Idle speed and fuel vapor recovery control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orzel, D.V.
1993-06-01
A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.
Summary of the effects of engine throttle response on airplane formation-flying qualities
NASA Technical Reports Server (NTRS)
Walsh, Kevin R.
1992-01-01
A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.
A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Frederick, Robert A., Jr.
2010-01-01
This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.
NASA Technical Reports Server (NTRS)
Neal, Bradford; Sengupta, Upal
1989-01-01
During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.
Summary of the effects of engine throttle response on airplane formation-flying qualities
NASA Technical Reports Server (NTRS)
Walsh, Kevin R.
1993-01-01
A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.
Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.
14 CFR 23.49 - Stalling period.
Code of Federal Regulations, 2011 CFR
2011-01-01
... on the stalling speed, with engine(s) idling and throttle(s) closed; (3) The propeller(s) in the... which the airplane is controllable with— (1) For reciprocating engine-powered airplanes, the engine(s... more than 110 percent of the stalling speed; (2) For turbine engine-powered airplanes, the propulsive...
Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review
NASA Technical Reports Server (NTRS)
Casiano, Matthew; Hulka, James; Yang, Virog
2009-01-01
Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.
Manual Manipulation of Engine Throttles for Emergency Flight Control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Fullerton, C. Gordon; Maine, Trindel A.
2004-01-01
If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.
Background and principles of throttles-only flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.
1995-01-01
There have been many cases in which the crew of a multi-engine airplane had to use engine thrust for emergency flight control. Such a procedure is very difficult, because the propulsive control forces are small, the engine response is slow, and airplane dynamics such as the phugoid and dutch roll are difficult to damp with thrust. In general, thrust increases are used to climb, thrust decreases to descend, and differential thrust is used to turn. Average speed is not significantly affected by changes in throttle setting. Pitch control is achieved because of pitching moments due to speed changes, from thrust offset, and from the vertical component of thrust. Roll control is achieved by using differential thrust to develop yaw, which, through the normal dihedral effect, causes a roll. Control power in pitch and roll tends to increase as speed decreases. Although speed is not controlled by the throttles, configuration changes are often available (lowering gear, flaps, moving center-of-gravity) to change the speed. The airplane basic stability is also a significant factor. Fuel slosh and gyroscopic moments are small influences on throttles-only control. The background and principles of throttles-only flight control are described.
Low Bandwidth Robust Controllers for Flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
Low bandwidth robust controllers for flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
NASA Technical Reports Server (NTRS)
Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.
1993-01-01
Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.
1951-01-01
by lowered cost, complexity, and flxed weight of the engine . An evaluation of the effect of throttling on specific impulse, as well as the way in... combustion chamber development. The throttling arrangement and the method of pump control are both closely with the design of the entire engine . As...the use of the rocket engine . For a complete coverage of these subjects, it is recommended that all volumes of this series be consulted
Model based design of electronic throttle control
NASA Astrophysics Data System (ADS)
Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.
2017-11-01
With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more precise and accurate.
Propulsion controlled aircraft computer
NASA Technical Reports Server (NTRS)
Cogan, Bruce R. (Inventor)
2010-01-01
A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future lander descent main engines.
A preliminary investigation of the use of throttles for emergency flight control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.
1991-01-01
A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.
NASA Technical Reports Server (NTRS)
Blivas, Darnold; Taylor, Burt L., III
1950-01-01
Performance data obtained with recording oscillographs are presented to show the transient response of the General Electric Integrated Electronic Control operating on the J47 RXl-3 turbo-Jet engine over a range of altitudes from 10,000 to 45,000 feet and at ram pressure ratios of 1.03 and 1.4. These data represent the performance of the final control configuration developed after an investigation of the engine transient behavior in the NACA altitude wind tunnel. Oscillograph traces of controlled accelerations (throttle bursts),oontrolled decelerations (throttle chops), and controlled altitude starts are presented.
The Evolution of Utilizing Manual Throttles to Avoid Excessively Low LH2 NPSP at the SSME Inlet
NASA Technical Reports Server (NTRS)
Henfling, Rick
2011-01-01
In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controllers in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.
The Evolution of Utilizing Manual Throttling to Avoid Excessively Low LH2 NPSP at the SSME Inlet
NASA Technical Reports Server (NTRS)
Henfling, Rick
2010-01-01
In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controller in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain low threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Guo, Ten-Huei; Sowers, T. Shane; Chicatelli, Amy K.; Fulton, Christopher E.; May, Ryan D.; Owen, A. Karl
2012-01-01
This paper describes the implementation and evaluation of a yaw rate to throttle feedback system designed to replace a damaged rudder. It can act as a Dutch roll damper and as a means to facilitate pilot input for crosswind landings. Enhanced propulsion control modes were implemented to increase responsiveness and thrust level of the engine, which impact flight dynamics and performance. Piloted evaluations were performed to determine the capability of the engines to substitute for the rudder function under emergency conditions. The results showed that this type of implementation is beneficial, but the engines' capability to replace the rudder is limited.
A Retro-Fit Control Architecture to Maintain Engine Performance With Usage
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Garg, Sanjay
2007-01-01
An outer loop retrofit engine control architecture is presented which modifies fan speed command to obtain a desired thrust based on throttle position. This maintains the throttle-to-thrust relationship in the presence of engine degradation, which has the effect of changing the engine s thrust output for a given fan speed. Such an approach can minimize thrust asymmetry in multi-engine aircraft, and reduce pilot workload. The outer loop control is demonstrated under various levels of engine deterioration using a standard deterioration profile as well as an atypical profile. It is evaluated across various transients covering a wide operating range. The modified fan speed command still utilizes the standard engine control logic so all original life and operability limits remain in place. In all cases it is shown that with the outer loop thrust control in place, the deteriorated engine is able to match the thrust performance of a new engine up to the limits the controller will allow.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
Aircraft Control Using Engine Thrust: A History of Learning TOC Real-Time
NASA Technical Reports Server (NTRS)
Cole, Jennifer H.; Batteas, Frank; Fullerton, Gordon
2006-01-01
A history of learning the operation of Throttles Only Control (TOC) to control an aircraft in real time using engine thrust is shown. The topics include: 1) Past TOC Accidents/Incidents; 2) 1972: DC-10 American Airlines; 3) May 1974: USAF B-52H; 4) April 1975: USAF C-5A; 5) April 1975: USAF C-5A; 6) 1981: USAF B-52G; 7) August 1985: JAL 123 B-747; 8) JAL 123 Survivor Story; 9) JAL 123 Investigation Findings; 10) July 1989: UAL 232 DC-10; 11) UAL 232 DC-10; 12) Eastwind 517 B-737; 13) November 2003: DHL A-300; 14) Historically, TOC has saved lives; 15) Automated Throttles-Only Control; 16) PCA Project; 17) Propulsion-Controlled Aircraft; 18) MD-11 PCA System and Flight Test Envelope; 19) MD-11 Simulation, PCA ILS-Soupled Landing Dispersion; 20) Throttles-Only Pitch and Roll Control Power; 21) PCA in Commercial Fleet; 22) Fall 2005: PCAR Project; 23) PCAR Background - TOC; and 24) PCAR Background - TOC.
NASA Orbit Transfer Rocket Engine Technology Program
NASA Technical Reports Server (NTRS)
1984-01-01
The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.
ASIL determination for motorbike's Electronics Throttle Control System (ETCS) mulfunction
NASA Astrophysics Data System (ADS)
Zaman Rokhani, Fakhrul; Rahman, Muhammad Taqiuddin Abdul; Ain Kamsani, Noor; Sidek, Roslina Mohd; Saripan, M. Iqbal; Samsudin, Khairulmizam; Khair Hassan, Mohd
2017-11-01
Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been applied on motorbike's ETCS to determine the required automotive safety integrity level. Based on the analysis, the established automotive safety integrity level can help to derive technical and functional safety measures for ETCS development.
Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine
NASA Technical Reports Server (NTRS)
2008-01-01
As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.
Fuel control for gas turbine with continuous pilot flame
Swick, Robert M.
1983-01-01
An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.
Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report
NASA Technical Reports Server (NTRS)
1977-01-01
Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status
NASA Technical Reports Server (NTRS)
Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.
CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.
2007-01-01
As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.
NASA Technical Reports Server (NTRS)
Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.
2010-01-01
As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a fourth test series conducted over March-May 2010
Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft
NASA Technical Reports Server (NTRS)
Stevens, Richard; Burcham, Frank W., Jr.
2009-01-01
If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean
1996-01-01
A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status
NASA Technical Reports Server (NTRS)
Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes demonstrating continuously throttling with an actuator and pursuing a path towards integrated engine sea-level test-bed testing.
Performance documentation of the engineering model 30-cm diameter thruster
NASA Technical Reports Server (NTRS)
Bechtel, R. T.; Rawlin, V. K.
1976-01-01
The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented.
Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems
NASA Technical Reports Server (NTRS)
Chou, Hwei-Lan; Biezad, Daniel J.
1996-01-01
Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.
Low Thrust, Deep Throttling, US/CIS Integrated NTRE
NASA Astrophysics Data System (ADS)
Culver, Donald W.; Kolganov, Vyacheslav; Rochow, Richard F.
1994-07-01
In 1993 our international team performed a follow-on ``Nuclear Thermal Rocket Engine (NTRE) Extended Life Feasibility Assessment'' study for the Nuclear Propulsion Office (NPO) at NASAs Lewis Research Center. The main purpose of this study was to complete the 1992 study matrix to assess NTRE designs at thrust levels of 22.5, 11.3, and 6.8 tonnes, using Commonwealth of Independent States (CIS) reactor technology. An additional Aerojet goal was to continue improving the NTRE concept we had generated. Deep throttling, mission performance optimized engine design parametrics, and reliability/cost enhancing engine system simplifications were studied, because they seem to be the last three basic design improvements sorely needed by post-NERVA NTRE. Deep throttling improves engine life by eliminating damaging thermal and mechanical shocks caused by after-cooling with pulsed coolant flow. Alternately, it improves mission performance with steady flow after-cooling by minimizing reactor over-cooling. Deep throttling also provides a practical transition from high pressures and powers of the high thrust power cycle to the low pressures and powers of our electric power generating mode. Two deep throttling designs are discussed; a workable system that was studied and a simplified system that is recommended for future study. Mission-optimized engine thrust/weight (T/W) and Isp predictions are included along with system flow schemes and concept sketches.
NASA Technical Reports Server (NTRS)
Gardiner, Arthur W; Whedon, William E
1928-01-01
This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.
Adaptive Control of Small Outboard-Powered Boats for Survey Applications
NASA Technical Reports Server (NTRS)
VanZwieten, T.S.; VanZwieten, J.H.; Fisher, A.D.
2009-01-01
Four autopilot controllers have been developed in this work that can both hold a desired heading and follow a straight line. These PID, adaptive PID, neuro-adaptive, and adaptive augmenting control algorithms have all been implemented into a numerical simulation of a 33-foot center console vessel with wind, waves, and current disturbances acting in the perpendicular (across-track) direction of the boat s desired trajectory. Each controller is tested for its ability to follow a desired heading in the presence of these disturbances and then to follow a straight line at two different throttle settings for the same disturbances. These controllers were tuned for an input thrust of 2000 N and all four controllers showed good performance with none of the controllers significantly outperforming the others when holding a constant heading and following a straight line at this engine thrust. Each controller was then tested for a reduced engine thrust of 1200 N per engine where each of the three adaptive controllers reduced heading error and across-track error by approximately 50% after a 300 second tuning period when compared to the fixed gain PID, showing that significant robustness to changes in throttle setting was gained by using an adaptive algorithm.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... the Regional Jet engine TCGB [throttle control gearbox] P/Ns: 2100140-003, 2100140- 005 & 2100140-007... Viselli, Senior Aviation Safety Engineer, Avionic & Flight Test Branch, ANE-172, FAA, New York Aircraft...: There has been numerous reported failures of the Regional Jet engine TCGB P/Ns: 2100140-003, 2100140-005...
RD860 and RD860L Engines with Deep Thrust Throttling and a High Technology Readiness Level (TRL)
NASA Astrophysics Data System (ADS)
Prokopchuk, O. O.; Shul'ga, V. A.; Dibrivnyi, O. V.; Kukhta, A. S.
2018-04-01
To solve the problems of delivering payloads to Mars surface and returning them to the orbit, liquid rocket engines, operating on storable propellants with deep throttling possibility, are needed, besides having high energy-mass characteristics.
46 CFR 113.35-17 - Vessels with navigating bridge control.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Vessels with navigating bridge control. 113.35-17 Section 113.35-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... bridge control. Each vessel with navigating bridge throttle control must have a positive mechanical stop...
46 CFR 113.35-17 - Vessels with navigating bridge control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Vessels with navigating bridge control. 113.35-17 Section 113.35-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... bridge control. Each vessel with navigating bridge throttle control must have a positive mechanical stop...
46 CFR 113.35-17 - Vessels with navigating bridge control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Vessels with navigating bridge control. 113.35-17 Section 113.35-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... bridge control. Each vessel with navigating bridge throttle control must have a positive mechanical stop...
Rocket Engine Innovations Advance Clean Energy
NASA Technical Reports Server (NTRS)
2012-01-01
During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.
NASA Technical Reports Server (NTRS)
1978-01-01
A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.
Flight testing the digital electronic engine control in the F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.
1984-01-01
The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.
Combustion mode switching with a turbocharged/supercharged engine
Mond, Alan; Jiang, Li
2015-09-22
A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.
Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine
NASA Astrophysics Data System (ADS)
Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki
In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.
Frank, Andrew A.
1984-01-01
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.
Evaluation of Military Fuels Using a Ford 6.7L Powerstroke Diesel Engine
2011-08-01
natural steady state values during idle testing steps. Engine oil cooler plumbing was factory integrated to the engine water jacket, thus not...Innospec Fuel Specialties DCI-4A. Per QPL-25017, the minimum effective treat rate of DCI-4A required an additive concentration level of 9ppm in the...dynamometer was used to control engine speed and dissipate load. Engine load was manipulated through the actuation of the engine throttle pedal assembly
The Evolution of Utilizing Manual Throttles to Avoid Low LH2 NPSP at the SSME Inlet
NASA Technical Reports Server (NTRS)
Henfling, Rick
2011-01-01
Even before the first flight of the Space Shuttle, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) can have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System could result in a low LH2 NPSP condition. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs, which alleviated the low LH2 NPSP condition. A throttling down of the SSME resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at a lower throttle setting. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of these additional capabilities. Currently the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now would result in a nominal Main Engine Cut Off (MECO) and no loss of mission objectives.
Performance Evaluation of the NEXT Ion Engine
NASA Technical Reports Server (NTRS)
Soulas, George C.; Domonkos, Matthew T.; Patterson, Michael J.
2003-01-01
The performance test results of three NEXT ion engines are presented. These ion engines exhibited peak specific impulse and thrust efficiency ranges of 4060 4090 s and 0.68 0.69, respectively, at the full power point of the NEXT throttle table. The performance of the ion engines satisfied all project requirements. Beam flatness parameters were significantly improved over the NSTAR ion engine, which is expected to improve accelerator grid service life. The results of engine inlet pressure and temperature measurements are also presented. Maximum main plenum, cathode, and neutralizer pressures were 12,000 Pa, 3110 Pa, and 8540 Pa, respectively, at the full power point of the NEXT throttle table. Main plenum and cathode inlet pressures required about 6 hours to increase to steady-state, while the neutralizer required only about 0.5 hour. Steady-state engine operating temperature ranges throughout the power throttling range examined were 179 303 C for the discharge chamber magnet rings and 132 213 C for the ion optics mounting ring.
Sequential variable fuel injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.
This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... describes the unsafe condition as: There has been numerous reported failures of the Regional Jet engine TCGB... Jet engine TCGB [throttle control gearbox] P/Ns: 2100140-003, 2100140- 005 & 2100140-007. Some of.... List of Subjects in 14 CFR Part 39 Air transportation, Aircraft, Aviation safety, Incorporation by...
Frank, A.A.
1984-07-10
A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine. 4 figs.
Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei
2013-01-01
A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.
Adaptive Failure Compensation for Aircraft Tracking Control Using Engine Differential Based Model
NASA Technical Reports Server (NTRS)
Liu, Yu; Tang, Xidong; Tao, Gang; Joshi, Suresh M.
2006-01-01
An aircraft model that incorporates independently adjustable engine throttles and ailerons is employed to develop an adaptive control scheme in the presence of actuator failures. This model captures the key features of aircraft flight dynamics when in the engine differential mode. Based on this model an adaptive feedback control scheme for asymptotic state tracking is developed and applied to a transport aircraft model in the presence of two types of failures during operation, rudder failure and aileron failure. Simulation results are presented to demonstrate the adaptive failure compensation scheme.
Flight evaluation of a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.
1982-01-01
Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.
Enhanced Engine Control for Emergency Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2012-01-01
C-MAPSS40k engine simulation has been developed and is available to the public. The authenticity of the engine performance and controller enabled the development of realistic enhanced control modes through controller modification alone. Use of enhanced control modes improved stability and control of an impaired aircraft. - Fast Response is useful for manual manipulation of the throttles - Use of Fast Response improved stability as part of a yaw rate feedback system. - Use of Overthrust shortened takeoff distance, but was generally useful in flight, too. Initial lack of pilot familiarity resulted in discomfort, especially with yaw rate feedback, but that was the only drawback, overall the pilot found the enhanced modes very helpful.
Advanced supersonic propulsion study, phase 3
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.
1976-01-01
The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.
Orbital transfer rocket engine technology: Advanced engine study
NASA Technical Reports Server (NTRS)
Hayden, Warren R.
1992-01-01
An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.
Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program
NASA Technical Reports Server (NTRS)
Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter
1994-01-01
The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.
Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu
2003-01-01
This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.
Experimental study for the reproduction of sudden unintended acceleration incidents.
Park, Sungji; Choi, Youngsuk; Choi, Woongchul
2016-10-01
A few cases of the sudden unintended acceleration have been reported over the last few years [1-11] and some of them seemed to be somewhat related to an electronic throttle control (ETC) system [11,12]. In this experimental study, efforts were made to reproduce the cases of sudden unintended acceleration possibly related to the ETC. Typically, an ETC of the engine is managed based on signals from airflow sensor, throttle position sensor and acceleration pedal sensor. With this typical sensor configuration in mind, these sensor signals were checked for noise levels. However, none of them showed any clear relationship with the sudden unintended acceleration mainly due to the robustness of the ETC logic software. As an alternative approach, supply voltage to an engine control unit (ECU) was tempered intentionally to observe any clues for the incidents. The observed results with the supply voltage drop and fluctuation tests were rather astonishing. The throttle valve position went all the way up to 100% for around one second when the battery voltage plunged down to 7V periodically despite that the acceleration pedal position was kept steady. As an effort to confirm the case, multiple tries were made systematically on a chassis dynamometer as well as on the test road. In this paper, detailed procedures and findings are reported accordingly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Method and apparatus for rapid thrust increases in a turbofan engine
NASA Technical Reports Server (NTRS)
Cornett, J. E.; Corley, R. C.; Fraley, T. O.; Saunders, A. A., Jr. (Inventor)
1980-01-01
Upon a landing approach, the normal compressor stator schedule of a fan speed controlled turbofan engine is temporarily varied to substantially close the stators to thereby increase the fuel flow and compressor speed in order to maintain fan speed and thrust. This running of the compressor at an off-design speed substantially reduces the time required to subsequently advance the engine speed to the takeoff thrust level by advancing the throttle and opening the compressor stators.
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, K.
1974-12-06
An installation is described for the catalytic afterburning of exhaust gases in an internal combustion engine. The system includes a line by-passing the installation for the catalytic afterburning, in which is arranged a throttle valve actuated in dependence on the temperature of the installation. The throttle valve also can be actuated independently of the temperature of the installation, but in dependence of the oil pressure which continues to exist for a short period of time after turning off the engine.
Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control
NASA Technical Reports Server (NTRS)
Falco, M.; Kelley, H. J.
1973-01-01
Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.
40 CFR 92.131 - Smoke, data analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Smoke, data analysis. 92.131 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.131 Smoke, data analysis. The following procedure shall be used to analyze the smoke test data: (a) Locate each throttle...
40 CFR 92.131 - Smoke, data analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Smoke, data analysis. 92.131 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.131 Smoke, data analysis. The following procedure shall be used to analyze the smoke test data: (a) Locate each throttle...
40 CFR 92.131 - Smoke, data analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Smoke, data analysis. 92.131 Section 92...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.131 Smoke, data analysis. The following procedure shall be used to analyze the smoke test data: (a) Locate each throttle...
40 CFR 92.131 - Smoke, data analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Smoke, data analysis. 92.131 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.131 Smoke, data analysis. The following procedure shall be used to analyze the smoke test data: (a) Locate each throttle...
Progress in fuel systems to meet new fuel economy and emissions standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This publication includes information describing the latest developments within the automotive industry on fuel system hardware and control strategies. Contents include: Slow heating process of a heated pintle-type gasoline fuel injector; Mixture preparation measurements; Study of fuel flow rate change in injector for methanol fueled S.I. engine; Flow and structural analysis for fuel pressure regulator performance; A new method to analyze fuel behavior in a spark ignition engine; Throttle body at engine idle -- tolerance effect on flow rate; and more.
Preliminary flight test results of the F100 EMD engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.
Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.
Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles
2007-07-01
Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
Flight testing and simulation of an F-15 airplane using throttles for flight control
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas
1992-01-01
Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.
1983-01-01
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.
Liquid-fuel valve with precise throttling control
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.
1971-01-01
Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1981-01-01
Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.
Critical engine system design characteristics for SSTO vehicles
NASA Astrophysics Data System (ADS)
Fanciullo, Thomas J.; Judd, D. C.; Obrien, C. J.
1992-02-01
Engine system design characteristics are summarized for typical vertical take-off and landing (VTOL) and vertical take-off and horizontal landing (VTHL) Strategic Defense Initiative Organization (SDIO) single stage to orbit (SSTO) vehicles utilizing plug nozzle configurations. Power cycle selection trades involved the unique modular platelet engine (MPE) with the use of (1) LO2 and LH2 at fixed and variable mixture ratios, (2) LO2 and propane or RP-1, and (3) dual fuels (LO2 with LH2 and C3H8). The number of thrust cells and modules were optimized. Dual chamber bell and a cluster of conventional bell nozzle configurations were examined for comparison with the plug configuration. Thrust modulation (throttling) was selected for thrust vector control. Installed thrust ratings were established to provide an additional 20 percent overthrust capability for engine out operation. Turbopumps were designed to operate at subcritical speeds to facilitate a wide range of throttling and long life. A unique dual spool arrangement with hydrostatic bearings was selected for the LH2 turbopump. Controls and health monitoring with expert systems for diagnostics are critical subsystems to ensure minimum maintenance and supportability for a less than seven day turnaround. The use of an idle mode start, in conjunction with automated health condition monitoring, allows the rocket propulsion system to operate reliably in the manner of present day aircraft propulsion.
Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John
1997-01-01
Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.
Performance Cycle Analysis of a Two-Spool, Separate-Exhaust Turbofan With Interstage Turbine Burner
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.
2005-01-01
This paper presents the performance cycle analysis of a dual-spool, separate-exhaust turbofan engine, with an Interstage Turbine Burner serving as a secondary combustor. The ITB, which is located at the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet engine propulsion. A detailed performance analysis of this engine has been conducted for steady-state engine performance prediction. A code is written and is capable of predicting engine performances (i.e., thrust and thrust specific fuel consumption) at varying flight conditions and throttle settings. Two design-point engines were studied to reveal trends in performance at both full and partial throttle operations. A mission analysis is also presented to assure the advantage of saving fuel by adding ITB.
Developing stochastic model of thrust and flight dynamics for small UAVs
NASA Astrophysics Data System (ADS)
Tjhai, Chandra
This thesis presents a stochastic thrust model and aerodynamic model for small propeller driven UAVs whose power plant is a small electric motor. First a model which relates thrust generated by a small propeller driven electric motor as a function of throttle setting and commanded engine RPM is developed. A perturbation of this model is then used to relate the uncertainty in throttle and engine RPM commanded to the error in the predicted thrust. Such a stochastic model is indispensable in the design of state estimation and control systems for UAVs where the performance requirements of the systems are specied in stochastic terms. It is shown that thrust prediction models for small UAVs are not a simple, explicit functions relating throttle input and RPM command to thrust generated. Rather they are non-linear, iterative procedures which depend on a geometric description of the propeller and mathematical model of the motor. A detailed derivation of the iterative procedure is presented and the impact of errors which arise from inaccurate propeller and motor descriptions are discussed. Validation results from a series of wind tunnel tests are presented. The results show a favorable statistical agreement between the thrust uncertainty predicted by the model and the errors measured in the wind tunnel. The uncertainty model of aircraft aerodynamic coefficients developed based on wind tunnel experiment will be discussed at the end of this thesis.
Highly integrated digital engine control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Haering, E. A., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.
A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less
Investigation of the Muffling Problem for Airplane Engines
NASA Technical Reports Server (NTRS)
Upton, G B; Gage, V R
1920-01-01
The experimentation presented in this report falls in two divisions: first, the determination of the relation between back pressure in the exhaust line and consequent power loss, for various combinations of speed and throttle positions of the engine; second, the construction and trial of muffler designs covering both type and size. Report deals with experiments in the development of a muffler designed on the principle which will give the maximum muffling effect with a minimum loss of power. The main body of the work has been done on a Curtiss OX eight-cylinder airplane engine, 4 by 5 inches, rated 70 horsepower at 1,200 revolutions per minute. For estimation of the muffling ability and suppression of "bark" of individual exhausts, the "Ingeco" stationary, single cylinder, 5 1/2 by 10 inch, throttling governed gasoline engine, and occasionally other engines were used.
Performance mapping of a 30 cm engineering model thruster
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Vahrenkamp, R. P.
1975-01-01
A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.
Survey of Constellation-Era LOX/Methane Development Activities and Future Development Needs
NASA Technical Reports Server (NTRS)
Marshall, William M.; Stiegemeier, Benjamin; Greene, Sandra Elam; Hurlbert, Eric A.
2017-01-01
NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.
Virtual engine management simulator for educational purposes
NASA Astrophysics Data System (ADS)
Drosescu, R.
2017-10-01
This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.
DOT National Transportation Integrated Search
1975-11-01
The appendix to the preceding volume presents the data for the subject diesel engine noise study, including an engine sound power level analysis and sound spectrums showing the effect of intake and exhaust restrictions.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew
1996-01-01
An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.
New Generation Strategic Submarine Study
1977-01-01
Ship Propulsion System . 111-22 III- A -6 Simplified Functional Diagram - Steam-Feed Flow System . 111-23 III- A -7...16 Aa Tabte XIZ- A -3 System (Element) Functional Analysis ResuZts--Engineering p Plant Subsystem SYSTEM (ELEMENT) FUNCTION Ll A . Ship Propulsion 1...FUNCTION A . Ship Propulsion (cont’d) 9. SSTG Throttle Valves * Provide frequency control of the ship’s service turbine generators, startup and
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
Experimental study of operation performance for hydrocarbon fuel pump with low specific speed
NASA Astrophysics Data System (ADS)
Wu, Xianyu; Yang, Jun; Jin, Xuan
2017-10-01
In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.
Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John
1998-01-01
With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.
The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei
2012-01-01
The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.
Low speed hybrid generalized predictive control of a gasoline-propelled car.
Romero, M; de Madrid, A P; Mañoso, C; Milanés, V
2015-07-01
Low-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers׳ standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Optically powered and interrogated rotary position sensor for aircraft engine control applications
NASA Astrophysics Data System (ADS)
Spillman, W. B.; Crowne, D. H.; Woodward, D. W.
A throttle level angle (TLA) sensing system is described that utilizes a capacitance based rotary position transducer that is powered and interrogated via light from a single multimode optical fiber. The system incorporates a unique GaAs device that serves as both a power converter and optical data transmitter. Design considerations are discussed, and the fabrication and performance of the sensor system are detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuya, K.; Yago, T.
A system is disclosed for rapidly warming up a catalytic converter provided to an automotive internal combustion engine to purify the exhaust gas. The system includes a vacuum-operated device to increase the opening degree of the throttle valve by a predetermined degree to thereby increase the quantity of the exhaust gas and another vacuum-operated device to retard the ignition timing of the engine to a predetermined extent to thereby raise the temperature of the exhaust gas. The two devices are connected by a vacuum passage to the intake passage of the engine at a section downstream of the throttle valvemore » in series, and an electromagnetic valve renders the vacuum passage effective to thereby actuate the vacuum-operated devices only when the engine is idling under cold condition. Because of the series connection of the two devices, an intake vacuum is applied to the two devices in desirable sequence.« less
NASA Technical Reports Server (NTRS)
May, Ryan D.; Garg, Sanjay
2012-01-01
Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.
Compressor Stall Recovery Through Tip Injection Assessed
NASA Technical Reports Server (NTRS)
Suder, Ken L.
2001-01-01
Aerodynamic stability is a fundamental limit in the compressor design process. The development of robust techniques for increasing stability has several benefits: enabling higher loading and fewer blades, increasing safety throughout a mission, increasing tolerance to stage mismatch during part-speed operation and speed transients, and providing an opportunity to match stages at the compressor maximum efficiency point, thus reducing fuel burn. Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors if the injection is activated before stall occurs. This approach to stall suppression requires that a reliable stall warning system be available. Tests have recently been performed to assess whether steady injection can also be used to recover from fully developed stall. If mass injection is effective in recovering from stall quickly enough to avoid structural damage or loss of engine power, then a stall warning system may not be required. The stall recovery tests were performed on a transonic compressor rotor at its design tip speed of 1475 ft/sec using four injectors evenly spaced around the compressor case upstream of the rotor. The injectors were connected to an external air source. In an actual engine application, the injected air would be supplied with compressor bleed air. The injectors were isolated from the air source by a fast-acting butterfly valve. With the injectors turned off, the compressor was throttled into stall. Air injection was then activated with no change in throttle setting by opening the butterfly valve. The compressor recovered from stall at a fixed throttle setting with the aid of tip injection. The unsteady operating characteristic of the rotor was measured during these tests using high-response pressure sensors located upstream and downstream of the rotor. The figure shows the results, where the unsteady pressure and mass flow are superimposed on the steady operating characteristic. The total injected mass flow was equal to 1.3 percent of the compressor flow. The solid line with no solid squares on it denotes the operating point during the beginning of throttle closure and the initial drop into stall. The gray traces denote the operating point during an additional throttle closure that occurred over the next 1200 rotor revolutions (4 sec). The dashed line denotes the recovery from stall that occurred during 90 rotor revolutions (0.3 sec) after the injectors were activated with no change in throttle setting. Tip injection not only recovers the compressor from stall, but also restores the compressor to its pre-stall level of pressure rise. In contrast, standard stall recovery schemes such as compressor bleed, stator vane actuation, or engine throttle modulation result in a loss of pressure rise across the compressor, which results in a loss of engine power.
AXISYMMETRIC, THROTTLEABLE NON-GIMBALLED ROCKET ENGINE
NASA Technical Reports Server (NTRS)
Sackheim, Robert L. (Inventor); Hutt, John J. (Inventor); Anderson, William E. (Inventor); Dressler, Gordon A. (Inventor)
2005-01-01
A rocket engine assembly is provided for a vertically launched rocket vehicle. A rocket engine housing of the assembly includes two or more combustion chambers each including an outlet end defining a sonic throat area. A propellant supply for the combustion chambers includes a throttling injector, associated with each of the combustion chambers and located opposite to sonic throat area, which injects the propellant into the associated combustion chamber. A modulator, which may form part of the injector, and which is controlled by a controller, modulates the flow rate of the propellant to the combustion chambers so that the chambers provide a vectorable net thrust. An expansion nozzle or body located downstream of the throat area provides expansion of the combustion gases produced by the combustion chambers so as to increase the net thrust.
Baseline tests of the Kordesh hybrid passenger vehicle
NASA Technical Reports Server (NTRS)
Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.
1978-01-01
Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.
NASA Technical Reports Server (NTRS)
Ray, Ronald J.
1994-01-01
New flight test maneuvers and analysis techniques for evaluating the dynamic response of in-flight thrust models during throttle transients have been developed and validated. The approach is based on the aircraft and engine performance relationship between thrust and drag. Two flight test maneuvers, a throttle step and a throttle frequency sweep, were developed and used in the study. Graphical analysis techniques, including a frequency domain analysis method, were also developed and evaluated. They provide quantitative and qualitative results. Four thrust calculation methods were used to demonstrate and validate the test technique. Flight test applications on two high-performance aircraft confirmed the test methods as valid and accurate. These maneuvers and analysis techniques were easy to implement and use. Flight test results indicate the analysis techniques can identify the combined effects of model error and instrumentation response limitations on the calculated thrust value. The methods developed in this report provide an accurate approach for evaluating, validating, or comparing thrust calculation methods for dynamic flight applications.
14 CFR 29.1045 - Climb cooling test procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engines and powerplant components. (c) Each operating engine must— (1) For helicopters for which the use... continuous power (or at full throttle when above the critical altitude); (2) For helicopters for which the... one engine operative; and (2) Sea level. (f) The climb or descent must be conducted at an airspeed...
14 CFR 29.1045 - Climb cooling test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engines and powerplant components. (c) Each operating engine must— (1) For helicopters for which the use... continuous power (or at full throttle when above the critical altitude); (2) For helicopters for which the... one engine operative; and (2) Sea level. (f) The climb or descent must be conducted at an airspeed...
14 CFR 29.1045 - Climb cooling test procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... engines and powerplant components. (c) Each operating engine must— (1) For helicopters for which the use... continuous power (or at full throttle when above the critical altitude); (2) For helicopters for which the... one engine operative; and (2) Sea level. (f) The climb or descent must be conducted at an airspeed...
40 CFR 92.124 - Test sequence; general requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (e) Pre-test engine measurements (e.g., idle and throttle notch speeds, fuel flows, etc.), pre-test engine performance checks (e.g., verification of engine power, etc.) and pre-test system calibrations (e... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test sequence; general requirements...
40 CFR 92.124 - Test sequence; general requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (e) Pre-test engine measurements (e.g., idle and throttle notch speeds, fuel flows, etc.), pre-test engine performance checks (e.g., verification of engine power, etc.) and pre-test system calibrations (e... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test sequence; general requirements. 92...
40 CFR 92.124 - Test sequence; general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (e) Pre-test engine measurements (e.g., idle and throttle notch speeds, fuel flows, etc.), pre-test engine performance checks (e.g., verification of engine power, etc.) and pre-test system calibrations (e... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test sequence; general requirements...
40 CFR 92.124 - Test sequence; general requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (e) Pre-test engine measurements (e.g., idle and throttle notch speeds, fuel flows, etc.), pre-test engine performance checks (e.g., verification of engine power, etc.) and pre-test system calibrations (e... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test sequence; general requirements...
40 CFR 92.124 - Test sequence; general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (e) Pre-test engine measurements (e.g., idle and throttle notch speeds, fuel flows, etc.), pre-test engine performance checks (e.g., verification of engine power, etc.) and pre-test system calibrations (e... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test sequence; general requirements...
40 CFR Appendix B to Subpart E of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... Variable-Speed Engines Test segment Mode number Engine speed 1 Observed torque 2 (percent of max. observed...'s specifications. Idle speed is specified by the manufacturer. 2 Torque (non-idle): Throttle fully open for 100 percent points. Other non-idle points: ± 2 percent of engine maximum value. Torque (idle...
The Propulsive-Only Flight Control Problem
NASA Technical Reports Server (NTRS)
Blezad, Daniel J.
1996-01-01
Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.
Integrated controls and health monitoring for chemical transfer propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G.; Binder, Michael P.
1990-01-01
NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed.
Engine combustion control at low loads via fuel reactivity stratification
Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L
2014-10-07
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.
Minimum Climb to Cruise Noise Trajectories Modeled for the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.
1998-01-01
The proposed U.S. High Speed Civil Transport (HSCT) will revolutionize commercial air travel by providing economical supersonic passenger service to destinations worldwide. Unlike the high-bypass turbofan engines that propel today's subsonic airliners, HSCT engines will have much higher jet exhaust speeds. Jet noise, caused by the turbulent mixing of high-speed exhaust with the surrounding air, poses a significant challenge for HSCT engine designers. To resolve this challenge, engineers have designed advanced mixer rejector nozzles that reduce HSCT jet noise to airport noise certification levels by entraining and mixing large quantities of ambient air with the engines' jet streams. Although this works well during the first several minutes of flight, far away from the airport, as the HSCT gains speed and climbs, poor ejector inlet recovery and ejector ram drag contribute to poor thrust, making it advantageous to turn off the ejector. Doing so prematurely, however, can cause unacceptable noise levels to propagate to the ground, even when the aircraft is many miles from the airport. This situation lends itself ideally to optimization, where the aircraft trajectory, throttle setting, and ejector setting can be varied (subject to practical aircraft constraints) to minimize the noise propagated to the ground. A method was developed at the NASA Lewis Research Center that employs a variation of the classic energy state approximation: a trajectory analysis technique historically used to minimize climb time or fuel burned in many aircraft problems. To minimize the noise on the ground at any given throttle setting, high aircraft altitudes are desirable; but the HSCT may either climb quickly to high altitudes using a high, noisy throttle setting or climb more slowly at a lower, quieter throttle setting. An optimizer has been programmed into NASA's existing aircraft and noise analysis codes to balance these options by dynamically choosing the best altitude-velocity path and throttle setting history. The noise level standard, or metric, used in the optimizer should be one that accurately reflects the subjective annoyance levels of ground-based observers under the flight path. A variety of noise metrics are available, many of which are practical for airport-vicinity noise certification. Unlike airport noise, however, the HSCT's climb noise will be characterized by relatively low noise levels, long durations, and low-frequency spectra. The noise metrics used in these calculations are based on the recommendations of researchers at the NASA Langley Research Center, who have correlated the flyover noise annoyance levels of actual laboratory subjects with a variety of measurements. Analysis of data from this optimizer has shown that significant reductions in noise may be obtained with trajectory optimization. And since throttling operations are performed in the subsonic portion of the climb path (where thrust is plentiful), only small penalties in HSCT range or fuel performance occur.
Method And Apparatus For Regenerating Nox Adsorbers
Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten
2006-03-28
Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.
Deep Throttle Turbopump Technology Testing
NASA Technical Reports Server (NTRS)
Ferguson, T. V.; Guinzburg, A.; McGlynn, R. D.; Williams, M.
2002-01-01
The objectives of this viewgraph presentation were to: (1) enhance and demonstrate critical technologies in support of planned RBCC flight test programs; and (2) obtain knowledge of wide flow range as it is applicable to liquid rocket engine turbopumps operating over extreme throttle ranges. This program was set up to demonstrate wide flow range diffuser technologies. The testing phase of the contract to provide data to anchor initial designs was partially successful. Data collected suggest flow phenomena exists at off-design flow rates.
Extensions to the time lag models for practical application to rocket engine stability design
NASA Astrophysics Data System (ADS)
Casiano, Matthew J.
The combustion instability problem in liquid-propellant rocket engines (LREs) has remained a tremendous challenge since their discovery in the 1930s. Improvements are usually made in solving the combustion instability problem primarily using computational fluid dynamics (CFD) and also by testing demonstrator engines. Another approach is to use analytical models. Analytical models can be used such that design, redesign, or improvement of an engine system is feasible in a relatively short period of time. Improvements to the analytical models can greatly aid in design efforts. A thorough literature review is first conducted on liquid-propellant rocket engine (LRE) throttling. Throttling is usually studied in terms of vehicle descent or ballistic missile control however there are many other cases where throttling is important. It was found that combustion instabilities are one of a few major issues that occur during deep throttling (other major issues are heat transfer concerns, performance loss, and pump dynamics). In the past and again recently, gas injected into liquid propellants has shown to be a viable solution to throttle engines and to eliminate some forms of combustion instability. This review uncovered a clever solution that was used to eliminate a chug instability in the Common Extensible Cryogenic Engine (CECE), a modified RL10 engine. A separate review was also conducted on classic time lag combustion instability models. Several new stability models are developed by incorporating important features to the classic and contemporary models, which are commonly used in the aerospace rocket industry. The first two models are extensions of the original Crocco and Cheng concentrated combustion model with feed system contributions. A third new model is an extension to the Wenzel and Szuch double-time lag model also with feed system contributions. The first new model incorporates the appropriate injector acoustic boundary condition which is neglected in contemporary models. This new feature shows that the injector boundary can play a significant role for combustion stability, especially for gaseous injection systems or a system with an injector orifice on the order of the size of the chamber. The second new model additionally accounts for resistive effects. Advanced signal analysis techniques are used to extract frequency-dependent damping from a gas generator component data set. The damping values are then used in the new stability model to more accurately represent the chamber response of the component. The results show a more realistic representation of stability margin by incorporating the appropriate damping effects into the chamber response from data. The original Crocco model, a contemporary model, and the two new models are all compared and contrasted to a marginally stable test case showing their applicability. The model that incorporates resistive aspects shows the best comparison to the test data. Parametrics are also examined to show the influence of the new features and their applicability. The new features allow a more accurate representation of stability margin to be obtained. The third new model is an extension to the Wenzel and Szuch double-time lag chug model. The feed system chug model is extended to account for generic propellant flow rates. This model is also extended to incorporate aspects due to oxygen boiling and helium injection in the feed system. The solutions to the classic models, for the single-time lag and the double-time lag models, are often plotted on a practical engine operating map, however the models have presented some difficulties for numerical algorithms for several reasons. Closed-form solutions for use on these practical operating maps are formulated and developed. These models are incorporated in a graphical user interface tool and the new model is compared to an extensive data set. It correctly predicts the stability behavior at various operating conditions incorporating the influence of injected helium and boiling oxygen in the feed system.
Method of controlling a variable geometry type turbocharger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Y.
1988-08-23
This patent describes a method of controlling the supercharging pressure of a variable geometry type turbocharger having a bypass, comprising the following steps which are carried out successively: receiving signals from an engine speed sensor and from an engine knocking sensor; receiving a signal from a throttle valve sensor; judging whether or not an engine is being accelerated, and proceeding to step below if the engine is being accelerated and to step below if the engine is not being accelerated, i.e., if the engine is in a constant speed operation; determining a first correction value and proceeding to step below;more » judging whether or not the engine is knocking, and proceeding to step (d) if knocking is occurring and to step (f) below if no knocking is occurring; determining a second correction value and proceeding to step; receiving signals from the engine speed sensor and from an airflow meter which measures the quantity of airflow to be supplied to the engine; calculating an airflow rate per engine revolution; determining a duty valve according to the calculated airflow rate; transmitting the corrected duty value to control means for controlling the geometry of the variable geometry type turbocharger and the opening of bypass of the turbocharger, thereby controlling the supercharging pressure of the turbocharger.« less
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.
1999-01-01
With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.
NASA Astrophysics Data System (ADS)
Marzbanrad, Javad; Tahbaz-zadeh Moghaddam, Iman
2016-09-01
The main purpose of this paper is to design a self-tuning control algorithm for an adaptive cruise control (ACC) system that can adapt its behaviour to variations of vehicle dynamics and uncertain road grade. To this aim, short-time linear quadratic form (STLQF) estimation technique is developed so as to track simultaneously the trend of the time-varying parameters of vehicle longitudinal dynamics with a small delay. These parameters are vehicle mass, road grade and aerodynamic drag-area coefficient. Next, the values of estimated parameters are used to tune the throttle and brake control inputs and to regulate the throttle/brake switching logic that governs the throttle and brake switching. The performance of the designed STLQF-based self-tuning control (STLQF-STC) algorithm for ACC system is compared with the conventional method based on fixed control structure regarding the speed/distance tracking control modes. Simulation results show that the proposed control algorithm improves the performance of throttle and brake controllers, providing more comfort while travelling, enhancing driving safety and giving a satisfactory performance in the presence of different payloads and road grade variations.
40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?
Code of Federal Regulations, 2011 CFR
2011-07-01
... your own testing. If you submit certification test data collected with both discrete-mode and ramped...-use operation. (d) For full-load operating modes, operate the engine at wide-open throttle. (e) See 40...
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1992-01-01
Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.
Emergency Control Aircraft System Using Thrust Modulation
NASA Technical Reports Server (NTRS)
Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)
2000-01-01
A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.
Integrated control and health management. Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Holzmann, Wilfried A.; Hayden, Warren R.
1988-01-01
To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.
Engine combustion control at low loads via fuel reactivity stratification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.
A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustionmore » chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.« less
DISC BRAKE SYSTEM (CENTER), INCLUDING BELT DRIVE TO SECONDARY GENERAL ...
DISC BRAKE SYSTEM (CENTER), INCLUDING BELT DRIVE TO SECONDARY GENERAL MOTORS ENGINE (LEFT)AND FERREL REDUCTION GEAR CONNECTION TO ALLIS-CHALMERS DIESEL ENGINE (RIGHT), LOOKING NORTH. NOTE TORQUE CONVERTER (TOP) AND THROTTLE (BELOW) LINES CONNECTING TO PRIMARY ENGINE. - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT
The Control System for the X-33 Linear Aerospike Engine
NASA Technical Reports Server (NTRS)
Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey
1998-01-01
The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.
Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown
NASA Technical Reports Server (NTRS)
Lee, Allan Y.
2011-01-01
The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These insights could help engineers to achieve a better "balance" between the conflicting needs of achieving a safe touchdown velocity, a low-weight landing mechanism, low engine fuel cost, and other design goals. In comparing the computed optimal control results with the preflight landing trajectory design of the Apollo-11 mission, we noted interesting similarities between the two missions.
Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1996-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Performance Evaluation of the T6 Ion Engine
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Goebel, Dan M.; Hofer, Richard R.; Polk, James E.; Wallace, Neil C.; Simpson, Huw
2010-01-01
The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type ion thruster produced by QinetiQ, Ltd., and is baselined for the European Space Agency BepiColombo mission to Mercury and is being qualified under ESA sponsorship for the extended range AlphaBus communications satellite platform. The heritage of the T6 includes the T5 ion thruster now successfully operating on the ESA GOCE spacecraft. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics at the Jet Propulsion Laboratory. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5 to 4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. The engine performance agreed well with published data on this thruster. At full power the T6 produced 143 mN of thrust at a specific impulse of 4120 seconds and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 seconds and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NSTAR thruster that has flown on NASA missions. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium.
DOT National Transportation Integrated Search
1975-11-01
The diesel engine itself is an important source of diesel powered vehicle noise, and becomes dominant after proper treatment of intake/exhaust and cooling system noise at vehicle speeds below fifty miles per hour. An investigation is reported, in two...
Trust Control of VTOL Aircraft Part Deux
NASA Technical Reports Server (NTRS)
Dugan, Daniel C.
2014-01-01
Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1989-01-01
An integrated autopilot/autothrottle was designed for flight test on the NASA TSRV B-737 aircraft. The system was designed using a total energy concept and is attended to achieve the following: (1) fuel efficiency by minimizing throttle activity; (2) low development and implementation costs by designing the control modes around a fixed inner loop design; and (3) maximum safety by preventing stall and engine overboost. The control law was designed initially using linear analysis; the system was developed using nonlinear simulations. All primary design requirements were satisfied.
View forward in starboard engine room, compartment C1. Lagged cylinders ...
View forward in starboard engine room, compartment C-1. Lagged cylinders at lower right are part of a steam engine that poers the salt water circulating pumps. Note main throttle wheel at lower center of photograph. Handles at lower center are cylinder manifold drains. Handles to the right are engine starting valves. (062) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
High variable mixture ratio oxygen/hydrogen engine
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Tu, W. H.; Weiss, A. H.
1988-01-01
The ability of an O2/H2 engine to operate over a range of high-propellant mixture ratios was previously shown to be advantageous in single stage to orbit (SSTO) vehicles. The results are presented for the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle up to 60 percent of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the operating requirements and ranges of conditions that derive from the overall engine requirements. The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined. Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.
Station Keeping of Small Outboard-Powered Boats
NASA Technical Reports Server (NTRS)
Fisher, A. D.; VanZwieten, J. H., Jr.; VanZwieten, T. S.
2010-01-01
Three station keeping controllers have been developed which work to minimize displacement of a small outboard-powered vessel from a desired location. Each of these three controllers has a common initial layer that uses fixed-gain feedback control to calculate the desired heading of the vessel. A second control layer uses a common fixed-gain feedback controller to calculate the net forward thrust, one of two algorithms for controlling engine angle (Fixed-Gain Proportional-integral-derivative (PID) or PID with Adaptively Augmented Gains), and one of two algorithms for differential throttle control (Fixed-Gain PID and PID with Adaptive Differential Throttle gains), which work together to eliminate heading error. The three selected controllers are evaluated using a numerical simulation of a 33-foot center console vessel with twin outboards that is subject to wave, wind, and current disturbances. Each controller is tested for its ability to maintain position in the presence of three sets of environmental disturbances. These algorithms were tested with current velocity of 1.5 m/s, significant wave height of 0.5 m, and wind speeds of 2, 5, and 10 m/s. These values were chosen to model conditions a small vessel may experience in the Gulf Stream off of Fort Lauderdale. The Fixed-gain PID controller progressively got worse as wind speeds increased, while the controllers using adaptive methodologies showed consistent performance over all weather conditions and decreased heading error by as much as 20%. Thus, enhanced robustness to environmental changes has been gained by using an adaptive algorithm.
Off-Design Analysis of a High Bypass Turbofan Using a Pulsed Detonation Combustor
2010-03-01
Engine Off-Design Results.............................................................39 Code Verification and Operating Limit ...38 4.4. Maximum Operating Limit Baseline and Hybrid Engine ......................................... 41 4.5. Throttle...that an isentropic expansion process takes place followed by a heat rejection to close the cycle. The derivation for the solutions for the Chapman
Natural gas the new locomotive fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuskey, L.W.
1984-01-01
This is a report on modification of a locomotive diesel engine to a dual-fuel engine to determine if the dual fuel engine in railway service will provide high performance, lower fuel and maintenance costs. After the locomotive was modified and the new governor and linkage were installed by General Motors at the BN's Northtown Diesel Shop near Minneapolis, the locomotive went through startup procedures. General Motors participated in startup. Some calibration, adjustments and minor piping changes were required but in general the problems encountered in startups were quite insignificant. The locomotive was connected to the load box (static test) duringmore » startup and at 720 RPM exceeded the required output for this test as established by the parties. Operation on straight oil over the range from idle through No. 8 throttle notch and on dual fuel from No. 5 through No. 8 throttle notch was smooth as was the transfer from oil to gas and from gas to oil. The engine exhaust on straight oil was almost clear but on gas it was totally clear. 16 references, 3 figures, 4 tables.« less
Knock detection system to improve petrol engine performance, using microphone sensor
NASA Astrophysics Data System (ADS)
Sujono, Agus; Santoso, Budi; Juwana, Wibawa Endra
2017-01-01
An increase of power and efficiency of spark ignition engines (petrol engines) are always faced with the problem of knock. Even the characteristics of the engine itself are always determined from the occurrence of knock. Until today, this knocking problem has not been solved completely. Knock is caused by principal factors that are influenced by the engine rotation, the load or opening the throttle and spark advance (ignition timing). In this research, the engine is mounted on the engine test bed (ETB) which is equipped with the necessary sensors. Knock detection using a new method, which is based on pattern recognition, which through the knock sound detection by using a microphone sensor, active filter, the regression of the normalized envelope function, and the calculation of the Euclidean distance is used for identifying knock. This system is implemented with a microcontroller which uses fuzzy logic controller ignition (FLIC), which aims to set proper spark advance, in accordance with operating conditions. This system can improve the engine performance for approximately 15%.
Generator voltage stabilisation for series-hybrid electric vehicles.
Stewart, P; Gladwin, D; Stewart, J; Cowley, R
2008-04-01
This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
Performance of Maybach 300-horsepower airplane engine
NASA Technical Reports Server (NTRS)
Sparrow, S W
1923-01-01
This report contains the results of a test made upon a Maybach Engine in the altitude chamber of the Bureau of Standards, where controlled conditions of temperature and pressure can be made the same as those of the desired altitude. The results of this test lead to the following conclusions: from the standpoint of thermal efficiency the full-load performance of the engine is excellent at densities corresponding to altitudes up to and including 15,000 feet. The brake mean effective pressure is rather low even at wide-open throttle. This tends to give a high weight per horsepower, in as much as the weight of many engine parts is governed by the size rather than the power of the engine. At part load the thermal efficiency of the engine is low. Judged on a basis of performance the engine's chief claim to interest would appear to lie in the carburetor design, which is largely responsible excellent full-load efficiency and for its poor part-load efficiency.
Performance seeking control program overview
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The Performance Seeking Control (PSC) program evolved from a series of integrated propulsion-flight control research programs flown at NASA Dryden Flight Research Center (DFRC) on an F-15. The first of these was the Digital Electronic Engine Control (DEEC) program and provided digital engine controls suitable for integration. The DEEC and digital electronic flight control system of the NASA F-15 were ideally suited for integrated controls research. The Advanced Engine Control System (ADECS) program proved that integrated engine and aircraft control could improve overall system performance. The objective of the PSC program was to advance the technology for a fully integrated propulsion flight control system. Whereas ADECS provided single variable control for an average engine, PSC controlled multiple propulsion system variables while adapting to the measured engine performance. PSC was developed as a model-based, adaptive control algorithm and included four optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, maximum thrust, and minimum thrust. Subsonic and supersonic flight testing were conducted at NASA Dryden covering the four PSC optimization modes and over the full throttle range. Flight testing of the PSC algorithm, conducted in a series of five flight test phases, has been concluded at NASA Dryden covering all four of the PSC optimization modes. Over a three year period and five flight test phases 72 research flights were conducted. The primary objective of flight testing was to exercise each PSC optimization mode and quantify the resulting performance improvements.
Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2017-01-01
The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
NASA Technical Reports Server (NTRS)
Gamble, Ed; Holzmann, Gerard
2011-01-01
Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses
The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle
NASA Technical Reports Server (NTRS)
Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy
1994-01-01
This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.
NASA Technical Reports Server (NTRS)
Gelalles, A G; Marsh, E T
1933-01-01
Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.
B-737 Linear Autoland Simulink Model
NASA Technical Reports Server (NTRS)
Belcastro, Celeste (Technical Monitor); Hogge, Edward F.
2004-01-01
The Linear Autoland Simulink model was created to be a modular test environment for testing of control system components in commercial aircraft. The input variables, physical laws, and referenced frames used are summarized. The state space theory underlying the model is surveyed and the location of the control actuators described. The equations used to realize the Dryden gust model to simulate winds and gusts are derived. A description of the pseudo-random number generation method used in the wind gust model is included. The longitudinal autopilot, lateral autopilot, automatic throttle autopilot, engine model and automatic trim devices are considered as subsystems. The experience in converting the Airlabs FORTRAN aircraft control system simulation to a graphical simulation tool (Matlab/Simulink) is described.
Improving Word Similarity by Augmenting PMI with Estimates of Word Polysemy
2011-12-29
radiator, brake , throttle, speeding, uptown, curb, auto, skid, balloon, truck, refrigerator, driver, downtown, parachute, gasoline, steering, spin...chauffeur, garage, motor, trolley, locomotive, conductor, automobile, limousine, freight, headlight, train, driver, brake , siding, passenger, engine
Evaluation of advanced displays for engine monitoring and control
NASA Technical Reports Server (NTRS)
Summers, L. G.
1993-01-01
The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.
System for Anomaly and Failure Detection (SAFD) system development
NASA Technical Reports Server (NTRS)
Oreilly, D.
1992-01-01
This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition.
Investigation of acceleration characteristics of a single-spool turbojet engine
NASA Technical Reports Server (NTRS)
Oppenheimer, Frank L; Pack, George J
1953-01-01
Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.
A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring
NASA Technical Reports Server (NTRS)
Johnson, Steven A.
1990-01-01
A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
NASA Technical Reports Server (NTRS)
Smith, Garrett; Phillips, Alan
2002-01-01
There are currently three dominant TSTO class architectures. These are Series Burn (SB), Parallel Burn with crossfeed (PBw/cf), and Parallel Burn without crossfeed (PBncf). The goal of this study was to determine what factors uniquely affect PBncf architectures, how each of these factors interact, and to determine from a performance perspective whether a PBncf vehicle could be competitive with a PBw/cf or SB vehicle using equivalent technology and assumptions. In all cases, performance was evaluated on a relative basis for a fixed payload and mission by comparing gross and dry vehicle masses of a closed vehicle. Propellant combinations studied were LOX: LH2 propelled orbiter and booster (HH) and LOX: Kerosene booster with LOX: LH2 orbiter (KH). The study conclusions were: 1) a PBncf orbiter should be throttled as deeply as possible after launch until the staging point. 2) a detailed structural model is essential to accurate architecture analysis and evaluation. 3) a PBncf TSTO architecture is feasible for systems that stage at mach 7. 3a) HH architectures can achieve a mass growth relative to PBw/cf of < 20%. 3b) KH architectures can achieve a mass growth relative to Series Burn of < 20%. 4) center of gravity (CG) control will be a major issue for a PBncf vehicle, due to the low orbiter specific thrust to weight ratio and to the position of the orbiter required to align the nozzle heights at liftoff. 5 ) thrust to weight ratios of 1.3 at liftoff and between 1.0 and 0.9 when staging at mach 7 appear to be close to ideal for PBncf vehicles. 6) performance for all vehicles studied is better when staged at mach 7 instead of mach 5. The study showed that a Series Burn architecture has the lowest gross mass for HH cases, and has the lowest dry mass for KH cases. The potential disadvantages of SB are the required use of an air-start for the orbiter engines and potential CG control issues. A Parallel Burn with crossfeed architecture solves both these problems, but the mechanics of a large bipropellant crossfeed system pose significant technical difficulties. Parallel Burn without crossfeed vehicles start both booster and orbiter engines on the ground and thus avoid both the risk of orbiter air-start and the complexity of a crossfeed system. The drawback is that the orbiter must use 20% to 35% of its propellant before reaching the staging point. This induces a weight penalty in the orbiter in order to carry additional propellant, which causes a further weight penalty in the booster to achieve the same staging point. One way to reduce the orbiter propellant consumption during the first stage is to throttle down the orbiter engines as much as possible. Another possibility is to use smaller or fewer engines. Throttling the orbiter engines soon after liftoff minimizes CG control problems due to a low orbiter liftoff thrust, but may result in an unnecessarily high orbiter thrust after staging. Reducing the number or size of engines size may cause CG control problems and drift at launch. The study suggested possible methods to maximize performance of PBncf vehicle architectures in order to meet mission design requirements.
Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.
1994-01-01
Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.
NASA Technical Reports Server (NTRS)
Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.
1959-01-01
A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.
Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications
NASA Technical Reports Server (NTRS)
Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert
2002-01-01
A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducted for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis are presented. C* efficiency was very high (approx. 100%) at the middle of the throttleable range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Dynamic throttling of this injector was attempted with marginal success due to the immaturity of the throttling control system. Although the targeted mixture ratio of 6.0 was not maintained throughout the dynamic throttling profile, the injector behaved well over the wide range of conditions.
Thaw flow control for liquid heat transport systems
Kirpich, Aaron S.
1989-01-01
In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.
Contingency power concepts for helicopter turboshaft engine
NASA Technical Reports Server (NTRS)
Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.
1984-01-01
Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.
Army Ground Vehicles and Current/Future Emission Standards
2008-10-23
cooler’ combustion temperatures • Two stages of turbocharging (single stage for smaller displacement engines) • Additional charge air cooling...Recirculate and cool exhaust gas up or downstream of turbine ( turbocharger ) ; require back pressure restriction and/or intake throttle to flow
NASA Technical Reports Server (NTRS)
Ketchum, James R.; Blivas, Darnold; Pack, George J.
1950-01-01
The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.
2014-01-01
The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.
Digital implementation of the TF30-P-3 turbofan engine control
NASA Technical Reports Server (NTRS)
Cwynar, D. S.; Batterton, P. G.
1975-01-01
The standard hydromechanical control modes for TF30-P-3 engine were implemented on a digital process control computer. Programming methods are described, and a method is presented to solve stability problems associated with fast response dynamic loops contained within the exhaust nozzle control. A modification of the exhaust nozzle control to provide for either velocity or position servoactuation systems is discussed. Transient response of the digital control was evaluated by tests on a real time hybrid simulation of the TF30-P-3 engine. It is shown that the deadtime produced by the calculation time delay between sampling and final output is more significant to transient response than the effects associated with sampling rate alone. For the main fuel control, extended update and calculation times resulted in a lengthened transient response to throttle bursts from idle to intermediate with an increase in high pressure compressor stall margin. Extremely long update intervals of 250 msec could be achieved without instability. Update extension for the exhaust nozzle control resulted in a delayed response of the afterburner light-off detector and exhaust nozzle overshoot with resulting fan oversuppression. Long update times of 150 msec caused failure of the control due to a false indication by the blowout detector.
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine
NASA Technical Reports Server (NTRS)
Berkowitz, M.; Hermes, W. L.; Mount, R. E.; Myers, D.
1976-01-01
The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested.
Measurement and comparison of Bangkok diesel bus emissions and performance using on-board equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnette, A.D.; Kishan, S.; Wangwongwatana, S.
1997-12-31
An on-board measurement system was assembled and used to compare the emissions and performance of buses in Bangkok, Thailand under actual driving conditions. Three similar buses were compared: one using an engine without special emissions control design, one with an engine meeting Euro 1 standards, and one with an engine meeting Euro 2 standards. As the buses drove their routes, second-by-second data were collected for engine rpm, throttle position, vehicle speed, exhaust concentrations of hydrocarbons, carbon monoxide, carbon dioxide, oxygen, nitric oxide, and exhaust opacity. Vehicle performance data were calculated using algorithms developed during previous driving studies in Bangkok. Grammore » per liter of fuel used emission factors were developed for gaseous pollutants using combustion calculations and these were translated into gram per kilometer traveled emission factors using the fuel efficiency data for the buses. Smoke data were left in terms of opacity. Test results are designed to be used to compare the cost benefit of upgrading buses with no emissions controls to Euro 1 or Euro 2 technologies. Ongoing tests will help bus companies determine the benefit of incremental improvements to bus engines and other emissions reduction strategies.« less
Adaptive Control of a Transport Aircraft Using Differential Thrust
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan
2009-01-01
The paper presents an adaptive control technique for a damaged large transport aircraft subject to unknown atmospheric disturbances such as wind gust or turbulence. It is assumed that the damage results in vertical tail loss with no rudder authority, which is replaced with a differential thrust input. The proposed technique uses the adaptive prediction based control design in conjunction with the time scale separation principle, based on the singular perturbation theory. The application of later is necessitated by the fact that the engine response to a throttle command is substantially slow that the angular rate dynamics of the aircraft. It is shown that this control technique guarantees the stability of the closed-loop system and the tracking of a given reference model. The simulation example shows the benefits of the approach.
7. RW Meyer Sugar Mill: 18761889. Engine and boiler house; ...
7. RW Meyer Sugar Mill: 1876-1889. Engine and boiler house; ca. 1881. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. View shows interior of engine and boiler house intact. The steam-feed pipe is still attached to throttle valve, not the case in 1978 view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Close up view of the center console on the flight ...
Close up view of the center console on the flight deck of the Orbiter Discovery showing the console's instrumentation and controls. The commanders station is located to the left in this view and the pilot's station is to the right in the view. The handle and lever located on the right side of the center console and towards its front is one of a pair, the commander has one on the left of his seat in his station, of Speed Brake/Thrust Controllers. These are dual purpose controllers. During ascent the controller can be use to throttle the main engines and during entry the controllers can be used to control aerodynamic drag by opening or closing the orbiter's speed brake. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.
1995-01-01
Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.
Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)
NASA Technical Reports Server (NTRS)
Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.
2010-01-01
Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.
Results of a XIPS(copyrighted) 25-cm Thruster Discharge Cathode Wear Test
NASA Technical Reports Server (NTRS)
Polk, James E.; Goebel, Dan M.; Tighe, William
2009-01-01
The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS (c) discharge cathode assembly was subjected to a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 16079 hours were accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe, an intermediate power point at 2.76 kWe and the minimum power point at 0.49 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate and minimum power points.
Ongoing Wear Test of a XIPS(c) 25-Centimeter Thruster Discharge Cathode
NASA Technical Reports Server (NTRS)
Polk, James E.; Goebel, Dan M.; Tighe, William
2008-01-01
The Xenon Ion Propulsion System (XIPS(c)) 25-cm thruster produced by L-3 Communications Electron Technologies, Inc. offers a number of potential benefits for planetary missions, including high efficiency and high Isp over a large power throttling range and availability from an active product line. The thruster is qualified for use on commercial communications satellites, which have requirements differing from those for typical planetary missions. In particular, deep space missions require longer service life over a broad range of throttling conditions. A XIPS(c) discharge cathode assembly is currently undergoing a long duration test to extend operating experience at the maximum power point and at throttled conditions unique to planetary mission applications. A total of 11080 hours have been accumulated at conditions corresponding to the full power engine operating point at 4.2 kWe and an intermediate power point at 2.76 kWe. Minor performance losses and cathode keeper erosion were observed at the full power point, but there were no changes in performance and negligible erosion at the intermediate power point.
Vehicle/engine integration. [orbit transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, L. P.; Vinopal, T. J.; Florence, D. E.; Michel, R. W.; Brown, J. R.; Bergeron, R. P.; Weldon, V. A.
1984-01-01
VEHICLE/ENGINE Integration Issues are explored for orbit transfer vehicles (OTV's). The impact of space basing and aeroassist on VEHICLE/ENGINE integration is discussed. The AOTV structure and thermal protection subsystem weights were scaled as the vehicle length and surface was changed. It is concluded that for increased allowable payload lengths in a ground-based system, lower length-to-diameter (L/D) is as important as higher mixture ration (MR) in the range of mid L/D ATOV's. Scenario validity, geometry constraints, throttle levels, reliability, and servicing are discussed in the context of engine design and engine/vehicle integration.
Aircraft Turbine Engine Control Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Analysis on electronic control unit of continuously variable transmission
NASA Astrophysics Data System (ADS)
Cao, Shuanggui
Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.
Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, Hani; Shilo, Vladislav
2016-01-01
The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster,power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions.The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive high level commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature extremes and demonstrated total efficiencies a high as 95 percent. It was integrated with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.
Performance of a High-Fidelity 4kW-Class Engineering Model PPU and Integration with HiVHAc System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Kamhawi, Hani; Shilo, Vlad
2016-01-01
The High Voltage Hall Accelerator (HiVHAc) propulsion system consists of a thruster, power processing unit (PPU), and propellant feed system. An engineering model PPU was developed by Colorado Power Electronics, Inc. funded by NASA's Small Business Innovative Research Program. This PPU uses an innovative 3-phase resonant converter to deliver 4 kW of discharge power over a wide range of input and output voltage conditions. The PPU includes a digital control interface unit that automatically controls the PPU and a xenon flow control module (XFCM). It interfaces with a control computer to receive highlevel commands and relay telemetry through a MIL-STD-1553B interface. The EM PPU was thoroughly tested at GRC for functionality and performance at temperature limits and demonstrated total efficiencies a high as 95 percent. Integrated testing of the unit was performed with the HiVHAc thruster and the XFCM to demonstrate closed-loop control of discharge current with anode flow. Initiation of the main discharge and power throttling were also successfully demonstrated and discharge oscillations were characterized.
NASA Technical Reports Server (NTRS)
Gerren, Donna S.
1993-01-01
A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).
NASA Technical Reports Server (NTRS)
Colis, William D
1947-01-01
The icing characteristics, the de-icing rate with hot air, and the effect of impact ice on fuel metering and mixture distribution have been determined in a laboratory investigation of that part of the engine induction system consisting of a three-barrel injection-type carburetor and a supercharger housing with spinner-type fuel injection from an 18-cylinder radial engine used on a large twin-engine cargo airplane. The induction system remained ice-free at carburetor-air temperatures above 36 F regardless of the moisture content of the air. Between carburetor-air temperatures of 32 F and 36 F with humidity ratios in excess of saturation, serious throttling ice formed in the carburetor because of expansion cooling of the air; at carburetor-air temperatures below 32 F with humidity ratios in excess of saturation, serious impact-ice formations occurred, Spinner-type fuel injection at the entrance to the supercharger and heating of the supercharger-inlet elbow and the guide vanes by the warn oil in the rear engine housing are design features that proved effective in eliminating fuel-evaporation icing and minimized the formation of throttling ice below the carburetor. Air-flow recovery time with fixed throttle was rapidly reduced as the inlet -air wet -bulb temperature was increased to 55 F; further temperature increase produced negligible improvement in recovery time. Larger ice formations and lower icing temperatures increased the time required to restore proper air flow at a given wet-bulb temperature. Impact-ice formations on the entrance screen and the top of the carburetor reduced the over-all fuel-air ratio and increased the spread between the over-all ratio and the fuel-air ratio of the individual cylinders. The normal spread of fuel-air ratio was increased from 0.020 to 0.028 when the left quarter of the entrance screen was blocked in a manner simulating the blocking resulting from ice formations released from upstream duct walls during hot-air de-icing.
2009-02-01
four Allison T56 -A-15 turboprop engines which can generate in excess of 4500 horsepower at maximum power. This engine type uses a single entry, 14-stage...JP-8 JP-8 þ 100 Aircraft C-130H F-15 Engine Allison T56 P & W F100-PE-100 Composition (Vol %) Aromatics 16.3 12.4 Alkenes 1.6 2.5 Alkanes 82.1 85.1...respectively. Results are shown for the lowest and highest throttle settings for each of the engine types. The intra-engine variability of two T56
Exhaust gas recirculation in a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL
2008-05-27
A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.
NAHBE (Naval Academy Heat Balanced Engine) M151 Retrofit Evaluation
1983-08-15
ORGANIZATION NAME AND ADDRESS 10. PRGRAM ELEMENT PROJECT. TASK AREA I WORK UNIT NUMIIERS Sonex Research, Inc. 300 Chinquapin Round Road Annapolis, MD 21401...lower. 3. At wide open throttle (WOT) the pressure drop through the air delivery system prevented supplying sufficient secondary air to operate at
49 CFR 210.31 - Operation standards (stationary locomotives at 30 meters).
Code of Federal Regulations, 2010 CFR
2010-10-01
... stationary locomotives at load cells: (1) Each noise emission test shall begin after the engine of the locomotive has attained the normal cooling water operating temperature as prescribed by the locomotive manufacturer. (2) Noise emission testing in idle or maximum throttle setting shall start after a 40 second...
Simulation model of a twin-tail, high performance airplane
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.
1992-01-01
The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.
Rotorcraft contingency power study
NASA Technical Reports Server (NTRS)
Hirschkron, R.; Haynes, J. F.; Goldstein, D. N.; Davis, R. H.
1984-01-01
Twin helicopter engines are often sized by the power requirement of a safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 Contingency Power rating, permitting an engine size reduction. The merits of water injection, turbine cooling airflow modulation, throttle push, and a propellant auxiliary power plant were evaluated using military Life Cycle Cost (LCC) and commercial helicopter Direct Operating Cost (DOC) merit factors in a rubber engine and a rubber aircraft scenario.
Simplified Ion Thruster Xenon Feed System for NASA Science Missions
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.
2009-01-01
The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.
NASA B737 flight test results of the Total Energy Control System
NASA Technical Reports Server (NTRS)
Bruce, K. R.; Kelly, J. R.; Person, L. H., Jr.
1986-01-01
The Total Energy Control System was developed and tested in September 1985 during five flights on the NASA Langley Transport System Research Vehicle, a modified Boeing B737. In the system, the total kinetic and potential energy of the aircraft is controlled by the throttles, and the energy distribution is controlled by the elevator. A common inner loop is used for each mode of the autopilot, and all the control functions of a conventional pitch autopilot and autothrottle are integrated into a single generalized control concept, providing decoupled flightpath and maneuver control, and a coordinated throttle response for all maneuvers. No instabilities or design problems requiring gain adjustment in flight were found, and comparison with simulation results showed excellent path tracking.
Automated Propulsion Data Screening demonstration system
NASA Technical Reports Server (NTRS)
Hoyt, W. Andes; Choate, Timothy D.; Whitehead, Bruce A.
1995-01-01
A fully-instrumented firing of a propulsion system typically generates a very large quantity of data. In the case of the Space Shuttle Main Engine (SSME), data analysis from ground tests and flights is currently a labor-intensive process. Human experts spend a great deal of time examining the large volume of sensor data generated by each engine firing. These experts look for any anomalies in the data which might indicate engine conditions warranting further investigation. The contract effort was to develop a 'first-cut' screening system for application to SSME engine firings that would identify the relatively small volume of data which is unusual or anomalous in some way. With such a system, limited and expensive human resources could focus on this small volume of unusual data for thorough analysis. The overall project objective was to develop a fully operational Automated Propulsion Data Screening (APDS) system with the capability of detecting significant trends and anomalies in transient and steady-state data. However, the effort limited screening of transient data to ground test data for throttle-down cases typical of the 3-g acceleration, and for engine throttling required to reach the maximum dynamic pressure limits imposed on the Space Shuttle. This APDS is based on neural networks designed to detect anomalies in propulsion system data that are not part of the data used for neural network training. The delivered system allows engineers to build their own screening sets for application to completed or planned firings of the SSME. ERC developers also built some generic screening sets that NASA engineers could apply immediately to their data analysis efforts.
NASA Astrophysics Data System (ADS)
Zhao, Z.-G.; Chen, H.-J.; Yang, Y.-Y.; He, L.
2015-09-01
For a hybrid car equipped with dual clutch transmission (DCT), the coordination control problems of clutches and power sources are investigated while taking full advantage of the integrated starter generator motor's fast response speed and high accuracy (speed and torque). First, a dynamic model of the shifting process is established, the vehicle acceleration is quantified according to the intentions of the driver, and the torque transmitted by clutches is calculated based on the designed disengaging principle during the torque phase. Next, a robust H∞ controller is designed to ensure speed synchronisation despite the existence of model uncertainties, measurement noise, and engine torque lag. The engine torque lag and measurement noise are used as external disturbances to initially modify the output torque of the power source. Additionally, during the torque switch phase, the torque of the power sources is smoothly transitioned to the driver's demanded torque. Finally, the torque of the power sources is further distributed based on the optimisation of system efficiency, and the throttle opening of the engine is constrained to avoid sharp torque variations. The simulation results verify that the proposed control strategies effectively address the problem of coordinating control of clutches and power sources, establishing a foundation for the application of DCT in hybrid cars.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon
1997-01-01
An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.
Propulsion Risk Reduction Activities for Non-Toxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for non-toxic or "green" propellants. The PCAD project focuses on the development of non-toxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of non-toxic propellants for space missions. Implementation of non-toxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that non-toxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Propulsion Risk Reduction Activities for Nontoxic Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Fisher, Kenneth L.
2010-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project s primary objective is to develop propulsion system technologies for nontoxic or "green" propellants. The PCAD project focuses on the development of nontoxic propulsion technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of nontoxic propellants for space missions. Implementation of nontoxic propellants in high performance propulsion systems offers NASA an opportunity to consider other options than current hypergolic propellants. The PCAD Project is emphasizing technology efforts in reaction control system (RCS) thruster designs, ascent main engines (AME), and descent main engines (DME). PCAD has a series of tasks and contracts to conduct risk reduction and/or retirement activities to demonstrate that nontoxic cryogenic propellants can be a feasible option for space missions. Work has focused on 1) reducing the risk of liquid oxygen/liquid methane ignition, demonstrating the key enabling technologies, and validating performance levels for reaction control engines for use on descent and ascent stages; 2) demonstrating the key enabling technologies and validating performance levels for liquid oxygen/liquid methane ascent engines; and 3) demonstrating the key enabling technologies and validating performance levels for deep throttling liquid oxygen/liquid hydrogen descent engines. The progress of these risk reduction and/or retirement activities will be presented.
Shakouri, Payman; Ordys, Andrzej; Askari, Mohamad R
2012-09-01
In the design of adaptive cruise control (ACC) system two separate control loops - an outer loop to maintain the safe distance from the vehicle traveling in front and an inner loop to control the brake pedal and throttle opening position - are commonly used. In this paper a different approach is proposed in which a single control loop is utilized. The objective of the distance tracking is incorporated into the single nonlinear model predictive control (NMPC) by extending the original linear time invariant (LTI) models obtained by linearizing the nonlinear dynamic model of the vehicle. This is achieved by introducing the additional states corresponding to the relative distance between leading and following vehicles, and also the velocity of the leading vehicle. Control of the brake and throttle position is implemented by taking the state-dependent approach. The model demonstrates to be more effective in tracking the speed and distance by eliminating the necessity of switching between the two controllers. It also offers smooth variation in brake and throttle controlling signal which subsequently results in a more uniform acceleration of the vehicle. The results of proposed method are compared with other ACC systems using two separate control loops. Furthermore, an ACC simulation results using a stop&go scenario are shown, demonstrating a better fulfillment of the design requirements. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
THRUST AUGMENTED NOZZLE (TAN) the New Paradigm for Booster Rockets
2006-07-12
station. The engine has to throttle to 34 percent (3X or 1020 psia) to keep from exceeding the acceleration limits. Figure 6. Baseline SSTO ...vehicle powered by seven up-sized SSME class engines. Figure 7. Baseline SSTO vehicle trajectory. With a payload fraction of 1 percent, it does not...want to invest in such a risky endeavor. American Institute of Aeronautics and Astronautics 6 B. TAN-Powered SSTO Vehicle For the Dual Fuel TAN
1992-01-01
boost plenum which houses the camshaft . The compressed mixture is metered by a throttle to intake valves of the engine. The engine is constructed from...difficulties associated with a time-tagged fault tree . In particular, recent work indicates that the multi-layer perception architecture can give good fdi...Abstract: In the past decade, wastepaper recycling has gained a wider acceptance. Depletion of tree stocks, waste water treatment demands and
Remote control for motor vehicle
NASA Technical Reports Server (NTRS)
Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)
1984-01-01
A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.
NASA Astrophysics Data System (ADS)
Servati, Hamid Beyragh
A liquid fuel film formation on the walls of an intake manifold adversely affects the engine performance and alters the overall air/fuel ratio from that scheduled by a fuel injector or carburetor and leads to adverse effects in vehicle driveability, exhaust emissions, and fuel economy. In this dissertation, the intake manifold is simulated by a horizontal circular duct. A model is provided to predict the rate of deposition and evaporation of the droplets in the intake manifold. The liquid fuel flow rate into the cylinders, mean film velocity and film thickness are determined as functions of engine parameters for both steady and transient operating conditions of the engine. A mathematical engine model is presented to simulate the dynamic interactions of the various engine components such as the air/fuel inlet element, intake manifold, combustion, dynamics and exhaust emissions. Inputs of the engine model are the intake manifold pressure and temperature, throttle angle, and air/fuel ratio. The observed parameters are the histories of fuel film thickness and velocity, fuel consumption, engine speed, engine speed hesitation time, and histories of CO, CO(,2), NO(,x), CH(,n), and O(,2). The effects of different air/fuel ratio control strategies on engine performance and observed parameters are also shown.
40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... from the dynamometer rolls shall be used. A speed vs. time recording, as evidence of dynamometer test... vehicle. In the case of vehicles with rear engine compartments (or if special designs make the above... appropriate throttle action to maintain the proper speed-time relationship, or to permit sampling system...
Clog Retard of a Vortex Throttle Joule-Thomson Cryocooler: Further Experimental Verification
NASA Astrophysics Data System (ADS)
Maytal, B.-Z.
2010-04-01
The demand of high purity gas supply for Joule-Thomson cryocoolers and liquefiers is crucial in order to avoid plug formation at the delicate throttling device. A throttle which would tolerate higher level of contamination is greatly desirable for more reliable operation. The vortex throttle has such a potential. A series of vortex throttles were applied to a miniature Joule-Thomson cryocooler and tested with precisely contaminated coolant. The instantaneous flow rate and the mode of its decay indicate the rate and nature of plug formation. Each experiment was a simultaneous run of two cryocoolers in parallel at similar conditions: one with a traditional throttle of short hole, and the other one with the vortex throttle. The clog retard behavior of the vortex throttle was verified. It runs about 2.5 times longer than the traditional one, while being fed by water vapor contaminated nitrogen at the levels of 5 and 17 PPM. The contamination level by carbon dioxide was 80 PPM and exhibited a different behavior of clog formation. Its effect on the cryocooler temperature stability with the vortex throttle was quite minor.
Propulsion Flight Research at NASA Dryden From 1967 to 1997
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Ray, Ronald J.; Conners, Timothy R.; Walsh, Kevin R.
1997-01-01
From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.
Centrifugal Compressor Surge Controlled
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2003-01-01
It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.
Advances in Thrust-Based Emergency Control of an Airplane
NASA Technical Reports Server (NTRS)
Creech, Gray; Burken, John J.; Burcham, Bill
2003-01-01
Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but also of each engine-control computer. Inasmuch as engine-manufacturer warranties do not apply to modified engines, the challenge became one of creating a PCA system that does not entail modifications of the engine computers.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
Spatially-Resolved Beam Current and Charge-State Distributions for the NEXT Ion Engine
NASA Technical Reports Server (NTRS)
Pollard, James E.; Diamant, Kevin D.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.
2010-01-01
Plume characterization tests with the 36-cm NEXT ion engine are being performed at The Aerospace Corporation using engineering-model and prototype-model thrusters. We have examined the beam current density and xenon charge-state distribution as functions of position on the accel grid. To measure the current density ratio j++/j+, a collimated Eprobe was rotated through the plume with the probe oriented normal to the accel electrode surface at a distance of 82 cm. The beam current density jb versus radial position was measured with a miniature planar probe at 3 cm from the accel. Combining the j++/j+ and jb data yielded the ratio of total Xe+2 current to total Xe+1 current (J++/J+) at forty operating points in the standard throttle table. The production of Xe+2 and Xe+3 was measured as a function of propellant utilization to support performance and lifetime predictions for an extended throttle table. The angular dependence of jb was measured at intermediate and far-field distances to assist with plume modeling and to evaluate the thrust loss due to beam divergence. Thrust correction factors were derived from the total doubles-to-singles current ratio and from the far-field divergence data
Experimental and analytical investigation of a modified ring cusp NSTAR engine
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2005-01-01
A series of experimental measurements on a modified laboratory NSTAR engine were used to validate a zero dimensional analytical discharge performance model of a ring cusp ion thruster. The model predicts the discharge performance of a ring cusp NSTAR thruster as a function the magnetic field configuration, thruster geometry, and throttle level. Analytical formalisms for electron and ion confinement are used to predict the ionization efficiency for a given thruster design. Explicit determination of discharge loss and volume averaged plasma parameters are also obtained. The model was used to predict the performance of the nominal and modified three and four ring cusp 30-cm ion thruster configurations operating at the full power (2.3 kW) NSTAR throttle level. Experimental measurements of the modified engine configuration discharge loss compare well with the predicted value for propellant utilizations from 80 to 95%. The theory, as validated by experiment, indicates that increasing the magnetic strength of the minimum closed reduces maxwellian electron diffusion and electrostatically confines the ion population and subsequent loss to the anode wall. The theory also indicates that increasing the cusp strength and minimizing the cusp area improves primary electron confinement increasing the probability of an ionization collision prior to loss at the cusp.
Historical perspective - Viking Mars Lander propulsion
NASA Technical Reports Server (NTRS)
Morrisey, Donald C.
1989-01-01
This paper discusses the Viking 1 and 2 missions to Mars in 1975-1976 and describes the design evolution of the Viking Terminal Descent Rocket Engines responsible for decelerating the Viking Mars Landers during the final portion of their descent from orbit. The Viking Terminal Descent Rocket Engines have twice the thrust of the largest monopropellant hydrazine engine developed previously but weigh considerably less. The engine has 18 nozzles, the capability of 10:1 throttling, is totally sealed until fired, employs no organic unsealed materials, is 100 percent germ free, utilized hydrazine STM-20 as the propellant, and starts at a temperature more than 45 F below the propellant's freezing point.
The Development of a Control System for a 5 Kilowatt Free Piston Stirling Engine Convertor
NASA Technical Reports Server (NTRS)
Kirby, Raymond L.; Vitale, Nick
2008-01-01
The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling convertors for 2020 launch. Use of two of the nominal 5 kW convertors allows the system to be dynamically balanced. A group of four dual-convertor combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the Free Piston Stirling Engine (FPSE) convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.
Status of the NEXT Ion Engine Wear Test
NASA Technical Reports Server (NTRS)
Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.
2003-01-01
The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.
Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts
NASA Technical Reports Server (NTRS)
Lattime, Scott B.; Steinetz, Bruce M.; Robbie, Malcolm G.
2003-01-01
Improved blade tip sealing in the high pressure compressor and high pressure turbine can provide dramatic improvements in specific fuel consumption, time-on-wing, compressor stall margin and engine efficiency as well as increased payload and mission range capabilities of both military and commercial gas turbine engines. The preliminary design of a mechanically actuated active clearance control (ACC) system for turbine blade tip clearance management is presented along with the design of a bench top test rig in which the system is to be evaluated. The ACC system utilizes mechanically actuated seal carrier segments and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. The purpose of this active clearance control system is to improve upon current case cooling methods. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, re-burst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). The active turbine blade tip clearance control system design presented herein will be evaluated to ensure that proper response and positional accuracy is achievable under simulated high-pressure turbine conditions. The test rig will simulate proper seal carrier pressure and temperature loading as well as the magnitudes and rates of blade tip clearance changes of an actual gas turbine engine. The results of these evaluations will be presented in future works.
Rocket ascent G-limited moment-balanced optimization program (RAGMOP)
NASA Technical Reports Server (NTRS)
Lyons, J. T.; Woltosz, W. S.; Abercrombie, G. E.; Gottlieb, R. G.
1972-01-01
This document describes the RAGMOP (Rocket Ascent G-limited Momentbalanced Optimization Program) computer program for parametric ascent trajectory optimization. RAGMOP computes optimum polynomial-form attitude control histories, launch azimuth, engine burn-time, and gross liftoff weight for space shuttle type vehicles using a search-accelerated, gradient projection parameter optimization technique. The trajectory model available in RAGMOP includes a rotating oblate earth model, the option of input wind tables, discrete and/or continuous throttling for the purposes of limiting the thrust acceleration and/or the maximum dynamic pressure, limitation of the structural load indicators (the product of dynamic pressure with angle-of-attack and sideslip angle), and a wide selection of intermediate and terminal equality constraints.
49 CFR 325.59 - Measurement procedure; stationary test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... made of the sound level generated by a stationary motor vehicle as follows: (a) Park the motor vehicle... open throttle. Return the engine's speed to idle. (e) Observe the maximum reading on the sound level... this section until the first two maximum sound level readings that are within 2 dB(A) of each other are...
Electric propulsion system technology
NASA Technical Reports Server (NTRS)
Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.
1991-01-01
The work performed on the Ion Propulsion System Technology Task in FY90 is described. The objectives of this work fall under two broad categories. The first of these deals with issues associated with the application of xenon ion thrusters for primary propulsion of planetary spacecraft, and the second with the investigation of technologies which will facilitate the development of larger, higher power ion thrusters to support more advanced mission applications. Most of the effort was devoted to investigation of the critical issues associated with the use of ion thrusters for planetary spacecraft. These issues may be succinctly referred to as life time, system integration, and throttling. Chief among these is the engine life time. If the engines do not have sufficient life to perform the missions of interest, then the other issues become unimportant. Ion engine life time was investigated through two experimental programs: an investigation into the reduction of ion engine internal sputter erosion through the addition of small quantities of nitrogen, and a long duration cathode life test. In addition, a literature review and analysis of accelerator grid erosion were performed. The nitrogen addition tests indicated that the addition of between 0.5 and 1.0 percent of nitrogen by mass to the xenon propellant results in a reduction in the sputter erosion of discharge chamber components by a factor of between 20 and 50, with negligible reduction in thruster performance. The long duration test of a 6.35-mm dia. xenon hollow cathode is still in progress, and has accumulated more than 4,000 hours of operation at an emission current of 25 A at the time of this writing. One of the major system integration issues concerns possible interactions of the ion thruster produced charge exchange plasma with the spacecraft. A computer model originally developed to describe the behavior of mercury ion thruster charge exchange plasmas was resurrected and modified for xenon propellant. This model enables one to calculate the flow direction and local density of the charge exchange plasma, and indicates the degree to which this plasma can flow upstream of the thruster exhaust plane. A continuing effort to investigate the most desirable throttling technique for noble gas ion thrusters concentrated this year on experimentally determining the fixed flow rate throttling range of a 30-cm dia. thruster with a two-grid accelerator system. These experiments demonstrated a throttling capability which covers a 2.8 to 1 variation in input power. This throttling range is 55 percent greater than expected, and is due to better accelerator system performance at low net-to-total voltage ratios than indicated in the literature. To facilitate the development of large, higher power ion thrusters several brief studies were performed. These include the development of a technique which simulates ion thruster operation without beam extraction, the development of an optical technique to measure ion thruster grid distortion due to thermal expansion, tests of a capacitance measurement technique to quantify the accelerator system grid separation, and the development of a segmented thruster geometry which enables near term development of ion thrusters at power levels greater than 100 kW. Finally, a paper detailing the benefits of electric propulsion for the Space Exploration Initiative was written.
Flight directors for STOl aircraft
NASA Technical Reports Server (NTRS)
Rabin, U. H.
1983-01-01
Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2014-01-01
This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.
Experimental Determination of Exhaust Gas Thrust, Special Report
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Voss, Fred
1940-01-01
This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.
NASA Technical Reports Server (NTRS)
Rozovski, David; Theodore, Colin R.
2011-01-01
An experiment was conducted to compare a conventional helicopter Thrust Control Lever (TCL) to the Rotational Throttle Interface (RTI) for tiltrotor aircraft. The RTI is designed to adjust its orientation to match the angle of the tiltrotor s nacelles. The underlying principle behind the design is to increase pilot awareness of the vehicle s configuration state (i.e. nacelle angle). Four test pilots flew multiple runs on seven different experimental courses. Three predominant effects were discovered in the testing of the RTI: 1. Unintentional binding along the control axis resulted in difficulties with precision power setting, 2. Confusion in which way to move the throttle grip was present during RTI transition modes, and 3. Pilots were not able to distinguish small angle differences during RTI transition. In this experiment the pilots were able to successfully perform all of the required tasks with both inceptors although the handling qualities ratings were slightly worse for the RTI partly due to unforeseen deficiencies in the design. Pilots did however report improved understanding of nacelle movement during transitions with the RTI.
The performance simulation of single cylinder electric power confined piston engine
NASA Astrophysics Data System (ADS)
Gou, Yanan
2017-04-01
A new type of power plant. i.e, Electric Power Confined Piston Engine, is invented by combining the free piston engine and the crank connecting rod mechanism of the traditional internal combustion engine. Directly using the reciprocating movement of the piston, this new engine converts the heat energy produced by fuel to electrical energy and output it. The paper expounds the working mechanism of ECPE and establishes the kinematics and dynamics equations. Furthermore, by using the analytic method, the ECPE electromagnetic force is solved at load cases. Finally, in the simulation environment of MARLAB, the universal characteristic curve is obtained in the condition of rotational speed n between 1000 r/min and 2400 r/min, throttle opening α between 30% and 100%.
NASA Astrophysics Data System (ADS)
Simon, Miguel
In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)
Staying Motivated During Tough Times
NASA Technical Reports Server (NTRS)
Cole, Jennifer H.
2008-01-01
This paper describes the problem of team motivation on a project. Our team was working with the Department of Homeland Security (DHS). The task consisted of figuring out how to safely control and land an airliner using just the thrust from the engines. This is called Throttles-Only Control (TOC). We weren't allowed to modify the airliner in any way, given the time and cost involved, and we had to use a stock airliner with line pilots. The idea was to give the pilots an emergency checklist which would provide them with the most useful information in the shortest time to learn how to fly TOC. The DHS Program office that was supporting us had its funding redirected, due to new priorities. The process of staying motivated for finishing as much of the project as possible is described.
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2004-01-01
The goal of the Autonomous Propulsion System Technology (APST) project is to reduce pilot workload under both normal and anomalous conditions. Ongoing work under APST develops and leverages technologies that provide autonomous engine monitoring, diagnosing, and controller adaptation functions, resulting in an integrated suite of algorithms that maintain the propulsion system's performance and safety throughout its life. Engine-to-engine performance variation occurs among new engines because of manufacturing tolerances and assembly practices. As an engine wears, the performance changes as operability limits are reached. In addition to these normal phenomena, other unanticipated events such as sensor failures, bird ingestion, or component faults may occur, affecting pilot workload as well as compromising safety. APST will adapt the controller as necessary to achieve optimal performance for a normal aging engine, and the safety net of APST algorithms will examine and interpret data from a variety of onboard sources to detect, isolate, and if possible, accommodate faults. Situations that cannot be accommodated within the faulted engine itself will be referred to a higher level vehicle management system. This system will have the authority to redistribute the faulted engine's functionality among other engines, or to replan the mission based on this new engine health information. Work is currently underway in the areas of adaptive control to compensate for engine degradation due to aging, data fusion for diagnostics and prognostics of specific sensor and component faults, and foreign object ingestion detection. In addition, a framework is being defined for integrating all the components of APST into a unified system. A multivariable, adaptive, multimode control algorithm has been developed that accommodates degradation-induced thrust disturbances during throttle transients. The baseline controller of the engine model currently being investigated has multiple control modes that are selected according to some performance or operational criteria. As the engine degrades, parameters shift from their nominal values. Thus, when a new control mode is swapped in, a variable that is being brought under control might have an excessive initial error. The new adaptive algorithm adjusts the controller gains on the basis of the level of degradation to minimize the disruptive influence of the large error on other variables and to recover the desired thrust response.
Throttle pneumatic impact mechanism equipped with afterburner idle-stroke chamber
NASA Astrophysics Data System (ADS)
Dedov, Alexey; Frantseva, Eleanor; Dmitriev, Mikhail
2017-01-01
Pneumatic impact mechanisms are widely used in construction, mining and other economic sectors of a country. Such mechanisms are a base for a wide range of machines of various types and dimensions from hand-held tools to mounted piling hammers with impact energy up to 10 000 J. This paper is aimed at creation of pneumatic impact mechanism with the improved characteristics, including operation, energy use, weight and size which is especially important in space-limited working conditions. The research methods include development of computer mathematical model that can solve equations system and test a prototype model at the experimental stand. As a result of conducted research the pneumatic impact mechanism with the improved characteristics was developed. An engineering method for calculating throttle pneumatic impact mechanisms with a preset value of impact energy from 1 to 20 000 was investigated. This method allows creating percussive machines of a wide range of application.
Investigation of piloting aids for manual control of hypersonic maneuvers
NASA Technical Reports Server (NTRS)
Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.
1995-01-01
An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.
Investigation of Altitude Starting and Acceleration Characteristics of J47 Turbojet Engine
NASA Technical Reports Server (NTRS)
Golladay, Richard L; Bloomer, Harry E
1951-01-01
An investigation was conducted on an axial-flow-compressor type turbojet engine in the NACA Lewis altitude wind tunnel to determine the operational characteristics of several ignition systems, cross-fire tube configurations and fuel systems over a range of simulated flight conditions. The opposite-polarity-type spark plug provided the most satisfactory ignition. Increasing the cross-fire-tube diameter improved intercombustor flame propagation. At high windmilling speeds, accelerations to approximately 6200 rpm could be made at a preset constant throttle position. The use of a variable-area nozzle reduced acceleration time.
NEXT Ion Engine 2000 Hour Wear Test Results
NASA Technical Reports Server (NTRS)
Soulas, George C.; Kamhawi, Hani; Patterson, Michael J.; Britton, Melissa A.; Frandina, Michael M.
2004-01-01
The results of the NEXT 2000 h wear test are presented. This test was conducted with a 40 cm engineering model ion engine, designated EM1, at a 3.52 A beam current and 1800 V beam power supply voltage. Performance tests, which were conducted over a throttling range of 1.1 to 6.9 kW throughout the wear test, demonstrated that EM1 satisfied all thruster performance requirements. The ion engine accumulated 2038 h of operation at a thruster input power of 6.9 kW, processing 43 kg of xenon. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The ion engine was also inspected following the test. This paper presents these findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, D.
2011-10-01
Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deteriorationmore » that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.« less
Derated ion thruster design issues
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Rawlin, Vincent K.
1991-01-01
Preliminary activities to develop and refine a lightweight 30 cm engineering model ion thruster are discussed. The approach is to develop a 'derated' ion thruster capable of performing both auxiliary and primary propulsion roles over an input power range of at least 0.5 to 5.0 kilo-W. Design modifications to a baseline thruster to reduce mass and volume are discussed. Performance data over an order of magnitude input power range are presented, with emphasis on the performance impact of engine throttling. Thruster design modifications to optimize performance over specific power envelopes are discussed. Additionally, lifetime estimates based on wear test measurements are made for the operation envelope of the engine.
Evaluation of an Active Clearance Control System Concept
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Lattime, Scott B.; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.
2005-01-01
Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error).
Evaluation of an Active Clearance Control System Concept
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Lattime, Scott B.; Taylor, Shawn; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.
2005-01-01
Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance ( 0.001 in. error).
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John
2004-01-01
Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.
14. INTERIOR OF MAIN DECKNOTE LEVERS FROM CEILING CONTROLLED BY ...
14. INTERIOR OF MAIN DECK--NOTE LEVERS FROM CEILING CONTROLLED BY OPERATOR. LEFT HAND LEVER CONTROLLED THROTTLE, RIGHT HAND LEVER CONTROLLED SHOT GUN SWINGER. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA
1980-08-01
orientation, and HVAC systems have on three Army buildings in five different climatic regions. f Optimization of EnerV Usage in Military Facilities...The clinic’s environment is maintained by a multizone air-handling unit served by its own boiler and chiller . The building was modeled with 30... setpoints for the space temperature. This type of throttling range allows the heating system to control around a throttling range of 67 to 69oF (19 to 200
Translation Optics for 30 cm Ion Engine Thrust Vector Control
NASA Technical Reports Server (NTRS)
Haag, Thomas
2002-01-01
Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.
49 CFR 571.124 - Standard No. 124; Accelerator control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown...
49 CFR 571.124 - Standard No. 124; Accelerator control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown...
49 CFR 571.124 - Standard No. 124; Accelerator control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown...
49 CFR 571.124 - Standard No. 124; Accelerator control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... S3. Application. This standard applies to passenger cars, multi-purpose passenger vehicles, trucks... electric motors, the words throttle and idle refer to the motor speed controller and motor shutdown...
NASA Technical Reports Server (NTRS)
Riley, Donald R.; Glaab, Louis J.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.
1999-01-01
A piloted simulation study was performed for the purpose of indicating the noise reduction benefits and piloting performance that could occur for a typical 4-engine high-Speed Civil Transport (HSCT) configuration during takeoff when a dual thrust-cutback procedure was employed with throttle operation under direct computer control. Two thrust cutbacks were employed with the first cutback performed while the vehicle was accelerating on the run-way and the second cutback performed at a distance farther downrange. Added vehicle performance improvements included the incorporation of high-lift increments into the aerodynamic database of the vehicle and the use of limited engine oversizing. Four single-stream turbine bypass engines that had no noise suppression of any kind were used with this configuration. This approach permitted establishing the additional noise suppression level that was needed to meet Federal Air Regulation Part 36 Stage 3 noise levels for subsonic commercial jet aircraft. Noise level results were calculated with the jet mixing and shock noise modules of the Aircraft Noise Prediction Program (ANOPP).
NASA Technical Reports Server (NTRS)
Baber, H. T., Jr.
1979-01-01
Credence to systems weights and assurance that the noise study AST concept can be balanced were studied. Current titanium structural technology is assumed. A duct-burning turbofan variable stream control engine (VSCE), with noise reduction potential through use of a coannular nozzle was used. With 273 passengers, range of the AST-105-1 for a cruise Mach number of 2.62 is essentially transpacific. Lift-to-drag ratio is slightly higher than for previous AST configurations. It is trimmable over a center-of-gravity range of 4.7m (15.5 ft). Inherent high positive effective dihedral, typical of arrow-wing configurations in high-lift approach, would limit AST-105-1 to operating in crosswinds of 11.6 m/sec (22.4 kt), or less, with 75 percent of available lateral control. Normal power takeoff with cutback results in noise in excess of Federal Aviation Regulation Part 36 but less than for conventional procedure takeoff. Results of advanced (noncertificated) programmed throttle takeoff and approach procedures, not yet optimized, indicate that such can be an important additional method noise reduction.
NASA Astrophysics Data System (ADS)
Gladwin, D.; Stewart, P.; Stewart, J.
2011-02-01
This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.
Numerical Investigation of Second-Law Characteristics of Ramjet Throttling
2012-01-01
25 th International Congress of the Aeronautical Sciences, 2006. [6] Marley, C., and Riggins, D., “The Thermodynamics of Exergy Losses and...subsystems across an aircraft. This common loss metric is provided by analyzing exergy destruction or entropy generation [4] [5] ; exergy destruction...increased, the internal wetted surfaces of the ramjet become exposed. Subsequently, when the solid rocket propellant is exhausted, the engine is operated in
Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission
NASA Technical Reports Server (NTRS)
Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam
2004-01-01
Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.
Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine
NASA Astrophysics Data System (ADS)
Rifal, Mohamad; Sinaga, Nazaruddin
2016-04-01
In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.
Scavenging flow velocity in small two-strokes at high engine speed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekenberg, M.; Johansson, B.
1995-12-31
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities ({approximately}275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the wholemore » scavenging phase, higher than the vertical.« less
Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation
NASA Technical Reports Server (NTRS)
Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.
2007-01-01
The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
NASA B737 flight test results of the total energy control system
NASA Technical Reports Server (NTRS)
Bruce, Kevin R.
1987-01-01
The Total Energy Control System (TECS) is an integrated autopilot/autothrottle developed by BCAC that was test flown on NASA Langley's Transport System Research Vehicle (i.e., a highly modified Boeing B737). This systems was developed using principles of total energy in which the total kinetic and potential energy of the airplane was controlled by the throttles, and the energy distribution controled by the elevator. TECS integrates all the control functions of a conventional pitch autopilot and autothrottle into a single generalized control concept. This integration provides decoupled flightpath and maneuver control, as well as a coordinated throttle response for all maneuvers. A mode hierarchy was established to preclude exceeding airplane safety and performance limits. The flight test of TECS took place as a series of five flights over a 33-week period during September 1985 at NASA Langley. Most of the original flight test plan was completed within the first three flights with the system not exhibiting any instabilities or design problems that required any gain adjustment during flight.
Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner
NASA Technical Reports Server (NTRS)
Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.
2005-01-01
This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.
Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster
NASA Technical Reports Server (NTRS)
Craft, Joe; Ess, Robert; Sauvageau, Don
2003-01-01
The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungowski, W.M.; Weiss, M.H.; Price, G.R.
1996-01-01
A study of pressure oscillations occurring in small centrifugal compressor systems without a plenum is presented. Active and passive surge control were investigated theoretically and experimentally for systems with various inlet and discharge piping configurations. The determination of static and dynamic stability criteria was based on Greitzer`s (1981) lumped parameter model modified to accommodate capacitance of the piping. Experimentally, passive control using globe valves closely coupled to the compressor prevented the occurrence of surge even with the flow reduced to zero. Active control with a sleeve valve located at the compressor was effective but involved a significant component of passivemore » throttling which reduced the compressor efficiency. With an oscillator connected to a short side branch at the compressor, effective active control was achieved without throttling. Both methods of active control reduced the flow rate at surge onset by about 30%. In general, the experiments qualitatively confirmed the derived stability criteria.« less
46 CFR 113.35-17 - Vessels with navigating bridge control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Vessels with navigating bridge control. 113.35-17... bridge control. Each vessel with navigating bridge throttle control must have a positive mechanical stop on each telegraph transmitter that prevents movement to the “Navigating Bridge Control” position...
46 CFR 113.35-17 - Vessels with navigating bridge control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Vessels with navigating bridge control. 113.35-17... bridge control. Each vessel with navigating bridge throttle control must have a positive mechanical stop on each telegraph transmitter that prevents movement to the “Navigating Bridge Control” position...
8. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
8. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. It received steam from the locomotive type, fire-tube portable boiler in the background. The engine's water pump which pumped water from the feed-water clarifying cistern, in between the boiler and engine, through a pre-heat system and on to the boiler, is seen in front of the fluted cylinder. The fly-ball governor, missing its balls, the steam port, and manual throttle valve are above and behind the cylinder. The flywheel, drive shaft, and pulley are on the left side of the engine bed. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine Under Motored Operating Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dam, Noah; Sjöberg, Magnus; Zeng, Wei
The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual enginemore » cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Directinjection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5- 10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed greater spatial variation in the root-mean-square (RMS). Conversely, circular standard deviation results showed greater repeatability of the flow directionality and swirl vortex positioning than the simulations.« less
ARTIST CONCEPT - APOLLO XI - LUNAR SURFACE
1969-07-11
S69-39011 (July 1969) --- TRW Incorporated's artist concept depicting the Apollo 11 Lunar Module (LM) descending to the surface of the moon. Inside the LM will be astronauts Neil A. Armstrong, commander, and Edwin E. Aldrin Jr., lunar module pilot. Astronaut Michael Collins, command module pilot, will remain with the Command and Service Modules (CSM) in lunar orbit. TRW's LM descent engine will brake Apollo 11's descent to the lunar surface. The throttle-able rocket engine will be fired continuously the last 10 miles of the journey to the moon, slowing the LM to a speed of two miles per hour at touchdown. TRW Incorporated designed and built the unique engine at Redondo Beach, California under subcontract to the Grumman Aircraft Engineering Corporation, Bethpage, New York, the LM prime contractor.
Performance of B. M. W. 185-Horsepower Airplane Engine
NASA Technical Reports Server (NTRS)
Sparrow, S W
1923-01-01
This report deals with the results of a test made upon a B. M. W. Engine in the altitude chamber of the Bureau of Standards, where controlled conditions of temperature and pressure can be made to simulate those of the desired altitude. A remarkably low value of fuel consumption - 041 per B. H. P. hour - is obtained at 1,200 revolutions per minute at an air density of 0.064 pound per cubic foot and a brake thermal efficiency of 33 per cent and an indicated efficiency of 37 per cent at the above speed and density. In spite of the fact that the carburetor adjustment does not permit the air-fuel ratio of maximum economy to be obtained at air densities lower than 0.064, the economy is superior to most engines tested thus far, even at a density lower than 0.064, the economies superior to most engines tested thus far, even at a density (0.03) corresponding to an altitude of 25,000 feet. The brake mean effective pressure even at full throttle is rather low. Since the weight of much of the engine is governed more by its piston displacement than by the power developed, a decreased mean effective pressure usually necessitates increased weight per horsepower. The altitude performance of the engine is, in general, excellent, and its low fuel consumption is the outstanding feature of merit.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
Space Shuttle Main Engine - The Relentless Pursuit of Improvement
NASA Technical Reports Server (NTRS)
VanHooser, Katherine P.; Bradley, Douglas P.
2011-01-01
The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.
Effects of Induction-System Icing on Aircraft-Engine Operating Characteristics
NASA Technical Reports Server (NTRS)
Stevens, Howard C., Jr.
1947-01-01
An investigation was conducted on a multicylinder aircraft engine on a dynamometer stand to determine the effect of induction-system icing on engine operating characteristics and to compare the results with those of a previous laboratory investigation in which only the carburetor and the engine-stage supercharger assembly from the engine were used. The experiments were conducted at simulated glide power, low cruise power, and normal rated power through a range of humidity ratios and air temperatures at approximately sea-level pressure. Induction-system icing was found to occur within approximately the same limits as those established by the previous laboratory investigation after making suitable allowances for the difference in fuel volatility and throttle angles. Rough operation of the engine was experienced when ice caused a marked reduction in the air flow. Photographs of typical ice formations from this investigation indicate close similarity to icing previously observed in the laboratory.
State variable modeling of the integrated engine and aircraft dynamics
NASA Astrophysics Data System (ADS)
Rotaru, Constantin; Sprinţu, Iuliana
2014-12-01
This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.
Application of the NEXT Ion Thruster Lifetime Assessment to Thruster Throttling
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Herman, Daniel A.
2010-01-01
Ion thrusters are low thrust, high specific impulse devices with typical operational lifetimes of 10,000 to 30,000 hr over a range of throttling conditions. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest input power throttling point. This paper will provide a brief review the previous life assessment predictions for various throttling conditions. A further assessment will be presented examining the anticipated accelerator grid hole wall erosion and related electron backstreaming limit. The continued assessment of the NEXT ion thruster indicates that the first failure mode across the throttling range is expected to be in excess of 36,000 hr of operation from charge exchange induced groove erosion. It is at this duration that the groove is predicted to penetrate the accelerator grid possibly resulting in structural failure. Based on these lifetime and mission assessments, a throttling approach is presented for the Long Duration Test to demonstrate NEXT thruster lifetime and validate modeling.
Continuous pressure letdown system
Sprouse, Kenneth M.; Matthews, David R.; Langowski, Terry
2010-06-08
A continuous pressure letdown system connected to a hopper decreases a pressure of a 2-phase (gas and solid) dusty gas stream flowing through the system. The system includes a discharge line for receiving the dusty gas from the hopper, a valve, a cascade nozzle assembly positioned downstream of the discharge line, a purge ring, an inert gas supply connected to the purge ring, an inert gas throttle, and a filter. The valve connects the hopper to the discharge line and controls introduction of the dusty gas stream into the discharge line. The purge ring is connected between the discharge line and the cascade nozzle assembly. The inert gas throttle controls a flow rate of an inert gas into the cascade nozzle assembly. The filter is connected downstream of the cascade nozzle assembly.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad
2016-01-01
NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Exhaust emission and fuel economy tests (1975 Federal Test Procedure) were performed on a 1972 Plymouth Cricket equipped with a turbocharged four-cylinder stratified charge engine (Texaco Controlled Combustion System) and an exhaust catalyst. The tests were conducted for three different fuels; unleaded gasoline, number 2 diesel fuel, and a wide boiling range distillate fuel supplied by Texaco. Average hydrocarbon, carbon monoxide, and nitrogen oxide emissions (without throttling) obtained with diesel fuel were 0.89, 1.88, and 1.91 g/mi, respectively. Hydrocarbon, carbon monoxide and nitrogen oxide levels of 0.88, 0.97, and 1.61 g/mi, respectively, were obtained with the wide boiling range fuel;more » and emission levels of 1.37, 0.50, and 1.84 g/mi, respectively, were obtained with the unleaded gasoline. Average fuel economies for the diesel fuel, wide boiling range fuel, and unleaded gasoline were 30.8, 29.7, and 28.4 mi/gal., respectively. Thus, the turbocharged catalyst equipped stratified charge engine demonstrated the ability to meet 1975 interim levels on three different fuels with high fuel economy. Compliance with the 1977 hydrocarbon standard of 0.41 g/mi will require additional control devices or basic combustion improvement.« less
A concept for adaptive performance optimization on commercial transport aircraft
NASA Technical Reports Server (NTRS)
Jackson, Michael R.; Enns, Dale F.
1995-01-01
An adaptive control method is presented for the minimization of drag during flight for transport aircraft. The minimization of drag is achieved by taking advantage of the redundant control capability available in the pitch axis, with the horizontal tail used as the primary surface and symmetric deflection of the ailerons and cruise flaps used as additional controls. The additional control surfaces are excited with sinusoidal signals, while the altitude and velocity loops are closed with guidance and control laws. A model of the throttle response as a function of the additional control surfaces is formulated and the parameters in the model are estimated from the sensor measurements using a least squares estimation method. The estimated model is used to determine the minimum drag positions of the control surfaces. The method is presented for the optimization of one and two additional control surfaces. The adaptive control method is extended to optimize rate of climb with the throttle fixed. Simulations that include realistic disturbances are presented, as well as the results of a Monte Carlo simulation analysis that shows the effects of changing the disturbance environment and the excitation signal parameters.
Steady and Unsteady Simulations of the Flow in an Impeller/Diffuser Stage
NASA Technical Reports Server (NTRS)
Canabal, Francisco; Dorney, Daniel J.; Garcia, Roberto; Turner, James E. (Technical Monitor)
2002-01-01
SLI engine designs will require pumps to throttle over a wide flow range while maintaining high performance. Unsteadiness generated by impeller/diffuser interaction is one of the major factors affecting off-design performance. Initial unsteady simulations are completed for impeller/diffuser stage. The Corsair simulations will continue across a wide flow range and for inducer/impeller/diffuser combinations. Results of unsteady simulations are being used to guide and explore new designs.
Space Launch System Ascent Flight Control Design
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.
2014-01-01
A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.
Space Launch System Ascent Flight Control Design
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.
2014-01-01
A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.
Lofgren, E.J.
1959-04-14
This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.
49 CFR 571.123 - Standard No. 123; Motorcycle controls and displays.
Code of Federal Regulations, 2013 CFR
2013-10-01
...'s right hand from the throttle. Each control located on a left handlebar shall be operable by the operator's left hand throughout its full range without removal of the operator's left hand from the... rear brake control, the control shall be located on the left handlebar. If a scooter with an automatic...
49 CFR 571.123 - Standard No. 123; Motorcycle controls and displays.
Code of Federal Regulations, 2011 CFR
2011-10-01
...'s right hand from the throttle. Each control located on a left handlebar shall be operable by the operator's left hand throughout its full range without removal of the operator's left hand from the... rear brake control, the control shall be located on the left handlebar. If a scooter with an automatic...
49 CFR 571.123 - Standard No. 123; Motorcycle controls and displays.
Code of Federal Regulations, 2012 CFR
2012-10-01
...'s right hand from the throttle. Each control located on a left handlebar shall be operable by the operator's left hand throughout its full range without removal of the operator's left hand from the... rear brake control, the control shall be located on the left handlebar. If a scooter with an automatic...
49 CFR 571.123 - Standard No. 123; Motorcycle controls and displays.
Code of Federal Regulations, 2014 CFR
2014-10-01
...'s right hand from the throttle. Each control located on a left handlebar shall be operable by the operator's left hand throughout its full range without removal of the operator's left hand from the... rear brake control, the control shall be located on the left handlebar. If a scooter with an automatic...
Using a Low Cost Flight Simulation Environment for Interdisciplinary Education
NASA Technical Reports Server (NTRS)
Khan, M. Javed; Rossi, Marcia; ALi, Syed F.
2004-01-01
A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.
Impact of air conditioning system operation on increasing gases emissions from automobile
NASA Astrophysics Data System (ADS)
Burciu, S. M.; Coman, G.
2016-08-01
The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng, S.
2009-01-01
In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.
2010-01-01
The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.
An evaluation of automatic control system concepts for general aviation airplanes
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Ragsdale, W. A.; Wunschel, A. J.
1988-01-01
A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit throttle inputs. That is, the cockpit throttle lever commanded only airspeed responses, and the longitudinal wheel position commanded only vertical speed responses. This system significantly reduced the pilot workload throughout an entire mission of the airplane from takeoff to landing. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.
NASA Astrophysics Data System (ADS)
Irimescu, A.; Merola, S. S.
2017-10-01
Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part of the electrical energy is actually used for promoting chemical reactions and that temperature during the arc and kernel phases are influenced to a reduced extent by fuel concentrations.
NASA Astrophysics Data System (ADS)
Eldridge, Jeffrey I.; Allison, Stephen W.; Jenkins, Thomas P.; Gollub, Sarah L.; Hall, Carl A.; Walker, D. Greg
2016-12-01
Phosphor thermometry measurements in turbine engine environments can be difficult because of high background radiation levels. To address this challenge, luminescence lifetime-based phosphor thermometry measurements were obtained using thulium-doped Y3Al5O12 (YAG:Tm) to take advantage of the emission wavelengths at 365 nm (1D2 → 3H6 transition) and at 456 nm (1D2 → 3F4 transition). At these wavelengths, turbine engine radiation background is reduced compared with emission from longer wavelength phosphors. Temperature measurements of YAG:Tm coatings were demonstrated using decay of both the 365 and 456 nm emission bands in a furnace environment up to 1400 °C. To demonstrate that reliable surface temperatures based on short-wavelength YAG:Tm emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative environment, measurements were obtained from a YAG:Tm-coated Honeywell stator vane doublet placed in the afterburner flame exhaust stream of the augmenter-equipped General Electric J85 turbojet test engine at the University of Tennessee Space Institute (UTSI). Using a probe designed for engine insertion, spot temperature measurements were obtained by measuring luminescence decay times over a range of steady state throttle settings as well as during an engine throttle acceleration. YAG:Tm phosphor thermometry measurements of the stator vane surface in the afterburner exhaust stream using the decay of the 456 nm emission band were successfully obtained at temperatures up to almost 1300 °C. Phosphor thermometry measurements acquired with the engine probe using the decay of the 365 nm emission band were not successful at usefully high temperatures because the probe design allowed transmission of intense unfiltered silica Raman scattering that produced photomultiplier tube saturation with extended recovery times. Recommendations are made for probe modifications that will enable temperature measurements using the 365 nm emission band decay, which will be beneficial in environments with strong reflections of combustor radiation.
NASA Astrophysics Data System (ADS)
Woodcock, Gordon; Wingo, Dennis
2006-01-01
A modular design for a solar-electric tug was analyzed to establish flight control requirements and methods. Thrusters are distributed around the periphery of the solar array. This design enables modules to be berthed together to create a larger system from smaller modules. It requires a different flight mode than traditional design and a different thrust direction scheme, to achieve net thrust in the desired direction, observe thruster pointing constraints that avoid plume impingement on the tug, and balance moments. The array is perpendicular to the Sun vector for maximum electric power. The tug may maintain a constant inertial attitude or rotate around the Sun vector once per orbit. Either non-rotating or constant angular velocity rotation offers advantages over the conventional flight mode, which has highly variable roll rates. The baseline single module has 12 thrusters: two 2-axis gimbaling main thrusters, one at each ``end'', and two back-to-back Z axis thrusters at each corner of the array. Thruster pointing and throttling were optimized to maximize net thrust effectiveness while observing constraints. Control design used a spread sheet with Excel Solver to calculate nominal thruster pointing and throttling. These results are used to create lookup tables. A conventional control system generates a thruster pointing and throttling overlay on the nominals to maintain active attitude control. Gravity gradients can cause major attitude perturbations during occultation periods if thrust is off during these periods. Thrust required to maintain attitude is about 4% of system rated power. This amount of power can be delivered by a battery system, avoiding the performance penalty if chemical propulsion thrusters were used to maintain attitude.
NASA Astrophysics Data System (ADS)
Mishra, Arpit; Ghosh, Parthasarathi
2017-02-01
As a part of the developmental effort towards the realization of a staged combustion cycle based liquid rocket engine, a program on simulation of the LOX booster pump for performance characterization has been taken up. Earlier reported work shows that the pump inducer works satisfactorily under cavitating conditions for the throttling range varying from 90% to 113%. However stall occurs below 90% of the designed flow rate which is to be strongly associated with the inlet backflow vortices due to flow separation [1]. It is envisaged that leading edge sweep may help in to controls the incipience and growth of the backflow vortices at the inlet leading edge tip of axial flow inducer leading to a wider operating range. In this paper, steady state 3D CFD analysis of rotating inducer is performed to examine the effect of leading edge sweep on the performance of axial flow LOX pump inducer using ANSYS® CFX and has been compared with the performance of the inducer reported by Mishra and Ghosh [1].
National Launch System Space Transportation Main Engine
NASA Technical Reports Server (NTRS)
Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III
1991-01-01
The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.
NASA Technical Reports Server (NTRS)
May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei
2014-01-01
The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.
NASA Astrophysics Data System (ADS)
Abbas, Mohammad
Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.
Apollo 15 mission report, supplement 4: Descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.; Wood, S. C.
1972-01-01
The results of a postflight analysis of the LM-10 Descent Propulsion System (DPS) during the Apollo 15 Mission are reported. The analysis determined the steady state performance of the DPS during the descent phase of the manned lunar landing. Flight measurement discrepancies are discussed. Simulated throttle performance results are cited along with overall performance results. Evaluations of the propellant quantity gaging system, propellant loading, pressurization system, and engine are reported. Graphic illustrations of the evaluations are included.
Main Propulsion Test Article (MPTA)
NASA Technical Reports Server (NTRS)
Snoddy, Cynthia
2010-01-01
Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.
Low pressure EGR system having full range capability
Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir
2009-09-22
An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.
Power throttling of collections of computing elements
Bellofatto, Ralph E [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Crumley, Paul G [Yorktown Heights, NY; Gara, Alan G [Mount Kidsco, NY; Giampapa, Mark E [Irvington, NY; Gooding,; Thomas, M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Megerian, Mark G [Rochester, MN; Ohmacht, Martin [Yorktown Heights, NY; Reed, Don D [Mantorville, MN; Swetz, Richard A [Mahopac, NY; Takken, Todd [Brewster, NY
2011-08-16
An apparatus and method for controlling power usage in a computer includes a plurality of computers communicating with a local control device, and a power source supplying power to the local control device and the computer. A plurality of sensors communicate with the computer for ascertaining power usage of the computer, and a system control device communicates with the computer for controlling power usage of the computer.
Intelligent vehicle safety control strategy in various driving situations
NASA Astrophysics Data System (ADS)
Moon, Seungwuk; Cho, Wanki; Yi, Kyongsu
2010-12-01
This paper describes a safety control strategy for intelligent vehicles with the objective of optimally coordinating the throttle, brake, and active front steering actuator inputs to obtain both lateral stability and longitudinal safety. The control system consists of a supervisor, control algorithms, and a coordinator. From the measurement and estimation signals, the supervisor determines the active control modes among normal driving, longitudinal safety, lateral stability, and integrated safety control mode. The control algorithms consist of longitudinal and lateral stability controllers. The longitudinal controller is designed to improve the driver's comfort during normal, safe-driving situations, and to avoid rear-end collision in vehicle-following situations. The lateral stability controller is designed to obtain the required manoeuvrability and to limit the vehicle body's side-slip angle. To obtain both longitudinal safety and lateral stability control in various driving situations, the coordinator optimally determines the throttle, brake, and active front steering inputs based on the current status of the subject vehicle. Closed-loop simulations with the driver-vehicle-controller system are conducted to investigate the performance of the proposed control strategy. From these simulation results, it is shown that the proposed control algorithm assists the driver in combined severe braking/large steering manoeuvring so that the driver can maintain good manoeuvrability and prevent the vehicle from crashing in vehicle-following situations.
Analysis and flight evaluation of a small, fixed-wing aircraft equipped with hinged plate spoilers
NASA Technical Reports Server (NTRS)
Olcott, J. W.; Sackel, E.; Ellis, D. R.
1981-01-01
The results of a four phase effort to evaluate the application of hinged plate spoilers/dive brakes to a small general aviation aircraft are presented. The test vehicle was a single engine light aircraft modified with an experimental set of upper surface spoilers and lower surface dive brakes similar to the type used on sailplanes. The lift, drag, stick free stability, trim, and dynamic response characteristics of four different spoiler/dive brake configurations were determined. Tests also were conducted, under a wide range of flight conditions and with pilots of various experience levels, to determine the most favorable methods of spoiler control and to evaluate how spoilers might best be used during the approach and landing task. The effects of approach path angle, approach airspeed, and pilot technique using throttle/spoiler integrated control were investigated for day, night, VFR, and IFR approaches and landings. The test results indicated that spoilers offered significant improvements in the vehicle's performance and flying qualities for all elements of the approach and landing task, provided a suitable method of control was available.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad
2016-01-01
NASA's Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This paper presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation along with open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thruster's discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.
Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications
2010-06-01
considered: I. Boost/Sustain/Boost. Simulating a tactical solid rocket motor profile with another boost at the end to demonstrate a "throttle up", this...of tactical solid rocket motors were tested with 75%, 50%, and lower sustain-to- boost chamber pressure ratios with rapid throttle-up achieved... solid rocket motors were tested with 75%, 50%, and lower sustain-to-boost chamber pressure ratios with rapid throttle-up achieved following the sustain
2001-05-29
Symposium Intelligent Systems for the Objective Fleet uTransmission controls uSteering (both on-transmission and under-carriage) uBraking (service and...parking) uTransmission select uThrottle uOther Electromechanical Opportunities uTurret drives (elevation, traverse) uAutomatic propellant handling systems
Design of a Model Reference Adaptive Controller for an Unmanned Air Vehicle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.
2010-01-01
This paper presents the "Adaptive Control Technology for Safe Flight (ACTS)" architecture, which consists of a non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off nominal ones. The design and implementation procedures of both controllers are presented. The aim of these procedures, which encompass both theoretical and practical considerations, is to develop a controller suitable for flight. The ACTS architecture is applied to the Generic Transport Model developed by NASA-Langley Research Center. The GTM is a dynamically scaled test model of a transport aircraft for which a flight-test article and a high-fidelity simulation are available. The nominal controller at the core of the ACTS architecture has a multivariable LQR-PI structure while the adaptive one has a direct, model reference structure. The main control surfaces as well as the throttles are used as control inputs. The inclusion of the latter alleviates the pilot s workload by eliminating the need for cancelling the pitch coupling generated by changes in thrust. Furthermore, the independent usage of the throttles by the adaptive controller enables their use for attitude control. Advantages and potential drawbacks of adaptation are demonstrated by performing high fidelity simulations of a flight-validated controller and of its adaptive augmentation.
NASA Technical Reports Server (NTRS)
Dankanich, John W.; DeHoyos, Amado
2007-01-01
With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.
14 CFR 29.177 - Static directional stability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pedal motion with throttle and collective controls held constant at the trim conditions specified in... control deflection for sideslip angles up to the lesser of— (1) ±25 degrees from trim at a speed of 15 knots less than the speed for minimum rate of descent varying linearly to ±10 degrees from trim at VNE...
NASA Technical Reports Server (NTRS)
Redwine, W. J.
1979-01-01
A timeline containing altitude, control surface deflection rates and angles, hinge moment loads, thrust vector control gimbal rates, and main throttle settings is used to derive the model. The timeline is constructed from the output of one or more trajectory simulation programs.
Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform
NASA Astrophysics Data System (ADS)
Spurrier, Zachary S.
Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.
Knowledge-based reasoning in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Chappell, Alan R.
1993-01-01
A real-time tactical decision generation system for air combat engagements, Paladin, has been developed. A pilot's job in air combat includes tasks that are largely symbolic. These symbolic tasks are generally performed through the application of experience and training (i.e. knowledge) gathered over years of flying a fighter aircraft. Two such tasks, situation assessment and throttle control, are identified and broken out in Paladin to be handled by specialized knowledge based systems. Knowledge pertaining to these tasks is encoded into rule-bases to provide the foundation for decisions. Paladin uses a custom built inference engine and a partitioned rule-base structure to give these symbolic results in real-time. This paper provides an overview of knowledge-based reasoning systems as a subset of rule-based systems. The knowledge used by Paladin in generating results as well as the system design for real-time execution is discussed.
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.
2008-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.
PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.; Frate, Franco C.
2011-01-01
Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Gallimore, Alec D.
2006-01-01
Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.
NASA Technical Reports Server (NTRS)
Melcher, J. C.; Morehead, Robert L.
2014-01-01
The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.
Computational studies of an intake manifold for restricted engine application
NASA Astrophysics Data System (ADS)
Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar
2018-02-01
The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.
Orbit transfer rocket engine technology program: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C. M.
1992-01-01
In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.
NASA Technical Reports Server (NTRS)
Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.
1976-01-01
Historical weight estimating relationships were developed for the liquid rocket booster (LRB) using Saturn technology, and modified as required to support the EDIN05 study. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the EDIN05 designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut-off points. Performance analysis was based on a point design trajectory model which optimized initial tilt rate and exo-atmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle-of-attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary.
Design and Study of a LOX/GH2 Throttleable Swirl Injector for Rocket Applications
NASA Technical Reports Server (NTRS)
Greene, Christopher; Woodward, Roger; Pal, Sibtosh; Santoro, Robert; Garcia, Roberto (Technical Monitor)
2002-01-01
A LOX/GH2 swirl injector was designed for a 10:1 propellant throttling range. To accomplish this, a dual LOX (liquid oxygen) manifold was used feeding a single common vortex chamber of the swirl element. Hot-fire experiments were conducting for rocket chamber pressures from 80 to 800 psia at a mixture ratio of nominally 6.0 using steady flow, single-point-per-firing cases as well as dynamic throttling conditions. Low frequency (mean) and high frequency (fluctuating) pressure transducer data, flow meter measurements, and Raman spectroscopy images for mixing information were obtained. The injector design, experimental setup, low frequency pressure data, and injector performance analysis will be presented. C efficiency was very high (approximately 100%) at the middle of the throttle-able range with somewhat lower performance at the high and low ends. From the analysis of discreet steady state operating conditions, injector pressure drop was slightly higher than predicted with an inviscid analysis, but otherwise agreed well across the design throttling range. Analysis of the dynamic throttling data indicates that the injector may experience transient conditions that effect pressure drop and performance when compared to steady state results.
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
Recommendation of Sensors for Vehicle Transmission Diagnostics
2012-05-01
and a pressure switch module form the Control value module. A thermistor is contained within the pressure switch module in order to monitor the sump...fluid temperature. Sensor information is provided to the TCM through various sensors such as throttle position, speed sensor, pressure switch module
NASA Technical Reports Server (NTRS)
Biechteler, Curt
1934-01-01
The rudder effect of a sport airplane at high angles of attack was to be improved. This made it necessary to make a cut-out in the center of the continuous elevator so as to enlarge the rudder downward. This cut-out which reduced the rudder area by 12.5 percent changed the static stability of the airplane as well as the elevator effect. Flight measurements showed the stability zone with locked elevator to be 1.8 percent less at full throttle and at idling to be 1.3 percent less than the mean wing chord. The effect of the cut-out on the control forces could not be determined owing to insufficient instrumental accuracy at the extremely low existing forces. The measurement of the static controllability resulting from the cut-out manifested an 18 percent drop in elevator effect at full throttle and a 10 to 20 percent drop at idling, depending on lift.
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Parrish, Russell V.
1990-01-01
A piloted simulation study was conducted comparing three different input methods for interfacing to a large screen, multiwindow, whole flight deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side arm controller. The multifunction control throttle and stick (MCTAS) concept employed a thumb switch located in the throttle handle. The touch screen concept provided data entry through a capacitive touch screen installed on the display surface. The objective and subjective results obtained indicate that, with present implementations, the thumball concept was the most appropriate for interfacing with aircraft systems/subsystems presented on a large screen display. Not unexpectedly, the completion time differences between the three concepts varied with the task being performed, although the thumball implementation consistently outperformed the other two concepts. However, pilot suggestions for improved implementations of the MCTAS and touch screen concepts could reduce some of these differences.
10. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
10. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. To the left of the horizontal (fluted) cylinder is the water pump which moved the boiler feed water through the engine's pre-heat system (the exhaust steam heated the boiler feedwater before it was pumped on to the boiler). The steam-feed port, manual throttle valve, and fly-ball governor and pulley and to the right of the cylinder. The drive shaft with flywheel to the left and pulley to the right are seen behind the piston rod, cross-head, wrist pen, connecting rod and the slide valve and eccentric. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Development Status of Reusable Rocket Engine
NASA Astrophysics Data System (ADS)
Yoshida, Makoto; Takada, Satoshi; Naruo, Yoshihiro; Niu, Kenichi
A 30-kN rocket engine, a pilot engine, is being developed in Japan. Development of this pilot engine has been initiated in relation to a reusable sounding rocket, which is also being developed in Japan. This rocket takes off vertically, reaches an altitude of 100 km, lands vertically at the launch site, and is launched again within several days. Due to advantage of reusability, successful development of this rocket will mean that observation missions can be carried out more frequently and economically. In order to realize this rocket concept, the engines installed on the rocket should be characterized by reusability, long life, deep throttling and health monitoring, features which have not yet been established in Japanese rocket engines. To solve the engineering factors entitled by those features, a new design methodology, advanced engine simulations and engineering testing are being focused on in the pilot engine development stage. Especially in engineering testing, limit condition data is acquired to facilitate development of new diagnostic techniques, which can be applied by utilizing the mobility of small-size hardware. In this paper, the development status of the pilot engine is described, including fundamental design and engineering tests of the turbopump bearing and seal, turbine rig, injector and combustion chamber, and operation and maintenance concepts for one hundred flights by a reusable rocket are examined.
Simulation Propulsion System and Trajectory Optimization
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.
2017-01-01
A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.
Active Control of Surge in Compressors Which Exhibit Abrupt Stall
2001-06-01
sensor (of pressure, flow rate, etc.) is fed to a controller which applies a proper control law to drive the actuator (valve, The present paper reports...1993), who analyzed the influence of sensor and numerical simulation shows that: t) the predictions of control acutrsltin o th mxmm sabizd opesr...a sensor of compressor face total pressure), a The present paper considers the active suppression of surge in a butterfly throttle/actuation valve
14 CFR 61.67 - Category II pilot authorization requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and runway lighting system; (ix) Characteristics and limitations of the flight director system, auto approach coupler (including split axis type if equipped), auto throttle system (if equipped), and other... be made with the use of an approved flight control guidance system, except if an approved auto...
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Effect of a part-span variable inlet guide vane on the performance of a high-bypass turbofan engine
NASA Technical Reports Server (NTRS)
Bobula, G. A.; Soeder, R. H.; Burkardt, L. A.
1981-01-01
The ability of a part span variable inlet guide vane (VIGV) to modulate the thrust of a high bypass turbofan engine was evaluated at altitude/Mach number conditions of 4572 m/0.6 and 9144 m/0.93. Fan tip, gas generator and supercharger performance were also determined, both on operating lines and during fan duct throttling. The evaluation was repeated with the bypass splitter extended forward to near the fan blade trailing edge. Gross thrust attentuation of over 50 percent was achieved with 50 degree VIGV closure at 100 percent corrected fan speed. Gas generator supercharger performance fell off with VIGV closure, but this loss was reduced when a splitter extension was added. The effect of VIVG closure on gas generator performance was minimal.
78 FR 32081 - Airworthiness Directives; Aircraft Industries a.s. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... Injection System WATER INJECTION circuit ON breakter. TCL TQ=min. 60% WATER INJECTION/ON push- Push and hold till amber button. WATER INJECTION signal comes on (on the front control panel) Before throttling back power: WATER INJECTION/OFF push- Push and check amber button. WATER INJECTION signal extinguishes...
System automatically supplies precise analytical samples of high-pressure gases
NASA Technical Reports Server (NTRS)
Langdon, W. M.
1967-01-01
High-pressure-reducing and flow-stabilization system delivers analytical gas samples from a gas supply. The system employs parallel capillary restrictors for pressure reduction and downstream throttling valves for flow control. It is used in conjunction with a sampling valve and minimizes alterations of the sampled gas.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alarez, Erika; Thornton, Randall J.; Forbes, John C.
2008-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Integration of Fire Control, Flight Control and Propulsion Control Systems.
1983-08-01
process of preparation to a degree imocmpatible with fast moving technology. Undoubtedly something can be done to see that US authors produce papers...PDU provide a true "Up Front" system controller. Fast selection of Air to Air Mode is provided by 2 pushbuttons on the throttle. Pushing one or both...nature of the load snd its effect on the generation system. This calculation will include Load Power, Reactance, Nature - continuous or intermittent
Damping treatment for an aircraft hard-mounted antenna system in a vibroacoustic environment
NASA Astrophysics Data System (ADS)
Tate, Ralph E.; Rupert, Carl L.
1990-10-01
This paper discusses the design, analysis, and testing of 'add-on' damping treatments for the Band 6, 7, 8 radar antenna packages that are hard-mounted on the B-1B Aft Equipment Bay (AEB) where equipment failures are routinely occurring during take-off maneuvers at maximum throttle settings. This damage results from the intense vibroacoustical environment generated by the three-stage afterburning engines. Failure rates have been sufficiently high to warrant a 'quick fix' involving damping treatments that can be installed in a short time with minimal modification to the existing structure.
THERMODYNAMIC EVALUATION OF FIVE ALTERNATIVE REFRIGERANTS IN VAPOR-COMPRESSION CYCLES
The paper gives results of a thermodynamic evaluation of five alternative refrigerants in a vapor-compression refrigeration cycle, utilizing throttling, super-heating, and combined throttling and superheating. ive alternative refrigerants (R32, R125, R134a, R143a, and R152a) were...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby S. Chapman; Amar Patil
2007-06-30
Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the leanmore » operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.« less
Considerations on vehicle design criteria for space tourism
NASA Astrophysics Data System (ADS)
Isozaki, Kohki; Taniuchi, Akira; Yonemoto, Koichi; Kikukawa, Hiroshige; Maruyama, Tomoko
1995-10-01
The transportation research committee of JRS (Japanese Rocket Society) has begun conceptual design of vertical takeoff and landing fully reusable SSTO (Single Stage to Orbit) rocket type vehicle as a standard vehicle model for space tourism. The design criteria of the vehicle have paid most attention to the requirements of service to meet space tour amusement. The standard vehicle, which has 22m body length and weighs about 550 tons at takeoff, can provide attractive tours of 24 hours maximum for 50 passengers into the low earth orbit with a variety of space flight pleasures such as experience of weightlessness and earth sightseeing. Within the reach of our near future rocket technology, the design utilizes MMC, CF/Epy and Ti/Mw advanced materials. The twelve LOX/LH2 engines consist of two nozzle types, which can be throttled and gimbaled during the whole mission time, perform vertical launch and tail-first reentry to final landing associated with aerodynamic control of body flaps within tolerable acceleration acting on passengers.
14 CFR 29.1045 - Climb cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... continuous power (or at full throttle when above the critical altitude); (2) For helicopters for which the... the critical altitude); and (3) For other rotorcraft, be at maximum continuous power (or at full throttle when above the critical altitude). (d) After temperatures have stabilized in flight, the climb...
14 CFR 29.1045 - Climb cooling test procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... continuous power (or at full throttle when above the critical altitude); (2) For helicopters for which the... the critical altitude); and (3) For other rotorcraft, be at maximum continuous power (or at full throttle when above the critical altitude). (d) After temperatures have stabilized in flight, the climb...
NASA Technical Reports Server (NTRS)
Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.
1976-01-01
The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
Meller, Michael; Chipka, Jordan; Volkov, Alexander; Bryant, Matthew; Garcia, Ephrahim
2016-11-03
Hydraulic control systems have become increasingly popular as the means of actuation for human-scale legged robots and assistive devices. One of the biggest limitations to these systems is their run time untethered from a power source. One way to increase endurance is by improving actuation efficiency. We investigate reducing servovalve throttling losses by using a selective recruitment artificial muscle bundle comprised of three motor units. Each motor unit is made up of a pair of hydraulic McKibben muscles connected to one servovalve. The pressure and recruitment state of the artificial muscle bundle can be adjusted to match the load in an efficient manner, much like the firing rate and total number of recruited motor units is adjusted in skeletal muscle. A volume-based effective initial braid angle is used in the model of each recruitment level. This semi-empirical model is utilized to predict the efficiency gains of the proposed variable recruitment actuation scheme versus a throttling-only approach. A real-time orderly recruitment controller with pressure-based thresholds is developed. This controller is used to experimentally validate the model-predicted efficiency gains of recruitment on a robot arm. The results show that utilizing variable recruitment allows for much higher efficiencies over a broader operating envelope.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.
Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan
2012-01-01
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Ascent performance issues of a vertical-takeoff rocket launch vehicle
NASA Astrophysics Data System (ADS)
Powell, Richard W.; Naftel, J. C.; Cruz, Christopher I.
1991-04-01
Advanced manned launch systems studies under way at the NASA Langley Research Center are part of a broader effort that is examining options for the next manned space transportation system to be developed by the United States. One promising concept that uses near-term technologies is a fully reusable, two-stage vertical-takeoff rocket vehicle. This vehicle features parallel thrusting of the booster and orbiter with the booster cross-feeding the propellant to the orbiter until staging. In addition, after staging, the booster glides back unpowered to the launch site. This study concentrated on two issues that could affect the ascent performance of this vehicle. The first is the large gimbal angle range required for pitch trim until staging because of the propellant cross-feed. Results from this analysis show that if control is provided by gimballing of the rocket engines, they must gimbal greater than 20 deg, which is excessive when compared with current vehicles. However, this analysis also showed that this limit could be reduced to 10 deg if gimballing were augmented by throttling the booster engines. The second issue is the potential influence of off-nominal atmospheric conditions (density and winds) on the ascent performance. This study showed that a robust guidance algorithm could be developed that would insure accurate insertion, without prelaunch atmospheric knowledge.
The Development of a Control System for a 5 Kilowatt Free Piston Stirling Space Convertor
NASA Technical Reports Server (NTRS)
Kirby, Raymond L.; Vitale, Nicholas
2008-01-01
The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling conversion for 2020 launch. Use of two of the nominal 5 kW converters allows the system to be dynamically balanced. A group of four dual-converter combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the FSPE convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.
Icing-Protection Requirements for Reciprocating-Engine Induction System
NASA Technical Reports Server (NTRS)
Coles, Willard D; Rollin, Vern G; Mulholland, Donald R
1950-01-01
Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.
Means and apparatus for throttling a dry pulverized solid material pump
Meyer, J. W.; Daniel, Jr, A. D.; Bonin, J. H.
1982-12-07
Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues. 9 figs.
Means and apparatus for throttling a dry pulverized solid material pump
Meyer, John W [Palo Alto, CA; Daniel, Jr., Arnold D.; Bonin, John H [Sunnyvale, CA
1982-01-01
Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues.
Evaluation of dissociated and steam-reformed methanol as automotive engine fuels
NASA Technical Reports Server (NTRS)
Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.
1984-01-01
Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.
NASA Astrophysics Data System (ADS)
Martsynkovskyy, V. A.; Deineka, A.; Kovalenko, V.
2017-08-01
The article presents forced axial vibrations of the rotor with an automatic unloading machine in an oxidizer pump. A feature of the design is the use in the autoloading system of slotted throttles with mutually inverse throttling. Their conductivity is determined by a numerical experiment in the ANSYS CFX software package.
Assessing Constraints on Soldier Cognitive and Perceptual Motor Performance During Vehicle Motion
2008-05-01
vehicle systems are biomechanical (Sirouspour & Salcudean, 2003; Sövényi & Gillespie, 2007), cognitive (Parasuraman & Riley, 1997), and psychomotor...vs. velocity), pedals for braking/acceleration Environmental constraints associated with the support surface (Seat): Damping, inclination...steering and secondarily, performance differences between a joystick and pedals for throttle and brake control. Eleven participants com- pleted three
33 CFR 183.53 - Horsepower capacity.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., calm water with the wind speed below 10 knots. The test must be conducted with no load other than a... there is no loss of directional control. (4) Quick turn test procedure. Set throttle at a low... factor is over 52.5 and the boat has Remote steering and at least 20″ transom height No remote steering...
14 CFR 27.177 - Static directional stability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... with the throttle and collective controls held constant at the trim conditions specified in § 27.175(a... for sideslip angles up to the lesser of— (1) ±25 degrees from trim at a speed of 15 knots less than the speed for minimum rate of descent varying linearly to ±10 degrees from trim at VNE; (2) The steady...
Automation of Underground Cable Laying Equipment Using PLC and Hmi
NASA Astrophysics Data System (ADS)
Mal Kothari, Kesar; Samba, Vishweshwar; Tania, Kinza; Udayakumar, R., Dr; Karthikeyan, Ram, Dr
2018-04-01
Underground cable laying is an alternative for overhead cable laying of telecommunication and power transmission lines. It is becoming very popular in recent times because of some of its advantages over overhead cable laying. This type of cable laying is mostly practiced in developed countries because it is more expensive than overhead cable laying. Underground cable laying is more suitable when land is not available, and it also increases the aesthetics. This paper implements the automation on a manually operated cable pulling winch machine using programmable logic controller (PLC). Winch machines are useful in underground cable laying. The main aim of the project is to replace all the mechanical functions with electrical controls which are operated through a touch screen (HMI). The idea is that the machine should shift between parallel and series circuit automatically based on the pressure sensed instead of manually operating the solenoid valve. Traditional means of throttling the engine using lever and wire is replaced with a linear actuator. Sensors such as proximity, pressure and load sensor are used to provide the input to the system. The HMI used will display the speed, length and tension of the rope being winded. Ladder logic is used to program the PLC.
CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pihl, Josh A; West, Brian H; Toops, Todd J
2011-10-01
Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar enginemore » installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in development of model-based ammonia injection control algorithms.ORNL, working closely with partners at Navistar and Mi« less
Alternative sensor system and MLP neural network for vehicle pedal activity estimation.
Wefky, Ahmed M; Espinosa, Felipe; Jiménez, José A; Santiso, Enrique; Rodríguez, José M; Fernández, Alfredo J
2010-01-01
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver's behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer.
Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report
NASA Technical Reports Server (NTRS)
Silverstein, Abe
1939-01-01
Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.
Alternative Sensor System and MLP Neural Network for Vehicle Pedal Activity Estimation
Wefky, Ahmed M.; Espinosa, Felipe; Jiménez, José A.; Santiso, Enrique; Rodríguez, José M.; Fernández, Alfredo J.
2010-01-01
It is accepted that the activity of the vehicle pedals (i.e., throttle, brake, clutch) reflects the driver’s behavior, which is at least partially related to the fuel consumption and vehicle pollutant emissions. This paper presents a solution to estimate the driver activity regardless of the type, model, and year of fabrication of the vehicle. The solution is based on an alternative sensor system (regime engine, vehicle speed, frontal inclination and linear acceleration) that reflects the activity of the pedals in an indirect way, to estimate that activity by means of a multilayer perceptron neural network with a single hidden layer. PMID:22319326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, John F; West, Brian H; Huff, Shean P
The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There aremore » over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.« less
Delay-based virtual congestion control in multi-tenant datacenters
NASA Astrophysics Data System (ADS)
Liu, Yuxin; Zhu, Danhong; Zhang, Dong
2018-03-01
With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.
16. OPERATOR STAND. OPERATOR STOOD BETWEEN RAILINGS AND CONTROLLED DREDGING ...
16. OPERATOR STAND. OPERATOR STOOD BETWEEN RAILINGS AND CONTROLLED DREDGING OPERATIONS USING TWO LEVERS FROM CEILING, THREE LEVELS ON THE FLOOR, AND TWO FLOOR PEDDLES. RIGHT HAND CONTROLLED SHOT GUN SWINGER (BOOM MOVE TO RIGHT WHEN PUSHED FORWARD, LEFT WHEN PULLED BACK, AND, IF LUCKY, STOPPED WHEN IN CENTER POSITION). LEFT HAND CONTROLLED THROTTLE. FLOOR LEVER AND FLOOR PEDDLE ON LEFT CONTROLLED THE BACKING LINE FRICTION. MIDDLE LEVER AND PEDDLE, STUCK IN FLOOR CONTROLLED THE MAIN HOIST FRICTION. LEVER ON RIGHT CONTROLLED THE CYLINDER DRAIN VALVE. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA
Howe, M. S.; McGowan, R. S.
2011-01-01
An analysis is made of the sound generated by the time-dependent throttling of a nominally steady stream of air through a small orifice into a flow-through resonant cavity. This is exemplified by the production of voiced speech, where air from the lungs enters the vocal tract through the glottis at a time variable volume flow rate Q(t) controlled by oscillations of the glottis cross-section. Voicing theory has hitherto determined Q from a heuristic, reduced complexity ‘Fant’ differential equation (G. Fant, Acoustic Theory of Speech Production, 1960). A new self-consistent, integro-differential form of this equation is derived in this paper using the theory of aerodynamic sound, with full account taken of the back-reaction of the resonant tract on the glottal flux Q. The theory involves an aeroacoustic Green’s function (G) for flow-surface interactions in a time-dependent glottis, so making the problem non-self-adjoint. In complex problems of this type it is not usually possible to obtain G in an explicit analytic form. The principal objective of the paper is to show how the Fant equation can still be derived in such cases from a consideration of the equation of aerodynamic sound and from the adjoint of the equation governing G in the neighbourhood of the ‘throttle’. The theory is illustrated by application to the canonical problem of throttled flow into a Helmholtz resonator. PMID:21666824
40 CFR 201.11 - Standard for locomotive operation under stationary conditions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... completed on or before December 31, 1979, which produces A-weighted sound levels in excess of 93 dB at any..., 1979, which produces A-weighted sound levels in excess of 87 dB at any throttle setting except idle... December 31, 1979, which produces A-weighted sound levels in excess of 87 dB at any throttle setting except...
40 CFR 201.11 - Standard for locomotive operation under stationary conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... completed on or before December 31, 1979, which produces A-weighted sound levels in excess of 93 dB at any..., 1979, which produces A-weighted sound levels in excess of 87 dB at any throttle setting except idle... December 31, 1979, which produces A-weighted sound levels in excess of 87 dB at any throttle setting except...
Model-free adaptive control of advanced power plants
Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang
2015-08-18
A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
Dynamic Modeling of Starting Aerodynamics and Stage Matching in an Axi-Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Wilkes, Kevin; OBrien, Walter F.; Owen, A. Karl
1996-01-01
A DYNamic Turbine Engine Compressor Code (DYNTECC) has been modified to model speed transients from 0-100% of compressor design speed. The impetus for this enhancement was to investigate stage matching and stalling behavior during a start sequence as compared to rotating stall events above ground idle. The model can simulate speed and throttle excursions simultaneously as well as time varying bleed flow schedules. Results of a start simulation are presented and compared to experimental data obtained from an axi-centrifugal turboshaft engine and companion compressor rig. Stage by stage comparisons reveal the front stages to be operating in or near rotating stall through most of the start sequence. The model matches the starting operating line quite well in the forward stages with deviations appearing in the rearward stages near the start bleed. Overall, the performance of the model is very promising and adds significantly to the dynamic simulation capabilities of DYNTECC.
Low thrust vehicle concept study
NASA Technical Reports Server (NTRS)
1980-01-01
Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.
Experimental Evaluation of a Subscale Gaseous Hydrogen/gaseous Oxygen Coaxial Rocket Injector
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Klem, Mark D.; Breisacher, Kevin J.; Farhangi, Shahram; Sutton, Robert
2002-01-01
The next generation reusable launch vehicle may utilize a Full-Flow Stage Combustion (FFSC) rocket engine cycle. One of the key technologies required is the development of an injector that uses gaseous oxygen and gaseous hydrogen as propellants. Gas-gas propellant injection provides an engine with increased stability margin over a range of throttle set points. This paper summarizes an injector design and testing effort that evaluated a coaxial rocket injector for use with gaseous oxygen and gaseous hydrogen propellants. A total of 19 hot-fire tests were conducted up to a chamber pressure of 1030 psia, over a range of 3.3 to 6.7 for injector element mixture ratio. Post-test condition of the hardware was also used to assess injector face cooling. Results show that high combustion performance levels could be achieved with gas-gas propellants and there were no problems with excessive face heating for the conditions tested.
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Strahan, Alan; Tanimoto, Rebekah; Casillas, Arturo
2010-01-01
This paper describes a conceptual design of the Thrust Vector Control (TVC) system and preliminary modeling of propellant slosh, for the Altair Lunar Lander. Altair is a vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. One key GN&C function is the commanding of effectors that control attitude and impart delta V on the vehicle, utilizing both reaction control system (RCS) thrusters and throttling and TVC gimbaling of the vehicle main engine. Both the Altair descent and ascent modules carry fuel tanks. During thrusting maneuvers, the sloshing of liquid fuels in partially filled tanks can interact with the controlled system in such a way as to cause the overall system to be unstable. These fuel tanks must be properly placed, relative to the spacecraft's c.m., to avoid any unstable interactions. Following this will be a discussion of propellant slosh modeling work performed for the present vehicle configuration, including slosh frequency and participatory fluid mass predictions. Knowing the range of slosh mode frequencies over mission phases, the TVC bandwidth must be carefully selected so as not to excite the slosh modes at those frequencies. The likely need to increase the damping factor of slosh modes via baffles will also be discussed. To conclude, a discussion of operations procedures aimed at minimizing TVC-slosh interactions will be given.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
Standards for discharge measurement with standardized nozzles and orifices
NASA Technical Reports Server (NTRS)
1940-01-01
The following standards give the standardized forms for two throttling devices, standard nozzles and standard orifices, and enable them to be used in circular pipes without calibration. The definition of the standards are applicable in principle to the calibration and use of nonstandardized throttling devices, such as the venturi tube. The standards are valid, likewise, as a basis for discharge measurements in the German acceptance standards.
NASA Astrophysics Data System (ADS)
Butymova, L. N.; Modorskii, V. Ya.
2017-10-01
To ensure contactless sealing of the connection between the rotating rotor and the stationary body in aircraft engines [16], high pressure pumps [13, 14], etc., labyrinth seals (LS) are used. In labyrinth seals, the working medium is sealed by throttling it when moving through successive constrictions and expansions. The study of throttling is usually performed when investigating the gas flow in the direction parallel to the rotor axis. However, it was shown in [1] that the wave processes occurring in the circumferential direction of the labyrinth seals during the vibrations of the rotor contribute to the formation of gas dynamic oscillatory processes. It should be noted that sequencing of the constrictions and extensions affects the oscillation amplitude in the gas-dynamic cavity between the LS and the rotor and increases the flow unevenness. Consequently, if these elements are not taken into account in aeroelastic calculation [15, 21] it can give an additional margin of reducing oscillations in LS and, which is important, to solve related problems [18] of continuous media mechanics [19], reduce labor intensity and counting time. Thus, in accordance with the foregoing, the LS calculation is replaced with calculating the gap seal, equivalent (with margin) to the labyrinth seal, if we consider the processes occurring in the LS circumferential direction.
Advanced launch system trajectory optimization using suboptimal control
NASA Technical Reports Server (NTRS)
Shaver, Douglas A.; Hull, David G.
1993-01-01
The maximum-final mass trajectory of a proposed configuration of the Advanced Launch System is presented. A model for the two-stage rocket is given; the optimal control problem is formulated as a parameter optimization problem; and the optimal trajectory is computed using a nonlinear programming code called VF02AD. Numerical results are presented for the controls (angle of attack and velocity roll angle) and the states. After the initial rotation, the angle of attack goes to a positive value to keep the trajectory as high as possible, returns to near zero to pass through the transonic regime and satisfy the dynamic pressure constraint, returns to a positive value to keep the trajectory high and to take advantage of minimum drag at positive angle of attack due to aerodynamic shading of the booster, and then rolls off to negative values to satisfy the constraints. Because the engines cannot be throttled, the maximum dynamic pressure occurs at a single point; there is no maximum dynamic pressure subarc. To test approximations for obtaining analytical solutions for guidance, two additional optimal trajectories are computed: one using untrimmed aerodynamics and one using no atmospheric effects except for the dynamic pressure constraint. It is concluded that untrimmed aerodynamics has a negligible effect on the optimal trajectory and that approximate optimal controls should be able to be obtained by treating atmospheric effects as perturbations.
NASA Astrophysics Data System (ADS)
Gerdts, Stephen; Chambers, Jessica; Ahmed, Kareem
2016-11-01
A detonation engine's fundamental design concept focuses on enhancing the Deflagration to Detonation Transition (DDT), the process through which subsonic flames accelerate to form a spontaneous detonation wave. Flame acceleration is driven by turbulent interactions that expand the reaction zone and induce mixing of products and reactants. Turbulence in a duct can be generated using solid obstructions, fluidic obstacles, duct angle changes, and wall skin friction. Solid obstacles have been previously explored and offer repeatable turbulence induction at the cost of pressure losses and additional system weight. Fluidic jet obstacles are a novel technique that provide advantages such as the ability to be throttled, allowing for active control of combustion modes. The scope of the present work is to expand the experimental database of varying parameters such as main flow and jet equivalence ratios, fluidic momentum ratios, and solid obstacle blockage ratios. Schlieren flow visualization and particle image velocimetry (PIV) are employed to investigate turbulent flame dynamics throughout the interaction. Optimum conditions that lead to flame acceleration for both solid and fluidic obstacles will be determined. American Chemical Society.
NASA Astrophysics Data System (ADS)
Bhasker J, Pradeep; E, Porpatham
2016-08-01
Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.
Simulation of parameters of hydraulic drive with volumetric type controller
NASA Astrophysics Data System (ADS)
Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.
2017-09-01
The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.
An in-flight simulation of approach and landing of a STOL transport with adverse ground effect
NASA Technical Reports Server (NTRS)
Ellis, D. R.
1976-01-01
The results of an in-flight simulation program undertaken to study the problems of landing a representative STOL transport in the presence of adverse ground effects are presented. Landings were performed with variations in ground effect magnitude, ground effect lag, and thrust response. Other variations covered the effects of augmented lift response, SAS-failures, turbulence, segmented approach, and flare warning. The basic STOL airplane required coordinated use of both stick and throttle for consistently acceptable landings, and the presence of adverse ground effects made the task significantly more difficult. Ground effect lag and good engine response gave noticeable improvement, as did augmented lift response.
Design and Development of a 3 to 10 kW Ammonia Arcjet
NASA Technical Reports Server (NTRS)
Goodfellow, K. D.; Polk, J. E.
1993-01-01
An ammonia arcjet capable of throttling between 3 and 10 kW and producing a specific impulse of 600 s is required for the SSTAR flight experiment. Testing was performed to evaluate the performance of two nozzle configurations on ammonia arcjet performance over this power range. One of the objectives of these tests was to quantify the effect small nozzle changes have on performance. The smaller constrictor engine (2.54 mm diameter) produced a specific impulse of about 650 s over the range of 3 to 10 kW at a specific power of 60 kJ/g exceeding the 500-600 s requirement for the SSTAR flight experiment.
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2010-09-28
advanced electromagnetic signature reduction (AESR), a conformal acoustic velocity sensor wide aperture array (CAVES WAA), and a flexible payload...vibrations and acoustic signatures of targets. The Navy has stated that CAVES WAA could save approximately $4 million per submarine. The Navy is analyzing...Turbine Generator magnetic levitation bearings / throttle control system, etc.); • Special Hull Treatment continues to debond from VIRGINIA Class
Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles
NASA Technical Reports Server (NTRS)
Gamble, Ed
2012-01-01
Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses
NASA Astrophysics Data System (ADS)
Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin
2017-01-01
The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.
Propulsion Systems Integration for a `Tractor Beam' Mercury Lightcraft: Liftoff Engine
NASA Astrophysics Data System (ADS)
Myrabo, L. N.
2003-05-01
Described herein is the concept and propulsion systems integration for a revolutionary beam-propelled shuttle called the ``Mercury'' lightcraft - emphasizing the liftoff engine mode. This one-person, ultra-energetic vehicle is designed to ride `tractor beams' into space, transmitted from a future network of satellite solar power stations. The objective is to create a safe, very low cost (e.g., 1000X below chemical rockets) space transportation system for human life, one that is completely `green' and independent of Earth's limited fossil fuel reserves. The lightcraft's airbreathing combined-cycle engine operates in a rotary pulsed detonation mode PDE for lift-offs and landings; at hypersonic speeds it transitions into a magnetohydrodynamic (MHD) slipstream accelerator mode. For the latter, the transatmospheric flight path is momentarily transformed into an extremely long, electromagnetic ``mass-driver'' channel with an effective `fuel' specific impulse in the range of 6000 to 16,000 seconds. These future single-stage-to-orbit, highly-reusuable vehicles will ride ``Highways of Light,'' accelerating at 3 Gs into space, with their throttles just barely beyond `idle' power.
NASA Technical Reports Server (NTRS)
Golladay, Richard L.; Gendler, Stanley L.
1947-01-01
An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.
Deep Throttle Turbopump Technology Design Concepts
NASA Technical Reports Server (NTRS)
Guinzburg, Adiel; Williams, Morgan; Ferguson, Tom; Garcia, Roberto (Technical Monitor)
2002-01-01
The objective of this project is to increase the throttling range of turbopumps from 30 to 120% of the design value, while maintaining high performance levels. Details are given on wide flow range issues, H-Q characteristics, stall characteristics, energy levels, pressure fluctuations at impeller exit, WFR impeller characteristics, commercial diffuser pumps, slotted or tandem vanes, leading edge characteristics, leading edge models, throat models, diffusion passage models, computational fluid dynamics (CFD) methodologies, and CFD flow cases.
Distribution and regularity of injection from a multicylinder fuel-injection pump
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1936-01-01
This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.
Organic flash cycles for efficient power production
Ho, Tony; Mao, Samuel S.; Greif, Ralph
2016-03-15
This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.
NASA Technical Reports Server (NTRS)
Kaminer, Isaac; Benson, Russell A.
1989-01-01
An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.
The variable magnetic baffle as a control device for Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1972-01-01
The variable magnetic baffle described in this paper aids in control of electron flow from the hollow cathode plasma into the main discharge region by augmenting the fringe magnetic field which impedes this electron flow in conventionally baffled Kaufman thrusters. A passive, low loss, and automatic control device is obtained by using the discharge current to excite the control winding. Used in conjunction with typical thruster control loops, stable operation has been obtained over a 10:1 throttling range with a 30 cm thruster. Discharge ignition and overcurrent recycling is also facilitated through use of this device in a permanent magnet thruster.
Daniel Sokolowski in the Rocket Operations Building
1966-06-21
Dan Sokolowski worked as an engineering coop student at the National Aeronautics and Space Administration (NASA) Lewis Research Center from 1962 to 1966 while earning his Mechanical Engineering degree from Purdue. At the time of this photograph Sokolowski had just been hired as a permanent NASA employee in the Chemical Rocket Evaluation Branch of the Chemical Rocket Division. He had also just won a regional American Institute of Aeronautics and Astronautics competition for his paper on high and low-frequency combustion instability. The resolution of the low-frequency combustion instability, or chugging, in liquid hydrogen rocket systems was one of Lewis’ more significant feats of the early 1960s. In most rocket engine combustion chambers, the pressure, temperature, and flows are in constant flux. The engine is considered to be operating normally if the fluctuations remain random and within certain limits. Lewis researchers used high-speed photography to study and define Pratt and Whitney’s RL-10’s combustion instability by throttling the engine under the simulated flight conditions. They found that the injection of a small stream of helium gas into the liquid-oxygen tank immediately stabilized the system. Sokolowski’s later work focused on combustion in airbreathing engines. In 1983 was named Manager of a multidisciplinary program aimed at improving durability of combustor and turbine components. After 39 years Sokolowski retired from NASA in September 2002.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1932-01-01
This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.
Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress
2010-07-08
current and future Virginia Class submarines once they mature—advanced electromagnetic signature reduction (AESR), a conformal acoustic velocity sensor...WAA is a sensor array that is designed to detect the vibrations and acoustic signatures of targets. The Navy has stated that CAVES WAA could save...Active Shaft Grounding System, Circuit D, Ship Service Turbine Generator magnetic levitation bearings / throttle control system, etc.); • Special
Spiral inlets for steam turbines
NASA Astrophysics Data System (ADS)
Škach, Radek; Uher, Jan
2017-09-01
This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.
Baseline tests of the EVA change-of-pace coupe electric passenger vehicle
NASA Technical Reports Server (NTRS)
Bozek, J. M.; Maslowski, E. A.; Dustin, M. O.
1977-01-01
The EVA Change-of-Pace Coupe, is an electric passenger vehicle, to characterize the state-of-the-art of electric vehicles. The EVA Change-of-Pace Coupe is a four passenger sedan that has been coverted to an electric vehicle. It is powered by twenty 6 volt traction batteries through a silicon controlled rectifier chopper controller actuated by a foot throttle to change the voltage applied to the series wound, direct current motor. Braking is accomplished with a vacuum assist hydraulic braking system. Regenerative braking is also provided.
NASA Technical Reports Server (NTRS)
Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)
2014-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.
NASA Technical Reports Server (NTRS)
Sparrow, S W; Thorne, M A
1928-01-01
The first portion of this report discusses measurements of friction made in the altitude laboratory of the Bureau of Standards between 1920 and 1926 under research authorization of the National Advisory Committee for Aeronautics. These are discussed with reference to the influence of speed, barometric pressure, jacket-water temperature, and throttle opening upon the friction of aviation engines. The second section of the report deals with measurements of the friction of a group of pistons differing from each other in a single respect, such as length, clearance, area of thrust face, location of thrust face, etc. Results obtained with each type of piston are discussed and attention is directed particularly to the fact that the friction chargeable to piston rings depends upon piston design as well as upon ring design. This is attributed to the effect of the rings upon the thickness and distribution of the oil film which in turn affects the friction of the piston to an extent which depends upon its design.
NEXT Ion Thruster Performance Dispersion Analyses
NASA Technical Reports Server (NTRS)
Soulas, George C.; Patterson, Michael J.
2008-01-01
The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.
CooLN2Car: An Experimental Car Which Uses Liquid Nitrogen as Its Fuel
NASA Astrophysics Data System (ADS)
Parker, M. E.; Plummer, M. C.; Ordonez, C. A.
1997-10-01
A ``cryogenic" heat engine which operates using the atmosphere as a heat source and a cryogenic medium as a heat sink has been incorporated as the power system for an automobile. A 1973 Volkswagen Beetle has been converted and uses liquid nitrogen as its ``fuel." A Dewar was mounted in the car and provides nitrogen under pressure to two heat exchangers connected in parallel which use atmospheric heat to heat the nitrogen. The heat exchangers deliver compressed nitrogen gas to a vane-type pneumatic motor mounted in place of the original gasoline engine. Pressure in the tank is maintained internally at 1.2 MPa and is reduced to 0.7 MPa before the motor by a pressure regulator. A throttle, composed of a butterfly valve, is mounted between the regulator and the motor and is connected to the driver's accelerator peddle. The vehicle has good acceleration, a maximum range of 15 miles, and a maximum speed of 25 mph. A demonstration with the vehicle is planned.
Simulator Sickness: Reaction to a Transformed Perceptual World. 2. Sourcebook and Suggested Readings
1985-03-20
RPM INDICATION. IN THE HTL, THE RPM IS VERY SENSITIVE. THE CONTINUOUS MANIPULATIONS OF COLLECTIVE REQUIRED ARE CALLED " MILKING ". A VETERAN INSTRUCTOR...SAYS: ’ ’ MILKING ’ IS A PROCESS WHEREBY RNM IS BUILT UP BY REDUCING COLLECTIVE (WITH FULL THROTTLE) THEN INCREASING COLLECTIVE TO AVOID SETTLING TO THE...GROUND. HOWEVER, ’ MILKING , IS USED IN ALL MANEUVERS AT ALL SPEEDS AND ANY ALTITUDE, ANYTIME THE COLLECTIVE IS DECREASED THE THROTTLE MUST ALSO BE
[Strangulation marks in homicides caused by choking ? On an irritant blood stain picture].
Metter, D
1988-01-01
Three homicides and one attempted homicide by choking in which apparent signs of throttling were present on the skin of the neck are described. The victims wore slender necklaces which were pressed against the skin by the hands of the perpetrator, causing transverse hematomas and cutaneous abrasions. The following criterious are typical for simulated signs of throttling: similarity to objects on the neck, incomplete course around the neck, absence of coarctation of the soft tissues, no lesions of subcutaneous structures.
Numerical investigation of separated nozzle flows
NASA Technical Reports Server (NTRS)
Chen, C. L.; Chakravarthy, S. R.; Hung, C. M.
1994-01-01
A numerical study of axisymmetric overexpanded nozzle is presented. The flow structure of the startup and throttle-down processes are examined. During the impulsive startup process, observed flow features include the Mach disk, separation shock, Mach stem, vortex core, contact surface, slip stream, initial shock front, and shocklet. Also the movement of the Mach disk is not monotonical in the downstream direction. For a range of pressure ratios, hysteresis phenomenon occurs; different solutions were obtained depending on different processes. Three types of flow structures were observed. The location of separation point and the lower end turning point of hysteresis are closely predicted. A high peak of pressure is associated with the nozzle flow reattachment. The reversed vortical structure and affects engine performance.
High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration
NASA Technical Reports Server (NTRS)
Hofer, Richard R.
2013-01-01
This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
NASA Astrophysics Data System (ADS)
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
NASA Astrophysics Data System (ADS)
Margulis, M. A.; Pil'Gunov, V. N.
2009-10-01
The mechanism of the effects observed in hydrodynamic unit throttles was studied. These effects included luminescence in the visible range localized in a microscopic toroidal volume and electric pulses when a dielectric liquid flew through a narrow passage orifice. Equations for charging and conduction currents were obtained. The stationary electric charge, potential, and field strength on the internal surface of a passage orifice were calculated. It was shown theoretically that the appearance of luminescence most probably occurred in electrical breakdowns in cavitation bubbles in the initial flow section inside the passage orifice. Electric charge formed not only during hydrodynamic cavitation but also in a laminar throttle in the absence of cavitation in the liquid; the electrokinetic mechanism applied to this phenomenon too. It was shown experimentally that electric charges appeared not only in plastic but also in metallic throttles. The suggested mechanism of light emission and electric charge appearance was in agreement with the experimental results.
Investigation on Motorcyclist Riding Behaviour at Curve Entry Using Instrumented Motorcycle
Yuen, Choon Wah; Karim, Mohamed Rehan; Saifizul, Ahmad
2014-01-01
This paper details the study on the changes in riding behaviour, such as changes in speed as well as the brake force and throttle force applied, when motorcyclists ride over a curve section road using an instrumented motorcycle. In this study, an instrumented motorcycle equipped with various types of sensors, on-board cameras, and data loggers, was developed in order to collect the riding data on the study site. Results from the statistical analysis showed that riding characteristics, such as changes in speed, brake force, and throttle force applied, are influenced by the distance from the curve entry, riding experience, and travel mileage of the riders. A structural equation modeling was used to study the impact of these variables on the change of riding behaviour in curve entry section. Four regression equations are formed to study the relationship between four dependent variables, which are speed, throttle force, front brake force, and rear brake force applied with the independent variables. PMID:24523660
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Johnston, I. D.; Tracey, M. C.; Tan, C. K. L.
2010-06-01
Fluid transport is accomplished in a micro throttle pump (MTP) by alternating deformation of a micro channel cast into a polydimethylsiloxane (PDMS) elastomeric substrate. The active deformation is achieved using a bimorph PZT piezoelectric disc actuator bonded to a glass diaphragm. The bimorph PZT deflects the diaphragm as well as alternately pushing and pulling the elastomer layer providing displacement amplification in the PDMS directly surrounding the micro channel. In order to improve pumping rates we have embedded a polymethylmethacrylate (PMMA) ring into the PMDS substrate which increases the magnitude of the displacement amplification achieved. FEM simulation of the elastomeric substrate deformation predicts that the inclusion of the PMMA ring should increase the channel deformation. We experimentally demonstrate that inclusion of a PMMA ring, having a diameter equal to that of the circular node of the PZT/glass/PDMS composite, increases in the throttle resistance ratio by 40% and the maximum pumping rate by 90% compared to an MTP with no ring.
Rocketdyne Development of RBCC Engine for Low Cost Access to Space
NASA Technical Reports Server (NTRS)
Ortwerth, P.; Ratekin, G.; Goldman, A.; Emanuel, M.; Ketchum, A.; Horn, M.
1997-01-01
Rocketdyne is pursuing the conceptual design and development of a Rocket Based Combined Cycle (RBCC) engine for booster and SSTO, advanced reusable space transportation ARTT systems under contract with NASA Marshall Space Flight Center. The Rocketdyne concept is fixed geometry integrated Rocket, Ram Scramjet which is Hydrogen fueled and uses Hydrogen regenerative cooling. Vision vehicle integration studies have determined that scramjet operation to Mach 12 has high payoff for low cost reusable space transportation. Rocketdyne is internally developing versions of the concept for other applications in high speed aircraft and missiles with Hydrocarbon fuel systems. Subscale engine ground testing is underway for all modes of operation from takeoff to Mach 8. High altitude Rocket only mode tests will be completed as part of the ground test program to validate high expansion ratio performance. A unique feature of the ground test series is the inclusion of dynamic trajectory simulation with real time Mach number, altitude, engine throttling, and RBCC mode changes in a specially modified freejet test facility at GASL. Preliminary cold flow Air Augmented Rocket mode test results and Short Combustor tests have met program goals and have been used to integrate all modes of operation in a single combustor design with a fixed geometry inlet for design confirmation tests. A water cooled subscale engine is being fabricated and installed for test beginning the last quarter of 1997.
NASA Technical Reports Server (NTRS)
Szabo, James
2015-01-01
Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).
Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.
2017-01-01
To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.
Gasoline Combustion Fundamentals DOE FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekoto, Isaac W.
Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics atmore » elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.« less
Manifold absolute pressure estimation using neural network with hybrid training algorithm
Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli
2017-01-01
In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779
NASA Technical Reports Server (NTRS)
Sinha, Sujit
1988-01-01
A study was conducted to evaluate the performance implications of a heads-up ascent flight design for the Space Transportation System, as compared to the current heads-down flight mode. The procedure involved the use of the Minimum Hamiltonian Ascent Shuttle Trajectory Evaluation Program, which is a three-degree-of-freedom moment balance simulation of shuttle ascent. A minimum-Hamiltonian optimization strategy was employed to maximize injection weight as a function of maximum dynamic pressure constraint and Solid Rocket Motor burnrate. Performance Reference Mission Four trajectory groundrules were used for consistency. The major conclusions are that for heads-up ascent and a mission nominal design maximum dynamic pressure value of 680 psf, the optimum solid motor burnrate is 0.394 ips, which produces a performance enhancement of 4293 lbm relative to the baseline heads-down ascent, with 0.368 ips burnrate solid motors and a 680 psf dynamic pressure constraint. However, no performance advantage exists for heads-up flight if the current Solid Rocket Motor target burnrate of 0.368 ips is used. The advantage of heads-up ascent flight employing the current burnrate is that Space Shuttle Main Engine throttling for dynamic pressure control is not necessary.
In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.
2012-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.
In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions
Control concepts for the alleviation of windshears and gusts
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Govindaraj, K. S.
1982-01-01
Automatic control system design methods for gust and shear alleviation were studied. It is shown that automatic gust/shear alleviation systems can be quite effective if both throttle and elevator are used in harmony to produce the forces and moments required to counter the effects of the windshear. Regulation with respect to ground speed or airspeed results in very similar system designs. The application of the NASA total energy probe in the detection of windshear and criteria for alleviation is considered. The theory and application of robust output observers is extended. Design examples show how implementation of the control laws can be accomplished using observers, and thereby resulting in less complex control system configurations.
Optimal control of Formula One car energy recovery systems
NASA Astrophysics Data System (ADS)
Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.
2014-10-01
The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.
An Evaluation of the Argentinean Basic Trainer Aircraft Domestic Development Project
2012-03-01
Prototype, 1st jet built in Latin America 1947 IAe 31 Colibrí Two- seat Trainer aircraft 3 National design 1948 IAe 30 Ñancú Fighter/Attack prototype...37 Supersonic delta-wing interceptor (Glider, unpowered prototype only) 1 Designed by Reimar Horten. 1957 IAe 46 Ranquel 2- seat utility...return all surfaces to neutral. It must be operable from both positions, with priority on the rear command seat . • Ergonomic Throttle controls on the
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
1964-10-30
This 1964 NASA Flight Reserch Center photograph shows a ground engine test underway on the Lunar Landing Research Vehicle (LLRV) number 1. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the Moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on Earth in a simulated Moon environment, one sixth of the Earth's gravity and with totally transparent aerodynamic forces in a "free flight" vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the Moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the Moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw,
Status of the NEXT Ion Thruster Long Duration Test
NASA Technical Reports Server (NTRS)
Frandina, Michael M.; Arrington, Lynn A.; Soulas, George C.; Hickman, Tyler A.; Patterson, Michael J.
2005-01-01
The status of NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT) is presented. The test will be conducted with a 36 cm diameter engineering model ion thruster, designated EM3, to validate and qualify the NEXT thruster propellant throughput capability of 450 kg xenon. The ion thruster will be operated at various input powers from the NEXT throttle table. Pretest performance assessments demonstrated that EM3 satisfies all thruster performance requirements. As of June 26, 2005, the ion thruster has accumulated 493 hours of operation and processed 10.2 kg of xenon at a thruster input power of 6.9 kW. Overall ion thruster performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with very little variation in performance parameters.
NASA Technical Reports Server (NTRS)
Jaggers, R. F.
1977-01-01
A derivation of an explicit solution to the two point boundary-value problem of exoatmospheric guidance and trajectory optimization is presented. Fixed initial conditions and continuous burn, multistage thrusting are assumed. Any number of end conditions from one to six (throttling is required in the case of six) can be satisfied in an explicit and practically optimal manner. The explicit equations converge for off nominal conditions such as engine failure, abort, target switch, etc. The self starting, predictor/corrector solution involves no Newton-Rhapson iterations, numerical integration, or first guess values, and converges rapidly if physically possible. A form of this algorithm has been chosen for onboard guidance, as well as real time and preflight ground targeting and trajectory shaping for the NASA Space Shuttle Program.
Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars
NASA Astrophysics Data System (ADS)
Fagin, Maxwell H.
Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.
System for throttling and compensation for variable feedstock properties
Meyer, J. W.
1981-05-05
Apparatus is shown for adjusting the feed rate of pulverized feed material into a pressurized container. The apparatus also has utility for compensating for variations in the permeability of the feed material. A rotor that includes sprues with provision for controlling the pressure distribution along the sprues is located within the pressurized container. The rotor hub is connected to a drive means and a material supply means which extend through the wall of the container. A line for controlling pressure along the sprues by gas injection is connected to a chamber between sections of the sprue for controlling gas pressure at that point. The gas pressure control line is connected to a pressurized gas source and a control system external to the rotor. 10 figs.
System for throttling and compensation for variable feedstock properties
Meyer, John W.
1981-01-01
Apparatus is shown for adjusting the feed rate of pulverized feed material into a pressurized container. The apparatus also has utility for compensating for variations in the permeability of the feed material. A rotor that includes sprues with provision for controlling the pressure distribution along the sprues is located within the pressurized container. The rotor hub is connected to a drive means and a material supply means which extend through the wall of the container. A line for controlling pressure along the sprues by gas injection is connected to a chamber between sections of the sprue for controlling gas pressure at that point. The gas pressure control line is connected to a pressurized gas source and a control system external to the rotor.
Distributed reinforcement learning for adaptive and robust network intrusion response
NASA Astrophysics Data System (ADS)
Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel
2015-07-01
Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.
Pilot control through the TAFCOS automatic flight control system
NASA Technical Reports Server (NTRS)
Wehrend, W. R., Jr.
1979-01-01
The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.
Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems
NASA Technical Reports Server (NTRS)
Coles, W. D.
1949-01-01
The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.
Digital autopilots: Design considerations and simulator evaluations
NASA Technical Reports Server (NTRS)
Osder, S.; Neuman, F.; Foster, J.
1971-01-01
The development of a digital autopilot program for a transport aircraft and the evaluation of that system's performance on a transport aircraft simulator is discussed. The digital autopilot includes three axis attitude stabilization, automatic throttle control and flight path guidance functions with emphasis on the mode progression from descent into the terminal area through automatic landing. The study effort involved a sequence of tasks starting with the definition of detailed system block diagrams of control laws followed by a flow charting and programming phase and concluding with performance verification using the transport aircraft simulation. The autopilot control laws were programmed in FORTRAN 4 in order to isolate the design process from requirements peculiar to an individual computer.
NASA Technical Reports Server (NTRS)
Mehra, R. K.; Washburn, R. B.; Sajan, S.; Carroll, J. V.
1979-01-01
A hierarchical real time algorithm for optimal three dimensional control of aircraft is described. Systematic methods are developed for real time computation of nonlinear feedback controls by means of singular perturbation theory. The results are applied to a six state, three control variable, point mass model of an F-4 aircraft. Nonlinear feedback laws are presented for computing the optimal control of throttle, bank angle, and angle of attack. Real Time capability is assessed on a TI 9900 microcomputer. The breakdown of the singular perturbation approximation near the terminal point is examined Continuation methods are examined to obtain exact optimal trajectories starting from the singular perturbation solutions.
NEXT Propellant Management System Integration With Multiple Ion Thrusters
NASA Technical Reports Server (NTRS)
Sovey, James S.; Soulas, George C.; Herman, Daniel A.
2011-01-01
As a critical part of the NEXT test validation process, a multiple-string integration test was performed on the NEXT propellant management system and ion thrusters. The objectives of this test were to verify that the PMS is capable of providing stable flow control to multiple thrusters operating over the NEXT system throttling range and to demonstrate to potential users that the NEXT PMS is ready for transition to flight. A test plan was developed for the sub-system integration test for verification of PMS and thruster system performance and functionality requirements. Propellant management system calibrations were checked during the single and multi-thruster testing. The low pressure assembly total flow rates to the thruster(s) were within 1.4 percent of the calibrated support equipment flow rates. The inlet pressures to the main, cathode, and neutralizer ports of Thruster PM1R were measured as the PMS operated in 1-thruster, 2-thruster, and 3-thruster configurations. It was found that the inlet pressures to Thruster PM1R for 2-thruster and 3-thruster operation as well as single thruster operation with the PMS compare very favorably indicating that flow rates to Thruster PM1R were similar in all cases. Characterizations of discharge losses, accelerator grid current, and neutralizer performance were performed as more operating thrusters were added to the PMS. There were no variations in these parameters as thrusters were throttled and single and multiple thruster operations were conducted. The propellant management system power consumption was at a fixed voltage to the DCIU and a fixed thermal throttle temperature of 75 C. The total power consumed by the PMS was 10.0, 17.9, and 25.2 W, respectively, for single, 2-thruster, and 3-thruster operation with the PMS. These sub-system integration tests of the PMS, the DCIU Simulator, and multiple thrusters addressed, in part, the NEXT PMS and propulsion system performance and functionality requirements.
NASA Technical Reports Server (NTRS)
Collins, Jacob; Hurlbert, Eric; Romig, Kris; Melcher, John; Hobson, Aaron; Eaton, Phil
2009-01-01
A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Jorns, Benjamin A.; Mikellides, Ioannis G.; Hofer, Richard R.
2015-01-01
NASA's Jet Propulsion Laboratory has been investigating the applicability of Aerojet Rocketdyne's XR-5 thruster, a 4.5 kW class Hall thruster, for deep-space missions. Major considerations for qualifying the XR-5 for deep-space missions are demonstration of a wide throttling envelope and a usable life capability in excess of 10,000 h. Numerical simulations with the 2-D axisymmetric code Hall2De are employed to inform the qualification process by assessing erosion rates at the thruster surfaces in a wide range of throttling conditions without the need for conducting costly endurance testing. In previous work at JPL by Jorns et al., the anomalous collision frequency distribution for 11 different throttling conditions of the XR-5 spanning 0.3-4.5 kW were identified based on probe measurements of the electron temperature in the near plume region. In this paper, we provide estimates for the erosion rates at the channel walls and pole covers for the same 11 conditions. Uncertainties in the plasma measurements and in the anomalous collision frequency distribution are addressed by determining upper and lower bounds of the erosion rates. Results suggest that erosion of the walls only occurs in the last 5% of the acceleration channel and the rate of such erosion decreases as the geometry of the thruster changes in time due to magnetic shielding. A quasi-zero-erosion state is eventually achieved in all the examined throttling conditions. Examination of the results for pole surface erosion and estimated cathode life indicates that the XR-5 propellant throughput capability will exceed 700 kg, which provides 50% margin over the usable throughput capability of 466 kg as already demonstrated in wear testing.
NASA Astrophysics Data System (ADS)
Mishra, Arpit; Ghosh, Parthasarathi
2015-12-01
For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.
An innovative system for supplying air and fuel mixture to a combustion chamber of an engine
NASA Astrophysics Data System (ADS)
Saikumar, G. R. Bharath
2018-04-01
Conventional carburetors are being used since decades to ensure that the desired ratio of air and fuel enters the combustion chamber for combustion for the purpose of generating power in an Spark Ignition(SI) internal combustion engine. However to increase the efficiency, the carburetor system is gradually being replaced by fuel injection systems. Fuel injection systems use injectors to supply pressurized fuel into the combustion chamber. Owing to the high initial and maintenance cost, carburetors are still ruling in the low cost vehicle domain. An innovative concept is conceived, which is an alternative method to the carburetor system to supply the air and fuel mixture to a combustion chamber of an engine. This system comprises of an inner hollow cylinder with minute holes drilled along its length with an outer cylinder capable of sliding along its length or its longitudinal axis. This system is placed in the venturi instead of the conventional carburetor system. Fuel enters from the bottom inlet of the inner cylinder and flows out through the holes provided along its length. The fuel flow from the inner cylinder is dependent on the size and the number of holes exposed at that instance by the sliding outer cylinder which in turn is connected to the throttle or accelerator.
Simulation modelling for new gas turbine fuel controller creation.
NASA Astrophysics Data System (ADS)
Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.
2017-11-01
State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.
Ground vehicle control at NIST: From teleoperation to autonomy
NASA Technical Reports Server (NTRS)
Murphy, Karl N.; Juberts, Maris; Legowik, Steven A.; Nashman, Marilyn; Schneiderman, Henry; Scott, Harry A.; Szabo, Sandor
1994-01-01
NIST is applying their Real-time Control System (RCS) methodology for control of ground vehicles for both the U.S. Army Researh Lab, as part of the DOD's Unmanned Ground Vehicles program, and for the Department of Transportation's Intelligent Vehicle/Highway Systems (IVHS) program. The actuated vehicle, a military HMMWV, has motors for steering, brake, throttle, etc. and sensors for the dashboard gauges. For military operations, the vehicle has two modes of operation: a teleoperation mode--where an operator remotely controls the vehicle over an RF communications network; and a semi-autonomous mode called retro-traverse--where the control system uses an inertial navigation system to steer the vehicle along a prerecorded path. For the IVHS work, intelligent vision processing elements replace the human teleoperator to achieve autonomous, visually guided road following.
Dynamics and Control of a Quadrotor with Active Geometric Morphing
NASA Astrophysics Data System (ADS)
Wallace, Dustin A.
Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.
Influence of technological factors on characteristics of hybrid fluid-film bearings
NASA Astrophysics Data System (ADS)
Koltsov, A.; Prosekova, A.; Rodichev, A.; Savin, L.
2017-08-01
The influence of the parameters of micro- and macrounevenness on the characteristics of a hybrid bearing with slotted throttling is considered in the present paper. The quantitative assumptions of calculation of pressure distribution, load capacity, lubricant flow rate and power loss due to friction in a radial hybrid bearing with slotted throttling are taken into account, considering the shape, dimensions and roughness of the support surfaces inaccuracies. Numerical simulation of processes in the lubricating layer is based on the finite-difference solution of the Reynolds equation using an uneven orthogonal computational grid with adaptive condensation. The results of computational and physical experiments are presented.
Achieving energy efficiency during collective communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao
2012-09-13
Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although littlemore » attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run« less
The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor
2009-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability
NASA Technical Reports Server (NTRS)
Dankanich, John; Anderson, David J.
2008-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
Simulation Analysis of Computer-Controlled pressurization for Mixture Ratio Control
NASA Technical Reports Server (NTRS)
Alexander, Leslie A.; Bishop-Behel, Karen; Benfield, Michael P. J.; Kelley, Anthony; Woodcock, Gordon R.
2005-01-01
A procedural code (C++) simulation was developed to investigate potentials for mixture ratio control of pressure-fed spacecraft rocket propulsion systems by measuring propellant flows, tank liquid quantities, or both, and using feedback from these measurements to adjust propellant tank pressures to set the correct operating mixture ratio for minimum propellant residuals. The pressurization system eliminated mechanical regulators in favor of a computer-controlled, servo- driven throttling valve. We found that a quasi-steady state simulation (pressure and flow transients in the pressurization systems resulting from changes in flow control valve position are ignored) is adequate for this purpose. Monte-Carlo methods are used to obtain simulated statistics on propellant depletion. Mixture ratio control algorithms based on proportional-integral-differential (PID) controller methods were developed. These algorithms actually set target tank pressures; the tank pressures are controlled by another PID controller. Simulation indicates this approach can provide reductions in residual propellants.
Algorithm for fuel conservative horizontal capture trajectories
NASA Technical Reports Server (NTRS)
Neuman, F.; Erzberger, H.
1981-01-01
A real time algorithm for computing constant altitude fuel-conservative approach trajectories for aircraft is described. The characteristics of the trajectory computed were chosen to approximate the extremal trajectories obtained from the optimal control solution to the problem and showed a fuel difference of only 0.5 to 2 percent for the real time algorithm in favor of the extremals. The trajectories may start at any initial position, heading, and speed and end at any other final position, heading, and speed. They consist of straight lines and a series of circular arcs of varying radius to approximate constant bank-angle decelerating turns. Throttle control is maximum thrust, nominal thrust, or zero thrust. Bank-angle control is either zero or aproximately 30 deg.
Baseline tests of the C. H. Waterman Renault 5 electric passenger vehicle
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Mcbrien, E. F.; Slavick, R. J.
1977-01-01
The Waterman vehicle, a four passenger Renault 5 GTL, performance test results are presented and characterized the state-of-the-art of electric vehicles. It was powered by sixteen 6-volt traction batteries through a two-step contactor controller actuated by a foot throttle to change the voltage applied to the 6.7 -kilowatt motor. The motor output shaft was connected to a front-wheel-drive transaxle that contains a four-speed manual transmission and clutch. The braking system was a conventional hydraulic braking system.
Baseline tests of the C. H. Waterman DAF electric passenger vehicle
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Maslowski, E. A.; Soltis, R. F.; Schuh, R. M.
1977-01-01
An electric vehicle was tested as part of an Energy Research Development Administration (ERDA) project to characterize the state-of-the-art of electric vehicles. The Waterman vehicle performance test results are presented in this report. The vehicle is a converted four-passenger DAF 46 sedan. It is powered by sixteen 6-volt traction batteries through a three-step contactor controller actuated by a foot throttle to change the voltage applied to the 6.7 kW motor. The braking system is a conventional hydraulic braking system.
MANPRINT Evaluation of the High Mobility Multipurpose Wheeled Vehicle-Heavy Variant (HMMWV-HV)
1990-02-01
gap between brake and gas pedal . Knee hits throttle control. Metal below seat hits back of calf muscle. Visibility Is the driver’s visibility adequate...24, No - 0, NA - 0] Gas pedal : 79. Parked? [Yes - 24, No - 0, NA - 0] 80. Primary and Secondary roads? [Yes - 24, No - 0, NA - 0] 81. Cross-country...Yes - 24, No - 0, NA - 0] 89 Brake pedal : 82. Parked? [Yes - 24, No - 0, NA - 0] 83. Primary and Secondary roads? [Yes - 24, No - 0, NA - 0] 84
Ascent Guidance for a Winged Boost Vehicle. M.S. Thesis
NASA Technical Reports Server (NTRS)
Corvin, Michael Alexander
1988-01-01
The objective of the advanced ascent guidance study was to investigate guidance concepts which could contribute to increased autonomy during ascent operations in a winged boost vehicle such as the proposed Shuttle II. The guidance scheme was required to yield near a full-optimal ascent in the presence of vehicle system and environmental dispersions. The study included consideration of trajectory shaping issues, trajectory design, closed loop and predictive adaptive guidance techniques and control of dynamic pressure by throttling. An extensive ascent vehicle simulation capability was developed for use in the study.
Penetration and Duration of Fuel Sprays from a Pump Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1931-01-01
High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.
Penetration and Duration of Fuel Sprays from a Pump Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1934-01-01
High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.
Preliminary results of the mission profile life test of a 30 cm Hg bombardment thruster
NASA Technical Reports Server (NTRS)
Bechtel, R. T.; James, E. L.
1979-01-01
Long term tests were performed on a 30 cm Hg bombardment thruster and a power processing unit to determine lifetime characteristics. The thruster performance data and other operational characteristics taken at various times during the test segment are presented and evaluated with the life limiting mechanisms: discharge chamber erosion, deposition and spalling, external erosion, cathode degradation, and propellant isolator leakage. The control algorithms for thruster start up, steady state operation, throttle, detection and correction of off normal conditions, and shutdown are discussed.
Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System
NASA Technical Reports Server (NTRS)
Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.
2008-01-01
Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.
Bipedal vs. unipedal: a comparison between one-foot and two-foot driving in a driving simulator.
Wang, Dong-Yuan Debbie; Richard, F Dan; Cino, Cullen R; Blount, Trevin; Schmuller, Joseph
2017-04-01
Is it better to drive with one foot or with two feet? Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. The current study compared traditional unipedal (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (two-foot driving, using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator study. Each of 30 undergraduate participants drove in a simulated driving scenario. They responded to a STOP sign displayed on the centre of the screen by bringing their vehicle to a complete stop. Brake RT was shorter under the bipedal condition, while throttle RT showed advantage under the unipedal condition. Stopping time and distance showed a bipedal advantage, however. We discuss further limitations of the current study and implications in a driving task. Before drawing any conclusions from the simulator study, further on-road driving tests are necessary to confirm these obtained bipedal advantages. Practitioner Summary: Traditional unipedal (using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator were compared. Our results showed a bipedal advantage. Promotion: Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. Traditional (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a simulated driving study were compared. Throttle reaction time was faster in the unipedal condition whereas brake reaction time, stopping time and stopping distance showed a bipedal advantage. We discuss further theoretical issues and implications in a driving task.
Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai
2018-01-01
A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.
Pratt and Whitney J57 with a Greatex Nozzle in the Altitude Wind Tunnel
1957-02-21
A Pratt and Whitney J57 engine is tested with a Greatex No.1 nozzle in the Altitude Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. At the time the aircraft industry was preparing to introduce jet airliners to the nation’s airways. The noise produced by the large jet engines, however, posed a considerable problem for communities near airports. The NACA had formed a Special Subcommittee on Aircraft Noise to coordinate research on the issue. Preliminary tests showed that the source of the loudest noise was not the engine itself, but the mixing of the engine’s exhaust with the surrounding air in the atmosphere. The pressures resulting from this turbulence produced sound waves. Lewis researchers undertook a variety of noise-reduction studies involving engine design, throttling procedures, and noise suppressors. One of their first efforts focused on new types of nozzles to mix the exhaust with the surrounding air. The nozzles had a variety of shapes designed to slow down exhaust velocity before it combined with the air and thus decrease the noise. From January to May 1957 a Pratt and Whitney J57 engine was equipped with various shaped nozzles, as seen in this photograph, and run in simulated flight conditions in the Altitude Wind Tunnel. A number of nozzle configurations, including several multi-exit “organ pipe” designs, were created. It was found that the various nozzle types did reduce the noise levels, but they also reduced the aircraft’s thrust.
NASA Astrophysics Data System (ADS)
Norizan, A.; Rahman, M. T. A.; Amin, N. A. M.; Basha, M. H.; Ismail, M. H. N.; Hamid, A. F. A.
2017-10-01
This paper describes the design differences between the intake manifold and restrictor used in racing cars that participate in the Formula Student (FSAE) competition. To fulfil the criteria of rules and regulation of the race, each race car must have a restriction device that has a maximum diameter of 20 mm installed between the throttle body and intake manifold. To overcome these problems, a restrictor has been designed and analysed using the steady state analysis, to reduce the loss of pressure in the restrictor. Design of the restrictor has a fixed parameter of the maximum diameter of 20mm. There are some differences that have been taken to make the comparison between the design of the restrictor, the diameter of the inlet and outlet, the curvature of the surface, convergence and divergence angle and length of the restrictor. Intake manifold was designed based on the design of the chassis, which shall not exceed the envelope defined by the FSAE competition. A good intake manifold design will affect the performance of the engine. Each design have made an analysis designed to ensure that each cylinder engine gets its air evenly. To verify the design, steady state analysis was made for a total mass flow rate and the velocity of air leaving a runner in each engine. Data such as the engine MAP reading was recorded by using Haltech ECU Management Software as reference purposes.
Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.
2015-01-01
Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.
Throttling Tor Bandwidth Parasites
2011-09-23
this section, “ vanilla ” rep- resents unmodified Tor using a round-robin circuit scheduler and no throttling and can be used to compare results...and valid between 03:00:00 and 06:00:00. 7 0 5 10 15 20 Web Time to First Byte (s) 0.0 0.2 0.4 0.6 0.8 1.0 Cu m ul at iv e Fr ac tio n vanilla 5...KiBps 50 KiBps 300 KiBps (a) 0 5 10 15 20 25 30 Web Download Time (s) 0.0 0.2 0.4 0.6 0.8 1.0 Cu m ul at iv e Fr ac tio n vanilla 5 KiBps 50 KiBps 300
Personnel emergency carrier vehicle
NASA Technical Reports Server (NTRS)
Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)
1987-01-01
A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.
1965-04-26
LLRV flight #1-16-61F with Bell 47 Helicopter providing chase support. The use of chase planes was a critical part of flight research well before the establishment of what was then called the NACA Muroc Flight Test Unit in September 1947 (now the NASA Dryden Flight Research Center). They act as a second set of eyes for the research pilot, warning him of any problems. When test flights of the LLRV began in October 1964, chase support for the vehicle was supplied by a Bell 47 helicopter. It could hover close by, providing information such as altitude and descent rate. LLRV test operations were phased out in late 1966 and early 1967. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the Moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center’s (FRC) Lunar Landing Research Vehicle (LLRV) became the most significant one. After conceptual planning and meetings with engineers from Bell Aerosystems Company, Buffalo, N.Y., NASA FRC issued a $3.6 million production contract awarded in 1963, for delivery of the first of two vehicles for flight studies. Built of tubular aluminum alloy like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the Moon’s surface. The LLRV had a turbofan engine mounted vertically in a gimbal, with 4200 pounds of thrust. The engine, lifted the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, thus simulating the reduced gravity of the Moon. Two lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. The pilot’s platform extended forward between t
1967-01-11
In this 1967 NASA Flight Reserch Center photograph the Lunar Landing Research Vehicle (LLRV) is viewed from the front. This photograph provideds a good view of the pilot’s platform with the restrictive cockpit view like that of he real Lunar Module (LM) When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the Moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center’s (FRC) Lunar Landing Research Vehicle (LLRV) became the most significant one. After conceptual planning and meetings with engineers from Bell Aerosystems Company, Buffalo, N.Y., NASA FRC issued a $3.6 million production contract awarded in 1963, for delivery of the first of two vehicles for flight studies. Built of tubular aluminum alloy like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the Moon’s surface. The LLRV had a turbofan engine mounted vertically in a gimbal, with 4200 pounds of thrust. The engine, lifted the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, thus simulating the reduced gravity of the Moon. Two lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll.. The pilot’s platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. The two LLRVs were shipped from Bell to the FRC in April 1964, with program emphasis on vehicle No. 1. The first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds
1964-12-09
In this NASA Flight Reserch Center photograph the Lunar Landing Research Vehicle (LLRV) number 1 is shown in flight. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the Moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on Earth in a simulated Moon environment, one sixth of the Earth's gravity and with totally transparent aerodynamic forces in a "free flight" vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the Moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the Moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On the LLRV,
Ascent performance and abort analysis for a Future Space Transportation System
NASA Technical Reports Server (NTRS)
Naftel, J. C.; Powell, R. W.
1983-01-01
The Future Space Transportation System (FSTS) study was conducted by the NASA Langley Research Center to identify the technology requirements for concepts that will replace the Space Shuttle in the post 2000 time frame. The configuration chosen for the study is a two-stage, fully reusable, vertical liftoff, and horizontal landing system with a 150,000 lb. payload capability. The two stages are burned in parallel with the booster providing all the propellant until staging, which results in a large lateral c.g. movement. Nominally, the booster stages at Mach 3 and glides back to the launch site. Because of the large lateral c.g. travel, a scheme to trim the vehicle until staging occurred was developed that used both gimballing and throttling of the engines. Preliminary booster aerodynamics were determined, and the booster glideback trajectory was analyzed with and without winds. Finally, a preliminary abort analysis was conducted for each stage.
Ion Thruster Power Levels Extended by a Factor of 10
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
2004-01-01
In response to two NASA Office of Space Science initiatives, the NASA Glenn Research Center is now developing a 7-kW-class xenon ion thruster system for near-term solar-powered spacecraft and a 25-kW ion engine for nuclear-electric spacecraft. The 7-kW ion thruster and power processor can be throttled down to 1 kW and are applicable to 25-kW flagship missions to the outer planets, asteroids, and comets. This propulsion system was scaled up from the 2.5-kW ion thruster and power processor that was developed successfully by Glenn, Boeing, the Jet Propulsion Laboratory (JPL), and Spectrum Astro for the Deep Space 1 spacecraft. The 7-kW ion thruster system is being developed under NASA's Evolutionary Xenon Thruster (NEXT) project, which includes partners from JPL, Aerojet, Boeing, the University of Michigan, and Colorado State University.
Investigation in the 7-by-10 Foot Wind Tunnel of Ducts for Cooling Radiators within an Airplane Wing
NASA Technical Reports Server (NTRS)
Harris, Thomas A; Recant, Isidore G
1942-01-01
Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional-flow setup with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included.
Centaur Propellant Thermal Conditioning Study
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.
1976-01-01
A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.
Descent Assisted Split Habitat Lunar Lander Concept
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.
2008-01-01
The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs
Near-Optimal Operation of Dual-Fuel Launch Vehicles
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Chou, H. C.; Bowles, J. V.
1996-01-01
A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the optimal operation of the propulsion system and the optimal flight path. A methodology is developed to investigate the optimal throttle switching of dual-fuel engines. The method is based on selecting propulsion system modes and parameters that maximize a certain performance function. This function is derived from consideration of the energy-state model of the aircraft equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of perturbations in volume need to be taken into consideration as well as weight sensitivity. The cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize vehicle empty weight for a given payload mass and volume in orbit.
ATD-2 Surface Scheduling and Metering Concept
NASA Technical Reports Server (NTRS)
Coppenbarger, Richard A.; Jung, Yoon Chul; Capps, Richard Alan; Engelland, Shawn A.
2017-01-01
This presentation describes the concept of ATD-2 tactical surface scheduling and metering. The concept is composed of several elements, including data exchange and integration; surface modeling; surface scheduling; and surface metering. The presentation explains each of the elements. Surface metering is implemented to balance demand and capacity• When surface metering is on, target times from surface scheduler areconverted to advisories for throttling demand• Through the scheduling process, flights with CTOTs will not get addedmetering delay (avoids potential for ‘double delay’)• Carriers can designate certain flights as exempt from metering holds• Demand throttle in Phase 1 at CLT is through advisories sent to rampcontrollers for pushback instructions to the flight deck– Push now– Hold for an advised period of time (in minutes)• Principles of surface metering can be more generally applied to otherairports in the NAS to throttle demand via spot-release times (TMATs Strong focus on optimal use of airport resources• Flexibility enables stakeholders to vary the amount of delay theywould like transferred to gate• Addresses practical aspects of executing surface metering in aturbulent real world environment• Algorithms designed for both short term demand/capacityimbalances (banks) or sustained metering situations• Leverage automation to enable surface metering capability withoutrequiring additional positions• Represents first step in Tactical/Strategic fusion• Provides longer look-ahead calculations to enable analysis ofstrategic surface metering potential usage
NASA's Advanced solid rocket motor
NASA Technical Reports Server (NTRS)
Mitchell, Royce E.
1993-01-01
The Advanced Solid Rocket Motor (ASRM) will not only bring increased safety, reliability and performance for the Space Shuttle Booster, it will enhance overall Shuttle safety by effectively eliminating 174 failure points in the Space Shuttle Main Engine throttling system and by reducing the exposure time to aborts due to main engine loss or shutdown. In some missions, the vulnerability time to Return-to-Launch Site aborts is halved. The ASRM uses case joints which will close or remain static under the effects of motor ignition and pressurization. The case itself is constructed of the weldable steel alloy HP 9-4-0.30, having very high strength and with superior fracture toughness and stress corrosion resistance. The internal insulation is strip-wound and is free of asbestos. The nozzle employs light weight ablative parts and is some 5,000 pounds lighter than the Shuttle motor used to date. The payload performance of the ASRM-powered Shuttle is 12,000 pounds higher than that provided by the present motor. This is of particular benefit for payloads delivered to higher inclinations and/or altitudes. The ASRM facility uses state-of-the-art manufacturing techniques, including continuous propellant mixing and direct casting.
Verification on spray simulation of a pintle injector for liquid rocket engine
NASA Astrophysics Data System (ADS)
Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye
2016-02-01
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.
In-Flight Wing Pressure Distributions for the NASA F/A-18A High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Davis, Mark C.; Saltzman, John A.
2000-01-01
Pressure distributions on the wings of the F/A-18A High Alpha Research Vehicle (HARV) were obtained using both flush-mounted pressure orifices and surface-mounted pressure tubing. During quasi-stabilized 1-g flight, data were gathered at ranges for angle of attack from 5 deg to 70 deg, for angle of sideslip from -12 deg to +12 deg, and for Mach from 0.23 to 0.64, at various engine settings, and with and without the leading edge extension fence installed. Angle of attack strongly influenced the wing pressure distribution, as demonstrated by a distinct flow separation pattern that occurred between the range from 15 deg to 30 deg. Influence by the leading edge extension fence was evident on the inboard wing pressure distribution, but little influence was seen on the outboard portion of the wing. Angle-of-sideslip influence on wing pressure distribution was strongest at low angle of attack. Influence of Mach number was observed in the regions of local supersonic flow, diminishing as angle of attack was increased. Engine throttle setting had little influence on the wing pressure distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanski, P.A.
1995-03-01
The report presents a theoretical analysis of three vapor compression cycles which are derived from the Rankine cycle by incorporating a liquid-line/suction-line heat exchanger, economizer, or ejector. These addendums to the basic cycle reduce throttling losses using different principles, and they require different mechanical hardware of different complexity and cost. The theoretical merits of the three modified cycles were evaluated in relation to the reversed Carnot and Rankine cycle. Thirty-eight fluids were included in the study using the Carnahan-Starling-DeSantis equation of state. In general, the benefit of these addendums increases with the amount of the throttling losses realized by themore » refrigerant in the Rankine cycle.« less
NASA Technical Reports Server (NTRS)
Foss, W. E., Jr.
1979-01-01
The takeoff and approach performance of an aircraft is calculated in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. The program may be used to investigate advanced operational procedures for noise alleviation such as programmed throttle and flap controls. Extensive profile time history data are generated and are placed on an interface file which can be input directly to the NASA aircraft noise prediction program (ANOPP).
The 727 approach energy management system avionics specification (preliminary)
NASA Technical Reports Server (NTRS)
Jackson, D. O.; Lambregts, A. A.
1976-01-01
Hardware and software requirements for an Approach Energy Management System (AEMS) consisting of an airborne digital computer and cockpit displays are presented. The displays provide the pilot with a visual indication of when to manually operate the gear, flaps, and throttles during a delayed flap approach so as to reduce approach time, fuel consumption, and community noise. The AEMS is an independent system that does not interact with other navigation or control systems, and is compatible with manually flown or autopilot coupled approaches. Operational use of the AEMS requires a DME ground station colocated with the flight path reference.
High Acceleration Cockpit Controller Locations. Volume 3. Onsite Pilot Evaluations
1975-05-01
Ratings 31 9 Post Cockpit Questionnaire - Design Feature Ratings 32 VI A/A, A-A AAI A/C ACF ACM AFCS A/G CAP Chan CRT Coram DFC ...Negative Responses TASK RESPONSES NEGATIVE COMMENTS YES MAYBE NO MONITOR FBW STATUS 28 9 3 Obscured by throttles ACTIVATE FBW DFC , MVR, FUS AIM...4J 0 X O 4J O CO o Q UH U-l iH CJ i-H ^ i-1 TD CJ CO 4J CO 01 s c 0 O 4-1 o C 0 C X Si C 0) C -rl C cu C CO c
NASA Astrophysics Data System (ADS)
Xu, Bing; Cheng, Min
2018-06-01
This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.
Automatic Energy Schemes for High Performance Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundriyal, Vaibhav
Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-allmore » and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamminger, Michael; Sevik, James; Scarcelli, Riccardo
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems.more » Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.« less
Perceived Noise Analysis for Offset Jets Applied to Commercial Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Henderson, Brenda S.; Berton, Jeffrey J.; Seidel, Jonathan A.
2016-01-01
A systems analysis was performed with experimental jet noise data, engine/aircraft performance codes and aircraft noise prediction codes to assess takeoff noise levels and mission range for conceptual supersonic commercial aircraft. A parametric study was done to identify viable engine cycles that meet NASA's N+2 goals for noise and performance. Model scale data from offset jets were used as input to the aircraft noise prediction code to determine the expected sound levels for the lateral certification point where jet noise dominates over all other noise sources. The noise predictions were used to determine the optimal orientation of the offset nozzles to minimize the noise at the lateral microphone location. An alternative takeoff procedure called "programmed lapse rate" was evaluated for noise reduction benefits. Results show there are two types of engines that provide acceptable mission range performance; one is a conventional mixed-flow turbofan and the other is a three-stream variable-cycle engine. Separate flow offset nozzles reduce the noise directed toward the thicker side of the outer flow stream, but have less benefit as the core nozzle pressure ratio is reduced. At the systems level for a three-engine N+2 aircraft with full throttle takeoff, there is a 1.4 EPNdB margin to Chapter 3 noise regulations predicted for the lateral certification point (assuming jet noise dominates). With a 10% reduction in thrust just after clearing the runway, the margin increases to 5.5 EPNdB. Margins to Chapter 4 and Chapter 14 levels will depend on the cumulative split between the three certification points, but it appears that low specific thrust engines with a 10% reduction in thrust (programmed lapse rate) can come close to meeting Chapter 14 noise levels. Further noise reduction is possible with engine oversizing and derated takeoff, but more detailed mission studies are needed to investigate the range impacts as well as the practical limits for safety and takeoff regulations.
Air-gun signature modelling considering the influence of mechanical structure factors
NASA Astrophysics Data System (ADS)
Li, Guofa; Liu, Zhao; Wang, Jianhua; Cao, Mingqiang
2014-04-01
In marine seismic prospecting, as the air-gun array is usually composed of different types of air-guns, the signature modelling of different air-guns is particularly important to the array design. Different types of air-guns have different mechanical structures, which directly or indirectly affect the signatures. In order to simulate the influence of the mechanical structure, five parameters—the throttling constant, throttling power law exponent, mass release efficiency, fluid viscosity and heat transfer coefficient—are used in signature modelling. Through minimizing the energy relative error between the simulated and the measured signatures by the simulated annealing method, the five optimal parameters can be estimated. The method is tested in a field experiment, and the consistency between the simulated and the measured signatures is improved with the optimal parameters.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1980-01-01
Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
2011-11-07
Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior onmore » the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO{sub 2} Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO{sub 2} loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO{sub 2} cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Barone, Teresa L; Thomas, John F
2012-01-01
Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol contentmore » beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.« less
14 CFR 61.68 - Category III pilot authorization requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lighting system; (ix) Characteristics and limitations of the flight director system auto approach coupler (including split axis type if equipped), auto throttle system (if equipped), and other Category III equipment...
Broadband pulsed flow using piezoelectric microjets
NASA Astrophysics Data System (ADS)
Hogue, Joshua; Solomon, John; Hays, Michael; Alvi, Farrukh; Oates, William
2010-04-01
A piezohydraulic microjet design and experimental results are presented to demonstrate broadband active flow control for applications on various aircraft structures including impinging jets, rotor blades, cavity bays, etc. The microjet actuator includes a piezoelectric stack actuator and hydraulic circuit that is used to throttle a 400 μm diameter microjet using hydraulic amplification of the piezoelectric stack actuator. This system is shown to provide broadband pulsed flow actuation up to 800 Hz. Unsteady pressure measurements of the microjet's exit flow are coupled with high-speed phase imagery using micro-Schlieren techniques to quantify the flow field. These results are compared with in situ stack actuator displacements using strain gauge measurements.
Performance and optimization of a derated ion thruster for auxiliary propulsion
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Foster, John E.
1991-01-01
The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed.
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; ...
2017-06-09
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order tomore » achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events -- allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and simulating steady-state conditions in KMC simulations. Lastly, as shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.« less
Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Savara, Aditya; Hin, Celine
Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; Savara, Aditya
2017-10-01
Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of "KMC stiffness" (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps/CPU time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events-allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.
How effective is aeration with vortex flow regulators? Pilot scale experiments
NASA Astrophysics Data System (ADS)
Wójtowicz, Patryk; Szlachta, Małgorzata
2017-11-01
Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.
Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Gallimore, Alec D.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
The aerodynamic characteristics of large angled cones with retrorockets
NASA Technical Reports Server (NTRS)
Jarvinen, P. O.; Adams, R. H.
1970-01-01
Analytical and experimental phases of the subject investigation are described. The analytical program for the single jet determines the terminal shock location, the jet boundary, the interface profile, the bow shock profile, the shear layer growth and the dead air region pressure. The experimental program described was conducted over the range from free stream Mach 0.4 to 2.0 at angles-of-attack up to 18 deg and at thrusting coefficients up to C sub T = T/q sub infinity A sub m = 30. Variables investigated included aeroshell angle, number of nozzles, engine thrust, size of nozzles, nozzle throttling and gas composition. The influence of these variables on the aeroshell stability, drag, and loads was determined by integrating pressure measurements on the aeroshell. The total system forces consist of components due to pure thrust and components due to pressure on the aeroshell arising from the jet-free stream interaction. Shadowgraphs provided flow field geometries which proved to be within 10% of those predicted analytically.
Optimal Aircraft Control Upset Recovery With and Without Component Failures
NASA Technical Reports Server (NTRS)
Sparks, Dean W.; Moerder, Daniel D.
2002-01-01
This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits, and actuator limits faithfully, since these contribute to the lack of agility and control power that plays an important role in defining what can be achieved with the vehicle when it is in extremis.
NASA Technical Reports Server (NTRS)
Grgurich, J.; Bradbury, P.
1976-01-01
The STOLAND system includes air data, navigation, guidance, flight director (including a throttle flight director on the Augmentor Wing), 3-axis autopilot and autothrottle functions. The 3-axis autopilot and autothrottle control through parallel electric servos on both aircraft and on the augmentor wing, the system also interfaces with three electrohydraulic series actuators which drive the roll control surfaces, elevator and rudder. The system incorporates automatic configuration control of the flaps and nozzles on the augmentor wing and of the flaps on the Twin Otter. Interfaces are also provided to control the wing flap chokes on the Augmentor Wing and the spoilers on the Twin Otter. The STOLAND system has all the capabilities of a conventional integrated avionics system. Aircraft stabilization is provided in pitch, roll and yaw including control wheel steering in pitch and roll. The basic modes include altitude hold and select, indicated airspeed hold and select, flight path angle hold and select, and heading hold and select. The system can couple to TACAN and VOR/DME navaids for conventional radial flying.
Unshrouded Centrifugal Turbopump Impeller Design Methodology
NASA Technical Reports Server (NTRS)
Prueger, George H.; Williams, Morgan; Chen, Wei-Chung; Paris, John; Williams, Robert; Stewart, Eric
2001-01-01
Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.
1968-01-22
The Saturn IB launch vehicle (SA204) for the Apollo 5 mission lifted off on January 22, 1968. The unmarned Apollo 5 mission verified the ascent and descent stage propulsion systems, including restart and throttle operations of the Lunar Module.
NASA Technical Reports Server (NTRS)
Lyons, J. T.
1993-01-01
The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing additional flexibility in the use of the program, allowing additional optimization options, and providing special options for the NLS configuration.
Ecker, Amir L.; Pietsch, Joseph A.
1982-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.