Beach Master Plan. Investigation into the planning processes involving multiple stakeholder engagement such as San Francisco (SF) Public Utilities Commission, California Coastal Commission, National Park Service, SF Department of Public Works, SF Recreation and Park Department, SF Planning Department, and the U.S. Army Corps of Engineers can shed light on trade-offs and synergies of different adaptation responses. The role of the coordinator - SF Planning and Urban Research Commission - as a mediator between different stakeholder interests and priorities, a realistic assessment of current hazard management practices specific to local contexts, and the necessity of combining hazard mitigation policies with coastal management and community management are the key findings of this research. They help inform policy formulation and decision-making in climate change adaptation, and provide a valuable case study that can be transferred to other locations.
OrChem - An open source chemistry search engine for Oracle®
2009-01-01
Background Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world. Results Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets. Availability OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via http://orchem.sourceforge.net. PMID:20298521
Somvanshi, Pramod Rajaram; Venkatesh, K V
2014-03-01
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.
Materials science and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesuer, D.R.
1997-02-01
During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less
Bottom-up production of meta-atoms for optical magnetism in visible and NIR light
NASA Astrophysics Data System (ADS)
Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe
2018-02-01
Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.
NASA Technical Reports Server (NTRS)
1990-01-01
As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows the CFD load to be able to be readily applied, along with analytical and experimental variations in both the temporal and spatial fourier components of the excitation. In addition, this model is a first step in identifying response differences between transient and frequency forced response analysis techniques. The second phase assesses this difference for a much more realistic solid model of a bladed-disk in order to evaluate the effect of the spatial variation in loading on blade dominated modes. Neither research on the accuracy of the frequency response method when used in this context or a comprehensive study of the effect of test-observed variation on blade forced response have been found in the literature, so this research is a new contribution to practical structural dynamic analysis of gas turbines. The primary excitation of the upstream nozzles interacts with the blades on fuel pump of the J2X causes the 5th Nodal diameter modes to be excited, as explained by Tyler and Sofrin1, so a modal analysis was first performed on the beam/plate model and the 5ND bladed-disk mode at 40167 hz was identified and chosen to be the one excited at resonance (see figure 1). The first forced response analysis with this model focuses on identifying differences between frequency and transient response analyses. A hypothesis going into the analysis was that perhaps the frequency response was enforcing a temporal periodicity that did not really exist, and so therefore it would overestimate the response. As high dynamic response was a considerable source of stress in the J2X, examining this concept could potentially be beneficial for the program.
Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-01
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056
The Response of a Mechanical Oscillator Due to Swept and Dithered Excitation
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Durham, R. Caitlyn; Brown, Andrew M.
2010-01-01
A single degree-of-freedom oscillator subject to linearly swept and/or dithered excitation is considered. Dither refers to the variation of an excitation frequency about a given nominal, or primary, frequency. Dither in rocket engine turbopump shaft speeds can be an important consideration when analyzing the dynamic response of turbomachinery components such as turbine blades. Results indicate that the incorporation of dithered excitation into a fatigue analysis may extend the predicted fatigue life of the structure by a factor of two or more.
46 CFR 97.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is not...
32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...
46 CFR 97.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is not...
46 CFR 97.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is not...
46 CFR 97.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is not...
32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...
32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...
32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...
46 CFR 97.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is not...
32 CFR 643.4 - Responsibilities of the Chief of Engineers (COE).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Responsibilities of the Chief of Engineers (COE... (CONTINUED) REAL PROPERTY REAL ESTATE General § 643.4 Responsibilities of the Chief of Engineers (COE). (a... estate will be delegated, to the extent feasible, to U.S. Army Division and District Engineers (DE). (e...
Hugoniot-based equations of state for two filled EPDM rubbers
NASA Astrophysics Data System (ADS)
Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.
2014-05-01
Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.
Stochastic ground motion simulation
Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan
2014-01-01
Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.
Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering
Lu, Helen H.; Thomopoulos, Stavros
2014-01-01
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244
Space Shuttle main engine nozzle-steerhorn dynamics
NASA Technical Reports Server (NTRS)
Kiefling, L.
1981-01-01
On two occasions during the Space Shuttle main engine development, the LH2 feedline (called the steerhorn, because of its shape) failed during the cutoff transient. A dynamic test was undertaken, and an analytical model was developed and correlated to the dynamic test. Detailed models of the tube bundle were required to obtain the equivalent shell coefficients. All-shell models of the nozzle wall were found better than beam-shell models. The most difficult part of the structure to simulate was the felt-metal pad between the feedline and its mount, which introduced nonlinear stiffness and damping and led to the use of separate low amplitude and high amplitude models. The total structure was found to have 400 modes in the frequency range of interest, 0 to 500 Hz. Good test analysis correlation was obtained and a modified feedline configuration was found to demonstrate a 40% reduction of response stress from the original configuration.
Running SW4 On New Commodity Technology Systems (CTS-1) Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben
We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less
NASA Technical Reports Server (NTRS)
Kaufman, A.; Laflen, J. H.; Lindholm, U. S.
1985-01-01
Unified constitutive material models were developed for structural analyses of aircraft gas turbine engine components with particular application to isotropic materials used for high-pressure stage turbine blades and vanes. Forms or combinations of models independently proposed by Bodner and Walker were considered. These theories combine time-dependent and time-independent aspects of inelasticity into a continuous spectrum of behavior. This is in sharp contrast to previous classical approaches that partition inelastic strain into uncoupled plastic and creep components. Predicted stress-strain responses from these models were evaluated against monotonic and cyclic test results for uniaxial specimens of two cast nickel-base alloys, B1900+Hf and Rene' 80. Previously obtained tension-torsion test results for Hastelloy X alloy were used to evaluate multiaxial stress-strain cycle predictions. The unified models, as well as appropriate algorithms for integrating the constitutive equations, were implemented in finite-element computer codes.
Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S
2013-01-01
Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.
Ma, Jinjin; Smietana, Michael J.; Kostrominova, Tatiana Y.; Wojtys, Edward M.; Larkin, Lisa M.
2012-01-01
The anterior cruciate ligament (ACL), a major stabilizer of the knee, is commonly injured. Because of its intrinsic poor healing ability, a torn ACL is usually reconstructed by a graft. We developed a multi-phasic, or bone–ligament–bone, tissue-engineered construct for ACL grafts using bone marrow stromal cells and sheep as a model system. After 6 months in vivo, the constructs increased in cross section and exhibited a well-organized microstructure, native bone integration, a functional enthesis, vascularization, innervation, increased collagen content, and structural alignment. The constructs increased in stiffness to 52% of the tangent modulus and 95% of the geometric stiffness of native ACL. The viscoelastic response of the explants was virtually indistinguishable from that of adult ACL. These results suggest that our constructs after implantation can obtain physiologically relevant structural and functional characteristics comparable to those of adult ACL. They present a viable option for ACL replacement. PMID:21902608
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.
Anderson, Devon E; Johnstone, Brian
2017-01-01
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
Time domain nonlinear SMA damper force identification approach and its numerical validation
NASA Astrophysics Data System (ADS)
Xin, Lulu; Xu, Bin; He, Jia
2012-04-01
Most of the currently available vibration-based identification approaches for structural damage detection are based on eigenvalues and/or eigenvectors extracted from vibration measurements and, strictly speaking, are only suitable for linear system. However, the initiation and development of damage in engineering structures under severe dynamic loadings are typical nonlinear procedure. Studies on the identification of restoring force which is a direct indicator of the extent of the nonlinearity have received increasing attention in recent years. In this study, a date-based time domain identification approach for general nonlinear system was developed. The applied excitation and the corresponding response time series of the structure were used for identification by means of standard least-square techniques and a power series polynomial model (PSPM) which was utilized to model the nonlinear restoring force (NRF). The feasibility and robustness of the proposed approach was verified by a 2 degree-of-freedoms (DOFs) lumped mass numerical model equipped with a shape memory ally (SMA) damper mimicking nonlinear behavior. The results show that the proposed data-based time domain method is capable of identifying the NRF in engineering structures without any assumptions on the mass distribution and the topology of the structure, and provides a promising way for damage detection in the presence of structural nonlinearities.
How many records should be used in ASCE/SEI-7 ground motion scaling procedure?
Reyes, Juan C.; Kalkan, Erol
2012-01-01
U.S. national building codes refer to the ASCE/SEI-7 provisions for selecting and scaling ground motions for use in nonlinear response history analysis of structures. Because the limiting values for the number of records in the ASCE/SEI-7 are based on engineering experience, this study examines the required number of records statistically, such that the scaled records provide accurate, efficient, and consistent estimates of “true” structural responses. Based on elastic–perfectly plastic and bilinear single-degree-of-freedom systems, the ASCE/SEI-7 scaling procedure is applied to 480 sets of ground motions; the number of records in these sets varies from three to ten. As compared to benchmark responses, it is demonstrated that the ASCE/SEI-7 scaling procedure is conservative if fewer than seven ground motions are employed. Utilizing seven or more randomly selected records provides more accurate estimate of the responses. Selecting records based on their spectral shape and design spectral acceleration increases the accuracy and efficiency of the procedure.
NASA Astrophysics Data System (ADS)
Alves, Renata M. S.; Vanaverbeke, Jan; Bouma, Tjeerd J.; Guarini, Jean-Marc; Vincx, Magda; Van Colen, Carl
2017-03-01
Ecosystem engineers contribute to ecosystem functioning by regulating key environmental attributes, such as habitat availability and sediment biogeochemistry. While autogenic engineers can increase habitat complexity passively and provide physical protection to other species, allogenic engineers can regulate sediment oxygenation and biogeochemistry through bioturbation and/or bioirrigation. Their effects rely on the physical attributes of the engineer and/or its biogenic constructs, such as abundance and/or size. The present study focused on tube aggregations of a sessile, tube-building polychaete that engineers marine sediments, Lanice conchilega. Its tube aggregations modulate water flow by dissipating energy, influencing sedimentary processes and increasing particle retention. These effects can be influenced by temporal fluctuations in population demographic processes. Presently, we investigated the relationship between population processes and ecosystem engineering through an in-situ survey (1.5 years) of L. conchilega aggregations at the sandy beach of Boulogne-sur-Mer (France). We (1) evaluated temporal patterns in population structure, and (2) investigated how these are related to the ecosystem engineering of L. conchilega on marine sediments. During our survey, we assessed tube density, demographic structure, and sediment properties (surficial chl-a, EPS, TOM, median and mode grain size, sorting, and mud and water content) on a monthly basis for 12 intertidal aggregations. We found that the population was mainly composed by short-lived (6-10 months), small-medium individuals. Mass mortality severely reduced population density during winter. However the population persisted, likely due to recruits from other populations, which are associated to short- and long-term population dynamics. Two periods of recruitment were identified: spring/summer and autumn. Population density was highest during the spring recruitment and significantly affected several environmental properties (i.e. EPS, TOM, mode grain size, mud and water content), suggesting that demographic processes may be responsible for periods of pronounced ecosystem engineering with densities of approx. 30 000 ind·m-2.
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco
2015-04-01
This study presents an innovative strategy for automatic evaluation of the variable fundamental frequency and related damping factor of nonlinear structures during strong motion phases. Most of methods for damage detection are based on the assessment of the variations of the dynamic parameters characterizing the monitored structure. A crucial aspect of these methods is the automatic and accurate estimation of both structural eigen-frequencies and related damping factors also during the nonlinear behaviour. A new method, named STIRF (Short-Time Impulse Response Function - STIRF), based on the nonlinear interferometric analysis combined with the Fourier Transform (FT) here is proposed in order to allow scientists and engineers to characterize frequencies and damping variations of a monitored structure. The STIRF approach helps to overcome some limitation derived from the use of techniques based on simple Fourier Transform. These latter techniques provide good results when the response of the monitored system is stationary, but fails when the system exhibits a non-stationary, time-varying behaviour: even non-stationary input, soil-foundation and/or adjacent structures interaction phenomena can show the inadequacy of classic techniques to analysing the nonlinear and/or non-stationary behaviour of structures. In fact, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results also during the strong motion phase. Results are consistent with those expected if compared with other techniques. The main advantage derived from the use of the proposed approach (STIRF) for Structural Health Monitoring is based on the simplicity of the interpretation of the nonlinear variations of the fundamental frequency and the related equivalent viscous damping factor. The proposed methodology has been tested on both numerical and experimental models also using data retrieved from shaking table tests. Based on the results provided in this study, the methodology seems to be able to evaluate fast variations (over time) of dynamic parameters of a generic reinforced concrete framed structure. Further analyses are necessary to better calibrate the length of the moving time-window (in order to minimize the spurious frequency within each Interferometric Response Function evaluated on both weak and strong motion phases) and to verify the possibility to use the STIRF to analyse the nonlinear behaviour of general systems. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''. References R. Ditommaso, F.C. Ponzo (2015). Automatic evaluation of the fundamental frequency variations and related damping factor of reinforced concrete framed structures using the Short Time Impulse Response Function (STIRF). Engineering Structures, 82 (2015), 104-112. http://dx.doi.org/10.1016/j.engstruct.2014.10.023.
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei
2012-01-01
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.
NASA Technical Reports Server (NTRS)
Kratz, Jonathan L.; Chapman, Jeffryes W.; Guo, Ten-Huei
2017-01-01
The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines.
Probabilistic SSME blades structural response under random pulse loading
NASA Technical Reports Server (NTRS)
Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.
1987-01-01
The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 25.361 Section 25.361...
14 CFR 25.361 - Engine torque.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine mount and its supporting structure must be designed for the effects of— (1) A limit engine torque.... (b) For turbine engine installations, the engine mounts and supporting structure must be designed to... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 25.361 Section 25.361...
Structural Engineering: Overview
NASA Technical Reports Server (NTRS)
Castro, Edgar
2011-01-01
This slide presentation presents the work of the Structural Engineering Division of the Engineering Directorate. The work includes: providing technical expertise and leadership for the development, evaluation, and operation of structural, mechanical, and thermal spaceflight systems.
Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.
2014-01-01
This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.
Structure of an agonist-bound ionotropic glutamate receptor.
Yelshanskaya, Maria V; Li, Minfen; Sobolevsky, Alexander I
2014-08-29
Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating. Copyright © 2014, American Association for the Advancement of Science.
Two-photon excitation based photochemistry and neural imaging
NASA Astrophysics Data System (ADS)
Hatch, Kevin Andrew
Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.
Flow interaction with a flexible viscoelastic sheet
NASA Astrophysics Data System (ADS)
Shoele, Kourosh
2017-11-01
Many new engineered materials and almost all soft biological tissues are made up of heterogeneous multi-scale components with complex viscoelastic behavior. This implies that their macro constitutive relations cannot be modeled sufficiently with a typical integer-order viscoelastic relation and a more general mode is required. Here, we study the flow-induced vibration of a viscoelastic sheet where a generalized fractional constitutive model is employed to represent the relation between the bending stress and the temporal response of the structure. A new method is proposed for the calculation of the convolution integral inside the fractal model and its computational benefits will be discussed. Using a coupled fluid-structure interaction (FSI) methodology based on the immersed boundary technique, dynamic fluttering modes of the structure as a result of the fluid force will be presented and the role of fractal viscoelasticity on the dynamic of the structure will be shown. Finally, it will be argued how the stress relaxation modifies the flow-induced oscillatory responses of this benchmark problem.
Averting Denver Airports on a Chip
NASA Technical Reports Server (NTRS)
Sullivan, Kevin J.
1995-01-01
As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.
From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence.
Morris, Rebecca L; Konlechner, Teresa M; Ghisalberti, Marco; Swearer, Stephen E
2018-05-01
Climate change is increasing the threat of erosion and flooding along coastlines globally. Engineering solutions (e.g. seawalls and breakwaters) in response to protecting coastal communities and associated infrastructure are increasingly becoming economically and ecologically unsustainable. This has led to recommendations to create or restore natural habitats, such as sand dunes, saltmarsh, mangroves, seagrass and kelp beds, and coral and shellfish reefs, to provide coastal protection in place of (or to complement) artificial structures. Coastal managers are frequently faced with the problem of an eroding coastline, which requires a decision on what mitigation options are most appropriate to implement. A barrier to uptake of nature-based coastal defence is stringent evaluation of the effectiveness in comparison to artificial protection structures. Here, we assess the current evidence for the efficacy of nature-based vs. artificial coastal protection and discuss future research needs. Future projects should evaluate habitats created or restored for coastal defence for cost-effectiveness in comparison to an artificial structure under the same environmental conditions. Cost-benefit analyses should take into consideration all ecosystem services provided by nature-based or artificial structures in addition to coastal protection. Interdisciplinary research among scientists, coastal managers and engineers is required to facilitate the experimental trials needed to test the value of these shoreline protection schemes, in order to support their use as alternatives to artificial structures. This research needs to happen now as our rapidly changing climate requires new and innovative solutions to reduce the vulnerability of coastal communities to an increasingly uncertain future. © 2018 John Wiley & Sons Ltd.
46 CFR 78.55-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Master and chief engineer responsible. 78.55-1 Section... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure is...
46 CFR 196.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a...
46 CFR 78.55-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Master and chief engineer responsible. 78.55-1 Section... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure is...
46 CFR 196.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a...
40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Use of the same engineer during... Agreement § 35.6570 Use of the same engineer during subsequent phases of response. (a) If the public notice... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the...
46 CFR 196.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a...
40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Use of the same engineer during... Agreement § 35.6570 Use of the same engineer during subsequent phases of response. (a) If the public notice... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the...
40 CFR 35.6570 - Use of the same engineer during subsequent phases of response.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Use of the same engineer during... Agreement § 35.6570 Use of the same engineer during subsequent phases of response. (a) If the public notice... CERCLA remedial response Cooperative Agreement may use the engineer procured to conduct any or all of the...
46 CFR 78.55-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Master and chief engineer responsible. 78.55-1 Section... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure is...
46 CFR 78.55-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Master and chief engineer responsible. 78.55-1 Section... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure is...
46 CFR 196.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a...
46 CFR 196.45-1 - Master and chief engineer responsible.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a...
Wald, David J.; Lin, Kuo-wan; Kircher, C.A.; Jaiswal, Kishor; Luco, Nicolas; Turner, L.; Slosky, Daniel
2017-01-01
The ShakeCast system is an openly available, near real-time post-earthquake information management system. ShakeCast is widely used by public and private emergency planners and responders, lifeline utility operators and transportation engineers to automatically receive and process ShakeMap products for situational awareness, inspection priority, or damage assessment of their own infrastructure or building portfolios. The success of ShakeCast to date and its broad, critical-user base mandates improved software usability and functionality, including improved engineering-based damage and loss functions. In order to make the software more accessible to novice users—while still utilizing advanced users’ technical and engineering background—we have developed a “ShakeCast Workbook”, a well documented, Excel spreadsheet-based user interface that allows users to input notification and inventory data and export XML files requisite for operating the ShakeCast system. Users will be able to select structure based on a minimum set of user-specified facility (building location, size, height, use, construction age, etc.). “Expert” users will be able to import user-modified structural response properties into facility inventory associated with the HAZUS Advanced Engineering Building Modules (AEBM). The goal of the ShakeCast system is to provide simplified real-time potential impact and inspection metrics (i.e., green, yellow, orange and red priority ratings) to allow users to institute customized earthquake response protocols. Previously, fragilities were approximated using individual ShakeMap intensity measures (IMs, specifically PGA and 0.3 and 1s spectral accelerations) for each facility but we are now performing capacity-spectrum damage state calculations using a more robust characterization of spectral deamnd.We are also developing methods for the direct import of ShakeMap’s multi-period spectra in lieu of the assumed three-domain design spectrum (at 0.3s for constant acceleration; 1s or 3s for constant velocity and constant displacement at very long response periods). As part of ongoing ShakeCast research and development, we will also explore the use of ShakeMap IM uncertainty estimates and evaluate the assumption of employing multiple response spectral damping values rather than the single 5%-damped value currently employed. Developing and incorporating advanced fragility assignments into the ShakeCast Workbook requires related software modifications and database improvements; these enhancements are part of an extensive rewrite of the ShakeCast application.
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...
14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...
14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...
Engineering and characterization of fluorogenic glycine riboswitches
Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias
2016-01-01
A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466
Molecular engineering of phosphole-based conjugated materials
NASA Astrophysics Data System (ADS)
Ren, Yi
The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.
NASA Astrophysics Data System (ADS)
Yan, Shi; Zhang, Hai
2005-05-01
The magnetorheological (MR) damper is on of the smart controllers used widely in civil engineering structures. These kinds of dampers are applied in the paper in the elevated highway bridge (EHB) with rubber bearing support piers to mitigate damages of the bridge during the severe earthquake ground motion. The dynamic calculating model and equation of motion for the EHB system are set up theoretically and the LQR semi-active control algorithm of seismic response for the EHB system is developed to reduce effectively the responses of the structure. The non-linear calculation model of the piers that rigid degradation is considered and numerical simulative calculation are carried out by Matlab program. The number and location as well as the maximum control forces of the MR dampers, which are the most important parameters for the controlled system, are determined and the rubber bearing and connection forms of the damper play also important rule in the control efficiency. A real EHB structure that is located in Anshan city, Liaoning province in China is used as an example to be calculated under different earthquake records. The results of the calculation show that it is effective to reduce seismic responses of the EHB system by combining the rubber bearing isolation with semi-active MR control technique under the earthquake ground motion. The locations of MR dampers and structural parameters will influence seriously to the effects of structural vibration control.
Effect of Hydration and Confinement on Micro-Structure of Calcium-Silicate-Hydrate Gels
NASA Astrophysics Data System (ADS)
Gadde, Harish Kumar
Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and confinement. Scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to quantify the material and spatial properties of C-S-H as a function of hydration time. The data obtained from these experiments was used to identify C-S-H phases in cement sample. Pair Distribution Function (PDF) analysis of HD C-S-H phase with different hydration times was done at Advanced Photon Source, Argonne National Laboratory, beamline 11-ID-B. Only nonlinear trends in the atomic ordering of C-S-H gel as a function of hydration time were observed. Solid state 29Si Nuclear Magnetic Resonance (NMR) was used to quantify the effect of confinement on two types of C-S-H: white cement C-S-H and synthetic C-S-H. NMR spectra revealed that there is no significant difference in the structure of C-S-H due to confinement when compared with unconfined C-S-H. It is also found that there is significant difference in the Si environments of these two types of C-S-H. Though it does seem possible to engineer the cement on atomic scales, all these studies reveal that engineering cement on such a scale requires a more statistically accurate understanding of intricate structure of C-S-H than is currently available.
Deng, Zhuangmei; Yang, Haiquan; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian
2014-05-01
This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants - H209L, Q226V, N302W, and P477V - showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0-11.0 to 6.0-12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cat/K m) increased from 1.8×10(4) to 3.5 × 10(4) l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.
Smith, Jessica M; McClelland, Carrie J; Smith, Nicole M
2017-12-01
The mining and energy industries present unique challenges to engineers, who must navigate sometimes competing responsibilities and codes of conduct, such as personal senses of right and wrong, professional ethics codes, and their employers' corporate social responsibility (CSR) policies. Corporate social responsibility (CSR) is the current dominant framework used by industry to conceptualize firms' responsibilities to their stakeholders, yet has it plays a relatively minor role in engineering ethics education. In this article, we report on an interdisciplinary pedagogical intervention in a petroleum engineering seminar that sought to better prepare engineering undergraduate students to critically appraise the strengths and limitations of CSR as an approach to reconciling the interests of industry and communities. We find that as a result of the curricular interventions, engineering students were able to expand their knowledge of the social, rather than simply environmental and economic dimensions of CSR. They remained hesitant, however, in identifying the links between those social aspects of CSR and their actual engineering work. The study suggests that CSR may be a fruitful arena from which to illustrate the profoundly sociotechnical dimensions of the engineering challenges relevant to students' future careers.
McNerney, Monica P.; Watstein, Daniel M.; Styczynski, Mark P.
2015-01-01
Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed “precision metabolic engineering,” involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. PMID:26189665
Berenson, Daniel F; Weiss, Allison R; Wan, Zhu-Li; Weiss, Michael A
2011-12-01
The engineering of insulin analogs represents a triumph of structure-based protein design. A framework has been provided by structures of insulin hexamers. Containing a zinc-coordinated trimer of dimers, such structures represent a storage form of the active insulin monomer. Initial studies focused on destabilization of subunit interfaces. Because disassembly facilitates capillary absorption, such targeted destabilization enabled development of rapid-acting insulin analogs. Converse efforts were undertaken to stabilize the insulin hexamer and promote higher-order self-assembly within the subcutaneous depot toward the goal of enhanced basal glycemic control with reduced risk of hypoglycemia. Current products either operate through isoelectric precipitation (insulin glargine, the active component of Lantus(®); Sanofi-Aventis) or employ an albumin-binding acyl tether (insulin detemir, the active component of Levemir(®); Novo-Nordisk). To further improve pharmacokinetic properties, modified approaches are presently under investigation. Novel strategies have recently been proposed based on subcutaneous supramolecular assembly coupled to (a) large-scale allosteric reorganization of the insulin hexamer (the TR transition), (b) pH-dependent binding of zinc ions to engineered His-X(3)-His sites at hexamer surfaces, or (c) the long-range vision of glucose-responsive polymers for regulated hormone release. Such designs share with wild-type insulin and current insulin products a susceptibility to degradation above room temperature, and so their delivery, storage, and use require the infrastructure of an affluent society. Given the global dimensions of the therapeutic supply chain, we envisage that concurrent engineering of ultra-stable protein analog formulations would benefit underprivileged patients in the developing world.
Design of Nanostructured Biological Materials Through Self-Assembly of Peptides and Proteins
2002-01-01
of applications, including scaffolding for tissue repair in regenerative medicine, drug delivery and biological surface engineering. Tirrell and...colleagues [2] designed artificial proteins that undergo self-assembly to form hydrogels responsive to pH and other environmental changes. Ghadiri and...showed that other β-sheet peptide systems can also undergo self-assembly into regular nanofiber structures. Although they share no sequence
1988-01-15
However. only very engineering limited experimental data exists to assess the Director, Thermal Sciences and range of validity and to direct the... experimental results of Goldstein et. al. "A 1111 and also the Navier Stokes numerical solutions of Morihara 1121. Diffuser The predicted stream function...Unsteady Aerodynamic Interactions in a Multistage Compressor............................................................ 53 I APPENDIX VI. Experimental
Antiknock evaluation of hydrocarbons and ethers as aviation fuel components
NASA Technical Reports Server (NTRS)
Barnett, Henry C
1950-01-01
The results of a NACA investigation conducted over a period of several years to evaluate the anti-knock characteristics of organic compounds are summarized. Included are data for 18 branched paraffins and olefins, 27 aromatics, and 22 ethers. The factors of performance investigated were blending characteristics, temperature sensitivity, lead response, and relation between molecular structure and antiknock ratings. Four engines were used.
Transfer Learning in Integrated Cognitive Systems
2010-09-01
Psychology Press. 2. Falkenhainer, B ., Forbus, K . D., and Gentner, D. (1989). The Structure-mapping Engine: Algorithm and Examples. Artificial...Kaps, A.; Lemcke, K .; Mannhaupt, G.; Pfeiffer, F.; Schuller, C.; Stocker, S. & Weil, B ., "MIPS: A Database for Genomes and Protein Sequences...NAME OF RESPONSIBLE PERSON Deborah A. Cerino a. REPORT U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) N/A
McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P
2015-09-01
Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Kawahara, Masahiro; Ogo, Yuko; Ueda, Hiroshi; Nagamune, Teruyuki
2004-10-01
Structure-based design of antibody/cytokine receptor chimeras has permitted a growth signal transduction in response to non-natural ligands such as fluorescein-conjugated BSA as mimicry of cytokine-cytokine receptor systems. However, while tight on/off regulation is observed in the natural cytokine receptor systems, many chimeras constructed to date showed residual growth-promoting activity in the absence of ligands. Here we tried to reduce the basal growth signal intensity from a chimera by engineering the transmembrane domain (TM) that is thought to be involved in the interchain interaction of natural cytokine receptors. When the retroviral vectors encoding the chimeras with either the wild-type erythropoietin receptor (EpoR) TM or the one bearing two mutations in the leucine zipper motif were transduced to non-strictly interleukin-6-dependent 7TD1 cells, a tight antigen-dependent on/off regulation was attained, also demonstrating the first antigen-mediated genetically modified cell amplification of non-strictly factor-dependent cells. The results clearly indicate that the TM mutation is an effective means to improve the growth response of the antibody/receptor chimera.
NASA Astrophysics Data System (ADS)
White, Susan M.
Women engineers remain underrepresented in employment in engineering fields in the United States. Feminist theory views this gender disparity beyond equity in numbers for women engineers and looks at structural issues of women's access, opportunities, and quality of experience in the workplace. Research on women's success and persistence in engineering education is diverse; however, there are few studies that focus on the early years of women's careers in engineering and less using a phenomenological research design. Experiences of women engineers who have completed one to five years of professional engineering employment are presented using a phenomenological research design. Research questions explored the individual and composite experiences for the co-researchers of the study as well as challenges and advantages of the phenomenon of having completed one to five years of professional engineering employment. Themes that emanated from the data were a feeling that engineering is a positive profession, liking math and science from an early age, having experiences of attending math and science camps or learning and practicing engineering interests with their fathers for some co-researchers. Other themes included a feeling of being different as a woman in the engineering workplace, taking advantage of opportunities for training, education, and advancement to further their careers, and the role of informal and formal mentoring in developing workplace networks and engineering expertise. Co-researchers negotiated issues of management quality and support, experiences of gender discrimination in the workplace, and having to make decisions balancing their careers and family responsibilities. Finally, the women engineers for this research study expressed intentions to persist in their careers while pursuing expertise and experience in their individual engineering fields.
Computational structural mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1989-01-01
The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...
Code of Federal Regulations, 2010 CFR
2010-01-01
... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...
NASA Astrophysics Data System (ADS)
Yang, Kun; Xu, Quan-li; Peng, Shuang-yun; Cao, Yan-bo
2008-10-01
Based on the necessity analysis of GIS applications in earthquake disaster prevention, this paper has deeply discussed the spatial integration scheme of urban earthquake disaster loss evaluation models and visualization technologies by using the network development methods such as COM/DCOM, ActiveX and ASP, as well as the spatial database development methods such as OO4O and ArcSDE based on ArcGIS software packages. Meanwhile, according to Software Engineering principles, a solution of Urban Earthquake Emergency Response Decision Support Systems based on GIS technologies have also been proposed, which include the systems logical structures, the technical routes,the system realization methods and function structures etc. Finally, the testing systems user interfaces have also been offered in the paper.
Modeling and Application of Piezoelectric Materials in Repair of Engineering Structures
NASA Astrophysics Data System (ADS)
Wu, Nan
The shear horizontal wave propagation and vibration of piezoelectric coupled structures under an open circuit electrical boundary condition are studied. Following the studies on the dynamic response of piezoelectric coupled structures, the repair of both crack/notch and delaminated structures using piezoelectric materials are conducted. The main contribution was the proposed the active structural repair design using piezoelectric materials for different structures. An accurate model for the piezoelectric effect on the shear wave propagation is first proposed to guide the application of piezoelectric materials as sensors and actuators in the repair of engineering structures. A vibration analysis of a circular steel substrate surface bonded by a piezoelectric layer with open circuit is presented. The mechanical models and solutions for the wave propagation and vibration analysis of piezoelectric coupled structures are established based on the Kirchhoff plate model and Maxwell equation. Following the studies of the dynamic response of piezoelectric coupled structures, a close-loop feedback control repair methodology is proposed for a vibrating delaminated beam structure by using piezoelectric patches. The electromechanical characteristic of the piezoelectric material is employed to induce a local shear force above the delamination area via an external actuation voltage, which is designed as a feedback of the deflection of a vibrating beam and a delaminated plate, to reduce the stress singularity around the delamination tips. Furthermore, an experimental realization of an effective repair of a notched cantilever beam structure subjected to a dynamic loading by use of piezoelectric patches is reported. A small piezoelectric patch used as a sensor is placed on the notch position to monitor the severity of the stress singularity around the notch area by measuring the charge output on the sensor, and a patch used as an actuator is located around the notch area to generate a required bending moment by employing an actuation voltage to reduce the stress singularity at the notch position. The actuation voltage on the actuator is designed from a feedback circuit process. Through the analytical model, FEM simulation and experimental studies, the active structural repair method using piezoelectric materials is realized and proved to be feasible and practical.
Modeling, Control, and Estimation of Flexible, Aerodynamic Structures
NASA Astrophysics Data System (ADS)
Ray, Cody W.
Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.
X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants
Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.
2015-01-01
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123
X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants
Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...
2015-10-20
Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less
Interfacial Shear Strength of Multilayer Graphene Oxide Films.
Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer
2016-02-23
Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.
Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna; Banachowicz, Marta
2017-10-01
The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.
An alternative approach for computing seismic response with accidental eccentricity
NASA Astrophysics Data System (ADS)
Fan, Xuanhua; Yin, Jiacong; Sun, Shuli; Chen, Pu
2014-09-01
Accidental eccentricity is a non-standard assumption for seismic design of tall buildings. Taking it into consideration requires reanalysis of seismic resistance, which requires either time consuming computation of natural vibration of eccentric structures or finding a static displacement solution by applying an approximated equivalent torsional moment for each eccentric case. This study proposes an alternative modal response spectrum analysis (MRSA) approach to calculate seismic responses with accidental eccentricity. The proposed approach, called the Rayleigh Ritz Projection-MRSA (RRP-MRSA), is developed based on MRSA and two strategies: (a) a RRP method to obtain a fast calculation of approximate modes of eccentric structures; and (b) an approach to assemble mass matrices of eccentric structures. The efficiency of RRP-MRSA is tested via engineering examples and compared with the standard MRSA (ST-MRSA) and one approximate method, i.e., the equivalent torsional moment hybrid MRSA (ETM-MRSA). Numerical results show that RRP-MRSA not only achieves almost the same precision as ST-MRSA, and is much better than ETM-MRSA, but is also more economical. Thus, RRP-MRSA can be in place of current accidental eccentricity computations in seismic design.
Experimental validation of structural optimization methods
NASA Technical Reports Server (NTRS)
Adelman, Howard M.
1992-01-01
The topic of validating structural optimization methods by use of experimental results is addressed. The need for validating the methods as a way of effecting a greater and an accelerated acceptance of formal optimization methods by practicing engineering designers is described. The range of validation strategies is defined which includes comparison of optimization results with more traditional design approaches, establishing the accuracy of analyses used, and finally experimental validation of the optimization results. Examples of the use of experimental results to validate optimization techniques are described. The examples include experimental validation of the following: optimum design of a trussed beam; combined control-structure design of a cable-supported beam simulating an actively controlled space structure; minimum weight design of a beam with frequency constraints; minimization of the vibration response of helicopter rotor blade; minimum weight design of a turbine blade disk; aeroelastic optimization of an aircraft vertical fin; airfoil shape optimization for drag minimization; optimization of the shape of a hole in a plate for stress minimization; optimization to minimize beam dynamic response; and structural optimization of a low vibration helicopter rotor.
Weighing In: The Taste-Engineering Frame in Obesity Expert Discourse
Zimmerman, Frederick J.; Gilliam, Franklin D.
2015-01-01
Objectives. We sought expert opinion on the problems with 2 dominant obesity-prevention discourse frames—personal responsibility and the environment—and examined alternative frames for understanding and addressing obesity. Methods. We conducted 60-minute, semistructured interviews with 15 US-based obesity experts. We manually coded and entered interview transcripts into software, generating themes and subthematic areas that captured the debate’s essence. Results. Although the environmental frame is the dominant model used in communications with the public and policymakers, several experts found that communicating key messages within this frame was difficult because of the enormity of the obesity problem. A subframe of the environmental frame—the taste-engineering frame—identifies food industry strategies to influence the overconsumption of certain foods and beverages. This emerging frame deconstructs the environmental frame so that causal attributes and responsible agents are more easily identifiable and proposed policies and public health interventions more salient. Conclusions. Expert interviews are an invaluable resource for understanding how experts use frames in discussing their work and in conversations with the public and policymakers. Future empirical studies testing the effectiveness of the taste-engineering frame on public opinion and support for structural-level health policies are needed. PMID:25602888
Weighing in: the taste-engineering frame in obesity expert discourse.
Ortiz, Selena E; Zimmerman, Frederick J; Gilliam, Franklin D
2015-03-01
We sought expert opinion on the problems with 2 dominant obesity-prevention discourse frames-personal responsibility and the environment-and examined alternative frames for understanding and addressing obesity. We conducted 60-minute, semistructured interviews with 15 US-based obesity experts. We manually coded and entered interview transcripts into software, generating themes and subthematic areas that captured the debate's essence. Although the environmental frame is the dominant model used in communications with the public and policymakers, several experts found that communicating key messages within this frame was difficult because of the enormity of the obesity problem. A subframe of the environmental frame--the taste-engineering frame--identifies food industry strategies to influence the overconsumption of certain foods and beverages. This emerging frame deconstructs the environmental frame so that causal attributes and responsible agents are more easily identifiable and proposed policies and public health interventions more salient. Expert interviews are an invaluable resource for understanding how experts use frames in discussing their work and in conversations with the public and policymakers. Future empirical studies testing the effectiveness of the taste-engineering frame on public opinion and support for structural-level health policies are needed.
3D Numerical simulation of bed morphological responses to complex in-streamstructures
NASA Astrophysics Data System (ADS)
Xu, Y.; Liu, X.
2017-12-01
In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.
Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B
2014-01-01
Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.
The quest for better quality-of-life - learning from large-scale shaking table tests
NASA Astrophysics Data System (ADS)
Nakashima, M.; Sato, E.; Nagae, T.; Kunio, F.; Takahito, I.
2010-12-01
Earthquake engineering has its origins in the practice of “learning from actual earthquakes and earthquake damages.” That is, we recognize serious problems by witnessing the actual damage to our structures, and then we develop and apply engineering solutions to solve these problems. This tradition in earthquake engineering, i.e., “learning from actual damage,” was an obvious engineering response to earthquakes and arose naturally as a practice in a civil and building engineering discipline that traditionally places more emphasis on experience than do other engineering disciplines. But with the rapid progress of urbanization, as society becomes denser, and as the many components that form our society interact with increasing complexity, the potential damage with which earthquakes threaten the society also increases. In such an era, the approach of ”learning from actual earthquake damages” becomes unacceptably dangerous and expensive. Among the practical alternatives to the old practice is to “learn from quasi-actual earthquake damages.” One tool for experiencing earthquake damages without attendant catastrophe is the large shaking table. E-Defense, the largest one we have, was developed in Japan after the 1995 Hyogoken-Nanbu (Kobe) earthquake. Since its inauguration in 2005, E-Defense has conducted over forty full-scale or large-scale shaking table tests, applied to a variety of structural systems. The tests supply detailed data on actual behavior and collapse of the tested structures, offering the earthquake engineering community opportunities to experience and assess the actual seismic performance of the structures, and to help society prepare for earthquakes. Notably, the data were obtained without having to wait for the aftermaths of actual earthquakes. Earthquake engineering has always been about life safety, but in recent years maintaining the quality of life has also become a critical issue. Quality-of-life concerns include nonstructural damage, business continuity, public health, quickness of damage assessment, infrastructure, data and communication networks, and other issues, and not enough useful empirical data have emerged about these issues from the experiences of actual earthquakes. To provide quantitative data that can be used to reduce earthquake risk to our quality of life, E-Defense recently has been implementing two comprehensive research projects in which a base-isolated hospital and a steel high-rise building were tested using the E-Defense shaking table and their seismic performance were examined particularly in terms of the nonstructural damage, damage to building contents and furniture, and operability, functionality, and business-continuity capability. The paper presents the overview of the two projects, together with major findings obtained from the projects.
Cyber physical system based on resilient ICT
NASA Astrophysics Data System (ADS)
Iwatsuki, Katsumi
2016-02-01
While development of science and technology has built up the sophisticated civilized society, it has also resulted in quite a few disadvantages in global environment and human society. The common recognition has been increasingly shared worldwide on sustainable development society attaching greater importance to the symbiotic relationship with nature and social ethics. After the East Japan Great Earthquake, it is indispensable for sustainable social development to enhance capacity of resistance and restoration of society against natural disaster, so called "resilient society". Our society consists of various Cyber Physical Systems (CPSs) that make up the physical systems by fusing with an Information Communication Technology (ICT). We describe the proposed structure of CPS in order to realize resilient society. The configuration of resilient CPS consisting of ICT and physical system is discussed to introduce "autonomous, distributed, and cooperative" structure, where subsystems of ICT and physical system are simultaneously coordinated and cooperated with Business Continuity Planning (BCP) engine, respectively. We show the disaster response information system and energy network as examples of BCP engine and resilient CPS, respectively. We also propose the structure and key technology of resilient ICT.
Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, R.J.; Rashid, Y.R.; Cherry, J.L.
Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC),more » through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; Loesser, G.; Smith, M.
ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses weremore » performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.« less
Ecosystem engineering by a colonial mammal: how prairie dogs structure rodent communities.
VanNimwegen, Ron E; Kretzer, Justin; Cully, Jack F
2008-12-01
As ecosystem engineers, prairie dogs (Cynomys spp.) physically alter their environment, but the mechanism by which these alterations affect associated faunal composition is not well known. We examined how rodent and vegetation communities responded to prairie dog colonies and landcover at the Cimarron National Grassland in southwest Kansas, USA. We trapped rodents and measured vegetation structure on and off colonies in 2000 and 2003. We plotted two separate ordinations of trapping grids: one based on rodent counts and a second based on vegetation variables. We regressed three factors on each ordination: (1) colony (on-colony and off-colony), (2) cover (shortgrass and sandsage), and (3) habitat (factorial cross of colony x cover). Rodent communities differed by colony but not cover. Vegetation differed across both gradients. Rodent responses to habitat reflected those of colony and cover, but vegetation was found to differ across cover only in the sandsage prairie. This interaction suggested that rodent composition responded to prairie dog colonies, but independently of vegetation differences. We conclude that burrowing and soil disturbance are more important than vegetation cropping in structuring rodent communities.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Astrophysics Data System (ADS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-03-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri
2018-03-01
Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.
Maikawa, Caitlin L.; Zimmerman, Naomi; Ramos, Manuel; Wallace, James S.; Pollitt, Krystal J. Godri
2018-01-01
Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important. PMID:29494515
Structure of Black Male Students Academic Achievement in Science
NASA Astrophysics Data System (ADS)
Rascoe, Barbara
Educational policies and practices have been largely unsuccessful in closing the achievement gap between Black and White students "Schwartz, 2001". This achievement gap is especially problematic for Black students in science "Maton, Hrabrowski, - Schmitt, 2000. Given the fact that the Black-White achievement gap is still an enigma, the purpose of this article is to address the Black female-Black male academic achievement gap in science majors. Addressing barriers that Black male students may experience as college science and engineering majors, this article presents marketing strategies relative to politics, emotional intelligence, and issues with respect to how science teaching, and Black male students' responses to it, are different. Many Black male students may need to experience a paradigm shift, which structures and enhances their science achievement. Paradigm shifts are necessary because exceptional academic ability and motivation are not enough to get Black males from their first year in a science, technology, education, and mathematics "STEM" major to a bachelor's degree in science and engineering. The conclusions focus on the balance of truth-slippery slopes concerning the confluence of science teachers' further ado and Black male students' theories, methods, and values that position their academic achievement in science and engineering majors.
Design method of redundancy of brace-anchor sharing supporting based on cooperative deformation
NASA Astrophysics Data System (ADS)
Liu, Jun-yan; Li, Bing; Liu, Yan; Cai, Shan-bing
2017-11-01
Because of the complicated environment requirement, the support form of foundation pit is diversified, and the brace-anchor sharing support is widely used. However, the research on the force deformation characteristics and the related aspects of the cooperative response of the brace-anchor sharing support is insufficient. The application of redundancy theory in structural engineering has been more mature, but there is little theoretical research on redundancy theory in underground engineering. Based on the idea of collaborative deformation, the paper calculates the ratio of the redundancy degree of the cooperative deformation by using the local reinforcement design method and the structural component redundancy parameter calculation formula based on Frangopol. Combined with the engineering case, through the calculation of the ratio of cooperative deformation redundancy in the joint of brace-anchor sharing support. This paper explores the optimal anchor distribution form under the condition of cooperative deformation, and through the analysis and research of displacement field and stress field, the results of the collaborative deformation are validated by comparing the field monitoring data. It provides theoretical basis for the design of this kind of foundation pit in the future.
Investigation Of Aeroacoustic Mechanisms By Remote Thermal Imaging
NASA Astrophysics Data System (ADS)
Witten, Alan J.; Courville, George E.
1988-01-01
A hush house is a hangar-like structure designed to isolate, from the surrounding environment, the noise produced by extended aircraft engine operations during diagnostic testing. While hush houses meet this intended need by suppressing audible noise, they do emit significant subaudible acoustic energy which has caused structural vibrations in nearby facilities. As a first step in mitigating the problems associated with hush house induced vibrations, it is necessary to identify the mechanism responsible for the low frequency acoustic emissions. It was hypothesized that the low frequency acoustic waves are a result of acoustic Cherenkov radiation. This radiation is in the form of a coherent wave produced by the engine exhaust gas flow. The speed of sound in the exhaust gas is quite high as a result of its elevated temperature. Therefore, the gas flow is sonic or subsonic relative to its own sound speed, but is supersonic relative to sound speed in the surrounding cooler air and, as a result, produces acoustic Cherenkov radiation. To confirm this hypothesis, thermographic surveys were conducted to image the thermal structure of the engine exhaust gas within the hush house. In the near-field, these images revealed that the exhaust gases did not behave like a high Reynolds number turbulent jet, but rather, the transition to turbulence is delayed by a suppression in growth of the self-excited instability wave as a result of acoustic Cherenkov radiation.
Luo, Yongxiang; Lode, Anja; Wu, Chengtie; Chang, Jiang; Gelinsky, Michael
2015-04-01
Composite scaffolds, especially polymer/hydroxyapatite (HAP) composite scaffolds with predesigned structures, are promising materials for bone tissue engineering. Various methods including direct mixing of HAP powder with polymers or incubating polymer scaffolds in simulated body fluid for preparing polymer/HAP composite scaffolds are either uncontrolled or require long times of incubation. In this work, alginate/nano-HAP composite scaffolds with designed pore parameters and core/shell structures were fabricated using 3D plotting technique and in situ mineralization under mild conditions (at room temperature and without the use of any organic solvents). Light microscopy, scanning electron microscopy, microcomputer tomography, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to characterize the fabricated scaffolds. Mechanical properties and protein delivery of the scaffolds were evaluated, as well as the cell response to the scaffolds by culturing human bone-marrow-derived mesenchymal stem cells (hBMSC). The obtained data indicate that this method is suitable to fabricate alginate/nano-HAP composite scaffolds with a layer of nano-HAP, coating the surface of the alginate strands homogeneously and completely. The surface mineralization enhanced the mechanical properties and improved the cell attachment and spreading, as well as supported sustaining protein release, compared to pure alginate scaffolds without nano-HAP shell layer. The results demonstrated that the method provides an interesting option for bone tissue engineering application.
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)
1999-01-01
The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Ruffing, Anne M.; Jones, Howland D.T.
2012-01-01
The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel production. PMID:22473793
Computational smart polymer design based on elastin protein mutability.
Tarakanova, Anna; Huang, Wenwen; Weiss, Anthony S; Kaplan, David L; Buehler, Markus J
2017-05-01
Soluble elastin-like peptides (ELPs) can be engineered into a range of physical forms, from hydrogels and scaffolds to fibers and artificial tissues, finding numerous applications in medicine and engineering as "smart polymers". Elastin-like peptides are attractive candidates as a platform for novel biomaterial design because they exhibit a highly tunable response spectrum, with reversible phase transition capabilities. Here, we report the design of the first virtual library of elastin-like protein models using methods for enhanced sampling to study the effect of peptide chemistry, chain length, and salt concentration on the structural transitions of ELPs, exposing associated molecular mechanisms. We describe the behavior of the local molecular structure under increasing temperatures and the effect of peptide interactions with nearest hydration shell water molecules on peptide mobility and propensity to exhibit structural transitions. Shifts in the magnitude of structural transitions at the single-molecule scale are explained from the perspective of peptide-ion-water interactions in a library of four unique elastin-like peptide systems. Predictions of structural transitions are subsequently validated in experiment. This library is a valuable resource for recombinant protein design and synthesis as it elucidates mechanisms at the single-molecule level, paving a feedback path between simulation and experiment for smart material designs, with applications in biomedicine and diagnostic devices. Copyright © 2017. Published by Elsevier Ltd.